SPH Astrophysics – "State of Art".

Peter Berczik

Astronomisches Rechen-Institut (ARI), Zentrum für Astronomie Univ. Heidelberg, Germany

berczik@ari.uni-heidelberg.de

SPHERIC 3rd, Lausanne, Switzerland, 4th – 6th June 2008

- Gas (particle) physics in astrophysics.
 - Astronomical observations
 - N-body inspiration 🙂
- Astrophysics SPH equations.
- Numerical astrophysics.
- Hardware accelerators.
- Recent multi-phase results.

- Gas (particle) physics in astrophysics.
- Astrophysics SPH equations.
- Numerical astrophysics.
- Hardware accelerators.
- Recent multi-phase results.

- Basic Equations
- Cooling Function
- Smoothing Length
- Self Gravity
- Time Integration
- SPH test

- Gas (particle) physics in astrophysics.
- Astrophysics SPH equations.
- Numerical astrophysics.

- Computers
- Codes
- Results

- Hardware accelerators.
- Recent multi-phase results.

- Gas (particle) physics in astrophysics.
- Astrophysics SPH equations.
- Numerical astrophysics.
- Hardware accelerators.
- GRAPE (only gravity)
- MPRACE/FPGA (gravity + SPH)
- GPU!!! © (gravity + SPH)
- Recent multi-phase results.

- Gas (particle) physics in astrophysics.
- Astrophysics SPH equations.
- Numerical astrophysics.
- Hardware accelerators.
- Recent multi-phase results.

- Speedup
- Accuracy
- First results

Collaborators & Grants:

- Naohito Nakasato
- Keigo Nitadori
- Ingo Berentzen & Rainer Spurzem
- G.M. Martinez, G. Lienhart, A. Kugel, R. Maenner
- A. Burkert, M. Wetzstein, T. Naab, H. Vasquez

Univ. of Aizu, Japan Tokyo Univ., Japan Univ. Heidelberg Univ. Mannheim Univ. Munich

- DFG SFB: No. 439/B11: 2005 2008
- Volkswagen/Baden-Württemberg, GRACE project: 2005 2008

Formation of the Universe

Observations

Observations

Galaxy Building Blocks HST • WFPC2 PRC96-29b • ST Scl OPO • September 4, 1996 • R. Windhorst (Arizona State University), NASA

Observations

Isolated galaxy evolution

GASOLINE: Wadsley, Stadel & Quinn, 2003

http://www-hpcc.astro.washington.edu/

~few 10^6 SPH particles

Star Formation

SPH: Benz, Bowers, Cameron & Press, 1990

OpenMP + Sink Particles: Bate, Bonnell & Price, 1995

Bate, Bonnell, Bromm, 2002

The calculation required <u>~100k CPU</u> <u>hours</u> (~11.4 years) on the SGI Origin 3800 (64 CPU) of the United Kingdom Astrophysical Fluids Facility (UKAFF).

~few 10^6 SPH particles

Star Formation

High mass stars can forms by gas (competitive) accretion!!!

Galaxy Collisions

Galaxy Collisions

GADGET 2.0 Springel, 2005

http://www.mpa-garching.mpg.de/gadget/

CPU time consumed 350.000 processor hours

- 28 days on 512 CPUs/16 nodes
- 38 years in serial
- ~ 6% of annual time on total Regatta system
- sustained average code performance (hardware counters) 400 Mflops/cpu
- 5 x 10¹⁷ floating point ops
- 11000 (adaptive) timesteps

GADGET 2.0 details

BH's in galaxies (MW - Sgr A*)

Galaxy Collisions ≈ BH's collisions

Mergers of Galaxies & MBH's [Begelman, Blandford & Rees, 90's]

Galaxy Collisions \approx BH's collisions

Multiple Massive Black Holes NGC6240 strong ongoing merger... Komossa et al. 2002

