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Abstract

Smoothed Particle Hydrodynamics (SPH) is a fully gridless Lagrangian method, invented in
1977 for astrophysical simulations. Due to its simplicity and robutness, this numerical method
has been extended to solid mechanics for rapid dynamic phenomena and more recently to com-
plex fluid mechanics problems such as dam breaking and wave flumes. However, the literature
is quite scarce regarding SPH “academic” flow validation and turbulent flows modelled with
SPH.

The first goal of this work is to validate SPH for “classical” laminar problems. A complete
investigation of a 2D laminar free surface channel flow is presented: the influence of the viscous
term modelling and SPH parameters as the smoothing length are discussed. Moreover, a new
practical wall modelling is introduced, as well as no-slip boundary conditions. Velocity and
pressure profiles are in excellent agreement with the theory. SPH simulations of 2D laminar
separated flows are also considered through a periodic hill channel and a backward facing step
geometry. Separation and reattachment points are fairly well predicted and velocity profiles
are consistent with those relative to Eulerian codes. A limitation of the nearly incompressible
assumption used in most standard SPH codes is also revealed.

The second goal of this thesis is to extend SPH to turbulence modelling. A SPH mixing length
model is introduced and applied to a 2D turbulent free surface channel. The velocity profiles
are in good agreement with the theoretical ones, for smooth and rough beds. However, an
overestimation of the axial velocity gradient in the vicinity of the wall causes a slight overes-
timation of the eddy viscosity profiles.

In order to adapt Large Eddy Simulation (LES) concept to SPH, a 3D code was at first
developed. The implementation of a simple Smagorinsky model is described and some first
results relative to a 3D turbulent free surface channel are presented. Typical turbulent fields
with velocity fluctuations in each direction are obtained. Moreover, averaged pressure and
velocity profiles are on the whole fairly consistent with the theoretical ones. The results are
promising but more numerical work has to be achieved to reduce the turbulence intensity and
the computing times. A simulation of a 3D dam breaking is also presented: SPH results and

experiments are qualitatively in good agreement.
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Chapter 1

Introduction to Particle and Meshless
Numerical Methods

The analytical study of fluid mechanics acknowledges two descriptions of fluid flow, Eulerian

and Lagrangian:

e In the Eulerian description, one concentrates on what happens at a fixed spatial point
T at a time ¢t. Here, the independent variables are taken as z and ¢. Any flow variable

F is then expressed as F (z,1t).

e In the Lagrangian description, one follows the history of an individual fluid parcel
through the time. In this description, a flow variable is characterised by two inde-
pendent variables which are the particle label and the time ¢. Usually, as the particle
label, the point vector x, of the particle at the reference time ¢ = 0 is chosen. In the

Lagrangian description, any flow variable F' is thus expressed as F (z,t).

The implementation of Computational Fluid Dynamics (CFD) in engineering applications is
most of the time based on the Eulerian description of the flow, since these techniques have
been heavily studied for fifty years and are clearly understood. Most of the commercial codes
have been developed using finite volume (Fluent, Star-CD, Comet, Saturne...), finite element
(Pronto, Telemac, ...) or finite difference approaches. The result is that, unfortunately, Eule-
rian based models are used even for applications for which they are not suited: for instance,
large deformations and complex free surface flows. That is the reason why Fox and McDonald,
in their introductory fluid mechanics text book [22], state “Clearly the type of analysis de-
pends on the problem. Where it is easy to keep track of identifiable elements of mass, we use

a method of description that follows the particle”. Implicitly, this means “particle methods”.

1



2 CHAPTER 1. Introduction to Particle and Meshless Numerical Methods

1.1 Particle methods

Over the past 10 years, the trend in CFD has been to focus on increasingly demanding problems
that require the ability to treat large deformations, complex geometry, non-Newtonian fluid
behavior, discontinuities and singularities. This trend finds applications in the simulation of
industrial and manufacturing processes such as extrusion where extremely large deformations
occur, or in the simulation of flows within a porous medium. Although adaptive techniques
and remeshing strategies have been developed for these classes of problems, the most viable
strategies are so-called particle methods. Since their invention by Harlow [29] more than 50
years ago, particle methods have shown their huge potential in many applications: plasma
simulation depends almost exclusively on the Particle-In-Cell method, the liquid drop model
for nuclear fission can be considered by solving relativistic equations with particle methods
and advection in atmospheric computations is modeled using semi-Lagrangian methods. Sea
ice dynamics have also simulated with these methods [7]. Three widespread particle methods

are briefly described in this part.

1.1.1 Marker-And-Cell method

The earliest particle numerical method devised for time-dependent, free-surface, flow problems
was the Marker-And-Cell (MAC) method [30] . This technique is based on a fixed Eulerian
grid of control volumes. The fluid location within the grid is determined by a set of marker
particles that move according to locally interpolated fluid velocities, but otherwise have no
volume, mass or other properties [73]. These marker particles can be interprated as centroids
of small fluid elements. Grid cells containing markers are considered occupied by fluid, while
those without markers are empty (or void). A free surface, for instance, is defined to exist in
any grid cell that contains particles and that also has at least one neighboring grid cell that
is void. An interesting feature of the MAC method is that the markers do not track surfaces
directly, but track fluid volumes. Surfaces are simply the boundaries of the volumes, and in
this sense surfaces may appear, merge or disappear as volumes break apart or coalesce. Some
special treatments are then required to define the fluid properties in newly filled grid cells and
to cancel values in cells that are emptied.

The extraordinary success of the MAC method in solving a wide range of complicated free-
surface flow problems is well documented in numerous publications. Filling process into a
cubic container for instance, as represented in figure 1.1', has been well modelled with the
MAC method by Ji. Liovic [50] investigated splash resulting from top-submerged gas injection:
the MAC model shows phenomena of bubble formation, bubble rise and splash drop formation
in detail, as shown in figure 1.2. In spite of its success, the MAC method has primarily been

used for two-dimensional simulations because it requires considerable memory and CPU time

Yhttp : / Jwww.me.uwaterloo.ca/ ~ fslien/free_ surface/ free_ surface.htm
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Particle methods

Figure 1.1: Filling process in a cubic container modelled with the MAC method by Ji.

=L

L = 0.00 sec t =0.20 sec t = 0,30 sec

t = 0.60 sec - 0.90 sec

t=1.70 sec t=2.00 sec t = 3.00 sec

Figure 1.2: Simulation of a top-submerged gas injection in water with the MAC method [50].
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to accommodate the necessary number of marker particles. Typically, an average of about 16
markers in each grid cell is needed to ensure an accurate tracking of fluid volumes undergoing
large deformations. Moreover, the MAC method is more complicated to code than other

particle methods.

1.1.2 Particle-In-Cell method

The Particle-In-Cell method (PIC) was developed by Harlow [28], [9], [8] in 1957 and soon
applied in CFD. Like the MAC approach, PIC is a dual description method, Lagrangian and
Eulerian. The main idea is to track the motion of a set of particles that carry velocity, position,
mass and species information, in a Lagrangian manner. However, the momentum equation is
solved on an Eulerian mesh, which provides a convenient pattern to define discrete derivatives:
the particle variables are interpolated to this mesh and classical finite differences can then be
used to discretise the momentum equation. The new values are re-interpolated to particles
which move according to them.

PIC is applied in order to treat transient, compressible flows of multiple materials with no
restriction on interfacial deformation. It is also the reference method for plasma simulations
[7]. An accurate simulation of the Kelvin-Helmholtz instability has been performed by Lapenta
(see figure 1.3) [42] with the PIC method. However, it is well known that the main drawback

.\r

| i

il

I
|

i

|
(f

Figure 1.3: Kelvin-Helmholtz instability simulated by PIC: plot of the particle locations [42].
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of such methods is that they are time consuming. Indeed, interpolation from the particles to
the mesh and vice-versa is quite heavy in terms of CPU consideration. Ensuring the numerical
stability of the interpolations and extrapolations is also quite delicate [21]|. Furthermore, one
must know the location of the regions where steep gradients occur to make the grid fine enough

to resolve these structures.

1.1.3 The Lattice-Boltzmann Method

The Lattice-Boltzmann Method (LBM) uniformly discretises the space with hexagonal or
square lattice in 2D and with cubic lattice in 3D. On such a discrete space, a macroscopic fluid
is replaced with the population of mesoscopic fluid particles with unit mass, which are allowed
to be rest at lattice nodes or to move with constant velocity along lattice lines, as shown in
figure 1.4. LBM thus describes a physical system in terms of the motion of fictitious mesoscopic

particles on a lattice. During one time step, two kinds of motion are repeated all over the space:

Figure 1.4: Velocity directions on a triangular lattice (left) and a square lattice (right) [49].

translation from site to site, and elastic collision between particles at each lattice site. The
collision is statistically operated according to rules ensuring mass and momentum conservation.
As as result, a macroscopic fluid dynamics in LBM appears from averaging particle motions
[78]. The Lattice-Boltzmann method has been particularly successful in simulations of flows
involving complicated boundaries, viscoelastic fluids, particulate suspensions in fluid. In the
same way, chemical reactive species, combustions, magnetohydrodynamics, crystallization, and
other complex systems can be accurately modelled with LBM. It is also useful for computing
fluid flow in complex geometries like random porous media. Figure 1.5 represents a flow
through a porous medium, computed by Lin at the University of Iowa 2. The Rayleigh-Taylor
instability has also been well simulated by the Fuji Research Institute Corporation (see figure
1.6) with LBM 3. Moreover, this technique is also efficient in terms of CPU and is easy to

parallelize.

2http : [ Jwww.icaen.uiowa.edu/ ~ ching/resh_1lbm.html
3http : [ Jwww.fuji — ric.co.jp/english/solution/prom/complex [kohno/lbmindex.html
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Figure 1.5: Flow through a porous medium simulated with LBM by Lin (University of Towa): axial
velocity contour (top picture) and velocity field (bottom picture).

Figure 1.6: Rayleigh-Taylor instability modelled with the LBM by the Fuji Research Institute Corpo-
ration .
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1.2 Meshfree methods

Meshfree methods eliminate the mesh relative to some particle methods and rely on a fully
Lagrangian view of the problem. The relatively recent rebirth of interest in meshfree methods
has led to a plethora of methods with a variety of names: DEM (diffuse element method),
EFG (element free Galerkin), RKPM (reproducing kernel particle method), POU (partition
of unity), PUFEM (partition of unity finite element method), MPM (material-point method),
HP clouds, MLPG (meshfree local Petrov Galerkin), MLSPH (moving least squares SPH)
and a host of other methods have emerged in the arena of meshfree methods. Two of them
are briefly presented in this part: vortex methods and the Smoothed Particle Hydrodynamics
(SPH) method.

1.2.1 Vortex Methods

In vortex methods, the Navier-Stokes equations are expressed in vorticity formulation and the
vorticity field becomes the principal variable for computations [4]. The fluid velocity field is
obtained from an integral of the vorticity, and the pressure is not explicitly solved for, as it
is eliminated by the curl operator. Since vortex methods are characterised by a Lagrangian
approach, fluid particles convect with the local fluid velocity at each time step.

Vortex methods are very efficient for investigation of problems characterised by high vorticity
zones. For instance, Cottet [14] accurately revealed the density contours in a 2D shock-tube
experiment with vortex methods: in figure 1.7, the initial density has a strong 100:1 discon-
tinuity generating a shock wave that propagates to the right, then bounces back on the right

wall and interacts with vorticity created in the boundary layer on the bottom wall.

0.5

045

0.4

Q.35

0.3

0.251

Figure 1.7: Density contours in a 2D shock-tube experiment realised with vortex methods [14].

Von Karman vortex streets behind a circular cylinder naturally develop 3D instabilities. When
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the cylinder is subject to rotation, the flow returns to a 2D topology. Vortex methods accu-

rately simulate this phenomenon as well, as shown in figure 1.8 [15]. Vortex methods are not

Figure 1.8: Von Karman streets simulated with vortex methods [15].

formulated to depend on a computational grid, and here lies one of their potential advantages,
since grid generation is a very expensive process of CFD. In addition, the Lagrangian formu-
lation is devoid of numerically diffusive truncation errors associated with the meshes [3].

However, the calculation of unsteady flows using the vortex method suffers from loss of accu-
racy due to the Lagrangian deformation of the particle field. As particles are allowed to freely
convect, “gaps” appear in areas where the flow strain is large and thus the particle set loses
the ability to reconstruct the smooth vorticity field accurately. Moreover, this method is not

suited for compressible flows.

1.2.2 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a meshfree Lagrangian method in which the
medium is discretised by macroscopic particles. These individual particles interact with each
other, move according to the medium motion and carry with them all of the physical infor-
mation describing the medium. The technique is relatively new, having first been introduced
by Lucy and Monaghan in 1977 [56], in the context of astrophysical modelling.
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SPH in astrophysics

In a realistic and complete description of most cosmic phenomena, one must typically face
highly non-linear interactions between objects or particles, as well as non-linear couplings be-
tween different kinds of interactions, including gravitational, electromagnetic, radiative, and
gas dynamic interactions. Consequently, numerical approaches to understand astrophysical
phenomena have become indispensable. Due to its meshfree feature, SPH is applied in as-
trophysics to simulate complex phenomena such as fragmentation within rotated clouds or
supernovae explosions [56]. Indeed, classical Eulerian codes would require a very complex
adaptative grid for this type of simulations. SPH has also been used to calculate star collision
and galaxy formation [68]. Figure 1.9 shows some classical SPH applications in astrophysics,
realised at Los Alamos National Laboratory *. Simulations of magneto hydrodynamic phe-

Galaxy Cluster Star Collision

T

wan

4

Mock Redshift Survey Comel Impact y Formation Parallel Dat

Figure 1.9: Several SPH applications in astrophysics realised at Los Alamos National Laboratory
(T heoretical Astrophysics (T — 6)).

nomena such as Alfven wave propagation, cosmological simulations of magnetic fields in galaxy

clusters [16] and general relativity problems [56] are also successfully carried out with SPH.

“http : //qso.lanl.gov/pictures/ Pictures.html



10 CHAPTER 1. Introduction to Particle and Meshless Numerical Methods

SPH in solid mechanics

Nowadays, the range of applications of this method is much broader: in solid mechanics, it
accurately simulates high distorsion and large deformation phenomena: for instance, linear
and non linar oscillation of a plate have been successfully investigated by Gray [24] (see figure
1.10). This type of motion is quite delicate to model with finite element codes for instance.

It is also successfully applied to solid breaking: on the left picture of figure 1.11, particles are

Time = 575.797 Time = 11.425 Time = 842.872

T ) [—

0
001 <107 0 si0”  om -0 0 wi0”

Time = 870,022 Time = 293.870

-
=008 0 008 =005 0 0.05 —0.04 —0.02 0 0.02

Figure 1.10: Linear (left) and non linear (right) oscillation of a plate modelled by SPH [24].

used to model the ground as a penetrator passes through 5. These kinds of simulations can
predict the response of small components in the penetrator to a high-velocity impact. The
picture on the right of figure 1.11 is a simulation of an airplane wing hitting a vertical pole.

Fuel dispersal from the torn wing is accurately modeled with SPH particles ©.

SPH in fluid mechanics

Being a particle based method, SPH is very well suited to model particles, such as bubbles
entrained in flows. It is also appropriate for investigation of multiple phase mechanical engi-
neering applications such as fluid jets, tank sloshing, multiple phase pipe flow, fluid impacts

and cavitation.

Shttp : [ Jwww.cs.sandia.gov/ sjplimp/pronto.html
Shttp : / Jwww.cs.sandia.gov/ sjplimp/pronto.html
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Figure 1.11: Several SPH applications in solid mechanics obtained by the code Pronto.

e Industrial applications

High Pressure Die Casting (HPDC) is an important industrial process by which very
complex shaped castings with excellent surface finishes can be produced in high volumes
and at low cost. SPH is well suited to model momentum-dominated flows involving
droplet formation and splashing, such as occur in HPDC. SPH predictions relative to
a simple plate die have been compared with the corresponding experimental results of
Schmid & Klein [26]: as seen in plots of figure 1.12, the SPH results compare well with
the experimental results, both capture the essential nature of the flow. HPDC in a 2D

channel is also well simulated by SPH, as shown in figure 1.13.

e Environmental applications

SPH is also efficiently applied to “complex” environmental flows simulation. The term
“complex” corresponds to delicate geometric conditions, such as chaotic free surface,
hydraulic jumps and wave flumes. A dam breaking [91], [90] has been accurately rep-
resented by SPH with 10 000 particles, as shown in figure 1.14. One can notice that
the breaking wave at t = 1.20 s is well modelled, while classical Eulerian codes struggle
for these typical free surface problems. In the same way, a solitary wave on a beach
is accurately simulated by SPH. The experimental pictures on the right of figure 1.15

reveal that there is an excellent agreement between experimental and numerical results
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t = 26.63 ms t=33.73 ms

Figure 1.12: High Pressure Die Casting (HPDC) relative to a simple plate die realised by SPH (bottom
pictures) and compared with experimental data (top pictures) [26].

Time = 0.94 me

Time = 1.25 ms

Figure 1.13: Velocity contours of the liquid metal during a channel HPDC realised by SPH [12].
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0.84s 14E t=120s

Figure 1.14: Dam breaking simulation with SPH [91].
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relative to SPH.

Figure 1.15: Solitary wave on a beach simulated with SPH (left pictures) and compared to experi-
mental data (right pictures) [87].

1.3 Conclusion

Currently, several dozen particle and meshless methods exist. Fach of them has its own
advantages and drawbacks which make the method well suited for a specific type of problems.
There is thus no “best method” the user needs to choose the appropriate method for the
problem he has to solve. In order to simulate complex environmental flows, SPH seems to be

an attractive method and natural way of separating water and air.



Chapter 2

The SPH method: bibliographic

investigation

In this chapter, a theoretical and practical overview of SPH applied to CFD is presented.

2.1 Fluid discretisation in SPH formalism

2.1.1 SPH particle definition

In the physical space, the fluid is discretised by a finite number of macroscopic volumes of
fluid. Each of these volumes v, is itself composed of several mesoscopic fluid elements which are
identical to the particles defined in continuum mechanics formalism (see figure 2.1). However,
in SPH theory, the term “particle” always corresponds to the macroscopic volume of fluid v,.
In order to simplify the notations, the term “particle” will be written without any quotation

mark in the following. In the three-dimensional Euclidian space, SPH particles are linked to a

mass My

density : 0,

pressure: Py

. velocity : Uy
Macroscopic volume position : I,

_ particle”a _ Mesoscopic
in SPH formalism fluid element
. -2 =
Slze ~10 particle in
t010 " m continuum mechanics
formalism

Figure 2.1: “Particle” definition in SPH formalism.

set of N points denoted by latin letters. Each point is located at a position r, and corresponds

in the physical space to the gravity centre of fluid particle a.

15
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2.1.2 Physical values assigned to fluid particles

Each fluid particle ¢ has a mass m,, constant throughout the calculation. Particle a is also
characterised by a density p,, a pressure p, and a velocity u, (see figure 2.1), updated at
each time step. Its pressure and velocity correspond to a statistical average relative to all
mesoscopic fluid elements constituting particle a. It is the same for other intensive quantities.
Concerning extensive quantities, they correspond to a summation relative to all mesoscopic

fluid elements constituting the fluid particle a.

2.2 Mathematical formalism

2.2.1 Heart of the method

Let us consider a function A, which may represent a physical variable and is defined over a
domain of interest 2. In SPH formalism, the value of A at a point r is firstly written as
a convolution product of the function A with the Dirac distribution § (exact mathematical

formulation):

A(r) = /Q Ao — 1')dr (2.1)

where the summation is extended to the whole domain €.

For numerical reasons, the Dirac distribution is firstly approximated by a smooth function
wy, (r —r') called the kernel function. Further information regarding this function and the
smoothing length h will be given in part 2.3. A(r) can be approximated by the integral
interpolant of the function A at the point r, denoted (A(r)), according to

AW~ (Aw) = [ Aoz - i 22)

In order to determine the accuracy of equation (2.2), let A (r') be expanded in a Taylor series

around r, as decribed in [18]:
A(r) =A(r) + ' —r|A() + O (Ir - '|?) (2.3)

where A (r) corresponds to the first derivative of A. Combining equations (2.2) and (2.3), it
follows that

(A(r)) = A(r) /Q’wh (r—r')dr' + A(r) /Q Ir' = rlwy (r —1r')dr' + O (Ir —'|?)  (24)
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If the kernel function wy, is spherical, i.e wy, (r — r') = wp, (|r — r'|), the term of order O(|r' —r|)

in equation (2.4)

A(r) /Q |r' — rlw, (r —r') dr’ (2.5)

automatically vanishes. Moreover, since the order of |’ — r| is generally similar to the order

of h (see part 2.3), equation (2.4) becomes:
(A(r)) = A(r) /Q wp, (Ir —1']) dr' + O (h?) (2.6)
Since [ wy (|r —r'|) dr’ =1 (see part 2.3), it follows that
(A(r)) = A(r) + O (n?) (2.7)

Relation (2.7) gives a leading-error proportional to A% and results in an accuracy for the SPH

discretisation which is in second-order in space [18]|. Consequently,
A(r) = / A (z’) wy, ([ - f’) dr' + 0O (h2) (2.8)
Q

Statistical interpretation

As generally defined, the density p is proportional to the number of particles per unit volume.
From a statistical point of view, the density p at a particle located at a spatial point r could
be described by considering that the probability of finding a particle in a certain volume AV
centred on r is proportional to pAV. The position of the particles can thus be considered
as a sample from a probability density proportional to the density [23]. By considering the
function A of equation (2.8) as the density p, it is clear that the density of the particle located
at r is proportional to the density probability to find a particle in a volume element centred
on r. This probability density is here equal to p (r') wp, (r — r'). SPH relation (2.8) is hence

consistent with the statistical interpretation of the density.

2.2.2 Transition to a discrete domain

The transition to a discrete domain is achieved by approximating the integral of equation (2.8)

by a Riemann summation:

Ar) =Y %Abwh@ — 1) + O(h?) (2.9)
b

where Ap denotes the value of A at the point occupied by the particle b. This summation is

extended to all particles b that constitute the fluid domain (the volume element dr’ has been
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replaced by the particle volume my/pp). An approximation of equation (2.8) by the statistical
Monte Carlo method applied to a set of N points also leads to relation (2.9) [23].
With a spherical kernel, the value of the quantity A relative to the particle a located at the

point r can then be written in the following form
Alr) = A=Y 22 2
(ro) =Aa= > Avun(ras) + 0 (7) (2.10)
b

where the quantity r,, corresponds to the distance between particles a and b. In order to
simplify expressions, the order of approximation O (hz) will be skipped in the following.

Moreover, only spherical kernels will be considered.

“scatter” and “gather” point of view

There are two classical interpretations of equation (2.10):

e The “scatter” interpretation
In this interpretation, the kernel function wy can be seen as a tool to describe how the
thermodynamic variables for a particle b are distributed at the position r, occupied by
the particle a. From this point of view, the kernel function is thus centered on particle
b, as shown on the left picture of figure 2.2. On this figure, the kernel is represented as

a Gaussian function.

kernel functionwy,

kernel functionw,

b

Figure 2.2: The “scatter” (left) and “gather” (right) interpretation of SPH.

e On the other hand, the “gather” interpretation considers the kernel function as a weight-
ing function used to describe how thermodynamic variables at the particle a are smoothed
in its neighbourhood. In this second interpretation, the kernel function is centered on

the particle a, as represented on the right picture of figure 2.2.

The denomination Smoothed Particle Hydrodynamics can be understood from these two points

of view: the quantities relative to each particle are smoothly smeared over a finite space region.
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Remarks:

e At this point, one can notice from equation (2.10) that the contribution of particle b
to the value of the quantity A relative to particle a directly depends upon the distance

between these two particles.

e Moreover, equation (2.10) reveals that all particles present in the domain are involved in
the determination of the value of the quantity A relative to particle a, which is very time
consuming. To avoid this drawback, it is convenient to consider a kernel characterised

by a compact support (see part 2.3).

2.2.3 Gradient of a scalar field
Basic formulation

The interpolant of the function A established according to equation (2.10) is differentiable
provided the kernel function is also differentiable. Then, the gradient of a scalar field A

relative to the particle a can be written
m m .
(VA=) p—bbAbVawh(Tab) = p—;Abwh(Tab)éab (2.11)
b b

the quantity V,wp, (rqs) denotes the gradient of the kernel taken with respect to a-coordinates
and wp, the kernel derivative. ¢, corresponds to the vector r,,/rqp, where ry, = r, — 14,

as represented on figure 2.3. One can notice that there is no need to use a grid to evaluate

Figure 2.3: Definition of the particle vector r ;.

the gradient of a scalar field since it is a function of the kernel gradient which is analytically
known (see part 2.3). This SPH feature is essential and very attractive.

Expression (2.11) is not an accurate one since a constant function A will not automatically
give a zero gradient function. Fortunately, as in finite-differences methods, the gradient of a

scalar field A can be written in several ways in SPH formalism [56].
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Other formulations

By considering relations (2.11) and (2.12),
pVA =V (pA) — AVp (2.12)
one obtains:

(VA), = pi > mi(Ay — Aa)tin(Tab)€qs (2.13)
e p

In this case, the gradient of a constant function A is obviously zero. Moreover, it is shown on
figure 2.9 that this expression is more accurate than equation (2.11).

In the same way and considering the following relation
A 1

another form of the gradient of a scalar field is obtained:

A A .
(V)= pu 3 (8 + 22 ) i 1) (2.15)
b @ b

Even if it is not clear that equation (2.15) gives a zero gradient for a constant function A,
numerical tests reveal that this last approximation is as accurate as equation (2.13) [23]. For

variational consistency reasons, Bonet [6] established also the following form

my

(VA=) — (Aa Ap) i (ras) o (2.16)
b

Monaghan presents several forms of scalar field gradients and discusses their advantages and
drawbacks in [56].

Symmetric and asymmetric consideration

Equation (2.13) is symmetric with respect to a and b subscripts. Indeed, the kernel derivative

is anti-symmetric with respect to a and b subscripts, i.e.

Wh (Tab) €ap = —Wh (Tab) €bq (2.17)

Consequently, the contribution of particle b to (VA), is identical to the contribution of particle
a to (VA),. In the same way, it is easy to show that equations (2.15) and (2.16) are asymmetric
with respect to a and b subscripts. From a physical point of view, these considerations are

very important (see part 2.4) and from a numerical point of view, calculation time is spared
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by using them: there is no need to calculate the contribution of particle a to (VA), if the
contribution of particle b to (VA), is already computed.

