
SIMULATIONS OF 2-D LAMINAR FLOW PAST A BLUFF BODY IN A 
CLOSED CHANNEL WITH A TRULY INCOMPRESSIBLE SPH 

 
E.-S. Lee(1), C. Moulinec(2), D. Violeau(3), D. Laurence(4), P. Stansby(5) 

 
1School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, PO Box 88, 

Manchester M60 1QD, UK, 
phone: +44 161 306 2615; fax :+44 161 306 3723; e-mail: e.lee-2@postgrad.manchester.ac.uk 

2 Laboratoire National d’Hydraulique et Environnement (LNHE), EDF R&D, 6 quai Watier, BP 49, 78400 
Chatou, France 

phone: +33 1 30 87 83 98; fax :+33 1 30 87 80 86; e-mail: chmoulinec@yahoo.com 
3 Laboratoire National d’Hydraulique et Environnement (LNHE), EDF R&D, 6 quai Watier, BP 49, 78400 

Chatou, France 
phone: +33 1 30 87 78 31; fax :+33 1 30 87 80 86; e-mail: damien.violeau@edf.fr 

4School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, PO Box 88, 
Manchester M60 1QD, UK, 

phone: +44 161 306 3704; fax :+44 161 306 3723; e-mail: dominique.laurence@manchester.ac.uk 
5School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, PO Box 88, 

Manchester M60 1QD, UK, 
phone: +44 161 306 4598; fax :+44 161 306 4646; e-mail: p.k.stansby@manchester.ac.uk 

 
 

ABSTRACT 
A truly incompressible SPH (ISPH) has been developed to circumvent some drawbacks 

found in weakly compressible SPH (WCSPH) such as large pressure fluctuations due to the 
error in density, and very expensive computation time due to the required CFL condition. One 
of the main differences between WCSPH and ISPH is the pressure solver; the former one is 
based on the equation of state for water and the latter one solves a pressure Poisson equation. 
The pressure Poisson equation is solved in this work by Bi-CGSTAB method. 2-D laminar 
flows (ReD = 20 and 100) past a square and a circular cylinder in a confined closed channel 
are simulated to investigate the ability of the ISPH method to handle flows past obstacles. 
ISPH results here are compared to data obtained by an Eulerian software (STAR-CD V4) with 
a satisfactory agreement. 
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1 INTRODUCTION 

The SPH (Smoothed Particle Hydrodynamics) method is a fully Lagrangian (gridless) 
numerical method invented to simulate astrophysical problems at the end of the 70’s 
(Monaghan 1992).  This method has then been successfully applied to other fields such as 
fluid and solid mechanics. One of the distinct features of this method is that it does not 
require any mesh to cover the fluid domain. Instead, this fluid domain is represented by a set 
of macroscopic fluid particles which interact and move according to forces derived from the 
equations of motion. This approach is very attractive to model complex flows, as for instance 
free surface flows. 

The traditional SPH method solves weakly compressible (WCSPH) flows in the sense that 
relative density variations range within 1% (Monaghan 1992). Although this method is robust 
and very easy to program when implemented in an explicit way, it shows some drawbacks, as 
for instance pressure fluctuations and very long CPU time. A truly incompressible SPH 



 

(ISPH) has been developed to circumvent these problems. The main difference between 
WCSPH and ISPH is the way of obtaining pressure. The former uses a state equation for 
water and the latter solves a pressure Poisson equation, which avoids the large pressure 
fluctuations observed with the state equation. In addition, maximum fluid velocity is used in 
CFL condition for ISPH while a numerical speed of sound (10 times higher than maximum 
fluid velocity) is used for WCSPH, which makes the time step smaller. 

In the following, the ISPH method is briefly introduced. Since the development of ISPH is 
still an ongoing process, academical cases, such as 2-D laminar flow past a square and a 
circular cylinder, are chosen to investigate ISPH behaviour by comparing it with an Eulerian 
code (STAR-CD V4) one based on a finite volume approach. Drag coefficient and 
recirculation length from both methods are compared for all cases. For the case of ReD = 100, 
Strouhal number is given. The influence of fluid discretisation is also studied in the case of a 
circular cylinder at ReD = 20. 

