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Incompressible SPH (ISPH) on the GPU
Incompressible free-surface flows involving highly complex and violent phenomena
are of great importance to the engineering industry. Applications such as breaking-
wave impacts, fluid-structure interaction, and sloshing tanks demand an accurate
and noise-free pressure field, and require large-scale simulations involving millions of
computation points. This thesis addresses the need with the novel use of a graphics
processing unit (GPU) to accelerate the incompressible smoothed particle hydro-
dynamics (ISPH) method for highly non-linear and violent free-surface flows using
millions of particles in three dimensions.

Compared to other simulation techniques, ISPH is robust in predicting a highly
accurate pressure field, through the solution of a pressure Poisson equation (PPE),
whilst capturing the complex behaviour of violent free-surface flows. However, for
large-scale engineering applications the solution of extremely large PPE matrix sys-
tems on a GPU presents multiple challenges: constructing a PPE matrix every time
step on the GPU for moving particles, overcoming the GPU memory limitations, es-
tablishing a robust and accurate ISPH solid boundary condition suitable for parallel
processing on the GPU, and exploiting fast linear algebra GPU libraries.

A new GPU-accelerated ISPH algorithm is presented by converting the highly
optimised weakly-compressible SPH (WCSPH) code DualSPHysics and combining
it with the open-source ViennaCL linear algebra library for fast solutions of the
ISPH PPE. The challenges are addressed with new methodologies: a parallel GPU
algorithm for population of the PPE matrix, mixed precision storage and compu-
tation, and extension of an existing WCSPH boundary treatment for ISPH. Taking
advantage of a GPU-based algebraic multigrid preconditioner for solving the PPE
matrix required modification for ISPH’s Lagrangian particle system.

The new GPU-accelerated ISPH solver, Incompressible-DualSPHysics, is vali-
dated through a variety of demanding test cases and shown to achieve speed ups of
up to 25.3 times and 8.1 times compared to single and 16-threaded CPU computa-
tions respectively. The influence of free-surface fragmentation on the PPE matrix
solution time with different preconditioners is also investigated. A profiling study
shows the new code to concentrate the GPU’s processing power on solving the PPE.

Finally, a real-engineering 3-D application of breaking focused-wave impacting
a surface-piercing cylindrical column is simulated with ISPH for the first time. Ex-
tensions to the numerical model are presented to enhance the accuracy of simu-
lating wave-structure impact. Simulations involving over 5 million particles show
agreement with experimental data. The runtimes are similar to volume-of-fluid and
particle-in-cell solvers running on 8 and 80 processors respectively. The 3-D model
enables post-processing analysis of the wave mechanics around the cylinder.

This study provides a substantial step for ISPH. Incompressible-DualSPHysics
achieves resolutions previously too impractical for a single device allowing for the
simulation of many industrial free-surface hydrodynamic applications.
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Chapter 1

Introduction

1.1 Background and motivation

Violent hydrodynamic free-surface flows are of great importance to the engineering

industry, and there is a requirement to address these for engineering design where

there is currently a lack of appropriate tools. Applications for the civil, mechanical,

coastal and marine industries include breaking-wave impacts, sloshing tanks, green-

water overtopping, and open-channel flows. Understanding these flow behaviours

and their impact forces with structures is critical to successful engineering design.

Engineers can make use of physical experiments and/or numerical modelling and

analytical approaches to determine impact forces and structural response. Whilst

experiments provide real-world data from an actual flow, there are often undesirable

issues such as high costs, lack of resources, and time allocation. Therefore, experi-

mental design is often too impractical, or even impossible, to undertake. Moreover,

capturing or reproducing certain complex flow phenomena may become challenging

when performing laboratory investigations at reduced scales.

There is however, a wealth of experimental flow data and analytical solutions to

help validate numerical models used in scientific simulations, which aim to predict

flow behaviour according to the governing equations. Simulations can be less inten-

sive in terms of cost and resources, and dependent on the application, the actual

scale of the problem can be simulated. Moreover, they can be repeated many times

with varying parameters for little extra effort, and they allow one to visualise and

28



1.2. SMOOTHED PARTICLE HYDRODYNAMICS (SPH) AND
INCOMPRESSIBLE SPH (ISPH) 29

analyse flow details often too impractical to obtain from an experiment.

The computation of complex phenomena by direct solution of the governing

equations is usually impossible, thus simplified models have often been used in the

past. Computational fluid dynamics (CFD) is the study of fluid flows by numeri-

cal simulation methods. The field of CFD has established many methods to solve

the governing equations of fluid motion, known as the Navier-Stokes equations, for

a wide range of problems including free-surface flow applications. Conventionally,

these methods have used a computational grid or mesh to perform the simulation.

Techniques such as the finite difference method (FDM), the finite element method

(FEM), and the finite volume method (FVM) have all found widespread application

in industry and academic research covering a vast array of hydrodynamic problems.

Software packages using these mesh-based methods include OpenFOAM [1], AN-

SYS Fluent [2], and Star-CCM+ [3]. However, they have limitations and problems

when applied to violent free-surface flows involving extreme flow deformations and

discontinuities due to the presence of a computational grid in the numerical method.

Therefore, this research develops a new numerical model and engineering tool

for simulating hydrodynamic applications involving violent free-surface flows, where

accurate computation of the pressure field is required. The novel use of a graphics

processing unit (GPU) for hardware acceleration is chosen to enhance practicality

of simulations for large-scale 3-D engineering applications.

Recently, techniques with no computational grid or mesh have appeared and are

starting to challenge the dominance of FDM, FEM and FVM. One such meshless

approach is smoothed particle hydrodynamics (SPH), a novel method well-suited

for computing violent free-surface flows.

1.2 Smoothed particle hydrodynamics (SPH) and

incompressible SPH (ISPH)

SPH was originally created for the field of astrophysics by Gingold and Monaghan [4]

and Lucy [5] in 1977. The method represents the domain as a set of computa-
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tional interpolation points more commonly referred to as particles. As a Lagrangian

method, each particle is able to move freely within the domain and possesses physical

quantities, such as pressure and velocity, of the representative material mass. The

independence from a computational mesh allows SPH to simulate highly non-linear

and complex phenomena.

Since Monaghan [6] applied SPH to free-surface flows in 1994, the method has

had many successes modelling such flows within engineering applications including

breaking waves [7], sloshing tanks [8], body-water slam [9], and water column con-

verters [10]. For hydrodynamic applications, SPH has two main formulations for

describing a fluid. Weakly-compressible SPH (WCSPH) is the original form of SPH

and uses an artificial equation of state that allows density to vary within about 1%

of a reference value. Traditionally, WCSPH exhibits spurious fluctuations in the

pressure field and subsequent instabilities. However, over the years WCSPH has

been much improved with noise being significantly reduced (see Section 2.5 later).

The second formulation, incompressible SPH (ISPH), enforces incompressibility of

the fluid by keeping the density constant and solving pressure by means of a pres-

sure Poisson equation (PPE) requiring solution of a sparse matrix. ISPH has been

shown to produce highly accurate and near noise-free pressure fields [11]. ISPH is

therefore an attractive simulation tool for applications including wave impact and

fluid-structure interaction, and is the focus of the research objective in this thesis.

However, ISPH is more computationally demanding compared to other numerical

methods and WCSPH. Therefore, parallelism and hardware acceleration is required

for ISPH to make it practical and attractive for real 3-D engineering applications.