2.2.4 Divergence of a vector field
Several formulations

By considering expressions such as equations (2.12) and (2.14), several forms of the divergence

of a vector field can be written in SPH formalism. Among them,

(V2), = [V (pA)], = 5 Ay (V Zmb Jiin () ey (2.18)

Pa

1 1 A A,
)= pa |9 (34)] + -0 (V) = 00 S (5242 intrarea 219
p a pa pa, pb
As the gradient operator, the divergence one can be written in a symmetric (equation 2.18)

and an asymmetric (equation 2.19) form with respect to a and b subscripts.

Velocity divergence

If the field A corresponds to the velocity u, the physical interpretation of equation (2.18) is

quite simple by considering a Gaussian kernel, defined in 1D by

wp (z) = # exp (—:—z) (2.20)

and represented on the right of figure 2.7. According to equations (2.18) and (2.20), the
contribution of particle b to the divergence of the velocity at particle a is

2my, wh, (Tab)

oo YabLab™ 2 (2.21)
where u,, = u, — up and r,, = r, — . Relation (2.21) reveals that this contribution is
positive (respectively negative) if particles ¢ and b move away from (resp. get closer to) each
other, which is consistent with the classical interpretation of the velocity divergence. This

interpretation is illustrated on figure 2.4.

. u Yy . . u . %
a ] b a ’ b
Tab T
Ugh. Tap< 0 Uap. Yab >0

Figure 2.4: Interpretation of the velocity divergence in SPH formalism.
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2.2.5 Vector gradient and tensor divergence

Previous equations still hold for operators with higher dimensions. One can hence write the

gradient of a vector A in the following forms:

1 .
(v4), = o D (Ay — Ay) ® g (Tab) € (2.22)
a
b
A A .
(Z.4),=ra ) m (_—5 + :§’> ® tp (Tab) €a (2.23)
b Pa Py

where ® defines a tensor product. In the same way, the divergence of a second order tensor

A can be written in SPH formalism according to

1 .
(Xé)a = p_ Zmb (éb - éa) W (Tab) €qp (2.24)
b
A A
(4), =pay_my (% + j—é’) b, (Tab) €qp (2.25)
b a b

As previously mentionned, each operator has a symmetric (equations (2.22) and (2.24)) and

a asymmetric form (equations (2.23) and (2.25)).

2.3 The kernel function

2.3.1 Fundamental properties

Let us consider a domain of interest 2. The kernel function wy, must satisfy the three following

properties:

e The kernel summation over the whole domain {2 must be equal to unity, i.e
/ wy, (r—r')dr' =1 (2.26)
Q

This condition ensures proper normalization [18].

e When the parameter h tends to zero (this parameter called the smoothing length will

be developed in part 2.3.6), the kernel function must tend to the Dirac distribution:

’llig%) W, (z — fl) =4 (7" — r') (2.27)

This feature ensures consistency in the continuum limit.
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o The kernel must be at least once differentiable and its derivative must be continuous in

order to avoid large fluctuations which would affect the solution [23].

2.3.2 Compact support

In order to spare calculation time, it is useful to consider a kernel wj, characterised by a
compact support: wp, (14p) is then zero if the distance ry, between two particles exceeds a
limit value equal to the kernel support size h;. The summation of equation (2.10) will thus
be restricted to particles b which are considered as the nearest neighbours of particle a: as
shown on figure 2.5, only the particles located in the disc (in the sphere in 3D) of radius hy
and centred on a will be involved in equation (2.10). Concerning the kernel support size hy,

it is directly proportional to the smoothing length h.

Figure 2.5: Neighbours of particle a with a compact support kernel.

2.3.3 Examples of kernel

In a general way, a kernel function can be written according to:
1 Tab
wp, (Tap) = ho (7) (2.28)

where o denotes the dimension of the problem. Concerning the function f, several formulations
exist: for a 2D problem, Monaghan and Lattanzio [56] have defined the third order spline kernel
with

o [1-3 i H0<g<t
flog=71{ 129"  f1<g<2 (2:29)
0 ifg>2
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where g corresponds to the ratio r4/h. In this case, the kernel support size h; is equal to 2h.

In the same way, a fourth order spline kernel is defined with

(3-9)'-5(3-9 +10(;-9" f0<qg<05
51 | G-q)' =53 -9 if0.5<g<15
L 2.30
T =566 ) (5 g)° if15<q<25 (230
0 if g > 2.5

The kernel support size h; is here equal to 2.5h.
In order to investigate a low Reynolds number flow, Morris [64] used a fifth order spline kernel
defined with

3-9)°-6(2-¢°+15(1-¢)° f0<qg<1
7T ) B-9°-62-9)° if1<q<2
- 2.31
.’? ( gl) 4l’723 T ( E; _ (Z ) 5 ii- jz fE; (I jE; :3 ( )
0 ifg>3

The third, fourth and fifth order spline kernels are represented on figures 2.6 and 2.7 with
Tap = Tq — Ty and zqp = 24 — 2p: they resemble a Gaussian function (see the right picture of
figure 2.7) but are characterised by a compact support. Moreover, their first (left of figure 2.8)
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Figure 2.6: Third (left) and fourth (right) order spline kernels.

and second (right of figure 2.8) derivative are continuous, which implies that the interpolation
is not too sensitive to particle disorder [18]. Using different kernels in SPH is similar to using

different numerical schemes in finite-differences and finite volumes codes. Indeed, a numerical
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Figure 2.7: Fifth order spline (left) and Gaussian kernels (right).
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Figure 2.8: First (left) and second (right) derivatives of the third order spline (blue), fourth order
spline (red), fifth order spline (green) and Gaussian (black) kernels.
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scheme determines the connections relative to a node, as the kernel function does. Moreover,
both are linked to the accuracy of the equation discretisation. In the finite element method,
the kernel function is similar to the shape function. Different equations can also have different
kernels, as different schemes can be used to discretise an equation set with finite-differences

methods.

2.3.4 Kernel accuracy and stability

Each kernel is characterised by specific accuracy and stability properties.

e The order of spline kernels determines their approximation order. Indeed, let us consider
the basic SPH relation (2.2)

(A (r)) = /Q A (") wp (¢ — ') dr’ (2.32)

Considering a simple 1D case, the function A (r') can be approximated by a Taylor series

expansion about r, as explained in part 2.2.1:

(A(r))=A(r) /Q wy, (r—7")dr’' + A (7")/Q (r' = r)wy (r—r")dr' + ... (2.33)
The condition
/ (r' — r)j wy (r—7r)dr'=0 0<j<k (2.34)
Q

is achieved by considering a k-order spline kernel and (A (r)) will then coincide with
A(r).

e In [24], Gray established a SPH dispersion relation by stacking a small perturbation
to the equation of motion. By comparing this dispersion relation to the exact one
relative to a continuum medium, he revealed that a long-wavelength approximation of
the SPH dispersion relation exactly gives the continuum equation. This firstly shows
that the SPH perturbation equations are consistent in the long-wavelength limit. With
a short wavelength approximation, the SPH dispersion relation involves the Fourier
transform of the kernel. The accuracy of a kernel is thus linked to its Fourier transform.
Indeed, Monaghan [56] showed that the more accurate the kernels are, the faster their
Fourier transform decreases with the wave number. For instance, he considered a one-
dimensional case where particles of equal mass are equispaced by a distance A. He

proved that the density p, for a particle a estimated in SPH formalism, can be written

er (2] 9

according to

2|3

Pa =
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where F' denotes the Fourier transform of the kernel and v the particle volume. By

considering the Gaussian kernel (defined by equation (2.20)), one obtains:

F (@) _ Jrexp (—ﬂ> (2.36)

Considering (h/A) = 1.5, equation (2.35) becomes
m

= = 2.37

Pa . ( )

e Kernel accuracy could be evaluated as well by estimating their capability to reproduce

a known density distribution [23].

Concerning kernel stability, Morris [64] revealed that SPH equations can be unstable when ker-
nels with compact support are used. As higher order spline kernels more closely approximating
a Gaussian are used, these instabilites are reduced. One reason for the poor performance of
lower order splines kernels is that the stability properties of SPH equations strongly depends
upon the second derivative of the kernel. This consideration will be developed further in part
2.8.1.

2.3.5 Kernel correction

Bonet [6] presents a kernel correction, developed by Liu, in order to ensure that polynomial
functions up to a given degree are exactly interpolated. Indeed, due to the point interpolation
of equation (2.10), the kernel interpolation does not give perfect results. This can be improved

by interpolating with a corrected kernel wy, according to
my ,
Ag=>" EAbwh (Tab) (2.38)
b

where for a linear correction 4, is defined as

Wh(Tab) = Wh(Tab)(rap) [1 + B(Tab)Tas] (2.39)

The parameters « (rq) and 3 (rq) are evaluated by enforcing that any linear distribution for

instance is exactly interpolated:

mp -
Vo T V1T, = Z s (vo + v1.7p) Wh (Tan) (2.40)
b
where v, and v; respectively correspond to arbitrary vector and scalar. The use of this type
of correction ensures that linear functions are perfectly interpolated and their gradients are

exactly obtained. However, the evaluation of the parameters a and § is quite cumbersome.
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Moreover, the computation of the gradient of A is much more time consuming. A possible
way of simplifying the calculation is by using constant, rather than linear correction. This is

equivalent to considering S = 0 in equation (2.39) and gives

4 26 2 Avwe (Tab)
“ Zb Wy (Tab)

Equations (2.38) and (2.41) are efficiently tested by Bonet in [6]. Both provide a much

improved interpolation for the gradient of a velocity field but they still remain quite time

(2.41)

consuming.

2.3.6 The smoothing length h

In SPH theory, the smoothing length h characterises the spatial discretisation of the problem
and is analogous to an average cell size in an Eulerian code. This parameter, linked to the

kernel support, strongly influences result accuracy.

h optimal

Gingold and Monaghan [23] have estimated kernel accuracy by testing their capability to
reproduce known density distributions. By considering the error obtained on the computed
density, they revealed the existence of an optimal h value for each particle number, as shown

on figure 2.9. This is consistent with the work of Speith [76] who proved that the accuracy
018 r 1 20
014
o012 |- L M
010 |-

+50
-008 |-

Mean Error

0086 |-

-004

002 |~

Figure 2.9: Mean error relative to a density evaluation simulation. 20, 50, 100 and 200 particles
are successively considered.— — : pressure evaluated according to equation (2.11) ; —— : pressure
evaluated according to equation (2.13) with 100 particles [23].

of SPH results depends on the number of neighbours N; associated with each particle: Speith
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explained that
N; o h¢N (2.42)

where N corresponds to the total number of particles and d the dimension of the problem.
According to equation (2.42), a high value of h results in a large kernel support and thus
increases the number of neighbours but numerical errors associated with equation (2.10) are
also more consequent. Moreover, physical variations will also be smoothed out if a too large
smoothing length is used. On the other hand, the number of neighbours will be too low if
the smoothing length is adjusted to the smallest characteristic length scale of the problem.
An optimal value of h for a given particle number has consequently to be found. Once this
value is obtained, the ratio h/dér (where dr corresponds to the initial interparticle spacing) is

constant (see chapter 4).

Specific h

By considering a specific h for each particle, results for a density evaluation simulation (see
figure 2.10) are more satisfactory: in this case, the maximal error is six times lower than with

a constant smoothing length. However, it results in more complex equations (see part 2.4).

-10 -8 [} 05 0

Figure 2.10: Density estimation with a Gaussian kernel. —— : theoretical density, A: specific h, e :
constant h [23].

Moreover, at each time step, h value must be updated for each particle, hence increasing the

calculation time.

2.4 Fluid mechanics equations in SPH formalism

In this work, the fluid description is not energy-dependent. Therefore, no energy equation

will be presented, nor will energy conservation question be considered. The reader can find



30 CHAPTER 2. The SPH method: bibliographic investigation

information about these last points in [56], [61].

2.4.1 The continuity equation
Classical forms

e A natural formulation of the continuity equation can be deduced from equation (2.10),
with A corresponding to the density p:

pa =Y mywp (Tap) (2.43)
b

e In classical Lagrangian formalism, the continuity equation is written:

d

d—i = —pVu =~V (pu) + Vp.u (2.44)
where the operator d/dt denotes a Lagrangian derivative and u the velocity field. Using
relation (2.11), a SPH form of the continuity equation (2.44) can be deduced:

dp .
dta = Zb: MyUapWh (Tab) €ab (2.45)

with ug, = u, — uy.

In a general way, fluid mechanics equations written in SPH formalism have a simple physi-
cal interpretation. According to equation (2.45) and by considering a Gaussian kernel (see
equation (2.20)), the contribution of particle b to the density evolution of particle a is equal

to

Wh, ('rab)

2Mplah Tha 73 (2.46)

Relation (2.46) reveals that a-density increases (respectively decreases) when particle b gets

closer (resp. moves appart) to particle a, which is physically meaningful.

Comparison of the two classical formulations

e From a compressible point of view, the mass of the system is conserved with formulations
(2.43) and (2.45), provided the number of particles is constant. Indeed, the mass of each
particle is constant throughout the calculation. However, from an incompressible point
of view, it seems that both formulations do not exactly conserve the system mass since

the velocity divergence is not identically zero.

e When simulating incompressible free surface flows (|57], [64]), expression (2.43) results

in a density underestimation in the vicinity of the free surface. Indeed, in this zone
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the kernel is truncated (its summation is no more equal to unity) since particles suffer

from a lack of neighbours, as shown for particle a on figure 2.11. Moreover, according to

® @

| @
® e
e ©

Figure 2.11: Neighbours lack in the vicinity of a free surface.

the state equation used (see part 2.4.3), a slight density variation induces an important
pressure variation which degrades calculations. Numerical tests revealed that expression

(2.45) reduces density estimation errors in the vicinity of a free surface ([57], [56], [59])-

e Moreover, as equation (2.45), the momentum equation written in SPH formalism (see
part 2.4.2) involves the kernel gradient and not the kernel values. From a numerical
point of view, expression (2.45) is thus more attractive since the kernel gradient can
be calculated in one subroutine and used for both the continuity and the momentum

equations.

2.4.2 The equation of motion

Newton’s second law relative to a particle a is written

mea, = F¢ —T (2.47)

a —a

where F¢ represents the external forces acting on a such as self weight or Lorentz force in
MHD, and T', denotes the equivalent internal forces due to the state of stress inside the
material. g, corresponds to the a-acceleration. The internal forces T', are typically evaluated
from the Cauchy’s equation p,a, = %Eg + div g,. For an incompressible Newtonian fluid,

the components o;; of the stress tensor ¢ are approximated by:
oij = —P0ij + 21si; (2.48)

where p corresponds to the dynamic pressure and p the dynamic viscosity of the fluid. The

deviatoric stress tensor components s;; are defined by

. 1 auZ E)uj
%= (amj * Bmi) (2.49)
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Combining equations (2.47), (2.48) and (2.49), one obtains the Lagrangian form of the mo-

mentum equation for a particle a:

du,
dt

1
= —p—Vpa + VAQG + Ez (250)
a

d/dt corresponds to a Lagrangian derivative (as mentioned for equation (2.45)) and v denotes

the kinematic viscosity of the fluid.

Pressure gradient in SPH formalism

As explained in part 2.2.3, the pressure gradient term relative to particle a can be written in

different forms in SPH formalism. The most widespread ones are:

1 myp .
—Vp, = Db+ Pa) Wh (Tab) € 2.51
oo VPa zb:pbpa( a) Wh (Tab) €ab (2.51)
and
1 Db Pa .
Pa 5 Py Pa

The previous two expressions are equally accurate and anti-symmetric with respect to a and
b subscripts. Considering a Gaussian kernel and equation (2.52), it can be shown that the

contribution of particle b to the pressure gradient term relative to particle a is:

Db Pa Wh ('rab)
2mp | =+ — | ———= 2.53
’ (92 p%) Bz (2.53)

which represents a momentum flux from b to a. Consequently, the pressure gradient term
written in SPH formalism corresponds to a central repulsive force between particle pairs, as
intermolecular forces between atoms.

Some SPH forms of the pressure gradient term (and not all of them) can be derived from
a variational principle [6], [84]. For that, one firstly needs to define the total stored energy
functional for the system. The variation of this functional leads to the equivalent internal forces
relative to a particle (T, in equation (2.47)). Bonet showed by this method that expression
(2.52) (respectively (2.51)) is variationally consistent with the continuity equation (2.43) (resp.
(2.45)). He also revealed that mixing the density equation and the pressure gradient term in

an inconsistent way leads to poor results [6].
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Conservation of linear and angular momenta

The total linear momentum P of a system of N particles is given by:

N
P =Y mgu, (2.54)
a=1

Combining the time derivative of this equation with the Newton’s second law in the absence

of external forces, the rate of change of the total linear momentum is given by:

N N
P=> mua,=-Y T, (2.55)
a=1 a=1

Therefore, the condition for preservation of linear momentum is

N
ST, =0 (2.56)
a=1

for any stress distribution. It is quite easy to prove whether a SPH relation preserves or not
linear momentum. The internal forces T', relative to a particle a can be expressed as the sum

of interaction forces T',;, between pairs of particles as:

Ia = Zab (257)
b

Considering equation (2.50) and neglecting viscous effects, it follows that

T,=""Vp, (2.58)
Pa
Equation (2.51) thus gives
MMy .
T,y = ;b (Po + Pa) Wh (Tab) €a (2.59)
Since €., = —€p,, it directly comes that T, = —T%,. The total sum of all interaction pairs

will thus vanish. The derivation for the linear momentum conservation of equation (2.52)
is identical. The property wre,, = —wWhep, implies the validity of the Newton’s third law
(action-reaction principle) as well. One can notice here the importance of the anti-symmetry
flux: indeed, the anti-symmetry corresponds to the momentum conservation.

Similarly, the total angular momentum of the system with respect to the origin is given by

N
M =>"r, x mqu, (2.60)
a=1
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Again, time differentiation and the use of the equilibrium equation in the absence of external

forces gives

N N
M= Zta X MaQy = — Z[a xT, (2.61)
a=1 a=1

Consequently, angular momentum will be preserved provided that the total angular momen-

tum of the internal forces about the origin vanishes, that is

N
Y or,xT,=0 (2.62)
a=1

where T, is once again defined by equation (2.57).
Considering two particles a and b, the total moment of the two interacting forces about the

origin can be found as
Ta X Iab +1p X Iba == (Eb - fa) X Iab =Tap X Iab (2'63)

since T, = —1',. This expression will vanish whenever the interaction force T, is co-linear
with the vector r,,, which is the case of equations (2.51) and (2.52). Both these formulations
hence conserve the angular momentum, provided a spherical kernel is used.

These conservation properties can also be derived in a variational framework [6], [84].

Viscous term in SPH formalism

e Viscous term stemmed from the momentum equation
Speith et al [76] established a rigorous SPH modelling of the viscous term, based on
the viscous part of the momentum equation. In Lagrangian formalism and with index

notations, the ¢-component 7; of the viscous part of the momentum equation is written:

1 0T;;
— 2.64
Ti » 0z, (2.64)
where the viscous tensor components T;; are defined by
8’&,’ ou;
T;j = ! 2.
K pv |:8$J + 8$Z:| ( 65)

for an incompressible flow. z; (1 <1< 2in 2D and 1 <[ < 3 in 3D) corresponds to the
[-spatial direction and u; the velocity component according to this direction. v denotes
the kinematic viscosity of the fluid. According to Einstein’s conventions, a summation

is performed over the repeated subscripts.
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Considering equation (2.13), relation (2.64) relative to particle a becomes:

Owp, (Tap)

2.
833]',(1 ( 66)

1
Tia = —5 Z mp (Tijp — Tija)
Pa b
with
Tz’j,a = PaVa (ajui,a + 8iuj,a) (267)

Oju;,q, denoting the velocity gradient at particle a, can be written in SPH formalism

according to:

Ou; 1 Owp, (Tap)
Oty — —t — ) — Ao/ 2.68
Ui 95;|. " e Eb mp (Ui p — Uig) 90 (2.68)

This modelling is very efficient to simulate flows characterised by important viscous
effects [76]. However, it also causes huge calculation time: indeed, involving a double
summation, the algorithm scales as N?. An alternative consists in firstly calculating
Tij,a with relations (2.67) and (2.68) and to store it. Secondly, the viscous term could
be evaluated according to (2.66), which reduces by a factor of 2 the calculation time of

viscous terms.

e Viscous term modelled by Morris
For stability reasons (see part 2.8), the viscous term of equation (2.50) is commonly
formulated as a mixture of a standard SPH first derivative with a finite-differences
approximation for the velocity gradient. By considering the pressure gradient expression
(2.16), the viscous term 7; 4 relative to particle a and defined by equation (2.64) can at

first be represented by:

1 m owy, (Tq
Tia=— % — (Tija + Tijp) Bun (rup) (2.69)
Pa = P j

where the stress tensor components T;; are defined by equation (2.65). Equation (2.69)

4 ou;
. Ky Ba:j

The velocity gradient is here computed with a finite-difference approximation by using

1S now re-written:

1 m ou;
D Vs [““ <3x2-
J

pab Pb

Ou;
ox;

ou;
y O

a

a Jacobian transform [82]:

aui
oz;

Uj,.q — Uib Tja — Ljb

a Tab Tab

(2.71)
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Equation (2.70) becomes:

1 mp Uj,q — Ui b Tja— Zjp Uj,a — Ujb Tia — Tip
Ti,a = — Z e +
Pa b Pb Tab Tab Tab Tab

. 7 ~ ~

-~ -~

Al A2

Owp, (Tap)

2.72
8.’L‘j,a ( 7)

X (pa + o)
This equation reveals at first that the -component of the viscous force in SPH formalism
is composed of two terms: the first one Al is a tangential force and the second A2 is a
normal force between particles.
For an incompressible flow, equation (2.71) gives:
Ouj| _ Uja = Ujb Tja — Tjb

= 2 Ay =0 2.73
ozj|, Tab Tab ( )

foat] Wh(Tab
Moreover, the kernel derivative # can be written 1y, (Tap) = L , where & g5 = Zj,0—

z;p. The term A2 times the kernel derivative then exhibits the product ()0 — ujp) (Tja —
Considering equation (2.73), the term A2 of equation (2.72) hence cancels and the i-

component of the viscous force is written:

m Ujq — U, Tja — Tj, owy, (g
[ (e B

Writing w;.q — ©ip = Uiqp and Zjq — Tip = T4 qp, €quation (2.74) becomes:

B My g + [b Owp, (Tap)
Tia = — Z gy 13, T g Uiab (2.75)

In order to avoid a zero denominator when two particles are accidentally at the same

position, a numerical parameter n = 0.1h is added to rflb:

mbM + 1p Owp, (Tap
- —Z ), (2.76)
Pb ,rab +n aJf'j,a

Equation (2.76) is identical to the formula given by Morris (see equation (2.77)) for low
Reynolds incompressible flows. In fact, this formulation seems to be valid for low and

high Reynolds flows as well.

Na + /va Tap- wh("'ab)
Au, = by (2.77)
zb: papy (12, + 1) “

where u,, = u, — u,. The expression used by Morris expresses the viscous force of
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the momentum equation through tangential forces between particles, which is physically
meaningful. Moreover, it is shown in Appendix A that this modelling corresponds to
v/Auy by reconsidering the continuum mechanics formalism. This term exactly conserves
linear momentum but not angular momentum and is much more computationaly efficient
than the formulation (2.65). However, it seems that this formulation is not well suited
for high Reynolds flows simulations. Indeed, in this case, particles clump together when
they become too close to each other. To avoid this drawback, Monaghan established

another formulation:

Viscous force modelled by Monaghan
In order to convert tangential forces to central forces which will repel particles which

are getting too close to each other, Monaghan considered the following term

16 .
VA, Y ST () €y (2.78)
b

where v can also be replaced by % (’;—Z + %) Notice that in (2.77), the viscous force is
colinear to the difference of velocity vectors u,, whereas in (2.78) it is radial, aligned on
€4 It is proved in [93] that equation (2.78) corresponds to vAu when reconsidering the
continuum mechanics formalism. Due to the anti-symmetry of (2.78) with respect to
subscripts a and b, this modelling conserves linear momentum. Conservation of angular
momentum is also assumed in [84] and results from the spherical characteristic of the
kernel. Moreover, in a solid rotation, the viscous term is rigorously zero. This term
is often used when shock simulation or fast flows are considered. The idea to simulate
shocks by using an artificial viscosity was at first used in Eulerian formulation [65].
However, it provides less intuitive formulation of viscous stresses which are not modelled

through tangential forces.

“Direct” viscous term

Chaniotis [10] used direct differentiation of the kernel function to compute second-order
derivatives. In order to remedy the sensitivity relative to the particle disorder (it will be
show in part 2.8 that the particle disorder is very sensitive to the second derivative of
the kernel), the particle locations are periodically reinitialised on a uniform grid. This
process of remeshing has firstly been introduced in vortex methods. Nevertheless, for
applications such as wave-flumes or dam breaking simulations, this “direct” viscous term
is not suitable due to the remeshing procedure. Moreover, by remeshing the particles,

the user partially loses the Lagrangian feature.
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Considering the modelling of viscous forces established by Monaghan and Morris, the equation

of motion in SPH formalism can respectively be written:

du, (pa + Dy 16v  ugp.Tap )
—2 = g mp — — W, (Tap + F¢ 2.79
PaPb Pa T Pb 7‘2(, n? (ras) €ay ( )

dua (pa + pb) my ,Ua + ,Ub) ('rab)
=— E m wy, (7 + E + F¢ (2.80
m - b Dalb h ( ab €ab Pab ( _I_ 7’2) Ugp T4 ( )

Specific smoothing length

When each particle is characterised by a specific smoothing length h, the momentum equation

is obtained by considering the Lagrangian operator L of the system  [84]:

L :/Q Bﬁ _ U(p)] pdr (2.81)

where U denotes the internal energy. An evaluation of the previous equation with the Monte

Carlo method gives:

-5 v -

In the case of an isentropic gas, Lagrange’s equation relative to a particle a is:

- N
f= 3 | Pe B (O ) 0 oh

b:

The term 3‘% varies in ﬁ [23], where N corresponds to the particle number and d the
problem dimension. Alimi [1] revealed that it should be used when irreversible processes such
as energy dissipation due to shocks or dissipation by viscous effects are involved. However,
according to estimations performed by Gingold, this term is probably negligible if a high
number of particles is considered.

Variable smoothing length is the SPH analogue to adaptative gridding in mesh-based codes

and allows greater resolution in regions where it is needed [43].

