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ABSTRACT 
 The SPH method is widely used to model complex free-surface flows. The question of 
viscous models has been examined by many authors but the necessity and choice of an 
appropriate turbulent model are still not clear. Five turbulent closure models are tested here, 
from the simplest constant eddy viscosity model to a rather sophisticated non-linear eddy 
viscosity approach. The considered test case, a gate opening in a tank (for which 
measurements are available), showed that turbulence modelling is necessary to model the 
shape of the free surface with accuracy. However, a one-equation model seems to be 
sufficient to obtain satisfactory results. It is not clear whether the remaining (small) 
differences between the simulations and the experimental flow are due to physical modelling 
or numerical features. 
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1 INTRODUCTION 

Due to its Lagrangian form, SPH (Smoothed Particle Hydrodynamics) is known as an 
appropriate method for modelling complex free-surface flows. Many authors still consider 
that a constant viscosity or even an artificial (numerical) viscous model are enough for SPH 
flow modelling. On the other hand, specific developments have concerned turbulent closure 
models applied to SPH in the past few years (see e.g. Shao and Gotoh, 2004). Violeau and 
Issa (2007) have also developed several models and carried out extensive validations 
including near-wall and unsteady free-surface flows. However, the necessity of using 
turbulent closure to model free-surface flows is not obvious. For instance, it is commonly 
accepted that water wave propagation can be considered as the typical example of an inviscid 
flow; this is the consequence of the fact that this type of flow is mainly governed by gravity 
forces and inertia. On the contrary, wave breaking involves high deformation and 
consequently produces significant turbulent stresses which can influence the velocity 
distribution and thus the shape of the free surface, the efforts induced on a coastal structure, 
etc. In summary, an important question is how important is turbulence in free-surface driven 
flow modelling. More precisely, one may ask when a turbulent closure is required and what 
type of turbulence model is more appropriate to model complex free-surface flows. In this 
paper we investigate the influence of turbulence closure in the case of a rapid gate opening in 
a tank. Experiments are compared with simulations achieved by the SPH method using 
different turbulent models, all of them based on Reynolds-averaged Navier-Stokes (RANS) 
equations closed with various eddy viscosity models. 
 
2 TURBULENT SPH MODELS 

We first remind the main SPH definitions and features (section 2.1). Then the five 
turbulent models used here are briefly described (section 2.2). 

 
 

 



2.1 SPH BACKGROUND 
SPH models a flow by a set of ‘particles’ (in reality bulk fluid volumes, denoted by 

labels a or b). We use the traditional 2D SPH formalism in which each particle a, with 
position ra, has a constant mass ma and carries a density ρa, a pressure pa and a velocity vector 
ua, a dynamic (respectively kinematic) viscosity µa (respectively νa = µa / ρa), and more 
generally different physical quantities. For the purpose of statistical turbulent flow modelling, 
all physical variables are Reynolds-averaged, which is herein denoted by an overbar, and 
particles also carry turbulent eddy viscosity tensors µT,a and νT,a. With these assumptions, 
SPH forms of Reynolds-averaged continuity and momentum equations can be written as 
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where g is the acceleration of gravity, rab = ra – rb, baab uuu −= and µe,a = µaI + µT,a, where I 
is the identity tensor. ∇awab denotes the gradient of a kernel function wh(rab) with respect to 
the co-ordinates of particle a, while rab is the distance between particles a and b. In the 
following, we use the 4th-order spline kernel (see e.g. Violeau and Issa, 2007). Eqs. (1) are 
both integrated in time through an explicit Euler scheme. In the momentum equation, eddy 
viscosity tensors µT,a model the effect of turbulent eddies on the mean (averaged) flow; they 
can be estimated from various models, summarized in the next section. 
 

The pressure is estimated from the following state equation based on a numerical speed 
of sound c0 (Monaghan, 1994): 
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This equation models a weakly compressible flow, the speed of sound being fixed as ten 
times the maximum flow velocity, to ensure relative variations less than 1%. 
 