 
2 A TRULY INCOMPRESSIBLE SPH METHOD 

In SPH, a particle represents a macroscopic volume of fluid. Each fluid particle, for 
example particle a, carries information of a mass ma, a density ρa, a pressure pa, a velocity ua, 
a position ra and other quantities. The mass and density in the present work are constant 
through the simulations, however, pressure, velocity, position and other physical quantities 
are updated every time step. Any quantity A attached to a particle a at a position ra is written 
as: 
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where the subscript b is used to describe any particle in the neighbourhood of particle a. The 
distance from a to b is ( )r rab a br = − , Ab denotes the value of any quantity A at rb. According to 
Morris et al. (1997), a kernel function wh can be written in a general manner as: 
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where σ  is the dimension of the system and the smoothing length h is proportional to the 
particle distance, which plays a role similar to the mesh size in Eulerian codes. As shown in 
Eq. (1), the kernel varies with the distance rab between particles only. 
 

2.1 ISPH ALGORITHM 
Lagrangian Navier-Stokes equations for incompressible laminar flow read: 

 0u∇⋅ =  (3) 
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where ρ is the density, u  is the velocity vector, t the time, p  the pressure, ν  the kinematic 
viscosity and Fe an external force such as a driving force, for instance. The momentum 
equation (4) is split into two parts by using the classical projection method (Chorin 1968) to 
solve the velocity-pressure coupling problem; the first being the prediction step based on 
viscous and external forces: 
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and the second the correction step based on pressure force: 
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where t∆  is the numerical time step, *u  is an auxiliary velocity and the superscripts n and 
n+1 indicate previous and present time steps. The auxiliary velocity field *u  is usually not 
divergence free and continuity is imposed upon 1un+ . Hence, the auxiliary velocity is 
projected on the divergence-free space by taking the divergence of Eq. (6), which leads to: 

 2 1 *unp
t
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where 2∇  is the Laplacian operator. The pressure is obtained form the Eq. (7) through the Bi-
CGSTAB method (Van Der Vorst 1992). Then, the auxiliary velocity is corrected by the 
computed pressure gradient to give 1un+  as: 
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ρ

+ + 
= − ∇ ∆ 

 
 (8) 

Finally, particles move only with this corrected velocity by the following relation: 
 1 1r r un n n t+ += + ∆  (9) 
  

2.2 EQUATIONS IN SPH FORMULATION 
There are various forms of expressing gradient and divergence operator in SPH (Monaghan 

1992). For example, the pressure gradient term can be approximated in SPH formalism as: 
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where ( )a h abw r∇ is the kernel gradient, which is taken as centred on the position of particle a. 
The velocity divergence can read: 
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where u u -uab a a= . The viscous term is not directly built as a divergence of a gradient, but as 
a combination of finite difference approach and SPH formalism. We use here the formulation 
proposed by Monaghan (1992): 
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where r r rab a b= −  and 2 20.01hη = is a parameter to avoid a zero denominator. The Laplacian 
operator is then expressed in a similar manner as the viscous term as 
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where ab a bp p p= − . Some other ways to write Laplacian operators can be found in Cummins 
et al. (1999) or Shao et al. (2003). 

The time step t∆ is chosen as the minimum of three conditions, the CFL condition, the mass 
condition and the viscous force conditions, such that: 
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where fa  is the force per unit mass, equivalent to the magnitude of particle acceleration. 
 

2.3 BOUNDARY CONDITIONS 
Any quantity for particle a in SPH is obtained from the contribution of its neighbouring 

particles which are located in a compact disk. When the fluid particles are located near a solid 
boundary, the compact disk is no longer a “physical disk”, but degenerates in a truncated disk. 



 

Practically, it means that the information in a suffers from the lack of neighbouring particles. 
There are several techniques to circumvent this problem such as mirror particles (Cummins et 
al. 1999), repulsive forces (Cleary et al. 1999) and dummy particles (Shao et al. 2003). In this 
work, the dummy particles technique is chosen for simplicity reason. The wall therefore 
consists of one layer of edge particles, which materialise the wall, and four layers of dummy 
particles. The characteristic of these particles are identical as the fluid particles except that 
they anchor at their initial position through the simulation. While no-slip boundary conditions 
are imposed at a wall, the pressure for the edge particles is obtained from the Eq. (7) and then 
allocated to the dummy particles in their normal direction. 

 
3 A LAMINAR FLOW AT ReD = 20 

3.1 SYSTEM MODELLING AND SIMULATION CONDITIONS 
The geometry is based on Kim et al. (2004) one. As shown in Fig. 1, a cylinder of diameter 

D is located at equal distance from two parallel flat plates separated from each other by a 
distance of 5D, the upstream end of the domain being set at a distance of 3D from the cylinder 
centre and the downstream end at LD of 28D. Such a long channel is used to ensure that the 
flow past the cylinder re-develops when periodic boundary condition are applied at both ends 
of the channel. 

