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ABSTRACT 

This paper reports the results of incompressible smoothed particle hydrodynamics (I-
SPH) computations of very low Reynolds number lid-driven cavity flow. In this case, 
particles can be ‘frozen’ and the method can be viewed as a fixed grid method. I-SPH is a 
two-step predictor-corrector projection method. An explicit predictor integrates the 
contributions from viscous and body forces. An implicit corrector then updates the velocity by 
adding a curl-free contribution that is proportional to the pressure gradient. An intermediate 
step requires the solution of a pressure Poisson equation with boundary conditions of zero 
normal gradients on solid surfaces. Here, three different formulations are used to implement 
these conditions and the results compared and contrasted. A convergence study is carried out 
for each of the three boundary formulations and for two ratios of smoothing length to inter 
particle spacing ( =dxh /  1, 1.2). Results for 10x10, 17x17, 25x25, 35x35, 50x50, 75x75 and 
100x100 particles are presented and the ‘error’ characterised as a function of the inter-particle 
spacing.   
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1. INTRODUCTION 

SPH is a very flexible and powerful numerical method that has recently been applied 
to a large range of industrial, engineering and environmental fluid flows (Monaghan & Kos 
(1992), Cleary et al (2002), for example). One of the main features is its Lagrangian particle-
tracking approach which allows the method to cater for very large deformations such as those 
occurring in wave breaking, sloshing, mould-filling and hypervelocity impacts, for example.  

There are two main variants of SPH for incompressible flows. One uses a ‘stiff’ 
equation of state to relate pressure to density in a ‘weakly compressible’ variant of traditional 
SPH. The second imports the idea of pressure-correction from grid methods – giving rise to a 
family of I-SPH methods. 

From the SPH literature, however, it is apparent that even within these two variants of 
SPH, there is large variation in practice, for example in choosing smoothing functions and 
smoothing lengths. In particular, there appear to be several methods in use for implementing 
boundary conditions on solid walls. It is not always clear from the literature what are the 
relative advantages and disadvantages of the various formulations, and certainly no consensus 
has yet been reached over which is the best choice for a given problem.  

In the zero-Reynolds number limit, the Lagrangian acceleration DtD /u  approaches 
the Eulerian one t∂∂ /u  as the nonlinear convection terms that normally appear in Eulerian 
formulation of the acceleration are negligible. In this case, SPH methodology can be applied 
to a ‘frozen’ particle configuration i.e. one where particles are not allowed to move as they 
would in the vast majority of SPH computations. Indeed, it is normally the motion of the 
particles and the consequent deformability that provides SPH with practical advantages over 
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traditional grid methods. However it is instructive to study the frozen particles case, which 
can then be viewed as a traditional grid method and analysed as such. As noted above, the 
comparison is valid for low Reynolds number. This case provides checks of several aspects 
including (i) pressure boundary conditions; (ii) stability, (iii) accuracy of the SPH 
interpolation viewed as a grid method and (iv) degradation of numerical results due to particle 
motion.  

The test problem upon which we base our investigation is the lid-driven cavity flow. 
This case provides a very popular test for numerical viscous flow models. Recently, it was 
chosen as a test-case for the first SPHERIC Workshop (Rogers et al (2006)), and several SPH 
codes took up the challenge. Most of the codes were traditional weakly-compressible versions 
of SPH, with only one I-SPH contribution from the group at the University of Manchester. 
The workshop focussed upon relatively high Reynolds number flow in the range 100-10,000. 
This paper complements this test case by examining the performance of another version of I-
SPH in simulating this flow. However, our main focus is the behaviour at very low Reynolds 
number. It is noted that low-Reynolds number SPH simulations were carried out by Morris et 
al (1997), where they considered Couette and Poiseuille flows. We determine convergence 
behaviour for a number of different formulations of the pressure Poisson equation and in 
particular for three different methods for implementing the zero-gradient boundary conditions 
that arise. 
 