2.2 EDDY VISCOSITY MODELS 

We consider here five closure models for estimating the eddy viscosity tensor, all 
presented by the authors (Violeau and Issa, 2007): 
 

• A constant eddy viscosity model; 
• A mixing length model; 
• A one-equation model; 
• A two-equation model; 
• A non-linear eddy viscosity model. 

 
The first four models consist of setting the eddy viscosity tensor as being isotropic, i.e. 

 Iµ aTaT ,, µ=  (3) 

where the scalar eddy viscosity µT,a is defined by various closure equations. The constant 
eddy viscosity model consists of setting µT,a as a constant in time and space (i.e. constant for 
all particles). It is thus similar to a laminar model with a significantly higher value of the 
viscosity. In general it is recommended to set its value from tests carried out with one of the 



other models, more appropriate for turbulence modelling. The second model is based on a 
mixing length Lm,a, representing the characteristic lengthscale of eddy diffusity, here chosen 
as equal to the initial particle distance (which can be considered as the mean particle size). 
Then the scalar eddy viscosity is defined from the well-known Smagorinski formula: 
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where Sa is the mean rate-of-strain tensor, defined as the symmetric part of the mean velocity 
gradient tensor. Their components are calculated from the following SPH interpolation: 
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The mixing length model is based on a turbulence in equilibrium and thus cannot 
correctly represent rapidly changing phenomena. To cure this, the third and fourth models 
used here are based on the assumption that the scalar eddy viscosity obeys the following 
traditional dimensional form 
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with Cµ = 0.09. The turbulent kinetic energy ka attached to particle a is then estimated from 
the following governing equation: 
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with µk,a = µa + µT,a / σk, σk = 1.0, kab  = ka – kb and 
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is the production rate. Finally, the dissipation rate εa can be directly estimated from the 
following constitutive equation: 
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In this case, we have a one-equation model (the third model considered here); however it 
still requires the definition of an ad hoc mixing length. On the contrary, the two-equation 
model (widely referred to as k–ε) doesn’t need the knowledge of such a quantity, and consists 
of specifying the dissipation from a behaviour equation similar to (6): 
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with µε,a = µa + µT,a / σε, εab = εa − εb, σε = 1.3, Cε,1 = 1.44 and Cε,2 = 1.92 (Launder and 
Spalding, 1972). Lastly, the fifth model (referred to as non-linear eddy viscosity model and 
valid in two dimensions only in the form presented here) is no longer isotropic. In this case 
the eddy viscosity tensor is defined by 
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Ωa being the vorticity tensor (i.e. the antisymmetric part of the velocity gradient tensor). In eq. 
(11), µT,a is defined from the k–ε equations (7) and (10), but with a different definition of Cµ 
in eq. (6), which now depends on space and time, as well as the coefficient C2,a: 
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where aaa PP ε= /* is the dimensionless production rate, solution to the following algebraic 
equation: 
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The model constants are B0 = 0.8, B2 = 4 / 9 and B3 = 8 / 15. The advantage of this model 
is to take account of non-linearity and curvature effects. Besides, eq. (14) provides a better 
estimation of the production rate than (8). 
 

All these models where previously tested on various test cases and presented in earlier 
publications, including boundary conditions. The mixing length model is very simple and 
popular in traditional CFD and gives good results for simple shear flows; it was successfully 
applied to SPH by Violeau et al. (2002). In the case of an open-channel flow the one and two-
equation models are also very well known in the framework of standard Eulerian numerical 
methods and predict better unsteady turbulent flows; they were applied to SPH by Violeau 
(2004) and Issa and Violeau (2006) with satisfactory results, but could not be tested with 
accuracy for complex free surfaces. The non-linear eddy viscosity model was first developed 
by Pope (1975) and Wallin and Johansson (2000), and applied by the authors (Violeau and 
Issa, 2007) to SPH. It is known to provide much better predictions than the standard k–ε 
model as soon as high distorsion or rotation effects are involved; however, it is not still clear 
whether or not this model is of some interest for free-surface flows. 