Two AGN in each of Nuclei separation ~1kpc Chandra X-Ray M82: The bright spots in the center are supernova remnants and X-ray binaries. The luminosity of the X-ray binaries suggests that most contain a black hole. A close encounter with a large galaxy, M81, in the last 100 Myr is thought to be the cause of the starburst activity. Ebisuzaki et al. 2002

Galaxy Collisions \approx **BH's collisions**

Future Observations

Gravitational Wave Detection - LISA

Two of the strongest potential sources in the low-frequency (LISA) regime are:

Coalescence of binary supermassive black holes
Extreme-mass-ratio inspiral into supermassive black holes

Proto-Planet formation

GASOLINE Mayer, Lufkin et al. , 2006

Mayer et al. , 2002, 2003, 2004

Largest astrophysical N-body simulations

Father of numerical Astrophysics... ...with 200 light bulbs

Dissertation Univ. Lund (Schweden) 1937: A study of double and multiple galaxies. Galaxies often in groups and pairs. Satellit galaxies distributed unevenly. [Holmberg-Effect]

The Astrophysical Journal, Nov. 1941

Erik Holmberg (1908-2000)

Nowadays real supercomputers...

ASCI-Q (LANL) ~30 Tflops ~250M USD

Earth Simulator ~40 Tflops ~350M USD

48 x GRAPE6 ~48 Tflops ~3M USD

Makino, 2002

GRAPE Gordon Bell prizes

2001: 11.58Tflops (G6)

1999: \$7/Mflops (G5)

2000: 1.34Tflops (G6)

		F	₹
		1996 GOLDON	BELL PRIZE
		Winter	2017 108
		innerse Educing on United S	Tandes Mater. Tan
	he oninge Africa	conspilar conservations 3. Contract - 1	androd beadly. Jos verse monora
	doctor in	an Ar Anna	· ·····COMPUTER
39	6: 3	333Gflop	s (G4)

GRAPE history tree

GRAPE History Tree

GRAPE's all over the World

* The size of the symbol indicates the top speed of the GRAPE installed.

* If an institute has different versions of GRAPEs, the latest version's symbol is shown.

http://www.astrogrape.org


```
C
       OBTAIN THE "FULL" FORCE FOR ALL BODY'S.
C
       .....
                                          \vec{a}_{i} = -\sum_{j=1; j \neq i}^{N} \frac{G \cdot m_{j}}{(r_{ij}^{2} + \varepsilon^{2})^{3/2}} \vec{r}_{ij}
       DO 10 I = 1, N
          AX(I) = 0.0
          AY(I) = 0.0
          AZ(I) = 0.0
          DO 20 J = 1,N
             IF (J.EQ.I) GO TO 20
            DX IJ = X(I) - X(J)
            DY IJ = Y(I) - Y(J)
            DZ IJ = Z(I) - Z(J)
            DR2 = DX IJ*DX IJ + DY IJ*DY IJ + DZ IJ*DZ IJ + EPS2
             TEMP = M(J) / (DR2 * SQRT(DR2))
            AX(I) = AX(I) - TEMP*DX IJ
            AY(I) = AY(I) - TEMP*DY IJ
            AZ(I) = AZ(I) - TEMP*DZ IJ
20
          CONTINUE
10
       CONTINUE
C
        . . . . . . . . . . . .
```

Basic idea of any GRAPE N-body code:

Commerce GRAPE6a boards

http://www.metrix.co.jp

The most suitable for a Cluster system

G6TM-01 assembly with G6TM-01MB module

ISM "Ecology"