2.4.3 Pressure determination
State equation

The pressure of SPH particles can be obtained through a state equation as it was initially

done in grid-based techniques to model steady incompressible flows [11]. In 1967, Batchelor
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[58] established a state equation which accurately describes evolution of sound waves in water.
Monaghan modified this equation so that it is able to deal with a lower speed of sound than
the real one (this modification will be justified in part 2.5.1). He obtained the following state

equation:

v -8[(£) -] (284)

where
10002
B="22 and y=T (2.85)
Y

po and cg respectively denote the reference density and a numerical speed of sound. The choice
of v = 7 makes pressure strongly respond to density variation. Consequently, when particles
are getting too close to each other, their pressure will highly increase and will repell these
particles from each other through the pressure gradient term. This consideration, verified
and presented in [37], is very important to avoid the tensile instability discussed in part 2.8.
Therefore, particles remain in a suitable distribution and perturbations of the density field
remain small, even at high Reynolds number [64]. However, small errors in density correspond
to increasingly large errors in pressure. With this equation, the pressure field can be erroneous
(see chapter 4). For low Reynolds number, more accurate pressure estimates are obtained if
7y is taken to be unity, since errors in density and pressure remain proportional [64].

Through this equation, it comes that pressure automatically goes to zero when density equals
the reference density. It consequently ensures the zero pressure condition relative to a free

surface.

Strictly incompressible method

This part describes a strictly incompressible SPH formulation: here, the pressure is not an
explicit thermodynamic variable as before but obtained by solving a pressure Poisson equation.
The CFL condition (see part 2.5) is hence based on the fluid velocity field rather than the
speed of sound. In [72]|, the authors use a predictor-corrector time scheme to compute the

incompressible method:

e The first step (predictor step) is an explicit integration in time without enforcing the
incompressibility. Only the viscous term and external forces are considered in the mo-

1 1
mentum equation. Intermediate particle velocity u""2 and position r"*2 are firstly

obtained according to

3
+
=

= u" + fu"T2 (2.86)
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"t

N =

=r"+u"t

o=

5t (2.87)

where u™ (respectively r™) corresponds to the particle velocity (resp. position) at the

time n, _"+% (resp. £"+%) the intermediate particle velocity (resp. position) and (mm—%

the changed particle velocity during the predictor process defined by
Su™e = (F¢ + vAu) 5t (2.88)

In order to simplify the notations, equation (2.88) has not been written in SPH formal-
ism. Equations (2.77) or (2.78) can alternatively be used to write the viscous term. In
this first step, incompressibility is not satisfied. Indeed, the fluid density p”+% based on
the intermediate particle position z”*'% and the intermediate velocity g"*'% is different

from the constant value py [19].

A second step (corrector step) is applied to adjust the particle density to the initial
constant value pg. In the correction, the pressure term is used to update the particle

velocity obtained from the intermediate step according to

1
where du"T2*

defined by

corresponds to the changed particle velocity during the correction process

1
Suntet = ——_vpntls (2.90)
n—l—%
p

"+1 denoting the particle pressure at the time n 4 1. The equation used to obtain

with p
the pressure for enforcing the incompressibility is the mass conservation which can be

written in a discrete form as

1 po—p"*

nt+ls) _
e T A (@ ; )_0 (2.91)

Combining equations (2.91) and (2.90), the pressure Poisson equation appears:

1
1 +1 Po — pn+§
A —=Vp" = 2.92
\Y (pm_%Vp ) L (2.92)

The source term of the Poisson equation is the variation of the particle density. Since
the second derivative of the kernel is very sensitive to particle disorder (see part 2.8),
the Laplacian of the Poisson equation is formulated as a hybrid of a standard SPH
first derivative with a finite-differences approximation for the first derivative, as for the

viscous term. The same approach has been used for the viscous term developed by
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Monaghan (see part 2.4.2):

1 8  PabTap-Wh (Tab) €ap
V. (—Vp) =) my = = (2.93)
) z,,: (pa+p)® Tt

where pgy = po — pp- This form has the advantage to be anti-symmetric with respect
to a and b subscripts. Equation (2.93) is then discretised into linear equations which
are efficiently solved by using a preconditioned conjugate gradient method, like in finite
element methods.

Finally, the particle positions are centered in time according to

(u™ + u™t)

n+1
’r =
2

r "+ ot (2.94)
where r” and r"t! respectively correspond to the positions of particle at the time n
and n + 1. Boundary and free surface conditions relative to the strictly incompressible

method are presented in [72].

A strictly incompressible method increases the stability of calculations and the time step can
be at least ten times smaller. However, boundary conditions require more investigation and

more importantly the linear equation resolution can be computationnaly heavy.

2.4.4 Moving SPH particles

Once the particle velocity has been determined, several methods enable to compute the particle
position.

Simple temporal integration

Considering the definition of the velocity,

dr,

dt = Uq (2.95)

the new position of particle a can be obtained by a simple temporal integration of its velocity

(numerical methods for temporal integration are presented in part 2.5).

XSPH method

For free surface flows, it is often efficient to determine the particle position according to the
XSPH method (|56], [57], [58]):

dr,

dt

Pab

~~

=u, te€ Z wwh (Tab) (2.96)
XSPH 5

g

corrective term
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where

- _ Pa + Pb
Pab 2

and €€ [0;1] (2.97)

Contrary to the first method, the position of particle a is not only obtained through its proper
velocity u,. Indeed, due to the corrective term, it is modified with an averaged velocity
characteristic of the neighbourhood of particle a. The new velocity differs from the former
one by a term of order O (h2), which is consistent with the errors of the other SPH equations.
In order to investigate the effect of the corrective term, Gray |24] established a SPH dispersion

relation by stacking a small perturbation to equations (2.95) and (2.96) according to

dta _ i(k.7, —wt)

o Ve (2.98)
drgy — Peilbzo—wi) (2.99)
dt XSPH

where 7, corresponds to the initial particle position. Considering equation (2.96) with e = 1/2,

the relation between V and V can be simplified for long wavelengths according to
_ 1 ~
V=3V (1 + W) (2.100)

where W denotes the Fourier transform of wy. This expression shows that V introduces
additional dispersion coming from the Fourier transform of the kernel.

XSPH method has proved its capability ([56], [57], [64]) when simulating nearly incompressible
flows: by increasing dispersion, it avoids situations where particles clump together due to
numerical instabilities. Thus, particles stay more ordered. Moreover, in high speed flow, it
prevents the penetration of one fluid by another [58]. Indeed, if u, = —u,, particles a and b
can be moved at the same position without the corrective term.

With this method, each particle is characterised by two velocities: the first one results from the
momentum equation and the second corresponds to the r.h.s. of equation (2.96). Therefeore, to
ensure the consistency of Navier-Stokes equations, the velocity used in the continuity equation

(2.45) must be the corrected velocity.

2.5 Temporal integration

2.5.1 Time step

The time step must take into account:

e a CFL condition
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e the viscous diffusion term

e the magnitude of internal and external forces affected to each particle

CFL condition

The CFL condition imposes that the time step dtcpr is less or equal to the convection time
on the length h relative to the spatial discretisation. In SPH formalism and in hydraulics

applications (M << 1), this condition is expressed by
h
Stors = 04— (2.101)
0

where the coefficient 0.4 was determined through numerical tests [56]. ¢y corresponds to a
numerical speed of sound characteristic of the flow. The aim of this condition is to avoid

artificial pressure wave propagation due to the state equation.

Condition in terms of internal and external forces

This condition ensures that particles do not get too close to each other during the integration

of their movement [64]:

8t forces = 0.25 X min L (2.102)
a £,

where f denotes the internal and external forces associated to particle a (i.e. the magnitude

of the r.h.s. of the momentum equation (2.50)).

Condition in terms of the viscous term

The viscous criterion must be taken into account to make the time step inferior to the viscous
phenomenon time scale. In a finite volume or finite element code [83], this time scale is based
on a characteristic cell size, which corresponds here to the smoothing length. The viscous
criterion could so be defined by
h2
Otyise = 0.125— (2.103)
v
At sufficiently high resolution (small h) or large viscosity, relation (2.103) is typically the
dominant time constraint [64]. This condition is generally unnecessary, except for low Reynolds

flows [64] characterised by Re < 3.2 M. Re is a Reynolds number based on the smoothing
length and a typical velocity of the flow and M denotes the Mach number.
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Final time step
The final time step, denoted §t, is obtained according to:

0t = min (0t forces, OtCFL, Otyisc) (2.104)

Choice of the speed of sound

It is important to notice that the time step dictated by the CFL condition directly depends
upon the speed of sound ¢y. Consequently, if the user chooses for ¢y its real value (for water, cg
= 1400 m.s~! in normal temperature and pressure conditions), the time step would be very
low. When simulating a nearly incompressible flow, it is thus practical to choose an artificial
lower value for the speed of sound [56], [64], in order to ensure an efficient solution for a given
problem. In this case, the flow is no more incompressible but nearly incompressible, provided
that the chosen value of ¢y is suitable. A dimensional analysis of the momentum equation and
the state equation give:

& x %"2 (2.105)
where § denotes the relative density variation dp/p and Vj a characteristic velocity of the flow.
Consequently, the user can impose ¢g in order to deal with the required value of § for a nearly
incompressible flow: generally, it is acceptable to consider § = 1%; ¢y must be then at least
ten times superior to the maximal velocity of the flow, which corresponds to a Mach number
less than 0.1.

2.5.2 Temporal integration schemes

The momentum, continuity and position equations can be written in the following generalised

forms:
du, _
dd_t —<La
,ﬂL; =G, (2.106)
To
dat T ﬂa

where quantities G, and H , respectively correspond to the r.h.s. of equations (2.45) and (2.95)
(or (2.96)). Concerning the quantity F,, it is obtained by considering the r.h.s. of equations
(2.79) or (2.80). Several methods enable to integrate the Lagrangian derivative present in the

coupled system (2.106):
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Explicit scheme

Integration with the explicit scheme gives:

ultt =yl 4 §tF"
patt = pg + 8tGy (2.107)
Ezz-l—l — ﬂ + (5tﬂ2+1

where A™ (resp. A™*!) corresponds to the value of A quantity at the time n (resp. n + 1).

This scheme is obviously of order one in §t.

Predictor corrector scheme

Applied to the momentum equation (it is the same for continuity and position equations), this

numerical scheme can be written [58]:

e Predictor step

wrtr = %&EZ (2.108)
e Corrector step
ALY %6@?% (2.109)
e Final step
upt! = 2upte - g (2.110)

With this method, integration errors are of order 6t but calculation time is doubled.

Implicit scheme

Since a given SPH particle can have approximately 40 neighbours contributing to the eval-
uation of any property, any implicit scheme will have matrices which would be theoretically
banded with approximately 40 elements wide. Starting with the natural numbering of par-
ticles, the matrix would be extremely sparse and a numerical scheme based on solving these
matrix equations by a direct method would be impractical. As the particles move at each time
step, the connectivity changes and each iteration would require a re-ordering of the matrix
before attempting Gauss-Seidel resolution for instance. To avoid this drawback, Monaghan
[60] treats each pair of interaction separately: the velocities of the two particles involved is

implicitly updated according to their pair interaction. This process is repeated for each pair
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interaction. The results obtained in [60] are satisfactory in gas dynamic problems but further

developments are required in order to take into account viscous effects.

Integration scheme with individual time steps

In most SPH codes, all the particles are simultaneously advanced at each time step. The
particle needing the highest time resolution determines the timestep of all the others. To
make a code more efficient in handling problems with multiple time scales, the computational
effort must be centered on those particles that require it, avoiding useless computations for
the remaining particles. In other words, it is necessary to allow different timesteps for each
particle. This has been done in the SPH code TREEASPH. The procedure is described in
details in [1]. This new technique considerably increases the efficiency of a code.

Elaborate numerical schemes are nowadays implemented in SPH codes: for instance, Flebbe
[21] uses a Runge-Kutta-Fehlberg method which is a high precision combined fifth- and fourth-

order Runge-Kutta with an adaptive step size.

2.6 Initial particle distribution

2.6.1 Complete stochastic distribution

When simulating a viscous gas ring around a central mass, Speith [76] reveals the importance
of the initial particle distribution: three initial configurations tested are presented on figure
2.12:

1. Particles are initially placed on concentric spheres around the origin, as shown on picture
al of figure 2.12. During the simulation, this uniform distribution is altered even if it

still remains quite coherent (see picture a2 of figure 2.12) .

2. Particles are initially disposed in a stochastic way according to a probability density
which is close to an initial theoretical density (picture bl of figure 2.12). The system
does not present any symmetry point and after some time, instabilities in the form of

spirals perturb the calculation, as can be seen from picture b2 of figure 2.12.

3. The third configuration (cl on figure 2.12) is identical to the previous one but presents
a central symmetry point. In this case, perturbations which induce spirals structures

are considerably reduced (see picture ¢2 of figure 2.12).

Since a complete stochastic distribution of the particles induces large fluctuations in the initial
density field [97], the third initial configuration was adopted by the author in order to simulate
the dynamic system evolution. In a general way, fluid dynamic must be simulated from an
initial organised and physical configuration [58]. This is consistent with the fact that high

density zones should concentrate more particles. If it is not the case, fluctuations associated



2.6. Initial particle distribution

al) SPH-particie distribution at tau = 0.018 az) SPH-particle distribution at tau = 0.126
16 F 1.6

1 1

w 06 « 06
i 08 E 05
A 1
8L, . N H .\ . A =18
45 v 05 0 05 1 15
x-coordinate
bi) SPH-particle distribution at tau = 0.018 h2) SPH-parficle distribution at tau = 0,126
15 15 :

1 1

0.5 05
o []
0.5 05
-1 -1
18 " 1.6 i
15 -1 056 0 0.5 1 1.5 456 1 05 0 05 1 1.5
x-ooardinate x-conrdinale
1) SPH-parficle distribution al tau = 0.018 ©2) SPH-particle distribution at tau = 0.128
15 v v T 4 15 v T T v v v

05|

]
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to particle position will be involved in initial conditions and the calculation will be perturbed.

Moreover, these perturbations will be larger if non-linear phenomena are present.

2.6.2 Evolution mechanism towards a steady state

The pressure gradient of the momentum equation corresponds to a repulsive force between
two particles. This force can thus be linked to a potential energy [97] which is minimum when
particles are equidistant (this can also be shown from the Appendix B). Therefore, the initial
distribution of particles should evolve towards this minimum energy state and this tends to

iron out any random density fluctuations.

e Due to an artificial viscosity [97], any initial particle distribution can evolve towards this

minimum energy state and previous density fluctuations are considerably reduced.

e Even if the user manually adjusts the particle density in order to dispose of an initial
steady state, the system can contain residual forces which are not balanced [59]. To
obtain a real steady state, a damping term I' ([23], [56]) could be introduced in the

momentum equation in order to dissipate the residual kinetic energy:

du
—=F-T 2.111
5~ L Tu ( )

Without external volumetric force such as gravity or magnetic force, particles can adopt

a crystallized structure after a relatively long time.

e In order to settle the particles when an inital random distribution is considered, Whit-

worth [97] revises their position according to the following iterative routine

Ptrue Tab

=t en Y [(M) w, (Tap) (rq — 1) (2.112)
b

where pyrye corresponds to the mean density of the system equals to Nm/H3. N is
the total number of particles, m the mass of a particle and H? the volume of the 3D
computation domain. With this relaxation formula, he showed that 100 iterations were
enough, with e = 1. Figure 2.13 reveals that the density ditribution after a settling phase
(right picture) is much more accurate than the one without it (left picture). In this figure,
Ptrue corresponds to the theoretical value and f(z)dz is the fraction of particles in the

range (z,z + dz).

2.7 Wall modelling

Microscopically, walls are constituted by atoms which exert repulsive forces on fluid. Inspired

by this physical principle, walls can be modelled in SPH theory by solid particles which exert
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Figure 2.13: Normalised density distributions: a: for an initial random distribution. b: after settling
[97].

repulsive forces on fluid particles ([56], [57]), ensuring thus wall impermeability. These solid
particles, called wall particles, are not involved in the pressure gradient term of the momentum
equation. However, if zero velocity at the wall is required, they contribute to the viscous term
in order to mimic no-slip conditions. The wall particles are immobile or can define a mobile
wall. In this last case, their velocity is equal to the wall velocity: for instance, Monaghan [58]
considered a moving lock gate modelled by a set of moving wall particles.

Three types of forces among several are presented in this part: a purely repulsive force, a
similar Lennard-Jones force and a normal force. These forces are added in the r.h.s. of the

momentum equation (2.79) (or (2.80)), as external forces.
2.7.1 Repulsive force

Purely repulsive force

A purely repulsive central force f, exerted by a wall particle p on a fluid particle a can be

written:

<3

ol (&) ¢ s
f1 (’l"ap) = Tap Tap Tap b= (2-113)
o 0 if Tap > T0

where 1y denotes the wall influence radius and D corresponds to a numerical parameter.
Microscopically, the radius of repulsive forces is approximately equal to the atomic radius. In
SPH, it corresponds to a characteristic particle length scale, i.e. §r. Another definition of this
type of force is presented by Monaghan in [58]. The force action is illustrated on figure 2.14.

A drawback of this type of forces is the involvement of several adjustable constants which are
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Figure 2.14: Action of a purely central repulsive force.

empirically determined:

e In most cases, sets p1 = 4, po = 2 or p1 = 12, po = 6 are suitable [56]. The most

important feature is p1 > po.

e Concerning the D parameter, it depends on the physical problem. For a flow driven by
the gravity, if H defines a characteristic vertical length scale of the problem, a value of
D around gH is suitable [57].

Lennard-Jones force

Another central wall force, inspired by the Lennard-Jones interatomic force, can be developed.

Contrary to the previous one, this force presents an attractive core:

6[(%) - (#) ] if  0<rg <7
fyrap) =3 AR—r1ap)?+D(R—rap) if re<rap<R (2.114)
0 if reyp>R

where 7. represents the distance which separates the attractive part from the repulsive part of
the force. Values of the different parameters of equation (2.114) are defined by Monaghan in
[59]. One problem associated with central forces is that they produce unwanted perturbations
in the flow due to their discreteness. Indeed, it is known that replacing a straight boundary by
an undulating one results in more wall perturbations, even if the amplitude of the oscillations
is small: when investigating a gravity current, Monaghan [59] noticed that the gravity current

thins out to a thickness of 5h to 6k due to the discreteness in the boundary force.

Normal repulsive force

In order to work with smoother wall forces, Monaghan [59] established a force characterised

by a normal wall direction. This third type of force, based on the normal and tangential
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distances of the fluid particle to wall particles can be written:

f5(rap) = fi (nr) P (t.r)n (2.115)

n and t respectively denote the normal and tangential vectors to the wall, as shown on figure

2.15. The P function involves the tangential distance between the fluid particle a and the wall

fi(na)-p(t.1)

w

Figure 2.15: Action of a normal repulsive force.

particle w. It hence gives to the wall a continuous aspect when a fluid particle gets close to
several wall particles. If §r represents the initial distance between two wall particles, P can

be expressed as:

1-ld it o §
s At 0<lal <or (2.116)

0 if  |q| > or
where ¢ = t.r. This wall force expression is generalised for curved walls by Monaghan [59]

and gives good results.

Comparison of wall forces

e According to Monaghan’s investigations ([56], [59]), velocity fields obtained with the
radial wall forces f 1 and i2 conform to experimental results even if these two forces
induce particle disorganisation close to the wall. This is due to numerical instabilities

associated to wall forces (see part 2.8.3).

e Particle disorganisation close to the wall due to f, and f, is considerably reduced if the
spacing between wall particles decreases. Indeed, closer wall particles tend towards a
smooth wall. Monaghan showed that results are much more satisfactory if wall particles

are four times more packed than fluid particles in the initial state ([63], [59]).

e With the force f 3 velocity field is smoother than the one obtained with forces f, and f,
when wall particles are four times closer. Moreover, it is much cheaper to store normal

and tangential distances than taking into account four times more wall particles.

As a conclusion, normal forces seem to be the most efficient ones.
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2.7.2 Mirror particles

For the high Reynolds number free surface flows considered by Monaghan in [59] and [57], free
slip boundary conditions are used. However, to realistically model flows at lower Reynolds
number, no slip boundary conditions are required. Since wall forces are not accurate enough
to obtain a satisfactory friction coefficient, a different approach with mirror particles has been

developed.

No slip boundary conditions

Morris describes in [64] a simple and quite accurate wall modelling method based on mirror
particles. In this case, there is no direct discretisation of the wall. Mirror particles are
defined as those initially lying inside obstacles within the flow field and beyond solid walls. As
represented on figure 2.16, for each fluid particle a, the normal distance d, to the boundary
is firstly calculated. This normal distance is then used to define a tangent plane (a line
in 2D) from which the normal distance dp to each mirror particle B is computed. The
velocity of particle a is extrapolated across the tangent plane, assuming zero velocity on the
plane itself, thus giving each mirror particle the velocity Vg = —(dp/ds)V,. In practice,
the discrete arrangement of mirror particles may allow a fluid particle to closely approach the
curve describing the boundary. In such circumstances, the magnitude of Vp must be restricted.

Accordingly, the following formula is used to calculate the mirror particle velocity:
V=V, (1-p) (2.117)

with 8 = min (ﬁmaw, 1+ Z—’j). Numerical simulations have shown that good results are ob-
tained if B4z is approximately 1.5. The artificial velocity Vp is used to calculate viscous

forces, but it is not used to displace mirror particles.

Figure 2.16: Mirror particle velocity for a curved wall [64].
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Impermeability ensured by symmetry consideration

A simpler formulation than the one used by Morris has been developed during this work.
The wall is modelled with wall particles and extra layers of mirror particles are added under
the wall: the density of wall and mirror particles evolves thanks to the contribution of fluid
particles through the continuity equation (2.45). Indeed, if the fluid particle a is linked to the

wall or mirror particle b, the b-contribution to the evolution of a-density is equal to:
Moy Wh(Tab)€qp (2.118)

As the particle b is also linked to the fluid particle a, the contribution of the particle a to the
evolution of b-density is also given by equation (2.118), since the continuity equation (2.45)
is symmetric with respect to a and b subscripts. The pressure of wall and mirror particles
are then computed with the state equation and these particles are involved in the pressure
gradient relative to fluid particles. To reach the same level of accuracy in computing the forces
on fluid particles located in the vicinity of the wall, three or four layers of mirror particles
are considered. These new wall conditions also enable a perfect impermeability of the wall in
rapid dynamic phenomena such as dam breaking. Contrary to the repulsive forces previously
described by equations (2.113) to (2.116), the present formulation does not introduce any ad
hoc coefficient. In addition, it allows the treatment of complicated walls very easily. However,
despite their ability to model walls precisely, the mirror particles slightly increase the CPU

time.

2.8 SPH numerical instabilities

SPH numerical instabilities induce a typical and unphysical particle disorganisation: parti-
cles clump in a random way. This evolution is obviously inconsistent with physical laws at
a macroscopic scale: in a real material, repulsive forces between atoms would prevent the
particle clumping. The consequences of these instabilities are dramatic in “The Tennis Ball
Problem” where SPH computations predicted weird and unphysical fragmentation of tennis
balls in impacts encountered in typical tennis tournaments [32]. In industrial solid mechanics
simulations, these instabilities play a prominent part since they could be mistaken for a phys-
ical fragmentation of the solid. Numerical instabilities also induce an exponential increase of
the particle velocity [77] and a 1% perturbation on the density evaluation: in a nearly incom-
pressible flow, it hence induces large pressure fluctuations due to the state equation. Figure
2.17 shows a typical clumping instability occured in a 2D free surface channel during a settling

process. This process will be investigated in detail in chapter 4.
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Figure 2.17: Tensile instability in a 2D free surface channel.

2.8.1 The tensile instability

If an elastic solid is stretched, SPH particles attract each other (through the pressure gradient
term) in order to maintain the system cohesion. Even if this representation is consistent with
the atom behaviour, this mutual particle attraction can induce numerical instabilities ([64],
[77]). In the same way, when a fluid is described by a state equation susceptible to cause
negative pressure which attract particles, numerical instabilities may occur ([62], [64]). These
instabilities are known as the tensile instability. A one-dimensional Von-Neumann analysis has
been achieved by Swegle in [77] in order to investigate SPH equation stability. After stacking
a small perturbation to the Navier-Stokes equations, a propagation equation relative to the
perturbation is obtained. The following sufficient instability condition has been deduced from

the propagation equation:
wp. T >0 (2.119)

where Wy, denotes the kernel second derivative and 7' the particle stress. By convention, 7' < 0
corresponds to a compression state and 7" > 0 a tensile state. This condition is represented
on figure 2.18, where W' correspond to the first derivative of the kernel. Within a fluid,
where T is normally negative (except numerical errors), one can notice that a kernel with a
negative second derivative constitutes a sufficient instability condition. The picture on the
right of figure 2.8 exhibits the negative portion of the second derivative of the third, fourth
and fifth order spline kernels. Generally (whatever the dimensions of the problem), a more
universal instability criterion can be deduced by considering the system potential energy.
The corresponding proof due to Violeau [86] (simpler than the one achieved by Swegle and
presented in Appendix A) reveals that criterion (2.119) is also a necessary instability condition.

Both derivations of relation (2.119) are independent of the viscous term modelling and the
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Figure 2.18: Sufficient instability condition [77].

temporal integration scheme [77].

2.8.2 Removing the tensile instability

There have been several attempts to remove the tensile instability: Gray listed some of them
in [24] but revealed that there is no universal solution for all problems. Three solutions are

suggested in this part.

Kernel improvement

Numerical instabilities due to a tensile state can be reduced by using an higher order kernel.
Indeed, the picture on the right of figure 2.8 shows that the negative second derivative part
of spline kernels is smaller when the order of the kernels increases. An illustration of this
phenomenon will be given in chapter 4. Nevertheless, calculation time is obviously increased

when higher order kernels are considered.

Artificial pressure

Since the tensile instability induces particle clumping, it can be qualified as a short wavelength
instability. Hence, Monaghan [62] revealed that it can be removed if a short-range artificial
force between particles is introduced in the momentum equation. The pressure gradient term
present in the momentum equation (2.79) is thus modified according to:

Dot B0 Do B Rpm (2.120)

ra Py P Py
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It is natural to define the function f,; with respect to the kernel:

oo = 2] (2.121)
In the added term, n must be positive and R is determined from a dispersion relation [62],
[63]. dr corresponds to the initial distance between particles. Considering n =4, h = 1,3.0r
and a third order spline kernel, Monaghan established that the repulsive force between two
particles is 23 times more important when 74, decreases from dr to 0. Conversely, the
term wp, (14p) /wp, (6r) briefly decreases if h < 14, < 2h: in this zone, the cubic spline ker-
nel decreases according to (2 — rq/ h)3 whereas the repulsive term decreases according to
(2 —rap/ h)3". The parameters of the force minimise the error in the long-wavelength modes
and only nearest neighbours are thus influenced by the artificial pressure. The resulting algo-
rithm is simple, accurate and effective.