1.3 Parallel programming and the

graphics processing unit (GPU)

The simulation of 3-D engineering applications may take a large amount of compu-

tational time depending on the complexity of the flow, domain size, and required

physical time to be simulated. For example, a case such as breaking waves is particu-
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larly demanding, requiring millions of particles in a large computational domain and

the simulation of several seconds of physical time where the time step is on the order

of 10−4 to 10−6 seconds. Furthermore, although no mesh generation is required, La-

grangian methods such as ISPH are particularly time consuming due to the need to

compute up to several hundred neighbouring particle-particle interactions for each

individual particle at every time step.

Parallel programming and hardware acceleration allows code to be executed on

thousands of processors simultaneously and has been utilised within scientific com-

puting to significantly reduce the computational time of complex large-scale simula-

tions. Originating from the gaming industry, graphics processing unit (GPU) hard-

ware acceleration has recently emerged as a relatively cheap, and energy-efficient

high performance computing (HPC) tool compared to that of conventional HPC

central processing unit (CPU) clusters. Parallel programming is more complex than

conventional serial coding and much of the current research in the field focuses upon

optimising parallel algorithms for different hardware types. However, the emergence

of parallel programming paradigms such as Compute Unified Device Architecture

(CUDA) [12] and Open Computing Language (OpenCL) [13] greatly reduces the

effort required to program such hardware.

Lagrangian methods and N-body simulations, such as SPH, are well suited for

parallel processing, thus such methods have advanced rapidly with new computa-

tional hardware such as GPUs. With a simpler formulation, implementing WCSPH

on a GPU is now common practice, however the field of ISPH still requires such a

code.

1.4 Aim and objectives

The aim of this thesis is to provide a numerical solver for incompressible and violent

free-surface flows with application to real 3-D engineering problems by development

of an open-source GPU-accelerated ISPH solver. The use of parallel programming

and GPU hardware acceleration will reduce simulation times of the computationally

expensive ISPH method. The solver created within this project will be a powerful
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engineering tool with relatively cheap hardware requirements, accessible to both

research groups and small companies.

To achieve this aim, the research objectives are:

• Establish a parallel programming algorithm for ISPH and its implementation

on the GPU.

• Validate the accuracy and robustness of the resultant numerical solver with

2-D and 3-D test cases for confined and free-surface flows.

• Benchmark the performance analysis of the GPU-accelerated ISPH code against

single and multi-threaded CPU implementations.

• Simulate a real engineering problem of a focused breaking-wave impact on

a surface-piercing cylinder involving violent free-surface flow and compare to

physical experimental results.

1.5 Thesis outline

Immediately following this chapter will be a detailed justification of this study in-

cluding a review of published literature mainly regarding advances in SPH. Current

hardware acceleration options are also presented in more detail to establish the mo-

tivation for using the GPU to accelerate ISPH. This is followed by identifying the

challenges of implementing ISPH on the GPU.

Chapter 3 presents the fundamentals of the SPH method and the ISPH model

used for this study. An assessment of SPH boundary conditions appropriate for

the GPU is undertaken before implementation of the Marrone et al. [14] boundary

condition for ISPH on the GPU is proposed.

In Chapter 4, the novel implementation of ISPH on the GPU is described in

detail, which includes:

• The use of the open-source WCSPH solver software, DualSPHysics [15], and

its conversion to an ISPH code for the GPU.
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• Implementing the ISPH pressure projection step onto the GPU, with special

attention to the parallel population of the ISPH PPE matrix.

• The use of open-source linear algebra libraries for the GPU and in partic-

ular, the ViennaCL linear algebra library [16]. A modification to the Vien-

naCL library that allows the maximum independent set (2) algebraic multigrid

(MIS(2)AMG) preconditioner to be used with ISPH is also presented.

• The methods implemented to address the GPU memory limitations.

Chapter 5 presents a number of test cases for validation of the new GPU-

accelerated ISPH code, Incompressible-DualSPHysics. The impulsively started plate

case is a demanding test that shows the order of convergence of the methodology

compared with the analytical solution of Peregrine [17]. The stability and robust-

ness of the code is demonstrated with the case of 2-D incompressible flow around

a moving square in a rectangular box [18] a benchmark test case of the SPH Euro-

pean Research Interest Community (SPHERIC). Validation for a free-surface flow

is made by modelling the dambreak of Koshizuka and Oka [19]. The performance

of the new code is analysed for the dambreak case, in 2D and 3D, and compared to

a single and multi-threaded CPU version of the code.

The model for a numerical wave basin is presented in Chapter 6 where exten-

sions to the numerical methodology in Chapter 3 are made for the application of

wave propagation and impact. Focused wave groups, of non-breaking and breaking

nature, are simulated and comparisons of free-surface elevation and forcing on a

surface-piercing cylinder are made against the experimental data of Zang et al. [20].

An investigation of non-hydrostatic and hydrostatic pressures during peak loading

events is also made with post-processing analysis.

The final Chapter draws conclusions from the study, summarising the accom-

plishments and providing recommendations for future study to further improve upon

the research.



Chapter 2

Literature Review

2.1 Introduction

This chapter presents a critical examination of current literature regarding CFD

and identifies the shortcomings within the field with respect to violent hydrody-

namic engineering applications. The review establishes the need for ISPH on the

GPU. A comparative overview between mesh-based and meshless methods is made,

followed by an investigation of SPH and its two main formulations, WCSPH and

ISPH. Current hardware acceleration technologies and their role within SPH is also

included, with a particular focus on the evolution of GPU implementations. To help

reduce the complexity of implementing an efficient ISPH solver on the GPU, several

open-source GPU software are identified. Finally, the key challenges of ISPH on the

GPU, which this thesis will address, are established.

Prior to the main literature review however, the definition of a “violent incom-

pressible free-surface flow” is established in the following section.

2.2 The violent incompressible free-surface flow

The definition of a violent incompressible free-surface flow can be established in-

crementally by each explaining the “free-surface”, “incompressible”, and “violent”

parts of the flow characteristics one after the other:

• The free-surface flow: A flow where there is a free surface present. The
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surface of a fluid which is subject to zero parallel stresses is said to be a

free surface. This can also be defined mathematically by the “free-surface

condition” where DP/Dt = 0, such that P is pressure and t is time. A

common example is that of the interface between water and air as depicted in

Fig. 2.2. These boundary conditions defining the free surface can be elaborated

further as detailed by Dean and Dalrymple [21].

 

Air 

Water 

Free-surface 
interface 

 

Fig. 2.1: The free-surface interface between water and air.

• The incompressible free-surface flow: A free-surface flow where the fluid

is described as incompressible, that is the density of the fluid does not change.

In fluid dynamics, an incompressible fluid is described with the incompressible

Navier-Stokes equations, namely the conservation of mass equation:

∇ · u = 0, (2.1)

and the conservation of momentum equation:

du

dt
= −1

ρ
∇P + ν∇2u + f , (2.2)

where u is velocity, t is time, ρ is density, P is pressure, ν is kinematic viscosity,

and f is the acceleration due to any external forces in the system such as

gravity. Both equations are expressed in the Lagrangian form.

The divergence-free velocity condition (Eq. (2.1)) arises as a consequence of

the incompressibility condition, dρ/dt = 0. The conservation of momentum

equation (Eq. (2.2)) describes the fluid acceleration due to the force from a

pressure gradient, the internal viscous stress forces, and any constant force

fields (gravity in this case). In reality, there are no known completely incom-
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pressible fluids. However, there are many fluids, such as water, which can be

considered to incompressible due to the speed of sound in the medium.

• The violent incompressible free-surface flow: An incompressible free-

surface flow is considered to be violent when internal viscous stress forces of

the fluid are large enough to overcome the external forces (this is seen from

Eq. (2.2)). For example, in a breaking-wave, the internal stresses of the fluid

overcome internal body forces such as gravity, resulting in a separation of the

fluid’s surface, also referred to as fragmentation, as seen in Fig. 2.2.