 
Since the computational time increases (as well as the quality of the predictions) with the 

complexity of the turbulent models, knowing the specific advantages and drawbacks of each 
is a key issue for SPH modelling of turbulent free-surface flows. Indeed, SPH is quite 
computationally demanding and should be equipped with the most appropriate turbulent 
model, i.e. the best balance between accuracy and simplicity. The purpose of this paper is to 
compare the five presented models on a test case for which accurate observations of free-
surface shape are available. We try to highlight the capabilities of each model in this 
particular case. 

 



3 MODELLING GATE OPENING IN A TANK 
Section 3.1 describes the geometry and the characteristics of the case tested in the 

context of this study; the results are presented and discussed in section 3.2. 
 
3.1 CASE DESCRIPTION 

The case is described in Janosi et al. (2004) and consists of a 1.18 m long tank initially 
filled with a water layer of 1.8 cm at rest. A gate contains a water column of length 38 cm and 
depth 15 cm (figure 1) and opens at time t = 0 to let the water collapse into the tank. This flow 
is referenced as a SPHERIC benchmark test case (see http://cfd.me.umist.ac.uk/sph/) and 
presents accurate observations of the free surface at different times (see figures 2 to 4). No 
PIV velocity measurements were given, but one can assume that the distribution of velocities 
should be in good accordance with experiments to match the free surface, due to its 
complexity and mobility. 
  
 

15 cm 

38 cm 

1.18 m

1.8 cm

Gate 

  

Figure 1 – Geometry of the test case (Janosi et al., 2004). 

We chose an initial particle spacing of 1 mm. The walls and the gate are made with 
“solid” and fictitious particles (see Violeau and Issa, 2007); the total number of particles 
approaches 80,000. The maximum velocity in the flow was estimated (and checked) to be 
2.4 m/s; hence the numerical speed of sound (see section 2.1) was set to 24 m/s. 

 
Results were output every 0.062 s to match experimental measurement times. 

Experimental results concern the shape of the free surface. One may highlight the fact that a 
small gap in time (about 43 ms) exists between the experiments and the computed results; for 
example the first presented graph (figure 2) was numerically obtained at t = 0.176 s (instead 
of t = 0.219 s, as indicated on the experimental picture). A first use of the k–ε model showed 
that the scalar kinematic eddy viscosity νT,a = µT,a / ρa is strongly variable in space. However, 
its values in the area of interest (i.e. breaking) are of the order of magnitude of 3.0 10–5 m2s–1; 
this value has been chosen to prescribe µT,a in the constant eddy viscosity model. 
 
3.2 RESULTS AND COMPARISON OF TURBULENT MODELS 

The results are presented on figures 2, 3 and 4. Figure 2 shows that at t = 0.219 s the 
different models give very similar results, and a satisfactory agreement with experiments is 
obtained. At this stage, the flow is mainly driven by gravity and inertia, thus the turbulent 
closure is not important. However, at t = 0.343 s the first two models (constant viscosity and 
mixing length) predict too early the breaking, while the models based on governing equations 
for k give much better predictions. This may be due to an underestimation of µT for all 
turbulent models based on an turbulent equilibrium assumption (zero-equation models); the 
time-dependency of turbulent kinetic energy is thus correctly reproduced by eq. (7) at this 
stage of the flow. 

 



 
Figure 2 – Comparison of different SPH turbulent closure models with the experiment by 

Janosi et al. (2004) at two different stages (left and right). (a): constant eddy viscosity; (b): 
mixing length; (c): one-equation; (d): k–ε; (e): non-linear eddy viscosity. The solid lines 

mimic the experimental free surface. 

 
Figure 3 – Same code as figure 2, at later stages. 



  

Figure 4 – Zoom on the flow at times t = 0.343 s (left), t = 0.468 s (center) and t = 0.531 s 
(right). Same code as figure 2. 