The dynamic evolution of a bi-dimensional fluid disc was investigated by Monaghan in [62].
After 1 000 time steps, the particle clumping due to numerical instabilities occurs (see the

left picture of figure 2.19). However, by introducing an artificial pressure such as described

I
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Figure 2.19: Influence of the artifical pressure on the tensile instability (left: without, right: with)
[62].

at equation (2.120), particles still remain organised (see the right picture of figure 2.19). In
solid mechanics, simulation of two rubber cylinders collision is also very sensitive to numerical
instabilities [62]. However, artificial pressure enables to successfully perform this simulation,

as shown on figure 2.20.

Stabilisation with Shape-Shifting

SPH can also be stabilised by shifting the shape of wy to change the sign of wj [32]. The

drawback of this approach is that it can damp more short wavelength structure than desired.
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Moreover, this method has been applied in one dimension and is quite cumbersome. For more

details, the reader can refer to [32].

2.8.3 Numerical instabilities due to repulsive wall forces

As mentioned in part 2.7, repulsive central wall forces can induce large perturbations on
the particle movement: effects of these perturbations are similar to those due to the tensile
instability. These perturbations are linked to large variations of the normal component of the
repulsive wall force applied to a fluid particle during its movement [59]. Evolution of the normal
and horizontal components, respectively Fy and Fy, of a wall force applied to a fluid particle
evolving at a fixed distance from the wall is represented on figure 2.21 [59]. This evolution is
not surprising: the horizontal contributions of the wall force due to two wall particles seems
to cancel or to be very small whereas the vertical contributions are added, as one can see from
figure 2.22. A finer wall discretisation efficiently reduces numerical instabilities. Indeed, by
considering four times more wall particles and consequently considering a wall force four times
weaker, variations of the vertical component force are no longer visible on figure 2.21 [59]. In
the case presented by Monaghan, particles remain ordered with this new discretisation since
the closely packed boundary continues to give a smoother boundary velocity. The drawback
of this close packing is that it rapidly becomes computationally inefficient since the number

of particles increased, as mentioned before [59].
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2.9 SPH and Eulerian methods

2.9.1 Similarities

e It can be shown that fluid mechanics equations written in SPH formalism are very close
to those discretised by finite-differences methods (|56], [57|, [58]): on figure 2.23, z

t

ot

OX

Figure 2.23: 1D schematic mesh used in Eulerian code.

corresponds to the spatial direction and ¢ the time. An explicit centred discretisation of

the continuity equation (2.44) at the point (4,n) of the mesh gives

A G GOl

= = + 0 (5t,6z) =0 (2.122)

While an explicit SPH discretisation of the temporal term of the continuity equation
(2.45) gives

o = p 3 my (uff — )i O (6t,622) =0 2.123

T op T Pa mp (uy — Ug) Wh (Tab) €qp + ( ) 90)— (2.123)
b

It can also be noticed that the smoothing length h which describes the spatial discreti-

sation in SPH formalism is analogous to the spatial step dz in finite differences.

e The use of different kernels in SPH is analogous to the use of different numerical schemes
in Eulerian codes, as explained in part 2.3.3. Kernel functions are also analoguous to the
shape functions used in finite element method. However, SPH has a numerical advantage

since each kernel can be evaluated in a subroutine and it is thus easy to change kernels.

2.9.2 SPH advantages and drawbacks

SPH method has several advantages on Eulerian methods:

e For some simulations, the construction of an efficient Eulerian mesh can be delicate. It

is the case for instance when simulating a star explosion or a breaking wave. The main
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advantage of SPH is then the total absence of mesh. Moreover, boundaries can easily

have several forms and considering a mobile wall is not problematic.

Equations discretised in SPH formalism and numerical implementation are quite simple.

It is not the case of other particle methods such as MAC method (see chapter 1).

Thanks to SPH, complex problems incorporate complete physical phenomena can be
investigated: supplementary equations concerning several physical problems (diffusion,

chemical reactions, two phase flows, ...) are introduced and resolved in this formalism.

In Eulerian codes, the convective term (u.V) of Navier-Stokes equations causes lots of
problems (it induces numerical diffusion when it is discretised), whereas the particular

derivative present in SPH equations avoids them.

As shown in [84], SPH is consistent with the basic laws of mechanics: for instance, the

momentum equation can be directly derived from an action principle.

However, SPH has some drawbacks as well:

e Since most SPH codes use a completely explicit integration scheme, the time step is

much smaller than the one relative to other numerical methods for incompressible flows,
when using a weakly compressible algorithm involving a speed of sound ¢y (see part
2.4.3).

The problem of numerical instabilities is until now not completely resolved (see part 2.8)

and wall treatment can be delicate in some cases (see part 2.7).

Turbulence modelling in SPH is until now very scarce. However, some recent tests are
hopeful ([94]) and it is now possible to use mixing length [39], [93] and k& — € models
for nearly incompressible flows [89]. Turbulence modelling trough SPH is an important

part of this thesis.

2.9.3 Complementarity

SPH nodes have been linked to finite elements by Johnson et al [40]. This allows highly

distorted materials to be considered together with structural response material. Indeed, al-

though SPH approaches are very efficient for severe distorsions, they are generally not as good

as standard finite elements for structural response applications [40]. Figure 2.24 shows two

computations of a strong steel penetrator impacting a much softer aluminium target. The left

picture is a linked computation with standard finite elements for the penetrator modelling and

SPH nodes for the target modelling. The computed residual velocity is in good agreement

with experimental results. This type of problem is ideally suited for linkage of SPH nodes

and standard elements. The right picture of figure 2.24 shows the same test-case except that
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both the penetrator and target are modelled by SPH nodes. In this case, the penetrator is

significantly deformed and it does not perforate the target plate. A long term objective could

SPH nodes and standard elements

Conocen

ties SPH nodes only

Aluminum target 5%

D = 12.9mm
Vg = 500m/s % No peiforation
V= 405m/s

Figure 2.24: Penetration computations using SPH nodes linked to standard elements (left) and using
only SPH nodes (right) [40].

be to allow the user to define almost any impact problem with a standard finite element grid
and then to allow the standard elements to be converted to SPH nodes as the standard ele-
ments become distorted. Although this approach has already been demonstrated, more work

is required to increase the accuracy and robustness for a wider range of problems.
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Chapter 3
The numerical code Spartacus-2D

The starting point of this PhD work is the SPH code Spartacus-2D, being developed at the
“Laboratoire National d’Hydraulique et d’Environnement” of EDF (“Electricité de France”)
since 1998. The acronym SPARTACUS means “Smoothed PARTicle hydrodynamics for ACU-
rate flow Simulation”. This 2D SPH code is equipped with pre and post processors and is
documented for the user and the developer [85]. The code is very compact (less than 1 000
lines) and many of the routines were modified and extended during this work.

This chapter describes the fundamental equations implemented in Spartacus-2D and presents
its general algorithm structure. The turbulence modelling implemented in Spartacus-2D will

be discussed in chapter 5.

3.1 Fundamental equations

3.1.1 The continuity equation

As previously mentioned, the continuity equation can be written in several ways in SPH

formalism (see part 2.4.1). In Spartacus-2D, only the expression (3.1)

dp, .
i = 2t rw) (3.1)

is used to compute the density of each particle at each time step.

3.1.2 The momentum equation
Pressure gradient

Two discretisations of the pressure gradient are implemented in Spartacus-2D:

m .
Vpe = Z P_bb (pb + pa) Wh (’rab) €ab (32)
b
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and

p p .
VDo = pa Z myp (_g + P_;> W (Tap) €ab (3.3)

The viscous term

In order to create an efficient code, the viscous term (2.65) which directly stemms from the
Lagrangian momentum equation is not implemented in Spartacus-2D. However, the viscous

modelling developed by Monaghan

16v w,;.r
vAu, = —ab'=ab i (rop) -€ 34
W Z fa + b TCQLb + 7]2 h ( ab) Lab ( )

is considered. As mentioned in the previous chapter, the kinematic viscosity v can be replaced

by 3 ( + ’;”) which gives

Pa+Pb \Pa  Pb 7"2(,"‘77

8 Uop-Tab -
vAu, = Z (& + @> L_agwh (Tab) -€qp (3.5)
b

In oder to validate the code for low Reynolds number flows, the viscous modelling achieved

by Morris is also implemented:

b(Ba + 16)Tap-Wh(Tab)€ap
Aty Zb: paps (12, +1?) ¢

Therefore, with equation (3.2) for the pressure gradient term, the two following forms of the

momentum equation are considered in Spartacus-2D:

du, (pa + pp 8 (ua Mb) Uap-Tab ) )
—2 :—E m - —+— | 5 —=5 | wWn(Tap + Fy, 3.7
dt ; "\ pams  patps \pa  p) 2+ (rab) o 3.7)

dua (pa + pb) mp Na + :u'b) Tab: W (rab) e
= — my W (Tap) + D) Ugp + F (3.8)
i ; PaPb ab) Lab Z PaPb (Tab +1 ) Hab ¢

where F¢ correspond to external forces applied on particle a.
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3.1.3 External forces
Gravity effects

When gravity effects are considered, equations (3.7) and (3.8) respectively become

Ug Pa + Db 8 (,ua Mb) Ugh-Tab ) .
Tz - —+— ) 5 ) wn (rab) €ap + 9 3.9
dt zb: ( PaPb Pat Po \ Pa Pb Irgb + 772 ( a ) ab T Y ( )

du, (Pa + pb) . mp (,U'a + ub) Tab-Wh (Tab) €ab
=L - _ my | ——— | Wy (Tap) €ap + up+9g  (3.10)
&= 2 gy Wt ) et

Propelling force

In Spartacus-2D, there are two main ways to set a fluid in motion:

e As in finite-differences codes, the user can apply a constant force F' to all fluid particles.
This force is considered as an external volumetric force and added in the r.h.s. of the

momentum equation (3.7) or (3.8).

e For a periodic flow, the forcing term F' can also be updated at each time step to impose
the correct mass flow rate at the “inlet”. In finite volume codes [71], the same type of
method is used: the flow is driven by a pressure gradient dP/dz applied between the
“inlet” and the “outlet”. This pressure gradient is then updated at each time step by the

following relaxation formula:

OP _ 0P | 2 (1t —itres) — (1itn_1 ~ ritrey)

- = A1
or Oz 2pdt (3:11)

where 7h,, corresponds to the mass flow rate at the time n and 7h,,_1 at the time n — 1.
ey denotes the reference mass flow rate which is imposed by the user and 4t the time

step. Mass flow rates are computed at the “inlet” according to

1 [H
m = ﬁ/o pu.ndz (3.12)

where H denotes the “inlet” height, u the velocity vector and n the normal vector relative

to the inlet section. In a 2D channel case, equation (3.12) becomes:

H
m = %/0 pu(z)dz (3.13)

where u(z) corresponds to the axial component of the velocity.
This relaxation of the driving pressure gradient has been adapted to SPH. At first, the
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pressure gradient is expressed as a force per mass F' according to

10P
F= —;‘Z—x (3.14)

The relaxation equation (3.11) is thus written

F—F_ 12(mn - mref) - ('fnn—l - mref)
P 20t

(3.15)

In SPH formalism, the mass flow rate relative to the “inlet” of a 2D channel can be

computed according to:
h = — > (3.16)
m=— U .
N, ="

where b denotes all the particles located in a zone located between z = T« and

T = Z«ipier + d, as shown in figure 3.1. The distance d is arbitrarily chosen by the user.

free surface
®—
® - O o -
"ing™— @ ©
®— X
b b O
e - O -

-

d=a or

Figure 8.1: Computation of the mass flow rate at the “inlet” of a 2D chanel with SPH.

The value N, in equation (3.16) corresponds to the number of particles located in the
previous zone and wuy their axial velocity. By updating the propelling force at each time
step, the CPU time required to reach an equilibrium state when simulating a stationary

flow is much reduced.

Repulsive wall forces and wall modelling

Walls can be modelled with Spartacus-2D by considering repulsive forces: three types of

repulsive central forces are implemented, among them the force f, (see equation (2.113)) and

the Lennard-Jones force f, (see equation (2.114)). If a fluid particle a is linked to a wall

particle b, the contribution of the repulsive force due to b is considered as an external volumic

force and added in the r.h.s. of the momentum equation.

It is also possible to model walls with wall and mirror particles, as described in part 2.7.2. In
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this case, repulsive forces are not considered.

3.1.4 State equation

The state equation implemented in Spartacus-2D corresponds to equations (3.17)

o\
pi)=5|(£) -1] (3.17)
P0
where
9002
B = TO and y=T (3.18)

po and ¢y respectively denote the reference density and a numerical speed of sound chosen by
the user. When simulating a nearly incompressible flow, cg must be at least ten times superior

to the maximal velocity of the flow (see part 2.5.1).

3.1.5 Particle position

In the current version of Spartacus-2D, only a simple velocity integration (see part 2.4.4) gives

the new particle position according to:

dr,
— = 1
g = Yo (3.19)

XSPH method (see part 2.4.4) has been tested as well but gave no convincing results.

3.2 Kernels

Three spline kernels (third, fourth and fifth order ones) can be selected in Spartacus-2D.
The definition of these kernels respectively correspond to equations (2.29), (2.30) and (2.31).
Nevertheless, only their first derivative, respectively defined by equations (3.20), (3.21) and

(3.22), is computed and used at each time step:

-3¢+9¢> if 0<g<1

wn (g) = % -3@2-q if 1<g¢<2 (3.20)
0 if ¢>2
43 —g)’+203—¢)*—40(3—¢q)° if 0<g<05
(g = L] 4 (5 - q)i 20 (3 - ¢)° i 05<g<Ls
20001% | -4 (3 —q) if 1.5<¢<25

0 if ¢>25
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—53-q)t+302—q)*—75(1—¢)* if 0<g<1

7 53 -¢)*+30(2—¢)* if 1<¢<?2
h(9) = o 4 . (3.22)
478wh” | —5(3 —q) if ¢>3
0 if ¢>3

where g denotes the ratio 745/ h.

3.3 Time step and temporal integration

3.3.1 Time step
The time step 0t is evaluated according to the three conditions presented in part (2.5.1),

involving the forces condition, the viscous criterion and the CFL condition:

0t = min (‘Stforces, 5tCFLa 5tvz’sc) (323)

3.3.2 Temporal integration

The Navier-Stokes and the position equations can be integrated in time with the fully explicit
method

ugtt = ug + 0tFy
patt = pg + Gy (3.24)
Pl =pn oy GtEm !

or the predictor corrector scheme described in part (2.5.2). F and G respectively correspond
to the r.h.s. of equations (3.7) or (3.8) and (3.1). H corresponds to the velocity w.

3.4 Optimisation and algorithm structure

3.4.1 Link list

R.h.s. of the Navier-Stokes equations involving summations on each particle pair, the CPU
time would scale as N2 where N denotes the total particle number. However, since spline
kernels have a compact support, each particle a is only linked to its closest neighbours b. It
is thus important to construct an optimal link list relative to the particle connections at each
time step: for each particle a, all its closest neighbours b will be given by the link list according

to the following algorithm.

1. A coarse grid, composed of cells measuring h; (see figure 3.2), is firstly applied to the

fluid domain. We remind the reader that h; is the support size of the kernel.

2. The corresponding cell of each particle a is determined.
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Figure 3.2: Determination of the closest neighbours relative to particle a.

3. For each particle a, particles b located in cell ¢ and in the eight adjacent cells are

considered. Only those for which r,, < h; are considered as a-neighbours.

The use of the coarse grid considerably reduces the number of particles which are potentially
susceptible to be considered as a-neighbours. Indeed, the test corresponding to 74 < hy is
thus not applied to all particles b present in the calculation domain. Hence, this algorithm

remains proportional to N.

3.4.2 Periodic conditions

In Spartacus-2D, periodic conditions (with respect to z in figure 3.3) are achieved by con-
sidering that particles located at a boundary are linked to particles located at the opposite
boundary. The cells adjacent to the a-particle one are therefore completed by those located
in the vicinity of the opposite boundary. Consequently, the code considers that particle b of
figure 3.3 is situated at =y — (Tmaz — Tmin) and particle b could then become a a-neighbour.

It is the same for particles which are located in the vicinity of the right boundary.

| |
d >/ iy i

B % |

(] b

<III|‘I' (]
(Xmin » Zmin) (*max: Zmin)

Figure 3.8: Adjacent cells relative to a periodic flow with respect to z-direction.

3.4.3 Asymmetrical principles

When constructing the link list, the pair of particles which interact is only counted once: due

to the asymmetrical principle described in part 2.2.3, if a particle a interacts with a parti-
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cle b, this last one automatically interacts with a. Consequently, only couples a,b checking
ne < mp are examined, n; defining here the reference number of particle ¢. Thanks to this
method, evaluation of all asymmetric terms present in the Navier-Stokes equations are effi-
ciently computed. Besides reducing calculation time, this method reduces the memory by a

factor 2.

3.4.4 Code structure

The simplified algorithm structure of Spartacus-2D is described in figure 3.4 and an example

of results given by Spartacus2D is shown in figure 3.5.
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Definition of the cal culation domain boundaries and
the physical and numerial parametersin a parameter file

I
Definition of the geometry:
Distribution of the fluid and wall particles
I

Definition of the initial conditions

i
. Determination of thelinks

Time
loop

between particles

!

Computation of the kerne! derivative
relative to each particle pair

!
Application of repulsive wall forcesif selected

{
Calculation of the linear momentum and
determination of the new velocity of each particle
f
Determination of the time step
{

Particle displacement
{

Determination of the particle density

|

Figure 3.4:

Determination of the particle pressure

Simplified algorithm structure of Spartacus-2D.
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0 1 0 1

T=  0.311999997675404983077385 s T=  0.415999996900517809983455 s

1

x(m)

T=  0.519999996125641295030562 s T=  0.727999994575977971145164 s

Figure 8.5: Vertical velocity field of two dam breaks by Spartacus-2D.



Chapter 4

Laminar incompressible flow

simulations with Spartacus-2D

The study of laminar incompressible flows in which viscous forces are either comparable with
or dominate inertial forces has various industrial and environmental applications. Indeed,
many problems related to environment, mechanics, chemistry and petroleum engineering like-
wise involve slow viscous incompressible flows through filters, substrates, porous materials,
and other potentially deformable structures. Although SPH is a versatile method, it is sur-
prisingly difficult to test on simple laminar flows with precision [64] and the literature is quite
scarce regarding SPH validation of this type of flows. This chapter presents some results of

simulations of academic incompressible laminar flows with the SPH code Spartacus-2D.

4.1 Static phase in a 2D free surface channel!

The first test case corresponds to a static phase in a 2D free surface channel (see figure 4.1).
The fluid is considered as a nearly incompressible one, as described in part 2.4.3. Contrary
to Monaghan [59], we think that applying the theoretical density and pressure to fluid par-
ticles distributed on a regular lattice may not be sufficient. Indeed, since the fluid is weakly
compressible and due to gravity effects, the particle position will slightly be modified: a real

simulation of this static phase should therefore be done.

!Published in “Revue Europénne des Eléments Finis” journal & submitted to “Journal of Hydraulic Re-
search”.
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Free surface

Hinit ‘—g

Figure 4.1: 2D free surface channel scheme.

4.1.1 Theoretical investigation

Theoretical density field

The projection of the fluid static law on the z-axis gives

Op dp dp
— = == =, — 4.1
PI= 5, dp dz (4.1)
By differentiating the state equation (3.17), it follows that
dp C% y—1
-~ __0_ 4.2
By combining (4.1) and (4.2), one obtains
2 . _.dp
—pg = 2P (4.3)

The origin of the z-axis is located at the bottom level. Integrating the relation (4.3) between

the free surface altitude z = H (after the settling phase) and the altitude z

‘ C% P s
/ . —gdz = F P’ 2dp (4.4)
= 0 Po

gives

p(z) = po [Q(H—Zg(7—1)+1]7+1

(4.5)
=]

We remind that pg denotes the reference particle density, ¢y the speed of sound and H the
fluid depth after settling. Since the fluid is slightly compressible, H is very close to the initial
depth Hmzt
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Fluid depth after settling

The fluid depth H after settling is determined by considering that the total mass is conserved

during the settling process, i.e.

H Hinit
/ p(z)dz = / podz (4.6)
z 2z

=0 =0

The expression of H is then given by
Hing o 2
H= (L“Z'”g + 1) 1| 0 (4.7)
Cy g (’y - 1)

Theoretical pressure field

The theoretical pressure field is directly obtained by considering the state equation (3.17) and
the density field established according to relation (4.5):

p(z) = poct [(g(H = zg =1, 1)”‘1 _ 1] (4.8)

Y o

When v — oo (rigorous incompressible case), expressions (4.5), (4.7) and (4.8) respectively
become p = pg, H = Hp;y and p (z) = pog (H — z) (purely hydrostatic case).

4.1.2 System modelling
Fluid discretisation and wall modelling

The 2D free surface channel is modelled according to figure 4.2, with periodic conditions
applied in z-direction. The fluid discretisation is described in table 4.1: (40 x 40) (z, z) fluid
particles are initially distributed on a regular lattice and spaced by a distance dr = 1 cm. The
wall is modelled by 40 fixed wall particles and its impermeability is ensured by the mirror
particle concept described in part 2.7.2: three layers of mirror particles are considered under
the wall (see the zoom in figure 4.2), so that the fluid particles located close to the wall do not
suffer from a lack of neighbours. As boundary conditions, their pressure and density evolve at
each time step as described in part 2.7.2, and they repel fluid particles from the wall through
the pressure gradient term. In this case, mirror particles are characterised by a zero velocity
and are involved in the viscous term evaluation.

As initial conditions, all the particles are initially characterised by a zero velocity and a

reference density po.
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Fluid particles (z, z) 40 x 40
Wall particles 40
Mirror particles 120
Total particle number 1 760
Particle initial spacing: 0r (cm) 1.

Table 4.1: Fluid, wall and mirror particle discretisation for the settling phase simulation.

Free surface z

init

04m

Wall particle

Mirror
particles

Figure 4.2: 2D free surface channel modelling (left) and zoom near the wall (right).
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Order of the spline kernel | 3
h/or 1.5
Co (m.s_l) 30

Table 4.2: Main SPH numerical parameters for the settling phase simulation.

SPH equations and numerical parameters

Since the continuity equation (3.1) is used to compute the fluid particle density, the pressure
gradient of the momentum equation is discretised according to equation (3.2), in order to
respect the variational consistent (see part 2.4.2). Viscous effects are modelled by Monaghan’s
expression (3.4) and the gravity g is considered as an external force. The momentum equation

for particle a is therefore written

du, (Pa + Do 8V Ugp-Tap ) .
_:—Emb — S Wh (Tab) €gp + 9 49
- vats patpnr?, ) o ab) st g (*9)

The Navier-Stokes and the position equations are integrated in time with the fully explicit
method described in part 3.3.2. The pressure of the particles is then determined through the
state equation (3.17). The main SPH numerical parameters for this test case are presented
in table 4.2. If one considers that the maximal velocity of this flow is inferior to \/gH;p;t, a

suitable value of the speed of sound is approximately 10 X r/gHjns, i-e. 20 m.s™1.

4.1.3 Simulation results

While simulating the settling phase, numerical instabilities appear near the wall around ¢ = 1.8
s: figure 4.3 shows that particles are disorganised and clump into several groups. These per-
turbations grow with time and propagate towards the free surface. A numerical checking
of the criterion (2.119) [35] proved that these perturbations are identical to tensile instabil-
ities described in part 2.8.1. To obtain a real steady state, the damping term described by
Monaghan (see part 2.6.2) is introduced in the momentum equation in order to dissipate the

residual kinetic energy. The new momentum equation for particle a then becomes

du, (pa + pb 8 (ua ub) gab.gab) .
T e N —+ — | 55 | Wn(Tap) € + 9 — Tu 4.10
dt 2b: PaPb Pa + Pb Pa Pb lrgb + 772 ( a ) ab g a ( )

The numerical damping term is characterised by a coefficient I' which has to be large enough
and to not perturb the calculations: numerical tests revealed that the value I' ~ 10 000 s—!
is suitable and it also satisfies I'|u,| << |g|. Moreover, this value is consistent with the one
found by Monaghan in [57]. As the instabilities firstly appear in the vicinity of the wall, we
first apply this damping term in the zone z < 0.1 m. The left picture of figure 4.4 reveals that

the numerical instabilities travel through this zone without disorganising the fluid particles.
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Figure 4.8: Particle disorganisation at t = 1.5 s (left) and ¢t = 1.8 s (right).

‘ ‘ Theory ‘ Spartacus-2D ‘ Relative error in % ‘
| H (m) | 0.399687 | 0.399676 | 2,8.10°° |

Table 4.3: Theoretical and Spartacus-2D evaluations of the fluid depth after settling.

Nevertheless, they reappear above z = 0.1 m. When applying this term to the entire fluid
domain, particles remain organised, as shown on the right picture of figure 4.4. The right
picture of figure 4.5 also reveals that the pressure field after 12 s is stable and satisfactory.
The pressure profile presented on the same figure is obtained by spatially averaging the pres-
sure field according to x-direction: one can notice that there is a close agreement between
theoretical and Spartacus-2D results. Table 4.3 also shows that the fluid depth H after the
settling phase is very close to the theoretical value.

We noticed that the use of a fourth order spline kernel cancels numerical instabilities, even
if the damping term is removed. This result is consistent with the work of Morris [64] who
reveals that a higher order kernel reduces numerical instabilities. However, the pressure profile
is not as accurate as the one obtained with a third order spline kernel and a damping term
(see [35]). This means that the introduction of the damping term is necessary to completely
suppress the tensile instabilities during a settling process simulation. Nevertheless, the damp-
ing term is obviously not suitable for a dynamic simulation.

Considering finer spatial discretisations ((80 x 80) and (160 x 160)) does not avoid the prop-
agation of numerical instabilities. Nevertheless, it increases the accuracy of the results, as

shown on the pressure profiles of figure 4.6.
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Figure 4.4: Particle position at t = 8.5 s with the application of a damping term in the zone z < 0.1
m (left) and at ¢ = 12 s with the application of a damping term in the entire domain (right).
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Figure 4.5: Pressure profile (left) and pressure field interpolated on a regular grid (right) after 12
S. : Theory; e: Spartacus-2D.
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Figure 4.6: Pressure profile with a (80 x 80) (left) and a (160 x 160) (right) spatial discretisation. ——
: Theory; e: Spartacus-2D.