All parameters are normalised by the mean bulk velocity at the inlet U0 and the density is 
set to unity. The Reynolds number based on the diameter reads ReD = U0D/ν is 20. The flow is 
driven by a force relative to the prescribed mean bulk velocity at the inlet, which ensures 
constant flow rate and Reynolds number. All simulations are carried out on an Intel Pentium 
D CPU 3.00GHz with 2.0G RAM. 

Two types of bluff bodies are considered: a square cylinder and a circular one. Concerning 
the SPH simulations, a total of 18,938 particles (15,608 fluid particles, 682 edge particles and 
2,648 dummy particles) is used for the square cylinder simulation and of 18,942 particles 
(15,632 fluid particles, 662 edge particles and 2,648 dummy particles) for the circular one. 
The Lagrangian simulations are performed in an unsteady way with an explicit Euler scheme. 
Initially, the particles are regularly distributed with a distance of 0.1D from each other. 

The mesh in STAR-CD V4 for the square cylinder is made of 39,392 cells, the height of the 
first cell being 0.005D while 41,472 cells are generated for the circular cylinder and the 
height of the first cell is 0.024D. The Eulerian simulations are performed in a steady way, as 
no vortex shedding occurs. A stopping criterion is required to stop the calculation. It is set to 
1.E-13 is used for both square and circular cylinder calculations. 

 

 
Figure 1. Geometry of the 2-D bluff body in the case of square cylinder case. 

 



  

3.2 RESULTS ON A SQUARE CYLINDER 
ISPH results are time-averaged for postprocessing reasons and then compared with 

converged STAR-CD V4 ones in terms of normalised axial velocity as shown in Fig. 2. 
Velocity vectors are depicted in Fig. 3 to compare the recirculation length between ISPH and 
STAR-CD V4. 

 

 
Figure 2. Normalised axial velocity around the square cylinder at ReD = 20. Time-
averaged ISPH results against converged STAR-CD V4 ones (top: ISPH, bottom: 
STAR-CD V4). 

 

 
Figure 3. Distributions of uniform velocity vectors behind of the square cylinder for 
ReD = 20. Time-averaged ISPH results against converged STAR-CD V4 ones (left: 
ISPH, right: STAR-CD V4). 

 
Dhiman et al. (2005) investigated the effect of Reynolds number and of the ratio between 

the channel height and the square cylinder diameter. According to this paper, the 
dimensionless recirculation length is in a range of 0.67 and 0.88. The recirculation length 
from the STAR-CD V4 is reasonably good while ISPH simulation overestimates it.  



 

The drag and lift coefficients are respectively 3.26 and 0.00 with the ISPH algorithm and 
4.23 and 0.00 with the Eulerian code. ISPH requires 20 hours to reach the physical time of 
520s whereas the Eulerian approach 1 hour to reach the stopping criterion. 

 

3.3 RESULTS ON A CIRCULAR CYLINDER 
ISPH results are again time-averaged and then compared with converged STAR-CD V4 

ones in terms of normalised axial velocity as shown in Fig. 4. Then, velocity vectors are 
plotted in Fig. 5 to compare the recirculation length between both Lagrangian and Eulerian 
approaches. While the former shows no big influence depending on the shape of bluff body, 
the dimensionless recirculation length being 1.28, the latter shows a short recirculation length 
of 0.44. The drag and lift coefficients are respectively 3.99 and 0.05 for the former and 3.11 
and 0.00 for the latter. 

 

 
Figure 4. Normalised axial velocity around the circular cylinder ReD = 20. Time-
averaged ISPH results against converged ones (top: ISPH, bottom: STAR-CD V4). 

 

Figure 5. Distributions of uniform velocity vectors behind of the circular cylinder for 
ReD = 20. Time-averaged ISPH results against converged STAR-CD V4 ones (left: 
ISPH, right: STAR-CD V4). 



  

 
4 A LAMINAR FLOW AT ReD = 100 

4.1 SYSTEM MODELLING AND SIMULATION CONDITIONS 
At this higher Reynolds number, the length of the domain is set to 20 times the inlet height 

to ensure the flow redevelopment past the cylinder, despite the expected vortex shedding. The 
length of the channel LD after the cylinder in Fig. 1 is set to 98D. In this section, the results 
are presented for the square cylinder only. 

A total of 60,238 particles (49,908 fluid particles, 2,082 edge particles and 8,248 dummy 
particles) is used in the Lagrangian approach. The mesh in the Eulerian one is made of 63,180 
cells, the height of the first cell being 0.02D. As the flow follows a unsteady motion, a second 
order accurate scheme is used to perform the time integration. 

The Reynolds number based on the diameter ReD is increased to 100 and periodic boundary 
conditions are applied in the streamwise direction for both configurations. 