Fig. 2.2: A violent breaking-wave [22]

However, in particularly violent cases, such as breaking-wave impacts, aera-

tion can occur at the free surface and the Mach number will change, causing

significant compressibility effects.

2.3 Applications and the need for computational

fluid dynamics (CFD)

In hydrodynamics, there are many violent free-surface flows of concern to engineers

during the design process. The following list includes such engineering applications,

which are also recognised as “real world” problems where the flows are in uncon-

trolled conditions:

• Waves and wave-structure impacts: The behaviour of oceanic waves are

of great importance to the design of offshore and coastal structures, which can

also extend to near-coastal regions inland that are susceptible to tsunamis.



2.3. APPLICATIONS AND THE NEED FOR COMPUTATIONAL FLUID
DYNAMICS (CFD) 37

In coastal areas, sea walls and breakwaters aim to protect infrastructure from

incoming waves [23]. Further offshore, the environment is highly unpredictable

and aggressive. Oncoming waves from multiple directions pose a risk to ships

and structures such as oil platforms and wind turbines [24]. Furthermore,

the movement of ships and response of floating objects can generate waves

themselves, increasing the complexity of the surrounding flow [21]. In addition

to complex, violent, and highly fragmented flow behaviour, high impact forces,

wave overtopping, and sediment scour are all possibilities in the presence of

waves.

• Sloshing problems: Sloshing refers to the movement of liquid within a con-

tainer and characterises a highly non-linear free-surface with a complex range

of motion types [25]. Dynamic loads caused by the motion of the liquid can

have a significant effect on the structure in which it is contained, and in some

cases the environment outside of the structure such as waves propagating from

the hull of a ship [26]. The phenomenon is applicable to containers such as

automotive vehicles including petroleum transport trucks, anti-roll vessels in

ships, and tall structures subjected to earthquakes such as water towers or

buildings with tuned liquid dampers.

• Open-channel flows: Effective and durable design of water infrastructure

systems is vital for society and the economy [27]. Investigation of flows over

weirs, in rivers, spillways, outflows, and other waterworks, can aid with design

efficiency and determine whether the flow has any detrimental effects such as

cavitation damage [28], which arises from large local pressures created from

a collapsing bubble in highly aerated flow. The numerical investigation of

phenomenon such as the hydraulic jump gives insight to the complexity of the

flow which hosts considerable pressure fluctuations and fluid-air mixing [29].

When considering such flows in engineering design, the role of CFD is com-

plimentary, or even tantamount, to physical experiments. Although experiments

provide results of real flow, there are many cases in which they are impossible, too
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impractical, and time consuming. The scale of the aforementioned problems are

such that prototypes are often too large and expensive to test at full scale and re-

ducing the dimensions restricts the observation of any complex flow phenomena.

Some problems require facilities which simply do not exist [30, 31].

CFD is required to fill in the gaps where experiments are limited and reduce

the uncertainty of particular engineering design problems. Furthermore, numeri-

cal simulations offer the capability to repeat experiments with different designs or

parameter calibrations without significant additional resources. With the correct

mathematical models, CFD has the ability to approximate with high fidelity any

desired flow at the actual scale of the problem. The use of CFD is now common

practice in the modern industry, a necessity for engineering design (of such complex

problems) to be an efficient process.

2.4 Options for CFD

The field of CFD offers a wide range of numerical methods and approximations for

many different fluid phenomena. For the applications of this thesis, the numerical

solver must be able to compute highly non-linear incompressible free-surface flows

of a violent nature characterised by fragmentations and discontinuities.

2.4.1 Mesh-based methods vs meshless methods

There are two ways to describe mathematically a flow field in CFD, Eulerian, and

Lagrangian. In the Eulerian frame, one measures fluid variables and rate of change

over a fixed location in space. Any fluid quantity, φ, is expressed as a function of a

fixed position, r, and time, t, i.e. φ = φ(r, t). On the other hand, the Lagrangian

approach follows identifiable pieces of matter (material elements) moving with the

flow. Quantities in this case are expressed as functions of the position of a fluid

mass centre point, r, with an initial position, r0, and time, i.e. φ = φ (r (t, r0) , t) .

Conventional meshed-based applications follow an Eulerian description of the

flow. The mesh, or computational grid, comes from the discretisation of the compu-
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tational domain as multiple control volumes, and allows for the efficient computation

of governing equations with the approximation of derivatives and other mathemati-

cal operations. Finite volume methods (FVM), finite difference methods (FDM) and

finite element methods (FEM) all rely upon a computational grid and are widely

used within the engineering industry for most applications [32].

In the context of simulating free surfaces, there exists several mesh-based meth-

ods involving the advection of particles on the underlying mesh, with a vast number

of variations. Here, a brief general overview of the more popular methods is made:

• Particle-in-cell (PIC): The particle-in-cell (PIC) method [33, 34] employs

particles which are able to move with the velocity field, and a fixed background

Eulerian mesh. Particle data is projected onto the background mesh to solve

the pressure field whilst enforcing the incompressibility condition. Pressures

at particle positions are then found via interpolation of the mesh points. The

method was purposefully designed for hydrodynamic problems of large dis-

tortions and discontinuities. The original formulation suffered from excessive

numerical diffusion due to the back and forth interpolation between the parti-

cles and background mesh [35], although this has since improved greatly with

development [36–38].

• Marker-and-cell (MAC): The marker-and-cell (MAC) method [39,40], de-

fines fluid-containing cells in the computational grid with massless “marker

particles”. The presence of a free surface in a cell is identified if the cell con-

tains marker particles and the adjacent cells are without any such particles.

Marker particles move from one cell to another at each time step according

to an interpolation of the background velocity field. The method has since

evolved, improving the resolution of the free-surface interface and including

definitions of the surface curvature and normals [41]. However, it has been

criticised for its heavy computational memory requirements compared to other

meshed methods.

• Volume-of-fluid (VOF) and Level set method : The volume-of-fluid
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(VOF) [42] method eliminates the need for storing particle data and instead

represents the amount of fluid inside a cell with a fractional volume value.

VOF is now perhaps the most popular of the mesh based methods for free-

surface flows due to its simplicity. However, with the use of volume fractions,

the method originally saw difficulty in defining correct fluid surface curvatures,

which the VOF community has invested great effort to develop [43–46]. An-

other popular method, the Level set method [47], defines the surfaces with

smoothed signed distance functions that can be solved by high-order schemes

for the advection equation. The LS method though produces higher numeri-

cal error than VOF, especially near interfaces with extreme deformations and

separation. Coupled Level set / VOF methods [48–50] have since emerged

to give the high numerical accuracy of VOF, and the well-defined interface

curvatures of the LS method providing a smoothness of discontinuous physical

quantities [50]. Unfortunately though, such methods still does not obey exact

conservation of mass around the free-surface interface [51].

Some meshed-based methods use an arbitrary Lagrange-Euler (ALE) approach [52,

53], which allow the vertex points of the mesh to move according to Lagrangian me-

chanics or any other prescribed mesh velocity. Although such methods can match

the free surface better than the purely Eulerian techniques, the efficient handling of

excessive mesh deformation remains to be a problem in some cases [54].