 
Figure 3 shows that, surprisingly, the constant viscosity model better predicts the free 

surface than the mixing length model does at t = 0.468 s, and that the latest significantly 
underestimates the surface level upstream the breaking. These considerations, confirmed by 
the zoom presented in figure 4, show that when the breaking occurs, the rate-of-strain S is too 
strong, and the turbulent timescales too small to consider that the mixing length assumption 
remains valid. Besides, the shape and size of the void resulting from wave breaking is not 
correctly reproduced by the first two models. Contrary to this, the other models are more 
accurate and give similar results to each other, except regarding the shape of the splash-up. 
Similar observations can be made at time t = 0.531 s. However, the shape of the splash-up is 
better predicted by the mixing length model, and the water level upstream the splash-up is 
slightly improved by the non-linear eddy viscosity model (see also figure 4). This analysis 
tends to prove that eddy viscous forces (i.e. Reynolds stresses) become important during and 
immediately after the breaking stage, due to large and rapidly changing rate-of-strain. To 
confirm this assumption, one may define an order of magnitude of the ratio between Reynolds 
stresses and pressure forces: 
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Figure 5 shows the spatial distribution of η predicted by the k–ε model at different 
stages. In the main part of the flow, pressure forces remain 20 times higher than turbulent 
stresses (η < 1/20); however Reynolds stresses become important when approaching the free 
surface. As the wave breaking develops, they play a more important role in the dynamics of 
the flow and eventually become predominant in the splash-up area. 

 

Figure 5 – k–ε model. Spatial distribution of η (see eq. (14)) at different stages. 

 
In all the snapshots of figure 3, the height of the splash-up is overestimated, even with 

the most sophisticated model tested here. It is not clear whether this is due to a lack in 
physical modelling or to inappropriate numerical features. One may mention that no free-
surface condition was prescribed on k and ε. However a test with k and ε = 0 at the free 
surface gave very similar results. The spatial discretization or the numerical scheme may also 
be invoked as partially causing these discrepancies between the experiments and our models. 
The equation of state (2) is also suspected to be responsible for a poor estimation of pressure, 
as pointed out by Lee et al. (2007), which could affect the quality of the splash-up prediction. 
It is also clear that simulating this kind of flow with a two-phase model involving water and 
air, thus allowing the representation of air entrainment during the breaking stage, should 
increase the quality of the prediction. 
 

Similar conclusions were obtained with an initial water layer of 38 cm (instead of 18), as 
shown on figure 6. This case were run with three models, namely a constant viscosity (with 
the same value as previously), a one-equation model and a non-linear eddy viscosity model. 
Increasing the complexity slightly improves the prediction of breaking and splash-up, but 
some clear discrepancies remain with measurements. 



 

Figure 6 – Comparison of different SPH turbulent closure models with the experiment by 
Janosi et al. (2004) with an initial water layer of 38 cm (instead of 18 cm, as in other figures) 
at t = 0.531 s and t = 0.593 (left and right, respectively). (a): constant eddy viscosity; (b): one-
equation; (c): non-linear eddy viscosity. The solid lines mimic the experimental free surface. 

 
4 CONCLUSIONS 

Five SPH turbulent models were tested on a rather complicated 2D free-surface unsteady 
flow. It appears that turbulence closure models based on at least one behaviour equation 
(governing the turbulent kinetic energy) improve the prediction of the shape of the free 
surface, while the mixing length model is not as good as a simplistic model based on a 
constant eddy viscosity. However, for the flow examined here, a one equation model seems 
enough to obtain satisfactory predictions before the splash-up phenomenon; the k–ε and the 
non-linear eddy viscosity models do not provide any significant improvement in terms of free 
surface location and shape. 

 
Discrepancies with the experiments are still observed, in particular after the wave 

breaking (splash-up), for which no clear explanation could be given (physical or numerical). 
In summary, we recommend, for modelling complicated free-surface flows with SPH, a one-
equation model, which seems to be a good balance between accuracy and computational cost. 
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