 

4.2 RESULTS ON A SQUARE CYLINDER 
Snapshots of axial velocity from both methods are shown in Fig. 7 at the same physical time 

of t = 520s. It shows the front part of the channel from the inlet only.  

Figure 7. Normalised axial velocity around the square cylinder at ReD = 100 at t = 
520s (top: ISPH, bottom: STAR-CD V4).  

 
Both methods give the same vortex shedding. At this point, the Strouhal number fD/U0, 

where f is frequency, D the diameter of the cylinder and U0 is the mean flow velocity, is 
calculated. The Lagrangian method gives a period f of 1.95s and the Eulerian ones of 2s with 
D = 1m and U0 = 1m·s-1, thus St = 0.51 for the former and St = 0.50 for the latter. The results 
are now time-averaged to examine the recirculation length and averaged velocity vectors are 
plotted in Fig. 8. The dimensionless recirculation length given by ISPH is 1.8 and 2.1 by the 
Eulerian code. 



 

Figure 8. Distributions of uniform time-averaged velocity vectors past a square 
cylinder for ReD = 100 with ISPH results on the left and STAR-CD V4 ones the right. 

 
The drag coefficient given by ISPH is 3.21 while it is 2.72 in the finite volume simulation. 

The CPU time in ISPH takes 4 days to have the physical time of 520s and 10 hours for 
STAR-CD V4. 

 
5 INFLUENCE OF THE INITIAL PARTICLE DISTRIBUTION AT ReD = 20 

WITH ISPH 
All simulation conditions are identical to the circular cylinder case with ReD = 20 (see 

Section 3.3), except that the initial particle distance is reduced by half to give 0.05D. This 
leads to a new total of 69,738 particles (63,078 fluid particles, 1,332 edge particles and 5,328 
dummy particles). 

As expected, the flow pattern is similar to what is shown in Section 3.3, hence, only time-
averaged velocity vectors behind the cylinder are shown to investigate the influence of the 
initial particle distribution on the dimensionless recirculation length. This finer one reduces 
the recirculation length from 1.28 to 1.0. The CPU time in this finer case is 8 days to reach 
the physical time of 520s.  

 
Figure 9. Distributions of uniform velocity vectors behind a circular cylinder at ReD = 
20 with a finer initial particle distribution. Time-averaged ISPH results (initial 
particle distance dr = 0.05D). 

 
6 CONCLUSIONS 

Drag and lift coefficients and dimensionless recirculation length obtained by ISPH and the 
Eulerian method are summarised in Table 1. At ReD=20, the recirculation length obtained by 
ISPH simulations seems to be not strongly affected by the shape of the bluff body on the 
contrary to what occurs in Eulerian simulations. In comparison to the latter, the ISPH model 



  

slightly overestimated the drag coefficients. At ReD = 100, both methods show the same 
vortex shedding at the physical time of t = 520s. 

 
ReD=20 ReD=100 
Circular cylinder Square cylinder Square cylinder  
ISPH STAR-CD ISPH STAR-CD ISPH STAR-CD 

Drag coefficient 3.99 3.11 3.26 4.23 3.21 2.72 
Lift coefficient 0.05 0.00 0.00 0.00 -0.08 0.00 
Recirculation length 1.28 0.44 1.30 0.70 1.80 2.10 

Table 1. Comparisons of drag and lift coefficients, and dimensionless recirculation length 
from ISPH and STAR-CD V4 at various Reynolds numbers (the initial particle distance dr = 
0.1D for the ISPH simulations). 

A good agreement between both methods is found at ReD = 100, while some discrepancy is 
found at ReD = 20. This could be due to the choice of the viscous term Eq. (12) in the SPH 
approach. It was showed by Issa (2005) that the viscous term proposed by Morris et al. (1997) 
provides better estimations at low Reynolds number. 

Another problem resides in that the maximum bulk velocity is overestimated by ISPH. This 
over-prediction is explained in Issa (2005), though it might be linked to the size of the kernel 
support. Various tests on the choice of the kernel and of the smoothing length will be 
required. 

The compact support shape obviously contributes to the accuracy of the method. The 
“physical disk” shape for particles far from a boundary degenerates in a truncated one for 
particles located near a boundary, if no special treatment is made for those particles. To 
circumventing this, normalisation of the kernel should be carried out, although it increases 
CPU time.  

Lastly, the pressure boundary condition for solid boundaries is still a critical issue due to 
the nature of SPH methods. Concerning the CPU time and the accuracy of the method, robust 
treatments at the boundary should be studied. 
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