4.1.4 Partial conclusion

e A settling phase of a 2D free surface channel has been successfully simulated with the
SPH code Spartacus-2D: the pressure profile is stable and very close to the theoretical

one.

e The tensile instability was removed by introducing a damping term.

e The fourth order spline kernel also removed the tensile intability. This solution will be

retained in the subsequent sections.

4.2 Laminar flow in a 2D free surface channel?

In [64], Morris explained that the simulation of a laminar Poiseuille flow with SPH is not so
easy. In order to validate Spartacus-2D for this type of academic flows, the second test case

corresponds to a laminar flow in the previous 2D free surface channel.

2Published in “Revue Europénne des Eléments Finis” journal & submitted to “Journal of Hydraulic Re-
search”.
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4.2.1 Theoretical investigation
Theoretical velocity field

We assume here that the spanwise component of the velocity field is zero. Hence, the continuity

equation is written

ou Ov
9z + 9 0 (4.11)

where u and v respectively denote the axial (according to x) and the vertical (according to z)

velocity component. Considering an invariance of the system in z-direction implies

ov
— =0 4.12
% (4.12)
Moreover, since no slip-conditions require a zero velocity at the wall, it follows that v = 0 in
the entire domain.
The projection of the momentum equation on the z-axis gives
ou ou ou 10p v 0%u
= V|e—=+—=5| +F° 4.13
[8:1:2 022 (4.13)
where p and v respectively correspond to the pressure and the kinematic viscosity of the fluid.
F¢ denotes an external force per unit mass necessary to drive the fluid. For a stationary flow,
the temporal term Ou/dt vanishes. Moreover, by considering that the system is invariant in

z and that v = 0, one obtains:

0%u
O:V@‘f‘Fe (4].4.)
The z-integration of (4.14) hence gives
Fe
u(z) = —522 +Az+ B (4.15)

where integration constants A and B are determined with the no-slip conditions at the wall

and by considering that the viscous stress vanishes at the free surface. Therefore,

_ Fez

u (2) 5,

(2H — 2) (4.16)

Reynolds number

The Reynolds number is here defined by

Re = — (4.17)
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Reynolds number: Re 10
Mean bulk velocity: U (m.s‘l) 0.25
Fluid depth: H (m) 0.399676

Table 4.4: Physical characteristics of the free surface flow.

where H corresponds to the fluid depth after a settling phase and U the mean bulk velocity
defined by

1 (B Fef?
= — dz = 4.1
U i /0 u(z)dz 5 (4.18)
Wall viscous stress
The wall viscous stress 7 is defined by
du
T=pu— (4.19)
dz|,_g
By considering relation (4.16), it follows that
T = p(zzo)FeH (420)

4.2.2 Simulation conditions and system modelling

The physical characteristics of the simulated flow are described in table 4.4. The fluid is driven
by a horizontal forcing term F° applied to each fluid particle at each time step. This external
force is constant in space but not in time since it is updated at each time step to impose the
correct mass flow rate, as described in part 3.1.3. The standard system modelling and the
numerical parameters for the previous test case are conserved, except the damping term which

is removed. The momentum equation for particle a is thus written:

du, Pa + Pb 8 (Na Mb) Uab-Tab ) .
— :—E m — =) S22 ) wy, (rep) €., + FE A+ 4.21
dt T ( pabo Patpo \pa  p) ) " ra) oo + Fatg - (421)

Moreover, to ensure particle stability, a fourth order spline kernel is used. Indeed, we checked
in [35] that the use of a third order spline kernel results in tensile instabilities. The initial
particle distribution corresponds to the (40 x 40) steady state obtained in part 4.1 and in
order to reduce computing time, fluid particles are initially characterised by the following

linear profile:

(4.22)
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4.2.3 Simulation results
Results relative to the standard modelling

This part describes the results obtained with the standard modelling described in section
4.1.2. Figure 4.7 reveals that the axial velocity field is very stable: indeed, the particles
remain organised and one can notice that the system is perfectly homogeneous along the z-
direction. The axial velocity profiles presented in the following are obtained with a spatial
averaging along z-direction. Figure 4.8 shows four axial velocity profiles at different times.
Firstly, it proves that the code converges between 36 s and 48 s towards a stable velocity
profile. Secondly, it reveals that the asymptotic axial velocity profile is overestimated by 6.6
% with the standard modelling. As we numerically checked that the residual pressure gradient
according to z-direction was zero, a balance between the viscous forces and the forcing term
F° is established. Hence, the axial velocity overestimation is due to an underestimation of
the viscous term, which has already been noticed by Violeau [93]. Morris [64] and Speith [76]
also revealed that Monaghan’s viscous term formulation (3.4) underestimates viscous effects

when they are significant, as it is the case for the present low Reynolds number flow.
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Figure 4.7: Particle position (left) and axial velocity field (right) with the standard modelling of the
free surface flow.

Improved modelling

In order to reduce the previous axial velocity overestimation, the influence of several funda-
mental SPH parameters has been tested: Monaghan’s formula (3.4) is at first compared with

Morris’ formula (3.6). The first one models viscous effects through normal forces between par-
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Figure 4.8: Axial velocity profiles at different times with the standard modelling of the free surface
flow.
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ticles whereas the second one considers a more physical modelling through tangential forces.

The new momentum equation for particle a then becomes:

du, (pa + pb> . mp (e + 146) Tap-Wh (Tab) €qp
— = m ——— Jwy (Tap) €. + — L, + FS + g(4.23
dt Eb b Dalh h ( ab) Lab Eb Dalb (T?zb n 0.01h2) Zab T Za 2( )

Then, to increase the wall viscous effects, mirror particles are characterised by a negative
axial velocity, defined as the opposite of the symmetric fluid particle velocity (see figure 4.9).

Velocity differences between mirror and fluid particles are consequently increased and the

z

..

-0 -
'—> ‘—> . Fluid particle
. * . Wall particle

) Mirror particle

o -
o
4‘

4—'\—.4'%\: -~ -~

Figure 4.9: Mirror particles characterised by a symmetric negative axial velocity for the free surface
flow.

viscous term is thus larger (see equation (4.23)). This correction was also described by Morris
in [64] in order to impose a real no-slip condition at the wall. As also explained in part 2.3.6,
each SPH simulation is characterised by an optimal h/dr value. By considering the wall viscous
stress expression, Violeau [93] theoretically proved that the optimal h/dr value for the flow
considered here should be equal to 1.63. We numerically checked that this optimal value gave
the best results, and we also noticed that particles clump into pairs when h/dr exceeds 1.63.
Since the quality of results depends on the number of particles as well, one can also increase
the total number of particles. Therefore, a (80 x 80) spatial discretisation is considered. The
results of the above mentioned options are presented in table 4.5: it reveals that the optimal
parameters correspond to the use of Morris’ formula to model viscous effects. Through mirror
particles characterized by a symmetric negative velocity, the optimal h/dr value equals 1.63
and a spatial discretisation with (80 x 80) particles. The axial velocity profile is then much

more satisfactory (see figure 4.10) and presents an error of 0.2 %.

4.2.4 Partial conclusion

With the standard SPH modelling, Spartacus-2D overestimates the velocity field of a laminar
2D free surface channel. However, by improving the viscous effects modelling and increasing

the number of neighbours of each fluid particle, the velocity field is in very good agreement
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Viscous modelling | Mirror particles | h/ér | fluid discretisation | Relative error
Case 1 Monaghan (3.4) Fixed 1.5 (40 x 40) 6.6 %
Case 2 Monaghan (3.4) Mobile 1.5 (40 x 40) 6.2 %
Case 3 Monaghan (3.4) Mobile 1.63 (40 x 40) 4.5 %
Case 4 Monaghan (3.4) Mobile 1.63 (80 x 80) 3.5 %
Case b Morris (3.6) Fixed 1.5 (40 x 40) 32 %
Case 6 Morris (3.6) Mobile 1.5 (40 x 40) 2.6 %
Case 7 Morris (3.6) Mobile 1.63 (40 x 40) 1.3 %
Best case Morris (3.6) Mobile 1.63 (80 x 80) 0.2 %

Table 4.5: Relative error on the axial velocity profile when modifying several fundamental
SPH parameters for the free surface flow.
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Figure 4.10: Axial velocity profile with the improved modelling of the free surface flow.
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H (mm) | 84.98
L (mm) | 252
[ (mm) 54
h (mm) 28
A1 (mm) | 56.98

Table 4.6: Dimensions of the 2D hill channel.

with the theoretical solution. This second test case validates Spartacus-2D and in a more

general way SPH for the simulation of a laminar flow in a 2D free surface channel.

4.3 Laminar flow in a 2D hill channel?®

The aim of this part is to reveal the ability of Spartacus-2D to reproduce recirculation zones.
This third test case hence corresponds to an incompressible laminar flow in a 2D periodic
hill channel. Contrary to the two previous test cases, a two wall bounded channel is here

considered, without any gravity effect.

4.3.1 Geometry of the system

The geometry of the 2D hill channel corresponds to the one defined in ERCOFTAC workshops
[81]: it is represented in figure 4.11 and defined in table 4.6. The hill is defined with 6 splines

Vertica
‘ . direction
1 i
by | |
3 H | X
5 : Axial direction
h of the flow

L

Figure 4.11: Geometry of the 2D hill channel.

3Presented at “Institute for Computational Fluid Dynamics” conference (Oxford, 2004) & to be published
in a special issue of “International Journal for Numerical Methods in Fluids”.
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Reynolds number : Re 50
Mean bulk velocity : U (m.s™!) | 1,79.1073

Table 4.7: Physical characteristics of the hill flow.

Fluid particles 19 548
Wall particles 502

Mirror particles 1 506

Total particle number 21 556
Particle initial spacing: §r (mm) 1.

Table 4.8: Fluid, wall and mirror particle discretisation for the hill flow.

according to the equation set (4.24):

/

28 +6,775.10732% — 2,125.10 323 if 0<z<9
25.074 4+ 9,755.10" 'z — 1,016.10 '2% +1,889.10 32® if 9 <z <14
25.796 + 8,207.10 1z — 9,055.10 222 + 1,627.1032% if 14<z <20

z(z) = < 4.24
(@) 40.464 — = + 1,946.107222 — 2,070.10*%3 if 20 <z <30 (4.24)
17.925 + 8,744.107 'z — 5,567.10 222 + 6,277.10 23 if 30 <z <40
56.390 — z + 1,645.107222 4+ 2,675.10 523 if 40 <z < 54

\

z and z respectively denote the axial and vertical position in millimeters.

4.3.2 System modelling
Simulation conditions

The physical characteristics of the laminar 2D hill flow are presented in table 4.7, where the
Reynolds number is defined by

Re = uh (4.25)

14

U corresponds to the mean bulk velocity, h the hill height and v the kinematic viscosity of
the fluid.

Fluid discretisation and wall modelling

The fluid discretisation is described in table 4.8. The wall is still modelled with wall particles
and three layers of mirror particles, as done for the previous test cases. The particles are
initially distributed on a regular lattice, which may be an advantage comparing to Eulerian

codes: indeed, it will be shown that there is no need to refine the distribution near the wall
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Kernel order 4
h/ér 1.2
Speed of sound : ¢ (m.s~1) | 0.03

Table 4.9: Main SPH numerical parameters for the hill flow.

with SPH. However, there at least two ways to refine a particle distribution with SPH: the first
one is to consider a kernel with an adaptive support, which will consider more neighbours near
the walls for instance. The second is to add particles in the zones which require refinement
[43]. Due to the absence of gravity effect, there is no need to simulate a settling phase for
this test-case. As boundary conditions, the mirror particle velocities do not evolve during the
calculation (for simplicity reasons) but they contribute to the viscous term of fluid particles.
In order to represent a periodic hill channel, periodic conditions are applied with respect to
z-direction. As initial conditions, all the particles are initially characterised by a zero velocity

and the reference density.

SPH equations and numerical parameters

As previously done, the continuity equation (3.1) and the pressure gradient term (3.2) are
used for this third test-case. However, since the viscous effects are not consequent enough
[36], the viscous term is modelled according to Monaghan’s fomula (3.4). The gravity is here
neglected and as previously, the fluid is driven by an external horizontal force F*® updated at
each time step in order to impose the correct mass flow rate. The momentum equation for

particle a hence becomes

dua (pa +pb 8 (Ha ,U/b) Uab-Tab ) .
—_—0 = — my — — 4 — | V—— W, (Tap) € +Ee 4.96
dt zb: PaPo Patpo \Pa  po) T2+ N2 (rab) €ap + Fg (4.26)

As the previous test cases, the fully explicit method is used to integrate the Navier-Stokes
equations and the particle position. The fluid is still modelled with the nearly incompressible
assumption and the particle pressure is therefore determined with the classical state equation
(3.17). The main SPH numerical parameters are presented in table 4.9: the smoothing length
value has been determined through numerical tests and the speed of sound is approximately

equal to ten times the maximum velocity of the flow.

4.3.3 Simulation results

Since there is no theoretical solution for this problem, the results obtained with Spartacus-
2D are compared to those obtained with the Eulerian code Saturne, based on finite volume
method [81]. Firstly, figure 4.12 reveals that the axial and vertical velocity fields are on the

whole satisfactory compared to Saturne’s results. Moreover, the recirculation zone is quite
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Figure 4.12: Axial (left) and vertical (right) velocity fields with Saturne (top) and Spartacus-2D
(bottom) for the hill flow.

| Profiles | z/h |

P 005
P, 1
P 2
P 3
P; 5
Ps 8

Table 4.10: Position of the six considered profiles for the hill flow.

clear, as shown in figure 4.13. However, the vertical velocity field obtained with Spartacus-2D
is noised, as shown on the right picture of figure 4.12. These perturbations will be smoothed
in the following by a temporal average. In order to have more accurate comparisons, axial
velocity profiles obtained with the two codes are considered. Six of the ten profiles defined
in ERCOFTAC workshops [81] are used: they are shown in figure 4.14 and located in table
4.10. Figure 4.15 reveals that the axial velocity profiles obtained with Spartacus-2D are
relatively close to those obtained with Saturne. Moreover, the profiles located in the vicinity
of the hill (P, P3 and Py) prove the presence of the recirculation zone. Table 4.11 summarises
the characteristics of this zone: the separation point is very well predicted with Spartacus-
2D. Concerning the reattachment point, the error is more significant. Indeed, due to the
Lagrangian characteristic of SPH, the determination of this length is quite delicate and only

statistical. To smooth the numerical instabilities, a temporal average is applied after con-

bl " Ll
0 5301 0,02 003 0.04 005 0.06 007 0.08 009 01 011 012 0.13 014 0.15 016 0.17 018 0.19 0.2 0.2 022 0.3 0.24 025

5.4E-04
4.9E-04
4.4E-04
3.9E-04
3.4E-04
2.9E-04
2.4E-04
2.0E-04
1.5E-04
9.7E-05
4.8E-05

-1.4E-06
-5.1E-05

-1.0E-04

-1.5E-04

v(m/s)
5.4E-04
4.9E-04
4.4E-04
3.9E-04
3.4E-04
2.9E-04
2.4E-04
2.0E-04
1.5E-04
9.7E-05
4.8E-05

-1.4E-06
-5.1E-05
-1.0E-04
-1.5E-04



4.3. Laminar flow in a 2D hill channel 91
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Figure 4.13: Velocity vectors in the vicinity of the downhill side with Saturne (top) and Spartacus-2D
(bottom) for the hill flow.
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z
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Figure 4.14: Position of the six profiles defined in ERCOFTAC project [81] and used herein for the
validation of Spartacus-2D.

‘ | Separation point (m) | Reattachment point (m) |

Saturne 0.0147 0.120
Spartacus-2D 0.0146 0.115
Relative error (%) 0.7 4.3

Table 4.11: Separation and reattachment point prediction for the hill flow.
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Figure 4.15: Axial velocity profiles with Saturne (——) and Spartacus-2D (e) for the hill flow.
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vergence: the initial particle distribution is considered as a fixed grid and the instantaneous
results are interpolated on the grid, as done in classical Eulerian codes. The average velocity

fields are much closer to those obtained with Saturne, as shown in figure 4.16. Figure 4.17
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Figure 4.16: Time averaged axial (left) and vertical (right) velocity fields with Saturne (top) and
Spartacus-2D (bottom) for the hill flow.

also reveals a smoother recirculation zone. The axial velocity profiles of figure 4.15 are much
smoother and closer to the ones of Saturne when the temporal average is considered. Indeed,
figure 4.18 shows a close agreement between the two codes. The reattachment point is now

predicted with an error of 2.1 %.

4.3.4 Partial conclusion

It has been shown in this part that the simulation of a laminar separated flow by Spartacus-2D
is satisfactory. However, in order to smooth the instabilities due to the Lagrangian characteris-
tic of SPH, a temporal average should be used. In this case, the velocity profiles are very close
to those of an Eulerian code and the characteristics of the separation zone are well predicted.
However, the slightly shorter recirculation and less intense backflow seem to correspond to a
somewhat “more viscous” case: it is possible that the randomness of the Lagrangian method
acts as additional Brownian motion and subsequent mixing effect. This will be highlighted
further in the LES section. Finally, the numerical diffusion is likely to be larger since SPH
uses a constant mesh step whereas Saturne uses near wall refinement. In this context, the 2

% error of the recirculation length can be considered quite satisfactory.
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Figure 4.17: Time averaged velocity vectors in the vicinity of the downhill side with Saturne (top)
and Spartacus-2D (bottom) for the hill flow.

4.4 Laminar flow in a 2D backward-facing step geometry*

The aim of this part is to reveal the ability of Spartacus-2D to deal with strongly separated
flows. This fourth test case therefore corresponds to a laminar flow in a classical 2D backward

facing-step geometry.

4.4.1 Geometry of the system

The geometry of the backward-facing step is based on the one used by Armaly [2]. However,
for reasons of convenience, another step is added at the end of the channel in order to ap-
ply periodic conditions with respect to z-direction. The geometry is thus characterised by
three bounded channels: an “inlet”, “central” and “outlet” channel, as described in figure 4.19.
Contrary to the previous 2D hill channel, the lengths [ and L must be large enough: in the
“inlet” channel, the axial velocity field must be fully parabolic and the “outer” channel must
not disturb the flow in the vicinity of the backward-facing step. The dimensions of the system
are defined in table 4.12.

*Presented at “Institute for Computational Fluid Dynamics” conference (Oxford, 2004) and to be published
in a special issue of “International Journal for Numerical Methods in Fluids”.
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h (mm) 5.2
S (mm) 4.9
[ (mm) 16.3
L (mm) 89.8
Expansion ratio: (h+5)/S | 1.94

Table 4.12: Dimensions of the 2D backward-facing step.

Reynolds number : Re 100
Mean bulk velocity : U (m-s~1) | 0.14

Table 4.13: Physical characteristics of the backward-facing step flow.

4.4.2 System modelling
Simulation conditions

The physical characteristics of the backward-facing step flow are presented in table 4.13, where

the Reynolds number is defined according to Armaly [2] by

_UD

14

Re (4.27)

U denotes the mean bulk velocity in the “inlet” channel, D is twice the “inlet” channel height

(= 2h) and v corresponds to the kinematic viscosity of the fluid.

Fluid discretisation and wall modelling

The fluid discretisation is described in table 4.14. The particle initial spacing dr is decided
from that 30 particles are placed along the step height. The wall modelling is identical to
the previous case, with wall particles and three layers of mirror particles. Once again, no
particle refinement is achieved near the wall, all the particles are regularly distributed on a
cartesian grid. The initial and boundary conditions are identical to those of the previous hill

flow simulation.

Fluid particles 39 751

Wall particles 1526

Mirror particles 4 686

Total particle number 45 999
Particle initial spacing: dr (mm) | 49/300

Table 4.14: Fluid, wall and mirror particle discretisation for the backward-facing step flow.
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Kernel order 4
h/dr 1.2
Speed of sound : cg (m-s~1) | 2.

Table 4.15: Main SPH numerical parameters for the backward-facing step flow.

SPH equations and numerical parameters

The SPH equations are also identical to those used for the hill flow test case and the fluid is
once again driven by an external horizontal force in order to impose the correct mass flow rate.
The fluid is still modelled by a nearly incompressible one, which implies the use of the state
equation (3.17) to determine the particle pressure. The main SPH numerical parameters are
presented in table 4.15: the smoothing length value has been determined through numerical

tests [46] and the speed of sound is equal to ten times the maximal velocity of the flow.

4.4.3 Simulation results

Since there is no theoretical solution for this problem, the results obtained with Spartacus-2D
are compared to those obtained with the Eulerian code Fluent, based on the finite volume
method. Before the establishment of a steady state, large voids appear next to the step, as
shown on the left picture of figure 4.20. This unphysical phenomenon could be a consequence
of a tensile instability as described in part 2.8.1: indeed, the voids of figure 2.19 which are
due to tensile instabilities are very close to those exhibited by figure 4.20. Since the number
of particles is constant throughout the simulation, the existence of voids reveals that some
particles are too close to each other in other zones. This particle clumping means therefore
that the pressure gradient term, which acts as a repulsive force between particles, is not
sufficient to prevent the clumping, characteristic of the tensile instability. This first result
shows a limitation of the nearly incompressible assumption: the pressure values are not well
enough computed to maintain the cohesion of an incompressible flow [36], [46]. Since the
pressure gradient discretised according to equation (3.2) involves a summation of the pressure
of the particles, an alternative to avoid the particle clumping is to increase the pressure of
all the particles by considering a larger speed of sound. As mentionned in part 2.4.3, the
pressure will then respond in a stronger way to variation in density, which is consistent with
the work described in [64]. In this case, a speed of sound forty times (instead of ten) higher
than the maximal velocity of the flow does not induce artificial void (see the right picture of
figure 4.20). To confirm the validity of the results for the higher speed of sound, four velocity
profiles obtained with Spartacus-2D are compared with the results of Fluent. These profiles
are represented in figure 4.21 and located in table 4.16. Firstly, figure 4.22 proves that the
flow in the “inlet” channel is parabolic and fully developed: the distance [ is thus long enough.

Figure 4.23 reveals that the axial velocity field in the “central” channel is also fully parabolic.
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Figure 4.20: Artificial voids due a tensile instability (left) and correction with a higher speed of sound
(right) for the backward-facing step flow.

Therefore, there is no influence of the “outlet” channel on the recirculation zone: the distance
L is long enough. Next to the step, the recirculation zone is quite clear, as one can notice
from the left picture of figure 4.24. Besides, the axial velocity profiles of this zone are quite

satisfactory as well (see the right picture of figure 4.24).  The dimensionless analysis of the

Pl P P B
Vertical
direction
z
l_ X
Axial direction
of the flow

Figure 4.21: Position of the four considered profiles for the backward-facing step flow.

reattachment point prediction Xpg is shown in table 4.17. Spartacus-2D has an error of 4.8
% compared to Fluent. Once again, a temporal average seems to be necessary to smooth the
Lagrangian instabilities. Indeed, figures 4.25, 4.26, 4.27 reveal a better agreement with the
two codes when a temporal average is achieved. The error on the reattachment point is equal
this time to 2.6 %.  The profile across the free shear layer (figure 4.27) tends to show a less
sharp velocity gradient with Spartacus-2D, which again makes one think of additional mixing
effects due to the unsteadiness of the scheme. As adverse pressure gradients are much stronger
than in the previous hill case, compressibility effects may also result in differences with the
incompressible Fluent simulation. Indeed, figures 4.23 and 4.26 show an underestimation of

the flow rate across the centre of the domain whereas the inlet flow rate (see figures 4.22 and
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Table 4.16: Position of the four considered profiles for the backward-facing step flow.
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Figure 4.22: Axial velocity field in the “inlet” channel (left) and axial velocity profile relative to Py

(right) with Fluent ( ) and Spartacus-2D (e).
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Figure 4.23: Axial velocity field in the “central” channel (left) and axial velocity profile relative to Py

(right) with Fluent ( ) and Spartacus-2D (e).
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Table 4.17: Reattachment point prediction for the backward-facing step flow.
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Figure 4.26: Time averaged axial velocity field in the “central” channel (left) and time averaged axial
velocity profile relative to Py (right) with Fluent (——), Spartacus-2D (e) and theoretical values (A).
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Figure 4.27: Time averaged velocity field (left) next to the step and time averaged axial velocity
profile relative to P, P3 (right) with Fluent (——) and Spartacus-2D (e).
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4.25) seems correct.

4.4.4 Partial conclusion

A limitation of the nearly incompressible assumption has been revealed through this test
case: the pressure field is not perfectly computed, inducing tensile instabilities. It should
be mentioned that numerous simulations were performed on this test case (by Eun-Sug Lee,
a MSc student of UMIST [46]) in an attempt to prevent the creation of voids, for instance
adding hydrostatic pressure, or testing various kernels, time steps, and wall treatments. In
the end, only increasing the speed of sound (at high computational costs) could resolve the
problem. Then, the axial velocity profiles and the reattachment point prediction are satisfac-
tory. Spartacus-2D is so able to deal with sharp geometry and once again, no wall refinement

is required.



Chapter 5

Turbulence modelling through SPH

This chapter firstly introduces some basic notions of turbulent flows: the main characteristics
of these flows and some energy aspects are presented. Turbulence modelling in CFD on one
hand and through SPH on the other hand is also discussed.

5.1 General introduction to turbulence

5.1.1 Turbulent flows in everyday life, environment and industry

There are many opportunities to observe turbulent flows in our everyday surroundings: the
smoke of a cigarette, the flow inside a cup of coffee when stirring are turbulent flows. Nature
also gives us an intuitive knowledge of turbulence in fluids: the flow of a waterfall (see the
left picture of figure 5.1), the wave impacting a shoreline (see the right picture of figure
5.1), the fluid behaviour in a river (see the left picture of figure 5.2) correspond to turbulent
motions. At larger scales, the cyclones (see the right picture of figure 5.2) are turbulent flows
as well. In engineering applications, they are also prevalent: in the processing of liquids or
gases with pumps, compressors, pipelines. Similarly, the flows around vehicles, e.g. airplanes,

automobiles (see figure 5.3), ships, submarines are turbulent.