In addition to the more traditional aforementioned CFD methods, the Lattice

Boltzmann method [55, 56] has made a notable emergence as a promising tool for

the application of fluid dynamics problems. In the method, a lattice pattern is used

to define grid nodes and the governing Lattice Boltzmann equation is used to deter-

mine the transport of particle distribution functions (and therefore particles) across

the lattice. A local equilibrium distribution function is used to recover flow equa-

tions. The method was derived from the lattice-gas automata (LGA) [57] method,

and originally used to model problems of microscopic and mesoscopic nature but

has since been applied towards a diverse range of macroscopic free-surface flow ap-

plications [58–62]. The solution of the Lattice Boltzmann equation compared to
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the Navier-Stokes equations possesses several advantages. There is no non-linear

convection term, so the formulation is relatively simple, this includes an equation of

state for pressure when solving incompressible flow. The simplicity of the method

also makes it highly parallelisable [63] and there is relative ease for including com-

plex geometries [64]. Areas still in development for the method however include

the accurate enforcement of boundary conditions, limitations regarding the Mach

number, and memory consumption [65].

Compared to meshless methods, meshed methods (based on FEM, FVM, and

FDM) have been so successful due to their efficiency and accuracy for a wide range of

applications. Higher order approximation schemes are available and physics such as

incompressibility and turbulence can be implemented more rigorously. But despite

the numerous methods and successful commercial software packages (e.g. Open-

FOAM [1,66], ANSYS Fluent [2], STAR-CCM+ [3]) in CFD, the mesh-based tech-

niques still show disadvantages when it comes to modelling free-surface flows, and

more specifically those of a violent nature. Mass conservation at, and large transient

deformations of, the free surface are typical problems. Although one can reduce the

effects of such issues with adaptive remeshing and refinement, this solution can be

a highly expensive procedure, and there is the complexity of maintaining accuracy

as information is passed between successive meshes [67]. Moreover, the methods

struggle to deal with extreme changes in topology, describing break-up of the fluid,

which are present in many violent flows.

Meshless methods, on the other hand, are able to deal with such problems. They

follow a Lagrangian description of the flow field and usually require no explicit

treatment of the free surface. The domain is discretised as a set of computational

points which each contain physical properties of the local flow field [68]. Derivatives

and quantities are found through interpolation and points are free to move according

to governing equations. Due to the Lagrangian nature of meshless methods, they

are ideal for problems involving large deformations, discontinuities and highly non-

linear complex phenomena, which are all present in violent free-surface flows [67].

A major drawback of these methods though, is their large computational expense
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which originally hindered their development. As explained later in Section 2.6.1

the advancement of computing power over the years has enabled meshless particle

methods to gain traction and develop towards more practical applications. Presented

in the following is a brief overview of several meshless methods:

• Meshless local Petrov-Galerkin method (MLPG): The meshless local

Petrov-Galerkin method (MLPG) was first proposed by Atluri and Zhu [69]

and based on the local symmetric weak form and moving least squares (MLS)

approximation. Integrations are made within local domains of various regu-

lar shapes such as spheres, rectangles, and ellipsoids etc. However, the MLS

approximations create problems in boundary condition implementation and

it is, for certain problems, computationally expensive relative to other meth-

ods [70]. The applications of MLPG are mainly in solid mechanics, but the

method has been exercised in hydrodynamics such as within an extension of

the method by Ma [71] to simulate water waves; and the interaction of vio-

lent waves with elastic structures using the MLPG method based on Rankine

source (MLPG R) by Sriram and Ma [72]. Developments made by Najafi et

al. [73] allowed for Reynolds numbers up to and including 10,000, whereas

earlier formulations restricted the method to Reynolds numbers of no more

than 400 due to instabilities [74].

• Local radial point interpolation method (LRPIM): Liu and Gu [75] de-

veloped the local radial point interpolation method (LRPIM), which randomly

distributes an N number of nodes into a domain and evaluates a function φ(r)

using radial basis functions. Compared to MLPG, LRPIM has a lower com-

putational cost, due to its simple interpolation [75], and better capability for

dealing with boundary conditions [76]. LRPIM was originally created for the

analysis of free vibration in 2-D solids but has since been used for modelling

the dissipation process of excess pore water pressure [77] and a number of

natural convection problems in incompressible flows [76].

• Diffuse element method (DEM): The diffuse element method (DEM) by
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Nayroles et al. [78] is an expansion on the principles of the FEM. FEM inter-

polants are replaced with a weighted least squares fitting evaluated over a local

domain of nodes. This approximation is then used in the Galerkin method to

create the discrete functions. This makes for a more accurate computation

of gradients compared to the FEM model. Kronguaz and Belytschko [79] no-

ticed the original formulation constructs derivatives that, although consistent,

are not integrable, imposing difficulties when modelling more complex fluid

flows [80]. However, Kronguaz and Belytschko [81] proposed an extension of

the method to solve the issue and also increase the rate of convergence.

• Dissipative particle dynamics (DPD): First formulated by Hoogerbrugge

and Koelman [82], dissipative particle dynamics (DPD) aimed to be a combi-

nation of an improvement upon two methods: molecular-dynamics (MD) [83],

and lattice-gas automata (LGA) [57]. The first application of the method

was shown to be computationally cheaper than MD, and much more flexible

than LGA when simulating microscopic hydrodynamic phenomena. On the

other hand, the model is isothermal, meaning a temperature gradient cannot

be created as the method follows Brownian dynamics and does not conserve

energy [84].

• Vortex methods: Vortex methods, first proposed by Chorin [85], solve the

Navier-Stokes equations with the vorticity variable instead of the velocity field.

The approach works on the basis that contours moving relative to a diffusion

velocity conserve velocity circulation. The technique considers viscosity and

density to remain constant and mainly deals with viscous, incompressible flu-

ids. Relatively small dependence on the Reynolds number and infinite region

capabilities are a couple of the attractive qualities of the method [85]. How-

ever, in Chorin’s method, single point vortices are created and accuracy is

lost very quickly if the delta function is of the same relative magnitude to the

original vortex spacing [86]. This can give rise to singularities, and so “vor-

tex blobs” of finite width are commonly used [86]. Investigated applications

mainly revolve around situations where there is high vorticity and/or turbu-
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lence. These include the analysis of bluff body/cylinder flows and wall-vortex

interactions by Cottet et al. [87], and the vortex rope phenomena for unsteady

flows [88].

• Smoothed particle hydrodynamics (SPH): Smoothed particle hydrody-

namics (SPH) splits the domain into a discrete set of interpolation points,

more commonly known as particles, where each one possesses its own set of

physical properties such as position, mass, and velocity, etc. The formula-

tion of, and equations used in SPH are much simpler relative to other CFD

methods [68]. SPH was first introduced by Gingold and Monaghan [4] and

Lucy [5] for the investigation of astrophysical phenomena, but is now popular

within fluid mechanics for its effortless ability to model complex free-surface

flows including applications where large deformations and discontinuities may

occur. However, there are difficulties in wall treatment, and the time step is

required to be much smaller than other techniques which makes the method

computationally expensive [6]. SPH has also been combined with DPD to

create the smoothed DPD method [89] for mesoscopic-scale simulations where

thermal fluctuations in the fluid are important.

• Finite pointset method (FPM): Originally introduced as “General Smoothed

Particle Hydrodynamics” by Kuhnert [90], the finite pointset method (FPM)

is a derivative of SPH, except that instead of interpolating values through

symmetric kernels, the FPM approximates by the MLS method. Similar to

SPH, particles move with velocity and possess their individual properties of

the domain with the exception of mass. This method has been found to suc-

cessfully demonstrate free-surface flows and surface tension problems [91], and

also two-phase flow separation [92]. The FPM is advantageous over SPH in

terms of dealing with boundary conditions, although some problems can arise

with the Neumann boundary. The method can be a time consuming process

due to the large number of matrices calculations [93].