2. FORMULATION 
 
2.1 LID-DRIVEN CAVITY FLOW 

The flow configuration is illustrated in Figure 1. The flow starts from rest, and 
accelerates under the influence of the lid, which is instantaneously moved at uniform speed 
horizontally. Eventually, a steady state is reached. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Lid-driven cavity configuration 
 
 

The governing equations are the usual Navier-Stokes equations:   
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In truly incompressible flow, of course, Dρ/Dt is zero and 0=⋅∇ u . In SPH, however, the 
numerical solution is not exactly incompressible and we make use of equation [2].  
 
2.2 INCOMPRESSIBLE SPH MODEL 

Following Chorin (1967) and Cummins & Rudman (1999), the idea of the 
incompressible SPH model is that the velocity vector can be decomposed into the sum of 
divergence-free and curl-free parts. The decomposition is as follows: 

*** uuu −= , where u  is divergence-free *u  is any arbitrary velocity field and **u  is curl-free. 

I-SPH is a two-step pressure-correction model to solve equations [1] and [2]. The prediction 
step solves the viscous problem 

    gu
u

+∇ν= 2*

Dt
D

,      [3] 

subject to the conditions that *u  has fixed values on solid boundary surfaces. In practice, the 

viscous term u2∇ν  is approximated by using the velocity distribution at the end of the 
previous time step, so the viscous step is explicit.  

*u  is then an arbitrary velocity field (i.e. it is neither divergence-free nor curl-free). The 

incompressible velocity field u  is found by subtracting away the curl-free part, **u . 

Subtracting [1] from [3], the equation for **u  becomes:  

P
Dt

D ∇
ρ

= 1**u
,       [4] 

(and clearly **u  is curl-free since the curl of a gradient is zero). In order to find **u , the 

pressure field must first be solved for. Taking the divergence, we get the following Poisson-
type equation: 
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The Poisson equation is subject to boundary conditions  0/ =∂∂ nP  on solid surfaces (which 

arises from the fact that *u  and u  have the same fixed values on solid surfaces thus their 

difference is zero. Having found the pressure, **u can also be found and the final, 

incompressible, velocity *** uuu −=  can be evaluated. 

 
2. 3 SPH IMPLEMENTATION 
 
2.3.1 VISCOUS STEP 

As noted above, the explicit predictor step integrates equation [3] to give   

tt ∆∇ν+=∆ )( 2
* ugu ,     [6] 

where subject to fixed velocities on solid boundaries. This then defines intermediate particle 
velocities and positions:              

** uuu ∆+= t        [7] 
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tt ∆+= ** urr .       [8] 

In the above, *u∆  is the change in particle velocity during the prediction step, t∆  is the time 

increment, tu  and tr  are the particle velocity and position at time t  and *u  and *r  are the 

intermediate particle velocity and position. 
 
2.3.2 PRESSURE POISSON EQUATION 

As an intermediate step, the pressure distribution must be determined. This is found by 
solving the discrete form of the Pressure Poisson equation: 

    *
*

.
1

)
1

( u∇
∆

=∇
ρ

⋅∇ ∆+ t
P tt      [9] 

subject to zero-gradient conditions on solid boundaries. This is an implicit equation which is 
discretized in matrix form and the matrix equation solved using a biconjugate gradient 

method (Press et al (1992), p77) to find ttP ∆+ , the particle pressure at time tt ∆+ .  

 
2.3.3 PRESSURE-CORRECTION 

The resulting pressure is used to update the particle velocity and position: 

tP tt ∆∇
ρ

= ∆+
∗

1
**u       [10] 

*** uuu −=∆+ tt       [11] 

where **u  is the curl-free component of the particle velocity found during the correction step, 

*ρ  is the intermediate particle density after the prediction step and tt ∆+u  is the particle 

velocity at time tt ∆+ . The final particle position is given by 

tttt
ttt ∆++= ∆+

∆+ 2
)( uu

rr      [12] 

where tr  and tt ∆+r  are the position of a particle at time t  and tt ∆+ . 