5.1.2 Characteristics of a turbulent flow
Unpredictability

Firstly, a turbulent flow is disordered in time and space: when observing a waterfall, one
immediately sees that the flow is unsteady, seemingly random and that the motion of every
droplet is unpredictable [69]. Experimentally, Tong [80] also revealed that the axial component
of the velocity Ui (t) on the centerline of a turbulent jet looks like a random signal (see figure
5.4). A more mathematical definition of the unpredictability of a turbulent flow is given by
Lesieur in [47]. If a system is deterministic in the Lagrange sense, i.e. if its initial velocities

are known everywhere at a given time ¢y, then there is only one solution for any time ¢ > g

103
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Figure 5.1: “Grand-Bassin” water fall (left) and wave impacting the shoreline of “Saint-Leu” in Réunion
Island (right).

Figure 5.2: Turbulent flow in the river “Bassin la Mer” at “Bras-Panon” (left) and satellite picture of
the “Firinga” cyclone (right) near Réunion Island.
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H. Werlé - Onera

Figure 5.3: Turbulent flow around a car (Onera picture).

f(s)

Figure 5.4: Time history of the axial component of velocity U;(t) on the centerline of a turbulent jet
[80].
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(existence and uniqueness theorem in Mathematics). Considering two initial possible states
very close to each other, the system will be unpredictable when the difference between them
will grow significantly in time, to reach finite values. An accurate deterministic prediction of
the system evolution is thus impossible. This is nothing more than the concept of deterministic
chaos studied in dynamical systems [88]. An exemple of such unpredictability is the famous
butterfly effect, introduced by the meteorologist E. Lorentz: the motion of a butterfly wing in

Australia would eventually change the climate in the northern hemisphere.

Mixing and transport properties

The second important characteristic of turbulence is its ability to mix and transport quantities

much more rapidly and efficiently than laminar flows do:

e The effectiveness of turbulence for mixing fluids is of prime importance in many appli-
cations: the mixing of fuel and air in engines, the mixing of the reactants in chemical
reactors (see figure 5.5), pollutant streams mixing into the atmosphere, are much more
effective when turbulent effects are added to molecular diffusion processes [69]. This is

well demonstrated by the famous experiment of Osborne Reynolds (1883) [70].

Figure 5.5: OH concentration in a combustion chamber visualised by Laser Induced Fluorescence.

e Turbulence is also effective at transporting the momentum of the fluid. As a consequence,
on aircraft’s wings and ships’ hulls the wall shear stress (and hence the drag) is much

larger than it would be if the flow were laminar.
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e Similarly, rates of heat transfer at solid-fluid interfaces are much enhanced in turbulent
flows [34], [83].

Wide range of eddies

In a turbulent flow, motions of many scales are observed: considering the waterfall of figure
5.1, large eddies comparable in size to the waterfall width on one hand, and smaller scales
which can not be resolved by the camera on the other hand, are present in the flow. This

third characteristic is due to the non-linear term of the momentum equation (5.1) [54].

1
— + uVu = —;Vp+ vV2y (5.1)

non—linear

In this equation, p denotes the pressure, u the velocity field and v the kinematic viscosity of
the fluid.

The major motivation for the study of turbulent flows is the second property: the enhancement
of transport and mixing of species, momentum, heat transfer due to turbulent effects. Indeed,
the engineer, for instance, is mainly concerned with the knowledge of turbulent heat exchange

coefficients, or the turbulent drag.

5.1.3 Energy aspects of turbulence
The Kolmogorov theory

A turbulent flow contains many coherent structures, as shown on figure 5.6: they are often
referred to as eddies, since they are usually associated with rotating motions of the flow. One
fundamental result of turbulence [47], [69], [79], [95] is that these eddies are not all of one
particular size, but that a broad range of large to small eddies exist, as one can notice from
figure 5.6. Moreover, these structures are also characterised by different time scales. These
wide ranges of length and time scales for turbulent flows are due to the non-linear term of the
momentum equation (5.1).

In 1941, Kolmogorov intuitively introduced three assumptions in order to investigate turbulent

flows. They are reported by Pope [69] and are usually simplified according to:

1. The major part of the turbulent kinetic energy k is transported by the large scales,

which are not influenced by the viscosity.

2. The viscosity only affects the small scales, which are responsible for the major part of

the dissipation.

3. The energy dissipated by the small scales comes from the large ones.

These three assumptions are at the heart of Kolmogorov’s theory and enable us to quantify

the length and time scales of the turbulent structures.
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Figure 5.6: Turbulent coherent structures in a jet (left) [75] and in a channel (right) performed by A.
Tanieére.

The energy cascade

Contrary to the large scales which extract their turbulent kinetic energy directly from the mean
flow [54], the smaller structures are fed by a continuous decay of the unstable large eddies:
the large scales break up into smaller ones with a negligible amount of energy loss (provided
the Reynolds number is high enough [69]). This process, due once again to the non-linear
advection term, has been introduced in 1922 by Richardson as the “energy cascade”. This
structure breaking up continues until the smallest scales of the flow, which finally dissipate
the energy of the turbulent motion through the effect of viscosity. In other words, the energy
cascade continues until the Reynolds number Re; = ul/v (based on a characteristic length
and velocity scales of the small eddies) is sufficiently low that the eddy motion is stable and
molecular viscosity is effective in dissipating the kinetic energy. The dissipation is thus placed
at the end of a sequence of processes. The reason for this is that only at small length scales, the
turbulent velocity gradients are large enough to result in any significant effect of dissipation.

The process of the energy cascade is illustrated in figure 5.7.

production

P dissipation
€
Tlean é all q heat
ow les
due to d<u>; dueto v
AX

i

ﬁ

Energy cascade due to
the non-linear term
(transfer P ~ ¢)

Figure 5.7: Cascade energy scheme [88].
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Scales of large eddies

The size L; of the largest eddies, called the integral size, is determined by the geometry
of the flow configuration: typical values of L; for wall-bounded shear-driven turbulence are
L; ~ 0.1L, where L denotes a characteristic length scale of the system geometry (e.g. the
pipe diameter or the channel height). These large eddies are also characterised by a velocity
scale u;. The Reynolds number for the large eddies Rer, = uL;/v is large so the direct
effects of viscosity are negligibly small (according to the first assumption of Kolmogorov’s
theory). The loss of kinetic energy of the large scales is characterised by the dissipation rate
€ (per unit mass): it is independent of the small scale and the fluid properties since it is fully
determined by the large scale characteristics. This is expressed by the following relation which

is a fundamental result in turbulence theory

3
Uy
~ — 5.2
e~ (52)
This relation, consistent with the experimental observations in free shear flows [69], can be

interpreted as the ratio of the kinetic energy of the large eddies (=~ u?) and their life-time

(L; Jut).

Scales of small eddies

The length and velocity scales of the smallest eddies are determined by the amount of kinetic
energy transferred along the energy cascade (or equivalently by the dissipation rate €) and
the kinematic viscosity v of the fluid. As a result of dimensional analysis, one obtains the
following expressions for the length scale 7y, the velocity scale uy and the time scale 1, of the

smallest eddies, known as the Kolmogorov scales

e = (”—) (53)

wg = (ve) (5.4)

N[

v
T = <_) (5.5)
€
From the previous three relations, it follows that the Kolmogorov Reynolds number Re, =
Nkuk/v is unity. This is consistent with the notion that the cascade proceeds to smaller and
smaller scales until the Reynolds number defined on small scale characteristics is small enough

for dissipation to be effective.
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Relations between large and small scales

Since the dissipation rate is known in terms of the large scale properties, one can easily deduce
relations between the various scales of the large and small eddies: combining equations (5.2),
(5.3), (5.4) and (5.5) yields

_3
% ~ Rep ! (5.6)
K
Uk o Red (5.7)
Ut L; '
Tk —%
Tijug ™ Rep (5.8)
with
L.
Rer, ~ “ty : (5.9)

When Rey, increases, the small scales become much smaller than the large ones.
The appearance of a broad range of scales in a turbulent flow is reflected in the principles of

numerical simulation techniques used to investigate turbulent flows.

5.2 Turbulence simulation and modelling

5.2.1 Direct Numerical Simulation
Principle

The first approach for turbulence simulation is to solve the Navier-Stokes equations without
any averaging or approximation [20]. By resolving all the scales of motion, the result is equiv-
alent to a short-duration laboratory experiment. This approach is called Direct Numerical
Simulation (DNS) and when it can be applied, it is unrivalled in accuracy and in the level of

description provided.

Applications

DNS studies have proved extremely valuable in supplementing our knowledge from experiments
of turbulence [69]. For instance, the details of near-wall flows and coherent structures are more
easily studied with DNS than with experiments (see figure 5.8). It is also a very useful tool
that can give a better insight for turbulence modelling. For instance, the numerical constants

present in some statistical models can be determined thanks to DNS (see part 5.2.2).
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Computational limitation

When achieving a DNS, the calculation domain must be at least a few times the integral scale
L;. Moreover, in order to capture the small structures responsible of the viscous dissipation,
the grid must be no larger than the Kolmogorov scale 7. For homogeneous turbulence, the
simplest type of turbulence, there is no reason to use anything other than a uniform grid. In
this case, the number of grid points in each direction must be at least L;/ng, which is equal
to Rei/i 4 according to equation (5.6). Since this number of points must be employed in each
of the three coordinate directions, the total number of grid points of such simulation scales
as Re% %. This means that DNS can be carried out only at relatively low Reynolds numbers
(Rer,; =~ 100), which allows one to reach the low end of the range of Reynolds numbers of
engineering interest. Moreover, as mentioned before, a turbulent flow presents a wide range of
time scales: the time step used for a DNS must then be fitted to the smallest time scale of the
problem, i.e. the Kolmogorov time scale 7. It has been shown by Nieuwstadt [67] that the
required computer memory M, (in bytes) and the computer time 7, (in CPU-seconds) evolve

according to

9
M, =10°Re}, (5.10)

T. = 0.3Rej, (5.11)

These relations reveal that DNS is obviously limited by the computer capacity.

0,
l%n.o a flow around a block
NN AN \\ 3

0.40'Pressure

Figure 5.8: Streamwise velocity over a backward-facing step (left) by H. Le and P. Moin (Stanford
University) and vorticity field in wake of a square cylinder (right) by R. Verstappen (University of
Kroningen), with DNS.
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5.2.2 Reynolds-averaged modelling

The second way to investigate turbulent flows is to time-average unsteady fluctuations, hence
achieving turbulence statistical modelling. The simplest statistical point of view consists of
considering only averaged values, which are defined by ensemble, time or spatial averaging
[20], [54]. By applying the average operator ( ) to the Navier-Stokes equations, one ends
up with the Reynolds equations (1894) [69], [95]. The turbulence statistical models based
on the Reynolds equations are thus called RANS models (Reynolds Averaged Navier-Stokes

equations).

The incompressible Reynolds equations

In an incompressible Reynolds formalism, the Reynolds equations are written

O{u;)

and
d{u;) _ O(ui) Ofui) _ 10(p)  0*(w;) ORy
_ . __1 _ Fe 1
dt ot + () 0z p Oz; +V8wj3xj 0z T (5.13)

with a summation over j subscript (Einstein’s conventions), where ¢ varies from 1 to 3 in 3D
and from 1 to 2 in 2D. (.) denotes average values and R;; are the components of the Reynolds
stress tensor defined by R;; = u;u; . The velocity fluctuations are denoted u} = u; — (u;)
and must satisfy (uj) = 0. Ff corresponds to the i-component of an external volumetric force.
The Reynolds equations (5.12) and (5.13) describe the evolution of the mean flow quantities.
The Reynolds stress tensor incorporates the influence of the removed turbulence fluctuations
on the mean flow and describes the influence of all scales of turbulent motion, including the

anisotropic large scales [17].

The eddy viscosity assumption

In order to close the equation set relative to (5.12) and (5.13), several techniques allow to
express the Reynolds stress values in term of the resolved quantities: the more commonly
used one is based on the eddy viscosity assumption, introduced by Boussinesq in 1880. In
laminar flows, energy dissipation, transport of mass and momentum are all mediated by the
viscosity. Since these phenomena are enhanced by turbulence (see part 5.1.2), it is thus natural
to assume that turbulent effects can be represented by an increased viscosity v, which models
the diffusion and dissipation properties of eddies. The average field stability is then ensured
by this eddy viscosity vr, generally much higher than the fluid molecular viscosity. With this
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eddy viscosity assumption, the Reynolds stresses are modelled by

o

2
Rij = <UZUJ> = gk%‘ — 2ur(sij) (5.14)

where k = <u;u;> /2 denotes the turbulent kinetic energy (per mass unit), d;; is the Kro-
necker’s symbol and (s;;) the components of the rate of strain tensor based on averaged

velocities

(sij) = % <8<u?> + a<uj)> (5.15)

0z; 0z;

Then, equation (5.13) becomes

d {u;) 10 2 0 0 (ug) 0 ( 3<uj>>
=T oo 3 . e Fg (5.1
di O ((P) + 3/0’9) + oz, ((V+ vr) oz + oz, vr 92 +Ff  (5.16)

~~
cross term

In this equation, it is possible to include the isotropic term of the turbulent kinetic energy k
in the average pressure (p), by defining Pr = (p) + 2/3 pk. As there is no difference in the
numerical procedures between Pr and (p) and since physically k& << (p), from here on, (p)
will be used as notation for Pr. Furthermore, for flows which are homogeneous with respect to
a direction, as in shear flows for instance, the cross terms of the transposed velocity gradient
of equation (5.16) cancel, which gives
d{u) _ 19(p) , 0

0 (u;)
_ i Fe 1
dt p Ox; + oz; ((V+ vr) oz; ) A (5.17)

In channel flows considered further, this cross term is also rigorously nil. As the eddy viscos-
ity characterises the turbulent properties of the flow, it is thus not constant and has to be

estimated.

The mixing length model

The simplest (and historically the first) model to compute the eddy viscosity vy introduces

the “mixing length” assumption, such that the eddy viscosity can be written
vr = Lm X Ut (518)

where u; denotes the typical velocity of the large eddies and L,, the mixing length. It rep-
resents the characteristic distance of large eddy diffusive action ([69], [47]) and can thus be
approximated by the integral scale L;. The third important assumption of the mixing length

model is the balance between production and dissipation of the turbulent kinetic energy: the
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production rate P (per mass unit) is defined by [54]

O(u;)

P = —(uju};) o, (5.19)
Considering equation (5.14), it follows that
P = 2u(si;)(si;) (5.20)
The dissipation rate € is thus approximated by
€ & 2ur(si5)(8i5) (5.21)
Combining equations (5.2), (5.18) and (5.21), u; is estimated by
Ut = L/ 2(sij)(si5) (5.22)
The eddy viscosity v is thus modelled by
vr = Lin\[2(sij)(sij) (5.23)

In its generalised form (5.23), the mixing length model is applicable to all turbulent flows [69],
provided the mixing length L, is known. There are many industrial important flows that have
been studied extensively, so that the appropriate specifications of L, are well established. The
prime example is boundary-layer flows in aeronautical applications (see the left picture of figure
5.9). For environmental applications [95], the mixing length model also gives accurate results

for free surface flows for instance (see the right picture of figure 5.9). The major drawback of

Figure 5.9: Pressure distribution of a 3D incompressible flow past a parafoil at Re=1 000 000 (left)
[55] and Malpasset dam break simulated by Telemac-2D, with a mixing length model [31].
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this model is its incompleteness: the mixing length L., has to be specified, and the appropriate
specification is inevitably dependent on the geometry of the flow. For a complex flow that
has not been studied before, the specification of L, requires a large measure of guesswork
and consequently, one should have little confidence in the accuracy of the results. Morever,
the assumption P = e is not true for unsteady flows and close to walls [88]. Besides, in order
to take into account the anisotropic effects of a turbulent flow, the scalar formulation of v

should be replaced by a tensor formulation [54].

The k model

The k model is also based on the eddy viscosity (5.14) and the mixing length assumptions
(5.18). However, the velocity u; is here estimated through the turbulent kinetic energy k by

up < Vk (5.24)

Since the mixing length L, is close to the integral scale L;, relation (5.2) gives

k3/2
L, o« — (5.25)
€
The eddy viscosity is thus expressed by
k2
vy =Cy— (5.26)
€

where C,, = 0.09 [45]. In order to estimate the values of k and €, a transport equation for
k is solved. The k model hence belongs to the class of one-equation model. The transport
equation for the turbulent kinetic energy is too complex to be directly solved [54] and has to
be approximated. After modelling the diffusion and the production term of this equation [54],

it is commonly written

ok k?
Fn + (u).Vk =V. |:(V + CK?) Vkl+ P, - € (5.27)
Y N ~ production  dissipation

convection ~~
dif fusion
The constant Ck is equal to C}, /oy, where oy, is a Schmidt number defined as the ratio between
the eddy viscosity and the kinetic energy diffusion coefficient. oy is generally equal to 0.1.
The production term P is usually modelled by

2
P =20, (s} (s (5.28)
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P = min (/G 20, s ) ) 2 o) (5.29)

Contrary to relation (5.28), equation (5.29) does not overestimate the turbulent kinetic energy
k [25]. Indeed, it is linear with respect to the strain rate in case of rapid distortions. Once

the k value is obtained, the value for € is obtained through the following relation ([54])

k3/2

_ 3/4
E—Cu/ I

(5.30)
The values of k and e are finally considered in (5.26). This model is well suited for unsteady
flows, for which the energy production is characterised by a time scale 77, ~ k/e: contrary to
the mixing length model, the k-model takes into account this transfer time. Once again, the
drawback of this model is the mixing lenth definition requirement. This is avoided by using

the following k — € model.

The k — ¢ model

The k — € model is also based on the eddy viscosity (5.14) and the mixing length assumptions
(5.18). As the k model, the velocity u; is estimated by the turbulent kinetic energy through
(5.24) and the eddy viscosity v by (5.26). The standard k — € model, developed by Jones
and Launder in 1972 [41], estimates the eddy vicosity through two transport equations, for
k and e. The k — e model hence belongs to the class of two-equation models. The equation
for k is identical to the equation (5.27) used for the k£ model and the production term is still
modelled by (5.28). Similarly, the transport equation for € is modelled by

Oe

k2
e + (u).Ve = V. [C’G?Ze] +

(OdP - 0526) (531)

ol

The five constants of the model are usually taken equal to [54]

C,=0.09 Cxg=0.09
. K (5.32)
Ce=0.069 Cq =144 Cip=1.92
Near a wall, Dirichlet boundary conditions are usually used for k and e according to
2 3
k=2 and =% (5.33)

K

NP

where k is the Karman constant and § a small distance to the wall larger than the viscous

sublayer thickness. The friction velocity u, will be introduced in chapter 6. For a free surface,
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Neumann boundary conditions are generally considered

Z_Z =0 and g—; =0 (5.34)
where n denotes the local normal vector to the free surface. By resolving the equation set
relative to (5.27), (5.28) and (5.31), the values of k and € are obtained.

Contrary to the two previous models, the mixing length definition is not required here. This
model is thus self-sufficient since it is independent of the flow specifications. The standard
k — € is the most widely used turbulence model in commercial CFD codes and is a compromise
between accuracy and simplicity (see figure 5.10). However, it does not give good results for
stratified flows, for instance [54], or near zero-velocity point, even if some improvements have
been made [25]. This model is also limited by the isotropic formulation of the eddy viscosity
[44], [27]. Despite their broad range of applications, RANS models are sometimes not sufficient

Figure 5.10: Turbulent viscosity countours in an axisymmetric bend [52] (left) and particle pathlines
around a car and pressure shading on the car surface [53] (right), with a standard k — e model.

when rotation or 3D secondary motions are present, as it is the case for a turbulent flow in a

square duct, for instance [83].

5.2.3 Large Eddy Simulation (LES)
Principle

Large Eddy Simulation (LES) [48], [20] is motivated by the limitations of DNS and RANS
models; the idea of LES is to simulate the large scales of motion of the tubulence while
approximating the small ones. One can think of it as applying DNS to the large scales and
RANS to the small scales. It is thus a compromise between the previous two approaches. The
justification of such a treatment is that large eddies contain most of the energy, do most of

the transporting of conserved properties and vary most from flow to flow. On the other hand,
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the small eddies are believed to be more universal [20] and less important, except for their
dissipative effects easily modelled by an enhanced viscosity. Moreover, the large structures

are mostly anisotropic whereas the small eddies are closer to isotropic [17].

Filtering operation

At first, it is essential to define modified fields that only contain the large scale components
of total fields. Each flow variable ® is thus decomposed into a large scale (or grid scale)

component ® and a small scale (or subgrid scale) component ®' such as
®=0+9 (5.35)

The grid scale component is defined by the following filtering operator
Tat)= [ Gala-2)8(e"0)d (5.36)
1%

where Ga (z — z') is a spatial filter function depending on the separation between the spatial
vectors z and z’. A corresponds to the filter size and V denotes the volume of the computation
domain. The large scale field is hence a local average of the complete field. Filter functions

which have been applied in LES include

e Gaussian function, represented on the left picture of figure 5.11 and defined by

Galr) = (%)1/2 exp (-%) (5.37)

where r corresponds to the distance between z and z'. The Gaussian filter has the

advantage of being smooth.

e Box function, represented on the right picture of figure 5.11 and defined by

1 1
G =_—_H|-A- 5.38
s) = 57 (38-) (5.38)
where H corresponds to the Heaviside function. This is simply an average over a rect-

angular region.

All these filters (for more details, see [69]) are considered as explicit filters. However, the
nomenclature “subgrid scale” is derived from the kind of LES which considers the calculation
grid as a filter. This type of filtering, refered as implicit filtering, is the simplest one and used
in all basic LES models. Figure 5.12 shows a sample velocity U(z) and the corresponding
filtered velocity U(z) with the Gaussian filter [69]. At first, it is noticeable that U(z) follows

the general trends of U(z) and that the short lengthscale fluctuations have been removed.



5.2. Turbulence simulation and modelling 119

O (x3)
Gb(x,z)

Figure 5.11: Gaussian (left) and box (right) filters.

Figure 5.12: Upper curves: a sample of the velocity field U(z) and the corresponding filtered field

U(z) (bold line), using the Gaussian filter. Lower curves: the residual field «'(z) and the filtered
residual field u/(z) (bold line) [69].
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These appear in the residual field u'(z) which is also depicted in figure 5.12. Contrary to the
Reynolds averaging previously introduced, figure 5.12 also reveals that the filtered subgrid
scale component is non-zero. Another important difference between filtering and Reynolds
averaging is that, in general, filtering a field a second time does not reproduce the original
filtered field, i.e.

40 (5.39)

gl

Filtered incompressible Navier-Stokes equations

When filtering the incompressible Navier-Stokes equations, one obtains a set of equations very

similar in form to the incompressible Reynolds equations (5.12) and (5.13):

ou;
=0 5.40
e (5.40)
du; _ 0w | _ 0u; 1 9p o*u;  Omyj

dt ot i Oz N _;&vi Val‘jaxj a Ox;j

+ FY (5.41)
In the context of LES, 7;; is called the subgrid scale tensor and is usually defined by
r = WG - (5.42)

It plays a computational role in LES similar to the role played by the Reynolds stress in
RANS models but the physics that it models is different, as one can notice from relation
(5.39). Indeed, the subgrid scale energy is a much smaller part of the total flow than the
RANS turbulent energy [20]. The subgrid scale tensor modelling may be hence less crucial

than the Reynolds stress tensor modelling in RANS computations.

The Smagorinsky subgrid scale model

By far, the most commonly used subgrid scale model is the one proposed by Smagorinsky in
1963. It is based on an eddy viscosity assumption that can be considered as an adaptation,

to the subgrid scale, of the Boussinesq assumption (5.14)

1 ou; Ou; _

vrs corresponds to a subgrid eddy viscosity and 3;; denotes the components of the rate of

strain tensor based on filtered velocities

1w ow
%= (amj * Bmi) (5:44)
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The filtered momentum equation (5.41) is then written

du; 16p O Ou;
i _ 29 i) L pe 4
dt p Ox; + oz; ((V +vrs) 8$j> o (5.45)

The Smagorinsky model is also based on a mixing length assumption, according to
vrs X Ly X u* (5.46)

where L,, and u* respectively denote a typical lengthscale and velocity of the subgrid scales.

Approximating Ly, by the filter size A, equation (5.46) becomes
vps < Au* (5.47)

The third important assumption of the Smagorinsky model is the local balance between the

production Psg, and the dissipation €44, of the subgrid scales. Pyg, is defined by

Pyys = _Tijg?u_; (5.48)
Considering equation (5.43), it follows that
Pisgs = 2vrs38i5 Sij (5.49)
The subgrid scale dissipation €4, is thus approximated by
€sgs R 2UTsSij Sij (5.50)

In order to estimate u*, the fourth assumption of the Smagorinsky model is to consider that

the mixing length is close to the integral lengthscale of the subgrid scales, i.e.

1L*3

A x

(5.51)

€sgs

The combination of equations (5.51), (5.47) and (5.50) provides the following estimation of u*
u* o< Ay/25;5 535 (5.52)

The Smagorinsky model expresses then the subgrid eddy viscosity v according to
vrs = (CsA)? /255 535 (5.53)

The Smagorinsky constant Cg is generally equal to 0.1 and the parameter A is often equal

to 2 (Az x Ay x Az)l/ 3, where Az (respectively Ay, Az) denotes a characteristic lengthscale
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of the grid in z (resp. y, z) direction. From a formalistic point of view, the Smagorinsky
model is identical to a statistical mixing length model with a constant mixing length. This is
justified by the isotropic characteristic of the small eddies.

This basic Smagorinsky model generally gives good results, as shown in figures 5.13 and
5.14. In computational expense, it lies between RANS models and DNS [69]. The main two
drawbacks of this model is general over dissipation. Moreover, it gives an incorrect estimation
of the eddy viscosity near the walls [54], [69], [17].

Axial Velocity

Figure 5.13: Axial velocity of a turbulent coaxial jet (left) by K. Akselvoll (Stanford University), with
LES.

Figure 5.14: Turbulent separation on a Delta wing (left) (Onera) and velocity streamlines around an
automobile by T*AFSM researchers (right), with LES.