• Moving particle semi-implicit method (MPS): Koshizuka and Oka [19]
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used a Taylor series to discretise the incompressible Navier-Stokes equation

to create the moving particle semi-implicit (MPS) method. Souto-Iglesias et

al. [94, 95] have shown that MPS and SPH are essentially equivalent to each

other, i.e. the MPS weighting functions can be derived from the SPH kernels

and vice versa. They show the same inconsistency problems and the same

stability and conservation properties, etc. The differences lie in the imple-

mentation, a semi-implicit time marching process is used and there are no

calculation of kernel gradients in MPS. The solution has proven to be appli-

cable for free-surface flows via a simulation of the classic dam break case [19],

and a modified method for two-phase flows by Natsui et al. [96]. With respect

to a particular interest to this project, applications of MPS for waves in open

channels and wave impact pressure have been made by Imanian et al. [97] and

Khayyer and Gotoh [98] respectively.

This study is focused upon the simulation of violent free-surface flows, which can

involve highly non-linear and complex phenomena, extreme deformations of the free

surface, and numerous discontinuities. Due to its relative simplicity and robustness

as a highly flexible method which is well-suited for such flows, described in the fol-

lowing sections, SPH is chosen as the method to simulate these applications. The

method has received significant development towards improving the accuracy and

robustness during the past 2-3 decades. Moreover, the number of engineering appli-

cations simulated with SPH has significantly increased with ongoing advancements

in computational processing power and algorithms.

2.5 Smoothed particle hydrodynamics (SPH)

Smoothed particle hydrodynamics (SPH) [4, 5] is one of the earliest Lagrangian

computational methods. In SPH, a point cloud of “particles” represent the physical

material of the domain. By convolution with a weighted kernel function, integral

interpolations are used to determine variables of the flow field, such as velocity

and pressure (more details of the SPH fundamentals are found in Section 3.2).
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The SPH integral function can theoretically be applied to any set of governing

equations. Therefore, since its conception, in addition to its original application to

astrophysics [4,5,68,99], SPH has been successfully developed for an extensive range

of research fields including solid mechanics [100–102], thermodynamics [103–105],

and ballistics [106–108]. However, for the context of this thesis, the focus is on SPH

for fluid mechanics and free-surface flows. SPH describes fluid as either weakly-

compressible, or incompressible. The key differences between the two formulations

are their method for treating density and resolving the pressure field.

2.5.1 Weakly-compressible SPH (WCSPH)

The original SPH formulation, known as weakly-compressible SPH (WCSPH), re-

solves pressure via an artificial equation of state (EoS) [6, 109]:

P =
ρ0c

2
0

γ

[(
ρ

ρ0

)γ
− 1

]
+ P0,

where, at a point in space, P and ρ are pressure and density respectively, subscript

0 denotes a reference value of the variables. c0 is a numerical speed of sound, and γ

is a constant equal to 7 for water [6]. The EoS is such that a Mach number, M , of

approximately 0.1 is used for modelling incompressible flows. Subsequently, density

is permitted to theoretically vary within approximately 1% of the reference value

such that compressibility effects are O(M2) [68].

2.5.1.1 Free-surface flows with WCSPH

Monaghan [6] first applied SPH (as WCSPH) to free-surface flows in 1994 demon-

strating several applications including a dam break and spilling waves. Shortly

afterwards, Monaghan continued to use WCSPH to study gravity currents and soli-

tary waves [110, 111]. SPH has since become increasingly recognised as a suitable

and robust method for simulating violent free-surface flows in a large range of ap-

plications.

Since Monaghan’s work in the early stages of SPH for free-surface flows, the
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behaviour of water waves has been extensively investigated with WCSPH including

wave propagation and breaking waves [112–116], green water overtopping [117,118],

and landslide generated waves [119–121].

Highlighted here, are recent developments of particular relevance to hydrody-

namic engineering application involving free-surface flows. Aghili et al. [122] in-

vestigated solitary wave interaction with a submerged horizontal plate at varying

depths. Comparing to the experimental data of Hayatdavoodi and Ertekin [123],

the SPH model successfully reproduced the wave height at three different locations

as it propagates over the plate. However, the authors stated the traditional WCSPH

method introduced significant errors in the pressure field and required the applica-

tion of a density renormalisation filter before achieving the correct plate pressure

forces.

Crespo et al. [10] compared their SPH model to experimental data [124] and a

mesh-based IH-Foam CFD solution [125] of waves interacting with an offshore os-

cillating water column. Both the numerical models presented close agreements with

the free-surface oscillations within the water column chamber, but it was the SPH

results which demonstrated higher accuracy. The IH-Foam model overestimated

some of the peak oscillations and did not consistently match the profile.

Altomare et al. [126] demonstrated how SPH can be used for estimating wave

impacts on coastal structures where scale physical models of the Zeebrugge Harbour

and Blankenberge Marina in Belgium were used for the experimental data compar-

isons. In both cases, there were initial agreements between numerical and experi-

mental results of the free-surface elevations. However, as wave reflections increased

later in the physical and numerical models, disparities became more apparent. The

impact forces in both cases also showed the same trend. In other works, Altomare

et al. [127] have used second-order wave generation to model long-crested regular

and random irregular waves in SPH. An active wave absorption model was imple-

mented, which can prevent wave reflection effects in applications with no physical

solid boundaries around the domain such as in offshore engineering. The research

is an important step for SPH to move towards simulating realistic sea states.
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The dam break case is frequently used in SPH to demonstrate the suitability of

the method for transient free-surface flow. Crespo et al. [128], Violeau and Issa [129],

and Gómez-Gesteira et al. [130], all achieved simulations where the free-surface

profile is in close agreement with laboratory experiments of a dam break with a dry

bed.

Many authors investigate the effects of waves propagating and impinging on a

structure by use of a dam break with a wet bed. Crespo et al. [131] simulated such

an application modelling the experiment of Janosi et al. [132], where the numerical

results were able to predict the mixing interface between the two bodies of water

originally separated by the lock gate.

Dam break studies involving the impact of an object have also been made.

Gómez-Gesteira and Dalrymple [133] were the first to compare 3-D SPH simulations

with experimental data of a dam break wave impacting on a column. Compared to

the experimental data, their numerical results reproduced accurately the velocity-

time history of the wave front before the first impact and correctly predicted the net

forces during impact on the front and back of the structure. However, the WCSPH

results between these two impact events over-predict the net forcing. More recently,

using a significantly finer resolution (800,000 fluid particles compared to 15,000

in [133]), Pan et al. [134] repeated the same numerical experiment but compared

their results to the experimental data used by Raad and Bidoae [135]. Comparing

the time history of the horizontal force on the column, the WCSPH results here are

in closer agreement to the experimental data than that produced from Raad and

Bidoae’s mesh-based method1.

The SPH European Research Interest Community (SPHERIC) [136] have de-

vised a series of SPH benchmark test cases including comparisons to the dam break

experiment of Kleefsman et al. [137] where a small box is placed in the path of the

flow. Crespo et al. [138] showed their numerical results converged towards the ex-

perimental wave-height time-history data at three different locations, and the profile

1The Eulerian-Lagrangian marker and micro cell method (ELMMC) [135] uses an Eulerian
background mesh for computing variables and moving Lagrangian “surface-markers” for tracking
the free surface.
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of pressure forces imposed on the box with time were in general agreement although

the peak impacts were highly overestimated. Compared with the VOF model of

Kleefsman et al. [137], the pressure-time plots of both numerical methods were very

similar and mostly matched the experimental data. However, unlike the SPH results,

the VOF model exhibited several pressure spikes due to its method of tracking the

free-surface via cell marking on a computational grid. Mayrhofer et al’s [139] WC-

SPH method with improved boundary conditions (unified semi-analytical boundary

conditions) gave better peak-impact predictions than those from Crespo et al. [138].