 
2.3.4 SPH APPROXIMATIONS 

For completeness, we list the SPH approximations used in the computations reported 
in this paper. In doing so, we follow the work of Shao et al (2006) whose code we have 
inherited and modified, and whose notation we have followed. 
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In the above, approximations are defined at particle a, whose neighbours are particles 
b, mb is the particle mass, µ is the viscosity, ρ is the density, P is pressure, r is the position 
vector and u is velocity. The smoothing length is h and �ab is (�a – �b) for any scalar or vector 
quantity �. We utilise a cubic spline kernel function abW , as used by Shao and Lo (2003).  

 
In the case of constant density and viscosity when using regularly-spaced, fixed 

particles, the SPH approximations [16] and [17] can be analysed using Taylor series. It is 
found that, when h=dx, the right-hand side of [16] gives )(/ 22 dxOP31.01222708 +ρ∇ . 
When h=1.2dx, this becomes )(/ 22 dxOP890.99103357 +ρ∇ . Thus, although the approx-
imations are not ‘consistent’ in the sense that they do not converge to the exact value of the 
Laplacian as dx�0, the nett effect in the current case is simply to modify the density and 
viscosity. This could in principle be corrected but since the modifications in density and 
viscosity are only of the order of 1%, no correction is applied here.  
 
2.3.5 PRESSURE BOUNDARY CONDITIONS 

To implement the pressure boundary condition 0/ =∂∂ nP , we have used three 
different implementations.  
Method 1: Implicit wall pressures. We solve for the pressures at wall particles. The SPH 
equations for wall particles and those near walls include dummy particles but we assume that 
the pressures at dummy points (which are placed along outward-pointing wall normal vectors 
emanating from a given wall particle) will be the same as those located at the associated wall 
particle (see Figure 2).   
Method 2: Explicit wall pressures. We follow the approximate method described by Lee et al 
(2006). For a given point on the boundary, we associate a fictitious point in the interior of the 
flow, at a normal distance d from the wall point (see Figure 2). We find the pressure at the 
interior point (at time t, using the SPH approximation) and then set the pressure at the wall 
point and the two layers of exterior dummy particles (time t+�t) equal to this pressure.  
Method 3: Explicit dummy pressures, but solve to wall. In this case, the method is similar to 
Method 2 (see figure 2) except that wall pressures are solved for and the pressures of dummy 
particles are set equal to the wall pressure from the previous timestep.  
 

 
 
 
 
 
 
 
 

(a) Method 1 (b) Method 2 (c) Method 3 

 
Figure 2 (a,b,c): Boundary conditions for methods 1, 2 and 3. � – denotes 

particle at which pressure is solved for at time t+∆t, � – denotes 
particle at which pressure is set using solution values at time 
t+∆t � – denotes particle at which pressure is set using solution 
values at time t, × - denotes fictitious point at which SPH 
interpolated value of pressure is evaluated for method 2. 
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3. COMPUTATIONAL RESULTS 
In order to compare the effectiveness of each of these three boundary 

implementations, we solve the lid-driven cavity flow at very small Reynolds number. The 
great advantage of this case is that the solution attains a steady-state before the particles have 
moved appreciably (and in practice we fix the particles and get the zero-Reynolds number 
result). Initially, the velocities of wall and dummy particles on the top lid are set equal to (1,0) 
and the velocities of all other particles are set to zero. The lid then drives the flow, which 
continues to develop until a steady-state is found. Development of velocity profiles is shown 
in Figure 3. For a Reynolds number of 0.001, fully-developed solutions are found at around 
0.0001s (results were computed up to 0.0004s and showed no change beyond 0.0001s). The 
fully-developed velocity vectors and streamlines are shown in Figure 4 (and note that the 
particles are frozen so that they are still in their initial spatial configuration). 
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Figure 3 (a,b): Development of velocity profiles. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 (a,b) a: Velocity vectors b: streamlines 
 

We now investigate convergence behaviour for each of the three wall pressure 
boundary conditions and for two different ratios of smoothing length h to inter-particle 
distance dx. We carry out the computations on 10x10, 17x17, 25x25, 35x35, 50x50, 75x75 
and 100x100-particle systems. Figure 5 (a [Method 1], b [Method 2]) shows the behaviour of 
the y-component of velocity along the cavity centreline 5.0=y . Clearly, the results appear to 
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converge, and converge to the same result for each implementation, though the approach to 
convergence is different in each case. Note that the results for Method 3 were found to be the 
same as for Method 1 and thus are not plotted here.  
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Figure 5 (a,b): Velocity profiles at 5.0=y  for 10x10, 25x25, 50x50, 100x100. 