5.3 Statistical turbulence modelling with Spartacus-2D

Currently, little research concerning turbulence modelling through SPH has been performed
([33], [96], [51], [94]): due to the Lagrangian characteristic of SPH, some stochastic models
(93], [96]) have first been developed. However, they are quite complex, specially regarding
the boundary conditions. Three statistical RANS models, developed by Violeau since 2001

and implemented in Spartacus-2D, are presented herein.
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5.3.1 Reynolds equations in Spartacus-2D

Since incompressible (or nearly incompressible) flows are considered in this work, equations
(5.12) and (5.17) are used to derive a SPH form of the Reynolds equations with the eddy
viscosity assumption. From a formal point of view, equations (5.12) and (5.17) are identical
to the classical Navier-Stokes equations (2.44) (see part 2.4.1) and (2.50) (see part 2.4.2),
except that

e pressure and velocities are considered as averaged values

e the kinematic viscosity is increased by the eddy viscosity

Taking into account these two differences, the Reynolds equations written in SPH formalism
are thus identical to the SPH Navier-Stokes equations (2.45) and (2.79), implemented in
Spartacus-2D. Consequently, for particle a, the averaged continuity equation considered in

Spartacus-2D is written

dp,
dt

Z mb<ﬂ>abvawh (Tab) (554)
b

with pg = (p)a- (u)e corresponds to the averaged velocity relative to particle a and V wp, (74p)
denotes the kernel gradient with respect to a-coordinates. In order to avoid confusion with
the dissipation rate €, the vector ¢, introduced in chapter 2 will not be used. Similarly and by
considering the viscous term modelling (3.5), the averaged momentum equation implemented

in Spartacus-2D is

d(u)q ( (P)a . (P VT + Ty (Wab-Tap )
= — mg + — 8= : Vowy (1ep) + F€ 5.55
dt Eb: P2 P pat+py T2 417 (ras) + Eo (5.55)

where v, corresponds to the eddy viscosity for particle a. The averaged pressure (p), is

defined by the following filtered state equation

(P)a = ”073 [(g—o) T 1] (5.56)

The other notations used for these SPH equations are identical to those introduced in chapter
2. One can notice that the previous SPH equations are identical from a formalistic point of

view to those described in chapter 3.
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5.3.2 Mixing length model in Spartacus-2D

Considering the mixing length model (5.23), the eddy viscosity vr, for each fluid particle a

is expressed by

VT,a = L?n,a 2<3ij)a<3ij>a (557)
where
1 0(w) O(u;)
<S'L]>a - 5 |: 3:17j 315'1’ . (5.58)

Ly, o corresponds to the value of the mixing length at the position occupied by particle a. In

Spartacus-2D [94], the velocity gradient for particle a is estimated by

O{ui)

oz, - Zmb uap @ Vawp (Tap) (5.59)

A

a

Since the A term of equation (5.59) is symmetric with respect to a and b subscripts, the
symmetrical optimization technique introduced in part 2.2.3 is used to compute (5.59).
With this SPH mixing length model, the Spartacus-2D algorithm presented in figure 3.4 is

modified by the computation of the eddy viscosiy for each fluid particle a according to
1. computation of the velocity gradient for each fluid particle a with (5.58)
2. computation of the eddy viscosity v, for each fluid particle a with (5.57)

This model has been applied by Violeau to a 2D channel [94] and a deeper investigation of a
2D free surface channel will be presented in chapter 6.
5.3.3 k model in Spartacus-2D

With a SPH k& model, the eddy viscosity vr,, for each fluid particle a is expressed by

ks
vre = Cp— (5.60)
€a
where k, and ¢, respectively correspond to the turbulent kinetic energy and the dissipation

rate for particle a. In Spartacus-2D, Violeau [89] considers the following k-transport equation

dk, My VTa + VT kabrab
= — Nowp (Tep) + P, - € 5.61
dt Zpb o  r4+n2 "’  (rap) ~~ — (561)
\b _  production  dissipation
diffusion

where kqp = kg — kp. The diffusion term was written in the same form as the viscous diffusion

term (2.78) developed by Monaghan, as Cleary did for the temperature conductivity [13].
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The parameter oy corresponds to the Schmidt number and is equal here to 1.0 [89], [92]. The

production term P, can be modelled according to

ka
Py = 2Cu, " (sij)a(sijla (5.62)
or
. kq,
Py = min (\/ CanCue—@z'j)a(Sij)a) 2ka(sij)a(sij)a (5.63)

Once again, the velocity gradient involved in (s;j), definition are computed according to

relation (5.59). To close the system, the condition (5.30) for €, is used, according to

E3/2
€0 = 03/4;— (5.64)
m,a

The other notations used for these SPH equations are identical to those introduced in chapter
2.
With this SPH k£ model, the Spartacus-2D algorithm presented in figure 3.4 is modified ac-

cording to:

1. computation of the r.h.s. of (5.61) at the time n by considering (among others) (5.63)
and (5.64)

2. integration of (5.61) and determination of k, at the time n + 1
3. determination of ¢, at the time (n + 1) with (5.64)
4. computation of the eddy viscosity vr, at the time (n + 1) with (5.60)

This k model gives accurate and smooth results in a 2D free surface channel [89].

5.3.4 k — ¢ model in Spartacus-2D

With a SPH k—e model, the eddy viscosity vrq relative to each fluid particle a is also expressed
by (5.60). The previous k transport equation (5.61) is unchanged and the production term
modelling (5.63) is also maintained. In Spartacus-2D [89], the transport equation for € is

expressed by

dea mp UT,q + UTb €abTap €a
dt o 2 Y = (CaP, = C 5.65
dt — py o P awp (Tgp) + ™ (CaaPy — Cezeq) (5.65)



126 CHAPTER 5. Turbulence modelling through SPH

with €., = €, — €. The constants used in (5.65) are equal to the value set (5.32) and o, = 1.3.

Near a wall, k-Dirichlet boundary conditions are used according to

i (5.66)

where u,, denotes the friction velocity for particle a (see chapter 6). For the e-equation,
Violeau uses Neumann boundary conditions, as described in [92].
With this SPH k£ — € model, the Spartacus-2D algorithm presented in figure 3.4 is modified

according to

1. computation of the r.h.s. of (5.61) and (5.65) at the time n by considering (among
others) (5.63)

2. integral integration of (5.61) (respectively (5.65)) and determination of k, (resp. €,) at
the time n + 1

3. computation of the eddy viscosity v, at the time (n + 1) with (5.60)

This SPH k — e model has successfully been applied by Violeau [89] to a 2D free surface channel

and a dam breaking.

5.4 Large Eddy Simulation with Spartacus-3D

One of the aims of this thesis is to adapt the concept of LES to SPH: in order to test a
SPH Smagorinsky model, a 3D version of Spartacus-2D, Spartacus-3D, has been developed.
Indeed, LES in 2D is not significant. Further information of this 3D-SPH code will be given
in chapter 6.

5.4.1 LES filtering and SPH

In SPH formalism, the value of a function ® for a particle a located at z is expressed by
Bzt = [ @ (2 t) wn (o~ o) do (5.67)
Q

Moreover, as mentioned in part 5.2.3, filtered values @ in LES are obtained by the following

convolution product
3 (21) = / Ga (z - ') @ (1) da’ (5.68)
v

One can notice that these equations are very similar: the kernel function wy is firstly ana-
loguous to the filter function Ga. Secondly, the smoothing length h is equivalent to the filter

size A. Consequently, it seems natural to consider LES in SPH.
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5.4.2 Filtered Navier-Stokes equations in Spartacus-3D

Since incompressible (or nearly incompressible) flows are considered in this work, equations
(5.40) and (5.45) are used to derive a SPH form of the filtered Navier-stokes equations with
the eddy viscosity assumption. From a formalistic point of view, equations (5.40) and (5.45)
are identical to the classical Navier-Stokes equations (2.44) (see part 2.4.1) and (2.50) (see
part 2.4.2), except that

e pressure and velocities are considered as filtered values
e the kinematic viscosity is increased by the subgrid eddy visosity

Taking into account these two differences, the filtered Navier-Stokes equations written in SPH
formalism are thus identical to the SPH Navier-Stokes equations (2.45) and (2.79), introduced
in chapter 3. Consequently, for particle a, the filtered continuity equation considered in

Spartacus-3D is written

dpa

Z MpTapVaWh (Tab) (5.69)

with p, = p,, since the fluid is nearly incompressible. %, corresponds to the filtered velocity

for particle a. Similarly, the filtered momentum equation implemented in Spartacus-3D is

dﬂa (ﬁa Dy UTs,a + Vs Ugp-Tap ) e
— = — my | —& +—5 —8 ’ e Vowp (Tep) + F 5.70
dt zb: pg pf Pa + Pb Tgb n 772 a ( a ) a ( )

where the filtered pressure p, is defined by the following filtered state equation

poct | (p 7
P, = —2 |2 -1 5.71
P ~ [(po) ] ( )

Once again, the other notations used for these SPH equations are identical to those introduced
in chapter 2.
5.4.3 Smagorinsky model in Spartacus-3D

Considering the Smagorinsky model (5.53), the eddy viscosity vr; 4 for each fluid particle a is
expressed by

VUTs,a = (055)2 vV 2?’]’,1%@ (572)

where
1 (9’11,,' duj
— _ - 5.73
L) [axj . Oz ] (5.73)
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Cs corresponds to the Smagorinsky constant introduced in part 5.2.3 and ¢ a numerical
parameter for the spatial discretisation of the problem, for instance twice the smoothing length
h. This means that the structures of size inferior to 2h are considered as small structures.

Further details concerning this model and some first results will be presented in chapter 6.



Chapter 6

Turbulent incompressible flow
simulations with Spartacus-2D and

Spartacus-3D

Turbulent flows play a central part in environmental and industrial applications, as previously
emphasized. However, little research relative to turbulence modelling through SPH has been
performed until now. In order to validate the SPH mixing length model introduced in chapter
5, 2D turbulent free surface channel flows are here simulated with Spartacus-2D. Moreover,
a first attempt to adapt Large Eddy Simulation to SPH is also presented: two applications

performed by the Smagorinsky model implemented in Spartacus-3D are described.

6.1 Theory of 2D turbulent free surface channel flows

This part presents some theoretical and experimental results relative to turbulent incom-
pressible flows in a 2D free surface channel (see figure 6.1). A statistical point of view is
here considered and our attention is confined to a stationnary fully developed flow, in which

velocity statistics no longer vary with z.

Free surface

Figure 6.1: 2D free surface channel scheme.
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6.1.1 General investigation
Definition of the total shear stress 7

For a 2D flow, the averaged continuity equation (5.12) is written

0tu) , 2()

= 1
ox 0z 0 (6.1)

where (u) and (v) respectively denote the averaged axial and vertical velocity. Since (u) is
independent of z and considering the boundary condition (v) = 0 for z = 0, it follows that
the averaged vertical velocity is zero within the flow. The averaged axial momentum equation
(5.13) hence reduces to

. d2<u) d 1o e
O—I/dz2 —£<uv>—l—F (6.2)

where F¢ corresponds to an horizontal forcing term per mass (pressure or channel bed slope)
necessary to drive the fluid and (u'v') denotes the axial Reynolds stress. This equation can

also be written

dr

o R .
=P (6.3)
where the total shear stress 7 (z) is defined by
d{u
T(2) = u% — p{u'v") (6.4)

u = pv corresponds to the dynamic viscosity of the fluid. The total shear stress 7 (z) is thus
the sum of the viscous stress u d(u) /dz and the Reynolds stress (u'v'). At the wall, the
boundary condition w = 0 dictates that all Reynolds stress are zero. Consequently the wall

shear stress 7, is entirely due to the viscous contribution, i.e.

d U
< )
dz z=0

(6.5)

Ty =

Viscous scales and the different layers

“Close” to the wall, the viscosity v and the wall shear stress 7,, are important parameters in the
case of smooth beds. From these quantities, one defines viscous scales that are the appropriate

velocity scale and length scale in the near-wall region. These are the friction velocity wu.

Us = 4| — (6.6)
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‘ Layer ‘ Location ‘ Defining property
Viscous sublayer 2T <5 Reynolds shear stress negligible compared with viscous stress
Buffer layer 5 <zt <30 Region between viscous sublayer and log-law region
Log-law region 2T > 30 Log-law (6.22) holds
Outer layer 2T > 50 Direct effects of viscosity on (u) negligible

Table 6.1: The different layers and their defining properties [69].

and the viscous length 4,

o, =v, L =2 (6.7)

&
<
*

Different layers, presented in table 6.1 [69], can then be defined on the basis of 27.

6.1.2 Averaged axial velocity profiles

Considering the eddy viscosity assumption introduced in part 5.2.2, the averaged axial mo-

mentum equation (6.2) is written

d d{u)]
o |:(1/ +vr) W] = constant (6.9)
A first integration with respect to z gives
d{u) Ty z
4w =2 (1- ) (6.10)

where 7,, denotes the wall shear stress (6.5) and H the channel height. The friction between
the free surface and the atmosphere is here neglected. With the mixing length model presented
in part 5.2.2, the eddy viscosity vr is here written

2 d{u)

By introducing the velocity scale u, and the length scale 4, respectively defined by equations
(6.6) and (6.7), one obtains

2
vr du+
vp =— =Ly, <dz—+> (6.12)



CHAPTER 6. Turbulent incompressible flow simulations with Spartacus-2D and
132 Spartacus-3D

where ut = (u)/u, and L} = L,;,/d,. Equation (6.10) is then written

dut™\] dut zt
+2 1
[1 s <—dz+>] S -1- (6.13)

with H+ = H/6,.

Averaged axial velocity profile in the viscous sublayer

In the viscous sublayer (27 < 5), the large eddy size depends on the distance to the wall, as
shown in figure 6.2 [88]. Indeed, close to the wall, it has experimentally been noticed that

Figure 6.2: Evolution of the large eddy size in the viscous sublayer [88].

L, =~ kz (6.14)

where k = 0.41 is the Von Karman constant. Consequently, in the viscous sublayer

du™
L;;dz—Jr <<1 (6.15)

and equation (6.13) hence becomes ([88])

du™ zT

Therefore, the averaged axial velocity profile is linear in the viscous sublayer, i.e.
ut =2z if 2zt <5 (6.17)

Averaged axial velocity profile in the log-law layer

“Far” from the wall, the kinematic viscosity is much smaller than the eddy viscosity. Equation

(6.13) hence gives

+\ 2 +
(L+ d%) =1- 2 (6.18)
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Moreover, a free surface damps the mixing length according to ([95])
m R Kz [1— = (6.19)

or, equivalently,

zZ
L N
I
Lt momaty /1 2o 6.20

Consequently,
du™ 1
-— = — 6.21
dzt Kzt (621)
which gives by integration the log-law
1
ut = —Inz" +B (6.22)
K
or, equivalently,
1 ZUse
(u) (2) = usx [—ln ( ) + B] (6.23)
K v

where B = 5.2 £ 0.47 [74].

6.1.3 Expression of characteristic terms
Eddy viscosity in the log-law layer

Considering equations (6.11), (6.19) and (6.21) gives the following evolution of the eddy vis-

cosity in the log-law layer

VP = KUy Z (z - %) (6.24)

Forcing term
Equation (6.9) could also be written

dilz [(u +ur) %] = _F° (6.25)

Integrating (6.25) with respect to z and matching with (6.10) gives

(6.26)

T[S

Fe=
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Reynolds number

The Reynolds number is here based on the channel height H and the mean bulk velocity (U),
defined by

H
(o) = % /O () (2) de (6.27)

Considering the averaged axial velocity (6.23) and relation (6.26), the Reynolds number is

approximated, after an integration by parts, by

e 3 e 3
R627M[11n<7w>+3_1
14

- - (6.28)

v

where B and x have been previously introduced.

6.1.4 Rough channel case

Up to this point, we have assumed that the channel bed was completely smooth. In fact,
every surface is characterised by a length scale of protrusions £. For a fully rough bed, the
roughness scale £ is large compared with the viscous scale §,, as represented in figure 6.3.

Experimentally, this case corresponds to £/d, > 70 [69]. The transfer of momentum from the

Figure 6.3: Fully rough wall scheme [88].

fluid to the wall is then accomplished by the drag on the roughness elements. In this case, the

averaged axial velocity profile can be approximated by
(W) (2) = u. | 2inZ 4+ D (6.29)
=u. | Ing .
with D = 8.5 [95].
6.2 Turbulent free surface channel flows simulated with Spartacus-

2D!

The SPH mixing length model implemented in Spartacus-2D (see part 5.3.2) is here applied
to the simulation of the outer layer (27 > 50) of turbulent free surface channel flows. Smooth

and fully rough beds are successively considered.

'Submitted to “Journal of Hydraulic research"
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Mean bulk velocity: (U) (m.s™!) 1.35
Reynolds number: Re = (U)H /v 538 000
Friction velocity: u, (m.s™1) 5.102
Turbulent Reynolds number: H™ = u,H /v | 20 000

Table 6.2: Physical characteristics of the considered turbulent free surface channel flow.

Free surface z

04m

Fluid particle Edge particle

Mirror
particles

Figure 6.4: 2D turbulent free surface channel modelling (left) and zoom near the wall (right).

6.2.1 System modelling
Simulation conditions

The physical characteristics of the simulated flow are described in table 6.2. As explained in
chapter 4, the fluid is driven by an horizontal external forcing term F¢ applied to each fluid
particle a at each time step. This external force is constant in space but not in time since it

is updated at each time step to impose the correct mass flow rate (see part 3.1.3).

System discretisation and SPH wall function

The 2D free surface channel is firstly characterised by a smooth bed and modelled according
to figure 6.4 with periodic conditions applied in the z-direction. The system discretisation is
described in table 6.3:

e Edge particles represent fluid particles which are immediately located at the bottom
of the outer layer. Their gravitational centre is hence placed at z = §, with 6T = 50.

The value of § is thus defined by the considered friction velocity u,. In some Eulerian
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Fluid particles (z, z) 40 x 40
Edge particles 40
Mirror particles 120
Total particle number 1 760
Particle initial spacing: dr (cm) 1.

Table 6.3: Fluid, edge and mirror particle discretisation for the 2D turbulent free surface
channel.

ot 50
Theoretical vertical position : §(m) | 1.1073

Numerical vertical position (m) 0.

Table 6.4: Values relative to edge particle vertical position.

methods using cell vertex discretisation, although the first node is exactly located on
the wall, the velocity at that point is non-zero and assumed to correspond to the value
at position 6*. This means that the flow domain is [0+, H'] and the computational
domain [0, H"] (the wall is “pushed back”). The —d* offset is then negligible. This
approximation is correct provided the turbulent Reynolds number HT (see table 6.2) is

high enough. Table 6.4 describes the different values relative to edge particle position.

e As done in chapter 4, three layers of mirror particles are added under the edge particles,

so that the fluid particles close to the wall do not suffer from a lack of neighbours.

Boundary conditions

The averaged density and pressure of mirror particles evolve at each time step as described in
part 2.7.2, and they repel fluid particles from the wall through the averaged pressure gradient
term. Moreover, the averaged axial velocity (ueqge) of edge particles must verify the log-law
(6.23) for a smooth bed or equation (6.29) for a rough one. As a first approximation and since
the friction velocity u, is known in this case, (ueqge) can be numerically imposed at each time

step according to

(Uedge) = 0.747 m.s™'  for a smooth bed (6.30)
or

(tedge) = 0.144 m.s™"  for a rough bed (6.31)

However, in a more general way, the friction velocity and consequently the averaged boundary

velocity can be estimated through the following procedure:
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1. For each edge particle a, a fictitious point M located at a distance A from a on the

normal to the wall (see figure 6.5) is defined.

X Fictious point

o
® . ® @ Fluid paticle
-0 @ ®
'@ My @ Edgeparticle
() @ / <u>
.® "
b e P
e
o

Figure 6.5: Computation of the averaged boundary velocity (ueqge)-

2. The averaged axial velocity at M is computed with the classical following SPH relation

(uym = Z %(u)bwh () (6.32)

b

3. Since (u)as should verify the following log-law for a smooth bed

1 0+ A) uy
(W) as = Use [—ln (Q) + B] (6.33)
K v
the friction velocity u.. is then obtained by iteration. For a rough bed, the relation
1 (64 A)
(u)pr = Use | —=In . +D (6.34)
K

directly gives the value of .

4. The edge particle averaged axial velocity is computed according to

(Uedge) = Use [%ln (51:*(:) + B] for a smooth bed (6.35)
and
1 )
(Uedge) = Usc [;ln (E) + D] for a rough bed (6.36)

It will be shown that the estimation of u,. is very close to the theoretical value u, in

both cases.
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Like the fluid particles, edge particles are transported at each time step with the averaged
axial velocity (ueqge). This velocity is also directly applied to mirror particles, as shown in
figure 6.6. This configuration, different from the one presented in part 4.2.3 (see figure 4.9),

is the optimal one for velocity gradient estimation [38].

Mirror particle

Figure 6.6: Edge particle averaged axial velocity directly applied to mirror particles.

Initial conditions

In order to start from a steady state, the initial particle distribution corresponds to the
(40 x 40) steady state obtained in part 4.1. This is justified by the fact that the pressure
at z = 0 is nearly equal to the pressure at z = 0. Indeed, the discrepancy between the two
values is less than 0.25 %. Also, as in chapter 4 (see part 4.2.2), fluid particles are initially

characterised by a linear averaged axial velocity profile defined by

(1) () = Gt = (57) |tape) = (0m (F22) + ) | (6.3)

K v

and represented in figure 6.7.

SPH equations and numerical parameters

The velocity gradients relative to edge and fluid particles are determined with equation (5.59).
The mixing length relative to this system is prescribed by equation (6.19) and the SPH mixing
length model (5.57) is then used to compute the eddy viscosity of edge and fluid particles.
Viscous effects are modelled by Monaghan’s formulation and the gravity g and the driving
force F¢ are considered as external forces. The averaged momentum equation relative to

particle a is therefore written

d(“)a <<p>a + <p)b Ura+Urp <Q>ab-£ab>
LI —gZLe T, V. +g+FS (638
dt zb: "\ patps 12 tp) Ve ra) Tot e (6.38)
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Figure 6.7: Initial averaged axial velocity profile.

Order of the spline kernel | 4
h/or 1.5
co (m.sil) 50

Table 6.5: Main SPH numerical parameters for the tubulent free surface channel flow.

and the averaged continuity equation (5.54) is used to compute the fluid and edge particle
density. The averaged Navier-Stokes and the position equations are integrated in time with
a fully explicit method (see part 3.3.2) and the averaged particle pressure is then determined
through the averaged state equation (5.56). The main SPH numerical parameters relative to

this test case are presented in table 6.5.

6.2.2 Simulation results relative to a smooth bed
Results for a simplified modelling

At first, the theoretical value of the averaged axial velocity gradient d(u)/dz (which is the
main component of the averaged stress tensor (s;;)) is imposed, according to
d *
) _ u. (6.39)

dz Kz
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Moreover, the theoretical value of the averaged axial velocity of edge particles is also imposed.

Figure 6.8 reveals that the averaged axial velocity field after convergence is very stable. Indeed,

uf{m/s)
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Figure 6.8: Particle position (left) and averaged axial velocity field (right) after convergence, with
d{u)/dz and (ueqqe) imposed to the theoretical values.

the particles remain organised and one can notice that the system is perfectly homogeneous
in the z-direction. All profiles presented in the following are therefore obtained with a spatial
averaging along z-direction. Figure 6.9 shows four averaged axial velocity profiles at different
times: it reveals that the code converges around 30 s towards a stable velocity profile close
to the theoretical one. During this calculation, a particle is transported a distance equal
to 121 times the channel length, which is larger than the usual criteria relative to result
convergence. The eddy viscosity is perfectly computed, as one can notice from figure 6.10. In
order to consider a more general case, the boundary velocity relative to edge particles is now
computed with the method previously described. Figure 6.11 proves that the computation of

the boundary velocity is satisfactory.

Results for a general modelling

All averaged velocity gradients are now computed with the relation (5.59) and the boundary
velocity is also computed at each time step. The averaged velocity gradient d(u)/dz after
convergence is represented in figure 6.12. One can notice that d(u)/dz is underestimated near
the wall and its evolution is quite perturbed in the upper part of the channel. Comparison
of figures 6.10 and 6.13 reveals that the noise present in the eddy viscosity profile of figure
6.13 is due to the small error associated to the evaluation of d(u)/dz by SPH: as the eddy

viscosity involves (d {(u) /dz)?, it is thus not surprising that the noise present in averaged
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Figure 6.9: Averaged axial velocity profiles at different times, with d(u)/dz and (ucq4e) imposed to
the theoretical values. left: normal scale; right: logarithmic scale.
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Figure 6.10: Eddy viscosity profiles after convergence, with theoretical values of d{u)/dz and (ueqge)-
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Figure 6.11: Averaged axial velocity profiles after convergence, with theoretical values of d{u)/dz. left:
normal scale; right: logarithmic scale.
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Figure 6.12: Averaged axial velocity gradient profiles in the lower (left) and the upper (right) part of

the channel, after convergence.
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Figure 6.13: Eddy viscosity profiles after convergence.

axial velocity gradient is amplified in the eddy viscosity profile. It is actually difficult to
perfectly reproduce strong averaged axial velocity gradient relative to a logarithmic velocity
field ([38], [5]). However, the averaged axial velocity profile after convergence is quite close to
the theoretical one, as shown in figure 6.14. All the profiles can be smoothed by a temporal
averaging, achieved after convergence on a few time steps (see figure 6.15 and 6.16). The
overestimation of the eddy viscosity is consistent with the slight overestimation of the averaged

velocity gradient d(u)/dz.

6.2.3 Simulation results relative to a fully rough bed

We now consider a rough bed channel characterised by a scale of protrusion {. Arbitrarily, we
chose ¢ = 1.1072 m, which corresponds to a fully rough bed for the present Reynolds number.
Indeed, the Reynolds number Re, = u.{/v is here equal to 500, which is much higher than
the critical value 70 [95]. Numerically, one of the differences with the previous smooth bed
case is the boundary condition: velocity of edge particles is now computed with equation
(6.36). Moreover, the mean bulk velocity is decreased if the friction velocity is maintained.
In this case, (U) = 0.746 m.s '. The averaged velocity gradients and the boundary velocity
are computed at each time step, as previously described. Considering a linear initial velocity
profile similar to the one represented in figure 6.7, the profiles after convergence are close to

the theoretical ones, as shown in figures 6.17 and 6.18.
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Figure 6.14: Averaged axial velocity profiles after convergence. left: normal scale; right: logarithmic
scale .
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Figure 6.15: Averaged axial velocity gradient profiles in the lower (left) and the upper (right) part of
the channel, with a temporal averaging achieved after convergence.
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Figure 6.16: Averaged axial velocity and eddy viscosity profiles, with a temporal averaging achieved
after convergence.
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Figure 6.17: Averaged axial velocity gradient profiles in the lower (left) and the upper (right) part of
a fully rough channel, with a temporal averaging achieved after convergence.



z (m)

CHAPTER 6. Turbulent incompressible flow simulations with Spartacus-2D and
146 Spartacus-3D

. Spartacus-2D 0375 . Spartacus-2D

L Theoretical profile

z (m)

Theoretical profile

0.2 03 04 05 0.6 0.7 08 0.0005 0.001 0.0015 0.002
1 .
<u>(m.s”) v; (m°s™)

Figure 6.18: Averaged axial velocity and eddy viscosity profiles in a fully rough channel, with a
temporal averaging achieved after convergence.