Their profile of the pressure-time plots were similar to the Kleefsman et al. [137]

VOF simulations with differences due to the absence of the air-phase in the SPH

model.

SPH has also been shown to be a suitable method for modelling sloshing prob-

lems. Souto-Iglesias et al. [140] conducted a series of anti-rolling tank experiments

and subsequently modelled them with WCSPH. They produced agreements for phase

lags in a rectangular tank without baffles and a C-section shaped tank for the ma-

jority of tests. Accurate predictions of the free-surface profile for a rectangular tank

with and without baffles were also made including the presence of breaking waves.

Where the numerical results did not match very well with the experiments, the au-

thors stated their SPH formulation required improvement and the 2-D model could

not capture some strong 3-D non-linearities. Consequently, Souto-Iglesias et al. [26]

sought to improve the model, which was achieved by: (i) evolving density via the

SPH continuity equation, as in traditional WCSPH, instead of the SPH integral

interpolation function, (ii) improving the boundary conditions with implementation

of a repulsive force, (iii) including an artificial viscosity to take account for vis-

cous stresses that were previously neglected, and (iv) using a second-order leap frog

predictor-corrector time stepping scheme instead of an explicit Euler. However, it

should be noted that none of the improvements were particularly new ideas to SPH.

Nevertheless, the methodology demonstrated SPH to be able to reproduce accurately

the phase lags, moment amplitudes and free-surface shape of all the experiments.

However, pressure predictions were not presented, the authors stated the method
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produced small density errors (and therefore errors in the pressure field) which would

magnify towards the late stages of the simulation.

Federico et al. [29] simulated a series of open-channel flows with SPH includ-

ing hydraulic jumps of an undular and weak nature. Each of the hydraulic jump

cases achieved the theoretical downstream depth, although free-surface oscillations

increased with the downstream-upstream depth ratio. Compared to experimental

data [141], agreement of horizontally averaged velocity profiles was demonstrated.

The authors also numerically reproduced their own experiments of a flash-flood im-

pacting on a bridge. The time history of the vertical and horizontal forces, and

pitching moment acting on the bridge were measured. For all three plots, the aver-

age trend of the WCSPH results matched well with the filtered experimental data,

however severe fluctuations were evident. López et al. [142] also experienced large

fluctuations, but for the pressure field in a hydraulic jump. They did however,

observe an improved free-surface profile of the flow at different time instants as a

consequence of introducing an extra parameter, based on vorticity, to their viscosity

model. Both sets of authors did not include the presence of air in their models, im-

plementing the extra phase would better capture the air entrapment in the hydraulic

jump.

To determine the potential of cavitation effects occurring, the pressure varia-

tions of flow at the top of a stepped spillway was investigated by Husain et al. [28].

Prior to modelling a full spillway, flow over a broad-crested weir was simulated and

compared to the experimental data of Hager and Schwalt [143]. Both experimental

and numerical velocity profiles were in agreement of each other as well as the curve

plots of the pressure head above the weir crest, although the SPH results produced

lower magnitudes. For the full spillway, they modelled the experiments of Meireles

and Matos [144]. Once again, the SPH results matched the velocity data obtained

from the laboratory experiments and the flow depth along the chute slope for dis-

charge rates were consistent with both data sets. Meireles and Matos neglected to

look at the pressure in their experiments, but nevertheless the numerical pressure

predictions showed comparable behaviour to other experimental spillways of simi-



2.5. SMOOTHED PARTICLE HYDRODYNAMICS (SPH) 51

lar configuration [145, 146]. Although WCSPH results yielded reasonable pressure

values, the flow field appeared to be noisy.

2.5.1.2 Drawbacks of WCSPH

The traditional WCSPH formulation is easy to implement and has shown many

successes in its early stages [147]. However, the simplicity of the methodology comes

with some well-known issues. The problems which make WCSPH an unattractive

method arise from the stiff EoS:

• The speed of sound is inversely proportional to the time step, and therefore a

very small time step is permitted in accordance to the Courant-Friedrichs-lewy

(CFL) condition [148]. This incurs a severe computational cost.

• The previous point motivates the use of an “artificial” speed of sound, much

lower than that in reality. However, a value too low can cause the propagation

of sound waves across the domain and subsequent instabilities. Thus, the

artificial speed of sound is commonly chosen to be at least 10 times larger

than the maximum particle velocity, which has been found to reduce such

detrimental effects for fluid propagation problems [6, 111].

• The most common problem with WCSPH is the noisy/inaccurate pressure

field, which is apparent from much of the aforementioned literature [26, 28,

122, 138, 141, 142]. The EoS is empirical and was originally developed to fit

experimental data rather than mathematical derivation of physics. The con-

sequence is that the pressure varies drastically as density deviates from its

reference value [149], which arises as a consequence of inaccurate interpola-

tions. False pressures propagate throughout the domain and subsequently

lead to instabilities and smaller time steps, increasing the computational time

further.

In more recent years however, WCSPH has been much improved over its traditional

form. Developments have been towards:
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• Reducing noise in the pressure field through velocity [6] and density field re-

normalisation procedures [150, 151], or by reducing density field fluctuations

with an additional diffusive term [152,153].

• Increasing the accuracy of SPH interpolations [154–156].

• Addressing the truncation of the SPH kernel interpolation at boundaries,

namely improving SPH boundary conditions [14,157–159]

• Improving particle distributions with tensile instability control (preventing the

non-physical clumping of particles) [160] and particle shifting [161–163] (see

Section 2.5.2.1).

Le Touzé et al. [164] has also shown accuracy improvements through shifting the

numerical spectrum of response with various techniques such as:

• Using an initial particle distribution with a small amount of applied “noise”,

where each particle is moved a distance ±0.5 % times the initial particle spac-

ing from the original Cartesian particle arrangement. Simulations initialised

with a non-Cartesian particle configuration have been observed to evolve with

a maintained regular distribution of particles [164,165].

• Using a choice of sound speed close to the weak-compressibility limit, Mach

0.1, to reduce spurious pressure oscillations.

• Using a higher-order scheme with a periodic “remeshing” of particles, which

allows for the avoidance of some correction techniques such as tensile instability

control.

Many years of research have been dedicated to developing the WCSPH pressure

field and although improved, the modern methods are not without added implemen-

tation effort/complexity and computational expense.

The deficiencies of WCSPH has given rise to other SPH formulations. Such

alternatives include the use of Riemann solvers [166–168], where traditional parti-

cle interactions are replaced with a unique Riemann problem between each particle
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pair. This solution improves numerical stability without the use of artificial viscos-

ity. Parshikov et al. [167] used a Godunov-type SPH with approximate Riemann

solutions to solve discontinuities in shock-wave problems. Vila et al. [166] employed

a similar scheme, referred to at the time as SPH-ALE, which used an approximate

Riemann solver to reduce numerical noise in the pressure field. SPH-ALE has been

shown to improve stability and produces significantly less noise in the pressure field

compared to traditional WCSPH [51,169]. However, as a hybrid version of WCSPH,

an unphysical speed of sound within the equation of state is still present and the

scheme is still not truly incompressible.

2.5.2 Incompressible SPH (ISPH)

Incompressible SPH (ISPH), on the other hand, typically enforces incompressibility

by keeping density constant and using a pressure Poisson equation (PPE) to resolve

the pressure field. A divergence-free velocity field, ∇·u = 0, arises as a consequence

of the constant density field:

∇ ·
(

1

ρ0

∇P
)

=
1

∆t
∇ · u,

where P is pressure and ρ0 is the reference density as before in Section 2.5.1, t is

time, and u is velocity. The PPE is generally solved as a linear matrix system, in

the form of [A] x = b, via an iterative solver algorithm [170]. This is discussed

further in Sections 3.3.2 and 4.6.