 
Next we investigate the pressure solution. Plotting the pressure along the cavity 

centreline 5.0=y , Figure 6 (a, b) again shows that the pressures appear to converge, though 
the solutions at the boundaries are sensitive to the number of particles used, possibly 
indicating problems with the supposed zero gradient condition at the walls. Again, the results 
for Methods 1 and 3 are similar. 
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(a)  Method 1 (b)  Method 2 

 
Figure 6 (a,b): Pressure profiles at 5.0=y  for 10x10, 25x25, 50x50, 100x100. 

 
To investigate this further, we look at the pressure gradient along the bottom wall. We choose 
this because of the presence of singularities in the top two corners due to the discontinuous 
velocities there. These singularities lead in principle to infinite pressures in these regions thus 
the numerical pressure solutions (and therefore the resulting gradients) can be expected to be 
unreliable there. In contrast, the pressure along the bottom wall (and its gradient) should be 
smooth and predictable. Figure 7 (a, b) demonstrates clearly that none of the methods used 
here in fact specify the zero-gradient condition effectively (again, Method 3 results similar to 
those from Method 1). Furthermore the pressure gradient appears to converge to a non-zero 
value when the number of particles is increased. However, the results indicate that the 
pressure solution also appears to converge both at and away from the walls.  
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Figure 7 (a,b): Pressure gradient ( y/P ∂∂ ) profiles at 0=y  for 10x10, 25x25, 

50x50, 100x100. 
 
In the case where dxh = , Methods 1 and 2 force 0/ =∂∂ nP  exactly at the first row of 
dummy particles. With Method 2, the gradient at the wall is approximately zero (and should 
in principle approach zero as a steady-state is reached, depending on the distance d between 
the wall particle and the fictitious point from which the pressure is determined).  Method 3 
sets the gradient to be exactly zero at second line of dummy particles, and approximately at 
the first line of dummy particles. In the steady state, the boundary conditions from methods 1 
and 3 should be identical (as Method 3 is essentially an explicit version of Method 1). If h not 
equal to dx, the gradient is effectively zero between first and second rows of dummy particles 
(methods 1 and 2) and beyond the second line (Method 3). The distance between the physical 
boundary and the effective boundary reduces as the number of particles np increases thus the 
computed results converge to a final value as np is increased.  
 
3.1 GENERAL CONVERGENCE BEHAVIOUR 

Figure 8 shows the relationship between the rms error in the SPH solution as a 
function of the inter-particle distance dx. The error is defined as follows. For a given 
boundary condition method and given h/dx, the numerical value for each computation was 
interpolated to a 100x100 grid. The rms error was then defined as the root-mean-square 
difference between these interpolated values and the SPH solution using 100x100 particles, 
for the same boundary condition method and with h=dx. Note that Taylor-series analysis 
reported briefly in section 2.3.4 indicates that in this case SPH should be O(h2) accurate. In 
practice, the global convergence rate is approximately O(h1.67 - 1.72) [h=dx] and O(h1.53 - 1.62) 
[h=1.2dx]. However, the depressed rate is partially due to the presence of singularities in the 
upper corners of the lid-driven cavity, which can be expected to have a detrimental effect on 
convergence. If these corner regions are excluded from our consideration, we can expect 
better convergence. We also note that, as a consequence of the analysis mentioned briefly at 
the end of section 2.3.4, the fully-converged solutions for h=dx may actually be different 
from those for h=1.2dx. In practice, it appears that the converged solutions for both cases are 
very close (for example, the global rms error for 100x100 case, h=1.2dx vs h=dx is less than 
0.1%). 
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Figure 8 (a,b): Steady-state errors: frozen field 10x10, 17x17, 25x25, 35x35, 

50x50, 70x70, 100x100: 2x3 cases (a) dxh = , (b) dxh 2.1= . Use 
100x100 from dxh =  as reference results. 