6.2.4 Partial conclusion

The SPH mixing length model gives satisfactory results for a 2D turbulent free surface channel
characterised by smooth and rough beds: the particles remain organised and the averaged axial
velocity field is close to the theoretical one. However, the velocity gradient estimation is quite

irregular and slightly overestimated, which leads to overestimated eddy viscosity profiles.

6.3 The numerical code Spartacus-3D

The SPH code Spartacus-3D, based on Spartacus-2D, has been developed during this work to
test the concept of Large Eddy Simulation (LES) in SPH. This section describes the funda-
mental LES equations implemented in Spartacus-3D and also presents its general algorithm

structure.

6.3.1 Fundamental filtered equations
The filtered continuity equation

The filtered continuity equation implemented in Spartacus-3D corresponds to equation (5.69).
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The filtered equation of motion

As in Spartacus-2D, two discretisations of the filtered pressure gradient term are implemented

in Spartacus-3D:

— my ,_ _ .
VPa=) s (Py + Pa) Wh (Tab) €qp (6.40)
b
and
= Dy Do) .
VP, = Pa Zmb (—3 + —g) Wh (Tab) €qp (6.41)
b pb pa

We recall that p, ~ p,, since nearly incompressible flows are considered in this work.
Ounly the viscous term (3.5) developed by Monaghan is considered in Spartacus-3D. Indeed,
the formulation (2.77) established by Morris is computationally inefficient for turbulent flows.

The filtered viscous term is then expressed by

>

b

u, bTab -
v, +VT,b+2V SV =8 by, (Tap) € 6.42
S o, ) B, () (6.42)

where v, denotes the eddy viscosity for particle a and v the kinematic viscosity of the fluid.
An example of the filtered momentum equation implemented in Spartacus-3D is given by

equation (5.70), where the kinematic viscosity v has been neglected.

SPH Smagorinsky model

The eddy viscosity is computed through the SPH Smagorinsky model (5.72) and the filtered
velocity gradients estimated with equation (5.73). The value of the Smagorinsky constant Cg

is adjusted by the user in a parameter file.

External forces

All external forces that could be considered in Spartacus-2D (see part 3.1.3) could also be

included in Spartacus-3D in the same way.

The filtered state equation

Filtered particle pressure is determined through the filtered state equation (5.71).

Time step and temporal integration

As in Spartacus-2D, the time step d¢ is here evaluated through the condition (3.23) and the

previous filtered equations are integrated in time with the fully explicit method.
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6.3.2 Kernel and averaged values
Kernel derivative

As in Spartacus-2D, the first derivative of the third, fourth and fifth order spline kernels are
considered in Spartacus-3D, where they are defined by

) -3¢+ 34> if 0<q<1
wn(9) = —3 -3(2-¢° if 1<¢g<2 (6.43)
0 if ¢g>2
5 3 3 3 1 3 .
—4(3—-¢q)"+20(3—q)" —40(5—¢q)" if 0<¢g<05
51 ) —4(3—q)°+20(3 —¢)° if 05<¢<L5
h(9) = 5oo3 3 _ (6.44)
200013 | —4 (3 — ) if 1.5<q¢<25
0 if ¢>25
—5(3-¢)"+30(2-¢)*=75(1—-¢)" if 0<g<1
, 7 508 -¢)"+30(2-¢)* if 1<g<?2
= 6.45
W (9) = e\ s 3—q)* it ¢>3 (6.45)
0 if ¢>3

with g denoting the ratio r4/h.

Averaging with the kernel

In order to obtain the averaged values of a LES, the classical process used in Eulerian methods
is here adapted to SPH. The definition of a fixed grid at the beginning of the calculation is
hence necessary. If a periodic flow is investigated, the initial particle distribution could be
considered as a fixed grid. The idea to use a grid in a particle code was first introduced in
PIC method (see chapter 1). In Spartacus-3D, the averaged values are obtained according to

the following process.

1. Filtered fields are interpolated on the fixed grid with the kernel function, as represented
in figure 6.19. In order to spare computing time, the cubic cell method described in part

6.3.3 is considered and the third order spline kernel, defined by

L [ 13+ i 0<g<t
wh (9) = —5 1@2-9¢)° if 1<qg<?2 (6.46)
0 if ¢g>2
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Figure 6.19: Interpolating filtered fields to the fixed grid with the kernel function.

is used. The filtered value A for the grid point M is thus estimated by

_ mp —
Ay =>" p_bbAbwh (ra10) (6.47)

where b corresponds to SPH particles close to M. Two examples of interpolated fields

are presented in figures 6.20 and 6.21.

2. For a periodic flow, all interpolated fields are temporally averaged until the end of the
calculation. In classical Eulerian codes, the temporal averaging could be achieved at each
time step. In Spartacus-3D, since the previous interpolating process is time consuming,

the temporal averaging is carried out each 100 or 1000 time steps.

3. If the flow is characterised by one or several homogeneous directions, the interpolated

fields are also spatially averaged along the homogeneous direction(s).

6.3.3 Optimisations and algorithm structure
Number of neighbours in a 3D approach

In a 2D approach, the neighbours for a particle a are located within a disc characterised by a
radius proportional to the smoothing length h and centred on a. In a 3D approach, they are
located within a sphere characterised by the same radius, which considerably increases the
number of neighbours (see figure 6.22). For instance, considering a fourth order spline kernel
and a smoothing length such as h = 1.5 dr gives 44 neighbours for a particle a in the case of
the 2D free surface channel investigated in this work. In a 3D approach, the same parameters
give 250 neighbours whereas a simple finite difference discretisation on a square grid only
relates 12 nodes. Nowadays, workstations and computers can not handle such high number of
neighbours in a SPH code. In order to reduce the CPU time, the user should consider a low

order kernel and a small smoothing length value.
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Figure 6.20: Filtered axial velocity (left) and corresponding interpolated (right) fields.
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Figure 6.21: Filtered axial velocity (left) and corresponding interpolated (right) fields.
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Figure 6.22: Number of neighbours in a 3D (left) and a 2D (right) approach.

Link list and asymmetrical principles

In order to efficiently select the neighbours for a particle, the “link list” method (see part 3.4.1)
used in Spartacus-2D is directly adapted to Spartacus-3D. The square cells used in 2D are
here replaced by cubic cells. Therefore, for a particle a located in a cubic cell, all the particles
located in a-cell and in the 26 adjacent ones are considered as potential neighbours.

Once again, symmetry principles described in part 3.4.3 are used to reduce CPU and memory

costs.

Code structure

The simplified algorithm structure of Spartacus-3D for a LES is described in figure 6.23.

6.4 Large Eddy Simulation of a 3D turbulent free surface chan-
nel with Spartacus-3D

The SPH Smagorinsky model implemented in Spartacus-3D is here applied to the simulation

of the outer layer of a 3D turbulent free surface channel.
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Figure 6.23: Simplified algorithm structure of Spartacus-3D for a LES.
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Fluid particles (z, z, y) 120 x 40 x 20
Edge particles 2 400
Mirror particles 7 200
Total particle number 105 600
Particle initial spacing: ér (cm) 1.

Table 6.6: Fluid, edge and mirror particle discretisation for the 3D turbulent free surface
channel.

6.4.1 System modelling

Simulation conditions

The physical characteristics of the simulated flow are identical to those considered in part
6.2.1 (see table 6.2).

System discretisation and boundary conditions

The 3D channel, represented in figure 6.24, must be long and large enough in order to represent

the large structures of the flow [83]. Periodic conditions are applied in both axial and spanwise

Free surface

L=12m

Figure 6.24: 3D free surface channel scheme.

(respectively x and y) directions and the system discretisation is described in table 6.6. The
concept of edge particles is once again introduced and the boundary conditions are identical to
those described in part 6.2.1. Nevertheless, the boundary velocity is imposed to the theoretical

value in order to spare computing time, and only the case of a smooth bed is herein considered.

Initial conditions

When achieving a LES with an Eulerian code, it is quite common to start from an averaged ve-
locity field [74] corresponding to an analytical solution or obtained with a statistical precursor
calculation. Moreover, in order to artificially create some turbulence [83], some random noise
can be added at the beginning of the calculation to the averaged field. In the case considered
here, the initial velocity field is given by the log-law (6.23) (see the left picture of figure 6.25).

However, it seems that the introduction of random noise in SPH calculations is not necessary



CHAPTER 6. Turbulent incompressible flow simulations with Spartacus-2D and

154 Spartacus-3D
Order of the spline kernel | 3
h/ér 1.
co (m.s’l) 50

Table 6.7: Main SPH numerical parameters for the 3D tubulent free surface channel.

to create artificial turbulence. Indeed, the Lagrangian motion seems to induce some seeding

perturbations by itself.

SPH equations and numerical parameters

As for the SPH mixing length model, the filtered velocity gradients for edge and fluid particles
are determined with equation (5.73). The SPH Smagorinsky model (5.72) with a constant
Cs = 0.1 is then used to compute the eddy viscosity of these particles. The filtered momentum
equation for particle a is thus identical, from a formalistic point of view, to the averaged

momentum equation (6.38), i.e.

dﬂa <1_)a + Dy UT,a +VUTh Ugp-Tap ) . e
— :—E mp —8— : Wh (Tap) €gp +9 + F 6.48
dt b PaPb Pa + P 7‘21, +n? () €ay - ¢ ( )

where F'¢ corresponds to the external driving force applied to each fluid particle. As previously
done, this force is updated at each time step in order to impose the correct mass flow rate.
All other equations correspond to those implemented in Spartacus-3D (see part6.3.1). The
main SPH numerical parameters for this test case are presented in table 6.7. The low order
spline kernel and the value of the parameter h/dr were chosen in order to reduce the number
of neighbours for each particle, sparing hence the computing time. In this case, 80 neighbours

are considered.

6.4.2 Simulation results
Qualitative instantaneous considerations

At variance with the previous mixing length model, the SPH Smagorinsky model does not keep
the particles organised, as shown in figures 6.25 (right) and 6.26. Contrary to classical Eulerian
codes, it hence reveals that the particle motion induces some fluctuations, without considering
any artificial noise. In order to have better visualisations, the particle axial velocity field of
figure 6.25 is interpolated on a grid 2 by a postprocessing operation (see figure 6.27). One
can notice that the slices extracted from this field and represented in figures 6.27 and 6.28 are
typically turbulent, with velocity fluctuations in all directions [82]. As shown in figure 6.29,
the fluctuations keep the instantaneous profiles relatively close to the average one.

2This grid must not be confused with the one used for the averaging process introduced in part 6.3.2.
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Figure 6.25: Initial axial velocity field (left) and instantaneous axial velocity field after convergence
(right).
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Figure 6.26: Instantaneous pressure field after convergence.
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u(m/s) u(m/s)
143 1.43
1.39 1.39
1.34 1.34
1.30 1.30
1.25 1.25
1.20 1.20
1.16 1.16
111 111
1.07 1.07
1.02 1.02
0.98 0.98
0.93 0.93
0.88 0.88
0.84 0.84
0.79 0.79

Figure 6.27: Instantaneous axial velocity field after convergence interpolated on a fixed grid (left) and
a (z,z) slice in the centerline of the channel (right).

Figure 6.28: Slices (y, z) extracted from the interpolated axial velocity field of figure 6.27.
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Figure 6.29: Instantaneous axial velocity (left) and pressure (right) profiles in the middle of the
channel.

Averaged velocities and pressure

The averaged values for this simulation are obtained according to the process described in part
6.3.2. Since the flow is periodic, the fixed grid corresponds to the initial particle distribution
(see the left picture of figure 6.25). The averaging procedure begins when a particle has been
transported on a distance equal to 9 times the channel length, after which the turbulence
can be considered as fully developed. In order to obtain smooth statistical values, 100 fields
are considered and spatial averagings according to z and y directions are also applied. The
right picture of figure 6.30 firstly proves the efficiency of the averaging process: the pressure
fluctuations depicted on the right picture of figure 6.29 are completely smoothed out after
averaging. Moreover, the averaged pressure profile is consistent with the theoretical one.
Even if particles are characterised by 3D motions, the left picture of figure 6.30 firstly reveals
that the averaged vertical and spanwise velocities are zero. It also reveals that the averaged
axial velocity profile is quite close to the theoretical one. Close to the wall, the very sharp
velocity gradient shows that there is insufficient mixing probably due to depleted resolved
eddies. In Eulerian LES, a similar behaviour appears where the grid resolution is too coarse.
This is resolved by local mesh refinement whereas in the present LES, initial particle spacing

is constant. A kernel characterised by an adaptive radius could then be used.
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Figure 6.30: Averaged velocity (left) and pressure (right) profiles.

Turbulent intensity

In order to quantify the turbulent intensity of a flow, rms-values based on velocity fluctuations
and defined by

Ui rms = (u?) (6.49)

are often considered. u} denotes the fluctuation velocity in i-direction and (.) corresponds to
the averaging operator. These values characterise the turbulent intensity in ¢-direction. They
can be determined by postprocessing the results if enough instantaneous files (at least 50 for

the considered flow) are stored during the calculation. A second way is to consider the relation

Ui, rms = <'U'12> - <'u'z>2 (6'50)

which avoids the storage of many instantaneous fields but requires the time averaging of
uZ2 The second method is here implemented in Spartacus-3D. Figure 6.31 reveals that the
axial (respectively vertical) fluctuations are overestimated (resp. underestimated) compared
to the experimental data obtained by Nezu [66]. The short width of the channel could be
responsible for these discrepancies. Indeed, a channel four times wider is usually considered
with classical Eulerian codes. Due to numerical and computational limitations, Spartacus-3D
can not currently handle such channels which will involve at least 400 000 particles. Moreover,
the axial turbulent intensity overestimation could also be linked to the pressure estimation.

Due to the state equation, the pressure gradient term may introduce extra noise when two
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particles are getting too close to each other. A fully incompressible method (see part 2.4.3)
should then be used to avoid this numerical phenomenon. Indeed, pressure fluctuations are
known to enforce return to isotropy by transfering energy from u? to v? which would reduce

the discrepancy.
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Figure 6.31: rms values of Spartacus-3D (e) compared to experimental values (——) [66].

6.4.3 Partial conclusion

Contrary to classical Eulerian codes, Spartacus-3D does not require artificial noise to generate
turbulent fluctuations. The instantaneous fields after convergence are typically turbulent, with
velocity fluctuations in all directions. The averaging process introduced in the SPH code is
quite accurate as well and gives smooth averaged profiles. The average velocity and pressure
fields obtained with Spartacus-3D are on the whole satisfactory. However, more research has

to be achieved to correctly reproduce turbulent intensities and the near wall features.

6.5 Large Eddy Simulation of a 3D dam breaking with Spartacus-
3D

A first attempt to apply the SPH Smagorinsky model implemented in Spartacus-3D to a

complex case is presented herein: a 3D dam breaking problem, subject to gravity, is considered.
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H, | 09
H; |03
L, | 0.9
Ly |03
ly | 0.6
Iy 10.6

Table 6.8: Dimensions (in meters) of the dam breaking system.

6.5.1 System modelling
System discretisation
The system, periodic in the spanwise direction y, is represented in figure 6.32 and its dimen-

sions are defined in table 6.8. The system discretisation is described in table 6.9.

Fictious dam

la

V4
' K
X

Lw

Figure 6.32: 3D dam breaking scheme.

Boundary and initial conditions

For reasons of convenience, wall and mirror particles are characterised by a zero velocity. In
order to ensure the impermeability of the walls, the density of wall and mirror particles evolve
at each time step according to the symmetry process described in part 2.7.2. The particles
are initially distributed on a cartesian lattice, as shown the top left picture of figure 6.34.

Due to the rapid dynamic characteristic of the problem, achieving a settling phase before the



6.5. Large Eddy Simulation of a 3D dam breaking with Spartacus-3D 161

Fluid particles (z, z,v) 30 x 30 x 60
Wall particles 16 680
Mirror particles 50 040
Total particle number 120 720
Particle initial spacing: dr (cm) 1.

Table 6.9: Fluid, wall and mirror particle discretisation for the 3D dam breaking.

Order of the spline kernel | 3
h/ér 1.
co (m.sil) 20

Table 6.10: Main SPH numerical parameters for the 3D dam breaking.

beginning of the calculation is useless. At ¢ = 0, the fictitious dam is suddenly removed and

one focuses on the instantaneous fluid motion.

SPH equations and numerical parameters

All the SPH equations considered here are identical to those described for the previous channel
case. However, the filtered momentum equation does not exhibit the external force F'¢, since
the fluid is set in motion by gravity effects. The Smagorinsky constant is still equal to 0.1 and

the main SPH numerical parameters are presented in table 6.10.

6.5.2 Setting up the experiment

In order to check the consistency of the simulation results, a basic experiment has been
achieved at TU/Delft. The channel represented on figure 6.33 has been used and the sluice
gate has been placed at a position consistent with the ratio Hy/Ly. It is removed with a
manual pulley system, as represented in figure 6.33. A digital camera Sony DSC-P5 of 25
Hz has been used for the visualisation, and frames of size 320 x 240 are considered for the

comparisons.

6.5.3 Simulation results

Figure 6.34 to 6.43 represent the fluid motion simulated by Spartacus-3D and compared to

the experimental data, at similar non-dimensional times defined by

(6.51)
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aboratory for

Aero &

Dynamics

Figure 6.33: Dam breaking experiment set up (left) and manual pulley system to “instantaneously”
remove the sluice gate (right).
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where t; denotes the physical time of the simulation (or of the experiment), H; the initial

height of the fluid considered by Spartacus-3D (or in the experiment) and g the gravity.

Figure 6.34: Spartacus-3D results (top) compared to experimental results (bottom) at Ty = 0 (left)
and around T; = 1.0.10~2 (right).

From a qualitative point of view, the results of Spartacus-3D are on the whole quite
satisfactory. The wave breaking depicted in figure 6.38 is very similar to the experimental one.
Moreover, the reflection wave motion (see figure 6.42) and the fluid behaviour near walls (see
figures 6.41 and 6.43) are also accurate. However, the elastic behaviour of the wave simulated
by Spartacus-3D in figure 6.39 is not realistic and can be linked to the poor pressure estimation

or to a dissipation underestimation.

6.5.4 Partial conclusion

In order to accurately validate Spartacus-3D for this test case, experimental measurements
with PIV for instance could be achieved. However, the first results presented here are promis-

ing and more investigation will be done in the future.
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Figure 6.35: Spartacus-3D results (top) compared to experimental results (bottom) around Ty

2.0.102 (left) and T; = 3.0.10~2 (right).

Figure 6.36: Spartacus-3D results (top) compared to experimental results (bottom) around Ty

3.7.1072 (left) and T; = 4.5.10~2 (right).
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Figure 6.37: Spartacus-3D results (top) compared to experimental results (bottom) around Ty =
6.0.1072 (left) and T; = 8.7.102 (right).

Figure 6.38: Spartacus-3D results (top) compared to experimental results (bottom) around Ty =
1.0.107! (left) and T; = 1.1.10~! (right).
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Figure 6.39: Spartacus-3D results (top) compared to experimental results (bottom) around Ty =
1.3.107! (left) and T; = 1.4.107! (right).

Figure 6.40: Spartacus-3D results (top) compared to experimental results (bottom) around Ty =
1.8.107! (left) and T; = 2.1.10! (right).
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e

Figure 6.41: Spartacus-3D results (top) compared to experimental results (bottom) around Ty =

2.7.107 (left) and Ty = 3.0.10~! (right).

Figure 6.42: Spartacus-3D results (top) compared to experimental results (bottom) around Ty =
3.2.107 ! (left) and Ty = 3.7.107! (right).
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Figure 6.43: Spartacus-3D results (top) compared to experimental results (bottom) around Ty =
4.2.1071 (left) and Ty = 4.8.10~! (right).




Chapter 7

Conclusion and future work

Some laminar validations of SPH were firstly performed in this work. The investigation of
a settling phase in a 2D free surface channel illustrated the problem of tensile instabilities;
the introduction of a damping term successfully removed these perturbations and an accurate
hydrostatic field was obtained. The study of a laminar flow in the same channel empha-
sized the importance of viscous effect modelling and boundary conditions: in order to reach
a satisfactory axial velocity profile, viscous effects were modelled through tangential forces.
Moreover, no-slip boundary conditions at the wall require to impose an asymmetric velocity
to the mirror particles. The ability of SPH to reproduce laminar recirculation zones was also
revealed through a 2D hill flow simulation. For this test case, an averaging procedure was
developed to smooth the slight unsteadiness due to the Lagrangian characteristic of SPH and
the velocity fields were then close to those obtained with an Eulerian code. The detachment
and reattachment point predictions were accurate as well. The simulation of a laminar flow in
a 2D backward facing step geometry proved the limitation of the classical nearly incompress-
ible assumption used in most SPH codes. To avoid particle clumping, a high speed of sound
was considered, leading to a relevant reattachment point prediction. However, the computing
times were higher and the velocity profiles still revealed some slight discrepancies compared
to those obtained with classical Eulerian codes.

In order to simulate turbulent flows, a SPH mixing length model was developed and success-
fully applied to a 2D free surface channel. For smooth and fully rough beds, the velocity
profiles were very close to the theoretical ones. The drawback of this model was an overesti-
mation of the eddy viscosity, due to an overprediction of the velocity gradient. Nevertheless,
this problem is overcome by considering more complex turbulent models, such as one or two
equation models.

The last part of this work presented a first attempt to adapt Large Eddy Simulation concept
to SPH. A simple Smagorinsky model was applied to a 3D turbulent free surface channel and
gave satisfactory averaged profiles. However, due to the pressure calculation, the turbulent

intensity was not perfectly computed. The same model was successfully applied to a 3D dam

169
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breaking: the comparison of the computed free surface motion with a real experiment was
quite realistic.

Since this work revealed the limitation of the nearly incompressible assumption, the devel-
opment of a fully incompressible method would be of great interest: the calculation stability
would probably be improved and the time step would likely to be reduced. Since the 3D
calculations also emphasized the huge calculation time required by 3D-SPH, a parallelisation
of any SPH code seems to be useful. Finally, the implementation of new temporal integration

schemes should increase the time step and thus reduce the calculation times.
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Viscous effects modelled by Morris

The aim of this annex is to proove that viscous effects modelled by Morris’ formula (2.77) are
consistent with the term vAw of the momentum equation (2.50). Such a proof was also given
in [93] for Monaghan’s formulation (2.78). According to Morris, the viscous force relative to

particle a can be written:

mp (Ha + 1) Tap-Wh (Tab) €qp
Fv = a aby, (A.1)
¢ ; PaPb (7“21, + 772) “

where €,, = r,,/Ta- Assuming constant viscosity and density and neglecting n?, equation
(A.1) gives:

My W (Tab)
FY =2v E — A2
Za - Ob Tab ZLab ( )

A second order Taylor development of the velocity u,, written with Einstein’s conventions
gives:

j 1 62’11/1'
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where 73, = rg.e;, e; corresponding to the unit vector relative to j-direction. With €, =

€qb-€j; €quation (A.3) is written:
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In continuum formalism, equation (A.4) is written

8211,2'
6a:j8mk

b e,dQ) (A.5)

a

FY :21// wp(r) Ou;
Q 0

Zj

ele;d) — 1// wp(r)r
a Q

where €2 corresponds to the influence domain of particle a. If this domain is a disc, equation
(A.5) becomes

F! =2 Ou; /ht wp(r)rdr /27r e dbe; —v Oui /ht wp (r)rdr /27r elekdfe; (A.6)
R I W N 2T N N A _Jo=0 o
ou; 0%u;
F!=2v— | TAj; — v ———— ) JBjk A7
@ Y 83;]'),1 7 v aacjaxk a ki ( )

€' denotes the i-coordinate of the unit vector oriented from particle b and pointed towards
particle a. For instance, in a 2D repair (z,y) where a is the origin, ¢ = cos# if i = z and
€ = sinf if i = y. In equation (A.7), since the first order term is zero, only the second order
term remains. The quantities Bjy; of the second order term are hence summations such as
f;;ro cosP0.s5in%0d0 which are zero except if p and g are both even. Non zero quantities must
check By, = B,, = .

An integration by parts of J gives

hi

J = —2/ rwp(r)dr (A.8)
r=0

Regardless of the kernel, the condition [, wp(r)dQ =1 implies J = —1/7. Consequently, the

viscous force applied on particle a is written:
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Contrary to the proof relative to Monaghan’s formula established in [93], it is thus not neces-

sary to consider the continuity equation to proove that

Fy =vAuy, (A.10)
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Necessary stability condition

The aim of this annex is to derive the stability criterion (2.119). This proof was achieved by
Violeau in [86].
The potential energy of a static fluid is defined according to

Ep:];)—l—gz:—— (B.1)

where T' denotes an equivalent stress. In SPH formalism, the potential energy of a particle a

1s written

Ep,a = Z Ep,bwh (Tab) (B2)
b

The Taylor development of a function F' around a point located at r, gives

1

F=F,+G,0+ Eé_gamo(w?) (B.3)
where
oF

a = 87 € = (VF)a (B5)

0*F
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It is now possible to develop (B.2):

oFE ra
- Z pb J ZE b—wh (Tab) (B.7)

Bacz-

a

Since
G = VEp, Z bVawh rab) (B.S)

one obtains
G = Z bwh rab b (Bg)
Remark: In a 1D problem, €,, = 1. Generally, we recall that €y, denotes the ratio r,,/7qp.
Moreover, the second derivative of the potential energy is
O’Ep, Z
aa:iaa:j pb or 97

<ﬁwh ('rab)> (B.10)

Besides,

i o0
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where 0y, denotes the second derivative of the kernel and J;; the Kronecker’s symbol. There-

fore, it comes

8By
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then

h (Tab)

Tab

Qa = Z Epab |:wh (Tab) €ap D €gp T+ (£ —€qp ® gab):| (B13)
b

where [ is the identity tensor. In a 1D problem, the second term is zero. Then, if we consider a
flow where the density is sensibly constant, one can deduce a necessary condition of equilibrium

and stability from equations (B.9) and (B.12). Equilibrium corresponds in equation (B.3) to
G, = 0 and stability is linked to the positive defined character of H Y
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e Equilibrium

Va, Y Tyin (rap) €gp =0 (B.14)
b

e Stability

Va, Y Tyiip (res) <0 (B.15)
b

The first equation means that each particle receives a zero resultant force. The second one

corresponds to the stability condition (2.119).
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