In an alternative approach, Ellero et al. [171] avoided the use of a PPE and

enforced incompressibility through kinematic constraints and Lagrange multipliers

to achieve a constant volume. However, this method has not received much devel-

opment since its inception and is not considered in this study.

2.5.2.1 ISPH formulations

In 1999, Cummins and Rudman [172] avoided the use of a speed of sound via a

projection method [173] based upon a Helmoholtz-Hodge decomposition [174] where
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a vector field can be expressed as a divergence-free component and the curl-free

component. In the context of Cummins and Rudman’s work, they project the

velocity vector field onto a divergence-free space and subsequently solve the pressure

field via a PPE to enforce the incompressibility condition. Here, the pressure is not

treated as a thermodynamic variable and subsequently there is no EoS. The method

has come to be known as incompressible SPH (ISPH), or ISPH with a divergence-free

velocity.

Cummins and Rudman discussed significant advantages of their projection-based

method compared to WCSPH, mainly stemming from the elimination of the sound

speed variable from the algorithm. The CFL time step constraint was now only

dependent upon the fluid velocity field and thus larger. Furthermore, numerical

stability is also improved since sound waves are no longer a problem. Lee et al. [175]

showed that ISPH with a divergence-free velocity exhibited smooth and near noise-

free pressure fields in contrast to traditional WCSPH for a number of 2-D internal

flows and dambreak simulations. Despite the larger computational expense per time

step of ISPH, due to the larger time steps permitted, the overall simulation times

were 2-20 times faster than the WCSPH tests.

A few years after Cummins and Rudman’s SPH projection method, Lo and

Shao [176] (and similarly Shao and Lo [177]) developed upon the work to create their

own ISPH formulation for the simulation of near-shore solitary wave run-up. Lo and

Shao’s “ISPH with density invariance” method, similar to the moving particle semi-

implicit method (MPS) [19,178], uses a prediction-correction time stepping scheme

where a temporal velocity is found through an explicit time integration in the pre-

diction stage. The subsequent variations in density, characterised in the continuity

equation, are then projected onto a divergence-free space to enforce incompressibil-

ity within the correction stage and used as the source term on the right-hand side

(RHS) of the PPE. The proposed ISPH formulation opened up the methodology

to the application of free-surface flows where particle densities with more than 1%

fluctuations below that of the fluid bulk were used to track the free surface. Lee et

al. [175] later introduced a simple method for identifying free-surface particles by
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computing the divergence of position at each particle.

It is worth noting the work of Souto-Iglesias et al. [94,95], who showed that ISPH

and MPS were mathematically equivalent (as mentioned before in Section 2.4.1).

Therefore, advancements within the field of MPS should also be considered for

ISPH. Authors [179, 180] have since applied developments of MPS to enhance the

accuracy of the ISPH with density invariance method.

Hu and Adams [181] combined the two aforementioned ISPH methods, enforcing

both the density invariance and divergence-free velocity conditions. Particle posi-

tions are iteratively adjusted to satisfy the former condition and an intermediate

velocity field is projected onto a divergence-free space for the latter. They showed

accurate results for various multi-phase and free-surface applications demonstrating

a superior ability to represent sharp interfaces with density discontinuities compared

to an FDM solution [172].

Xu et al. [161] investigated the three ISPH algorithms, assessing the accuracy

and stability of each method. They showed that the original ISPH method [172]

with a divergence-free velocity field produced accurate results. However, severe

density-error accumulation from particle clustering occurred, particularly for high

Reynolds numbers which lead to unstable simulations. Such observations were also

made by Cummins and Rudman [172], and Hu and Adams [181]. ISPH with density-

invariance [176, 177] proved stable for the Reynolds numbers tested (up to 1000),

although the fluid field was inaccurately predicted and exhibited a lot of numerical

noise. The compound method of Hu and Adams [181] combined the advantages of

both divergence-free velocity and density invariance ISPH formulations producing

results showing stable and uniform particle distributions and accurate flow fields.

However, the requirement to solve two Poisson equations affected the computational

efficiency, with simulations taking at least 4 times longer than the other methods.

Following their investigation on the various ISPH methods, Xu et al. [161] pro-

posed using a “particle shifting” technique for ISPH, to be executed at the end of

each divergence-free projection step, which moved particles slightly off their respec-

tive streamline paths to maintain uniform particle distributions for improved accu-
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racy and stability of ISPH simulations. This was based upon the work of Nestor

et al. [182], who identified that when the fully Lagrangian Navier-Stokes equations

are solved accurately, particles move along streamlines which subsequently causes

particle clustering and numerical instabilities. They remedied this effect in their fi-

nite volume particle method (FVPM) by proposing a “velocity correction” for each

particle based upon the local particle distribution. Xu et al. [161] showed that for a

relatively small amount of extra computational effort, their ISPH with divergence-

free velocity and particle shifting method gave both accurate and stable simulations

for several internal flows. The particle shifting methodology is a significant devel-

opment in ISPH as it enables the method to be accurately applied to high Reynolds

number flows and maintain near noise-free pressure fields. Particle shifting has been

shown to also be advantageous to WCSPH [163,183]. Shadloo et al. [162] introduced

a similar technique to show comparable improvements for both WCSPH and ISPH.

The redistribution of particles by shifting can help prevent, or reduce the effects, of

non-physical artefacts in a simulation such as voids and extreme particle clumping.

Following Xu et al. [161], Lind et al. [11] developed the particle shifting method to

include free surfaces using a Fickian-based particle shifting technique where particles

are seen to be “shifted” from regions of high to low particle concentrations. Simple

treatment of the shifting for particles near the free surface allowed for the simulation

of violent dam break flows and waves in ISPH with highly accurate pressure fields.

The treatment of shifting near the free surface has since been further generalised by

Khayyer et al. [184].

2.5.2.2 Free-surface flows with ISPH

ISPH has been used for a wide variety of free-surface flows due to its ability for

highly accurate pressure prediction. Section 2.5.1.1 identified some of the successes

in WCSPH for free-surface flows within the context of hydrodynamic engineering ap-

plications. However, the method’s pressure field has been shown to require improve-

ment. Here, a selection of ISPH literature demonstrates its suitability to meeting

the aim of the project.
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Khayyer et al. [185, 186], and Khayyer and Gotoh [187], paid attention to en-

hancing the accuracy of the ISPH with the density invariance method. Such im-

provements included: (i) theoretically acquiring the exact conservation of linear

and angular momentum, (ii) introducing higher order PPE source terms to reduce

pressure fluctuations, and (iii) improved accuracy in free surface tracking (although

this was around the same time as the method of Lee et al [175] mentioned in Sec-

tion 2.5.2.1, which is more commonly used now). Their works simulating dam break

impacts demonstrate smoother and more accurate pressure predictions of experimen-

tal data, and despite the relatively low resolution, the numerical free-surface profiles

also manage to resolve several key flow features. In Khayyer et al’s work [185], their

improved ISPH method was compared with boundary element method (BEM) [188]

and VOF/BEM [189] meshed-based methods for simulating a plunging wave breaker,

ISPH was demonstrated to be the only method capable of accurately representing

the wave height in both the pre and post-breaking stages.

Skillen et al. [9] implemented a simple smoothing function which altered the

system of equations within the PPE matrix for particles near the free surface. The

function uses a sinusoidal-type transition from the fluid bulk to the Dirichlet bound-

ary condition at the free surface to replace the traditional step function. The authors

also used a particle shifting distance coefficient based on CFL-type stability analysis.