Tumlinson, 2004: astro-ph/0411249

Our Multi-Phase GRAPE SPH code

WARM - HOT: SPH

Basic Equations

$$\frac{d\vec{v}_i}{dt} = -\sum_{j=1}^N m_j \cdot \left(\frac{P_i}{\rho_i^2} + \frac{P_j}{\rho_j^2} + \tilde{\Pi}_{ij}\right) \cdot \vec{\nabla}_i W_{ij} - \vec{\nabla}_i \Phi_i - \vec{\nabla}_i \Phi_i^{ext}$$

$$\frac{du_i}{dt} = \frac{1}{2} \sum_{j=1}^N m_j \cdot \left(\frac{P_i}{\rho_i^2} + \frac{P_j}{\rho_j^2} + \widetilde{\Pi}_{ij} \right) \cdot \left(\vec{v}_i - \vec{v}_j \right) \cdot \vec{\nabla}_i W_{ij} + \frac{\Gamma_i - \Lambda_i}{\rho_i}$$

$$P_i = (\gamma - 1) \cdot \rho_i \cdot u_i$$

Basic Equations

Monaghan & Gingold, 1983

$$\Pi_{ij} = \begin{cases} \left[-\alpha \cdot c_{ij} \cdot \mu_{ij} + \beta \cdot \mu_{ij}^2 \right] / \rho_{ij} & \text{if} \left(\vec{r}_{ij} \cdot \vec{v}_{ij} \right) < 0 \\ 0 & \text{else} \end{cases}$$

$$\mu_{ij} = \frac{h_{ij} \cdot (\vec{v}_i - \vec{v}_j) \cdot (\vec{r}_i - \vec{r}_j)}{\left| \vec{r}_i - \vec{r}_j \right|^2 + \varepsilon \cdot h_{ij}^2} \qquad \begin{array}{l} \alpha = 1 \\ \beta = 2 \\ \varepsilon = 0.01 \end{array}$$

$$\rho_{ij} = \frac{1}{2} (\rho_i + \rho_j) \quad h_{ij} = \frac{1}{2} (h_i + h_j) \quad c_{ij} = \frac{1}{2} (c_i + c_j)$$

Basic Equations

Monaghan & Lattanzio, 1985 Hernquist & Katz, 1989

$$W(r;h) = \frac{1}{\pi \cdot h^{3}} \cdot \begin{pmatrix} 1 - \frac{3}{2} (r_{h}')^{2} + \frac{3}{4} (r_{h}')^{3} & 0 \le r_{h}' < 1 \\ \frac{1}{4} (2 - r_{h}')^{3} & 1 \le r_{h}' < 2 \\ 0 & 2 \le r_{h}' \end{pmatrix} W_{ij} = W(|\vec{r}_{i} - \vec{r}_{j}|;h_{ij})$$

Balsara, 1995; Steinmetz, 1996

$$\widetilde{\Pi}_{ij} = \frac{1}{2} \left(f_i + f_j \right) \cdot \Pi_{ij} \quad f_i = \frac{\left| \left(\vec{\nabla} \cdot \vec{v} \right)_i \right|}{\left| \left(\vec{\nabla} \cdot \vec{v} \right)_i \right| + \left| \left(\vec{\nabla} \times \vec{v} \right)_i \right| + \varepsilon \cdot c_i / h_i}$$

Define smoothing length

http://www.cs.umd.edu/~mount/ANN/

Delgarno & McCray, 1972; Sutherland & Dopita, 1993

Integrator

Predictor step: $\begin{pmatrix}
\vec{v}_i^{\ p} &= \vec{v}_i^{\ n} + \vec{a}_i^{\ n} \cdot \Delta t \\
\vec{r}_i^{\ p} &= \vec{r}_i^{\ n} + (\vec{v}_i^{\ n} + \vec{v}_i^{\ p}) \cdot \frac{\Delta t}{2} \\
u_i^{\ p} &= u_i^{\ n} + \dot{u}_i^{\ n} \cdot \Delta t
\end{cases}$ $\begin{array}{rcl} \textbf{Corrector step:} & \left(\vec{v}_{i}^{n+1} & = & \vec{v}_{i}^{n} + (\vec{a}_{i}^{n} + \vec{a}_{i}^{p}) \cdot \frac{\Delta t}{2} \\ \vec{r}_{i}^{n+1} & = & \vec{r}_{i}^{n} + (\vec{v}_{i}^{n} + \vec{v}_{i}^{n+1}) \cdot \frac{\Delta t}{2} \\ u_{i}^{n+1} & = & u_{i}^{n} + (\dot{u}_{i}^{n} + \dot{u}_{i}^{p}) \cdot \frac{\Delta t}{2} \end{array} \right)$