 
Tables 1 a,b indicate the rms error for the velocity components on the 5.0=y  line. 

The rms error is expressed as the rms difference between computed results for a given 
discretization (10x10 up to 100x100) compared with the results using the same boundary 
method with 1/ =dxh  and using 100x100 particles. This exercise was carried out for the 
three boundary implementations (methods 1, 2, 3), and two smoothing distance to inter-
particle distance ratios ( =dxh /  1, 1.2) as reported in Tables 1 a, b. When the singularities are 
excluded, the convergence rates are approximately O(h1.79 - 2.11) [h=dx] and O(h1.74 - 2.11) 
[h=1.2dx]. 
 

 Method 1 Method 2 Method 3 
Particles U V U V U V 

10x10 3.82E-02 2.27E-02 3.33E-02 2.81E-02 3.82E-02 2.27E-02 
17x17 2.00E-02 1.28E-02 1.50E-02 1.25E-02 2.00E-02 1.28E-02 
25x25 1.21E-02 7.86E-03 8.58E-03 6.98E-03 1.21E-02 7.86E-03 
35x35 7.46E-03 4.88E-03 4.96E-03 3.95E-03 7.46E-03 4.88E-03 
50x50 4.01E-03 2.64E-03 2.62E-03 2.04E-03 4.01E-03 2.64E-03 
70x70 1.72E-03 1.14E-03 1.44E-03 1.09E-03 1.72E-03 1.14E-03 

100x100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 
Table 1a: RMS errors in u and v velocity components for 1/ =dxh  

 
 Method 1 Method 2 Method 3 

Particles U V U V U V 
10x10 3.76E-02 2.06E-02 3.68E-02 3.16E-02 3.76E-02 2.06E-02 
17x17 2.01E-02 1.23E-02 1.64E-02 1.40E-02 2.01E-02 1.23E-02 
25x25 1.24E-02 7.72E-03 9.35E-03 7.17E-03 1.24E-02 7.72E-03 
35x35 7.71E-03 4.85E-03 5.40E-03 3.80E-03 7.71E-03 4.85E-03 
50x50 4.21E-03 2.65E-03 2.88E-03 1.71E-03 4.21E-03 2.65E-03 
70x70 1.85E-03 1.14E-03 1.62E-03 6.82E-04 1.85E-03 1.14E-03 

100x100 1.48E-04 1.59E-04 1.24E-04 5.33E-04 1.48E-04 1.59E-04 
 

Table 1b: RMS errors in u and v velocity components for 2.1/ =dxh  
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CONCLUSIONS 
 Results have been presented for velocities and pressures computed from 
incompressible SPH (I-SPH) simulations of the lid-driven cavity flow at very low Reynolds 
number. In this case, the particle configuration can be fixed and the method can be studied as 
a traditional grid method. We have investigated the influence of three different 
implementations of the zero normal gradient condition for the pressure Poisson equation that 
arises in the I-SPH formulation. We have found that none of the methods used actually 
enforce the condition exactly at the wall, but argue that each enforces the conditions exactly at 
some location ‘behind’ the wall. Of the three methods used, explicit Method 2 is most 
effective at enforcing the condition and Methods 1 and Method 3 are equally effective as the 
latter two methods give essentially the same results. Method 1, an implicit method that solves 
to the wall, may be less prone to instabilities that could potentially arise from using explicit 
boundary conditions as in Methods 2 and 3. The location where the gradient is exactly zero is 
further behind the wall for larger values of h/dx. Irrespective of the condition used, however, 
the results appear to converge to the same solution. A convergence study for discretizations 
between 10x10 and 100x100 shows that global convergence is between O(h1.67 - 1.72) [h=dx] 
and O(h1.53 - 1.62) [h=1.2dx]. In regions away from the top corners (at which singularities 
occur), convergence is O(h1.79 - 2.11) [h=dx] and O(h1.74 - 2.11) [h=1.2dx]. 
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