$$\Delta t = 0.1 \cdot \min\left(\sqrt{\frac{2 \cdot h_i}{\left|\vec{a}_i\right|}}; \frac{h_i}{\left|\vec{v}_i\right|}; \frac{h_i}{c_i}; \frac{u_i}{\dot{u}_i}\right)$$

RIT & ARI 32 node GRAPE6a clusters

MAO 8+1 node GRAPE6 blx64 cluster

9 x2 dual-core Xeon 2.0 GHz
9 GRAPE6 blx64
5 TB RAID
Infiniband switch (2x10 Gb/s)
Speed: ~1 Tflops
N up to 2M
Cost: ~100k EUR
Funding: NASU

ARI 32 node GRAPE6a cluster:

32x2 64 bit-Xeon P4, 3.2 GHz (~2 Gfps) 32 GRAPE6a (~120 Gfps) 32 FPGA-MPRACE (~20 Gfps) 3.5 TB RAID5 disk system Infiniband, dual port network (~20 Gb/s)

Summary speed: ~4 Tfps N (direct summation) up to 4M

Volkswagen/Baden-Württemberg ~400k EUR

GRACE=GRAPE + MPRACE:

MPRACE FPGA board

FP arithmetic: 16 or 24 mantissa

MPRACE FPGA board

Pressure force pipeline

* Scheme doesn't show energy term

Jun Makino: TREE+GRAPE code

Makino, PASJ, <u>43</u>, 621 (1991)

Inter. list on host ~N
Inter. list length -> short...

Makino, PASJ, <u>56</u>, 521 (2004)
Fukushige, Makino & Kawai, PASJ, <u>57</u>, 1009 (2005)
One interaction list is shared among
NGR particles!
Inter. list on host ~N/NGR
Inter. list length -> larger...

SPH - test

Adiabatic collapse of a cold gas sphere.

Evrard, 1988 Steinmetz & Muller, 1993 Carraro et al., 1998 Springel et al., 2001

$$\rho = \frac{M}{2 \cdot \pi \cdot R^2} \cdot \frac{1}{r}$$

G = M = R = 1

$$E_G = -\frac{2}{3} \cdot \frac{G \cdot M^2}{R}$$
$$u = 0.05 \cdot \frac{G \cdot M}{R}$$

SPH - test

Berczik (NCPU=1)

Nakasato (NCPU=4)

Berczik (NCPU=1)

Nakasato (NCPU=4)

Scaling results

GRAPE + SPH code: One timestep integration

SPH speedup with MPRACE

2007...

GeForce 8800 GTX, 128 Stream Proc., 768 MB GeForce 8800 GTS, 128 Stream Proc., 512 MB GeForce 8800 GT, 112 Stream Proc., 512 MB

2008...

GeForce 9800 GTX, 128 Stream Proc., 512 MB GeForce 9800 GX2, 256 Stream Proc., 1 GB GeForce 9800 GT, 64 Stream Proc., 512 MB

CPU vs. GPU speedup timeline

GeForce 8800 GTX:

575 MHz * 128 processors * 2 flop/inst * 2 inst/clock = 333 Gflops

575 MHz * 128 processors * 2 flop/inst * 2 inst/clock = 333 Gflops

Simple CUDA example

Basic idea of any N-body code


```
device float3
bodyBodyInteraction(float3 ai, float4 bi, float4 bj) {
     float3 r;
    \mathbf{r}.\mathbf{x} = \mathbf{b}\mathbf{i}.\mathbf{x} - \mathbf{b}\mathbf{j}.\mathbf{x};
                                          // r_ij [3 FLOPS]
    \mathbf{r.y} = \mathbf{bi.y} - \mathbf{bj.y};
    \mathbf{r}.\mathbf{z} = \mathbf{b}\mathbf{i}.\mathbf{z} - \mathbf{b}\mathbf{j}.\mathbf{z};
     // distSqr = dot(r_ij, r_ij) + EPS^2 [6 FLOPS]
     float distSqr = r.x + r.y + r.y + r.z + r.z;
     distSqr += softeningSquared;
     // invDistCube =1/distSqr^(3/2) [4 FLOPS (2 mul, 1 sqrt, 1 inv)]
     float distSixth = distSqr * distSqr * distSqr;
     float invDistCube = 1.0f / sqrtf(distSixth);
     float s = bj.w * invDistCube; // s = m_j * invDistCube [1 FLOP]
     ai.x += r.x * s;
                                           // a_i = a_i + s * r_i j [6 FLOPS]
    ai.y += r.y * s;
     ai.z += r.z * s;
     return ai;
}
                                             Total: 20 FLOPS
```

Basic idea of GRAPE/GPU N-body code

Basic idea of any parallel N-body code

Basic idea of any parallel N-body code

j-particle

Basic idea of any parallel N-body code

i, j - particle

Some communication scheme...


```
forall bodies i in parallel {
 accel = 0;
 pos = position[i]
  foreach tile q {
   forall threads p in thread block in parallel {
      shared[p] = position[q*tile_size + p]
    }
    synchronize threads in block
    foreach body j in tile q {
      accel +=
        computeAcceleration(pos, position[j])
    }
    synchronize threads in block
  }
```

GPU N-body speedup timeline

2007/02 2007/03 2007/06 2007/11

GPU N-body gravity

Hamada et al. 2008: Direct GPU code

O(N²) kernel demonstrations

Our own GRAPE/GPU N-body code

Harfst et al, NewA, <u>12</u>, 357 (2007) [astro-ph/0608125]

Hierarchical Individual Block Time Steps

ftp://ftp.ari.uni-heidelberg.de/pub/staff/berczik/phi-GRAPE/

GPU results

Nitadori, Berczik et al. 2007.11

GPU results

Nitadori, Berczik et al. 2007.11

GPU 4th vs. 6th order results:

GPU 4th vs. 6th order results:

Parallel TREE GPU gravity

Jun Makino: TREE+GRAPE/GPU code

Makino, PASJ, <u>43</u>, 621 (1991)

Inter. list on host ~N
Inter. list length -> short...

Makino, PASJ, <u>56</u>, 521 (2004)
Fukushige, Makino & Kawai, PASJ, <u>57</u>, 1009 (2005)
One interaction list is shared among
NGR particles!
Inter. list on host ~N/NGR
Inter. list length -> larger...

Parallel TREE GPU gravity

Hamada et al. 2008: TREE+GRAPE/GPU code

O(N logN) tree algorithm

Parallel TREE GPU gravity

Simple GPU SPH code

SPH speedup with GPU

1

N [in K]

TREE-GRAPE + MPRACE (on 4 nodes) $M = 2000 M_{\odot}$ R = 3 pc fully -> H₂ Isothermal evolution. Initial density distr. ~1/r T = 20 K (c sound = 0.3 km/sec)V merge = 5 km/secCalculation time 3*t ff = 6 Myr Resolution is $h \min = 1e-4 pc$ SPH MPRACE/CPU speedup ~10 Total GRAPE+MPRACE/CPU speedup ~15

N =	2x4k	DT_CPU = 52 min
	2x8k	1.74 hours
	2x16k	3.5 hours
	2x32k	6.9 hours
	2x64k	14 hours
*	2x128k	28 hours
	2x256k	55 hours
	2x512k	111 hours