Their results showed a significant reduction in pressure fluctuations for a number of

transient test cases involving objects impacting a free surface.

The Ph.D. thesis of Leroy [190] presents an ISPH method capable of indus-

trial applications. The model developed the ISPH with divergence-free velocity and

shifting method to include turbulence and buoyancy models, the implementation of

unified semi-analytical wall boundary conditions, allowing for the general modelling

of complex geometries, the imposition of open boundaries, and the use of parallel

programming for improved computational times. The author compares the model to

WCSPH (with state-of-the-art formulation) and VOF solutions for 2-D free-surface

flow with a water wheel and dam breaks in both 2D and 3D. For each case, the

ISPH results are more accurate and smoother in pressure predictions than those of
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WCSPH. Despite the limited comparison between the multi-phase (air-water) VOF

model and single-phase SPH methods, ISPH showed similar results to the VOF

where air effects were negligible. The comparison also exposed VOF’s inferior abil-

ity to resolve the free surface. The thesis also presented several confined flows, where

ISPH performed very well in comparison to FVM solutions.

Following the introduction of shifting to ISPH for wave propagation [11], Lind

et al. [191] applied the methodology to offshore engineering applications. They

modelled regular waves and irregular focussed wave groups, of both non-breaking

and breaking nature, impacting on either a fixed cylindrical column or taut moored

rigid body. Computational savings are made by using a Froude-Krylov (FK) forcing

to approximate 3-D wave loadings and therefore requiring 2-D simulations only. By

comparison against laboratory experiments [20,192,193], the FK approximation was

shown to be sufficiently accurate in predicting the peak forcings on a body subject

to non-breaking waves. However, it was concluded that a full 3-D simulation is

required to better capture the wave breaking effects and loadings.

Liang et al. [194] also looked at simulating waves with SPH, more specifically, the

generation of solitary waves and their subsequent run-up and impact with a vertical

wall. Both WCSPH and ISPH simulations were conducted where both achieved the

desired wave height, however the ISPH results showed some discrepancies in the

free-surface profile both upstream and downstream of the wave crest. Despite this

error, the subsequent impact with a vertical wall once again proved ISPH to be

superior to WCSPH in accurately portraying the pressure field. On comparison of

the time series of force exerted onto the wall with experimental data [195], WCSPH

displayed severe pressure fluctuations throughout, for all cases, sometimes with large

over predictions. ISPH on the other hand, generally matched the experimental

force profile, although there were still some oscillations (likely due to the use of the

repulsive boundary condition [196]), they were significantly less pronounced than

those of the WCSPH results.

Lee et al. [197] looked at the application of SPH to waterworks and spillways.

Similar to literature mentioned in Section 2.5.1.1, the authors here also validated
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their model against the dam break experiment of Kleefsman et al. [137]. Com-

parisons were made between their models of WCSPH and ISPH. Once again, the

WCSPH simulation showed severe pressure fluctuations on the two pressure probes

at the front of the box (facing the initial water column), so much so that the authors

omitted those results from the probes on top of the box. Unlike the work of Crespo

et al. [138] (as reviewed in Section 2.5.1.1), the traditional form of WCSPH was used

here, and a comparison of the two works shows the original form of WCSPH requires

artificial numerics to provide acceptable results. The ISPH simulation on the other

hand, provided much smoother results of good agreement with the experiment with-

out the need for empirical numerical fixes. However, the ISPH results did not come

without some noticeable discrepancies. The water height at the original position of

the column was under predicted for the latter half of the simulation, some particles

were lost due to boundary penetration, and the initial impact pressures on the front

of the box are highly underestimated (by about a factor of a half). The authors

identified that all these issues could be resolved through improving the imperme-

ability of the boundary condition for ISPH, increasing the resolution, and increasing

the kernel support radius (i.e. the number of influencing particle neighbours). The

latter two factors were restricted due to computational time and resources and so

it was apparent that the acceleration of ISPH simulations was required. For that

reason, it was only feasible for the authors to simulate their engineering application

of a river dam spillway with WCSPH, and not the preferred ISPH.

Just as for WCSPH, the development of ISPH has been increasing in recent

years, and the method is steadily becoming more popular for the simulation of free-

surface flows. Described in the following are a few recent developments of ISPH

towards such applications. Lind et al. [198] has looked at improving the physics of a

simulation by use of a multi-phase model consisting of ISPH-water and WCSPH-air

phases. This was applied to investigating the behaviour of water-air wave slam onto

a rigid flat plate and confirmed the “cushioning-effect” air has in reducing the peak

pressure loads from the water, which were accurately predicted. By enforcing the

incompressibility of the water phase with ISPH and allowing some compressibility
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with the air-phase using WCSPH, the physical speeds of sound for the two phases

were maintained. This is not the case in simulations where WCSPH is used for both

phases, as the sound-speed ratio between phases is usually inverted [183,199].

Fourtakas et al. [200] coupled a quasi-arbitrary Lagrange-Euler finite element

method (QALE-FEM) [201, 202] with ISPH for wave propagation problems. Their

solver uses QALE-FEM to efficiently calculate the far-field wave properties, and

ISPH for computing the local/near-field free-surface flow. An interface region be-

tween the two methods was created where QALE-FEM formed a pressure/veloc-

ity boundary condition for ISPH. This method of coupling allows one to simulate

problems such as wave-breaking at higher resolutions with ISPH without the large

domain size (and subsequent additional computational expense) required for wave

generation.

Several authors [203–206] have recently explored the idea of an Eulerian-based

SPH method. Such an investigation may seem, at first, counter-intuitive for the

meshless method, but a number of benefits arise from maintaining a fixed regular

distribution of particles including improved boundary conditions, reduced compu-

tational expense, and the use of higher-order kernels for improved accuracy and

spatial convergence-rate [203]. Perhaps most significantly, the transition of an Eu-

lerian to Lagrangian region is made relatively simple, compared to the coupling

of separate methods. Following the work of Lind and Stansby [203], Fourtakas et

al. [206] demonstrated the effectiveness of an Eulerian-Lagrangian incompressible

SPH (ELI-SPH) formulation by simulation of periodic wave propagation. The bot-

tom half of the initial water depth was filled with fixed Eulerian particles, whilst the

top half with a free surface was represented as Lagrangian particles, able to move

freely as normally in SPH. ELI-SPH demonstrated comparable accuracy against a

higher-order potential flow model [207] where no noticeable numerical artefacts were

present at the Eulerian-Lagrangian region interface.

Inspired by the combined divergence-free velocity field and density-invariance

method of Hu and Adams [181] (see Section 2.5.2.1), Gui et al. [208] aimed to satisfy

both conditions but without the expense of solving two PPEs. They did so, by ap-
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plying arbitrary weighting parameters to each source term and then combining them

into one PPE to solve. Just as in Hu and Adams’ method, the advantages of both

source terms were combined providing accuracy and stability without any additional

subroutines such as shifting. Compared to the strictly density-invariant model, the

new model maintained similar global density-errors, and accuracy was improved with

reduced pressure fluctuations. The time histories of wave forces were also in agree-

ment to those of a Reynolds-averaged Navier-Stokes (RANS) model [209]. However,

the weighting parameters associated with each source term is chosen empirically

and so the method would require calibrations for different test cases and possibly

encounter difficulties with highly varying flows/domains.

Such developments within the field are not explored in this study, but are cer-

tainly of interest to the author and represent potential ideas for future development.

2.5.2.3 SPH boundary conditions for engineering applications

At the boundaries in SPH, there is a truncation of the kernel which is a significant

issue. The accuracy of an SPH kernel interpolation is related to the number of

neighbouring particles, and for particles near the boundary, their respective kernels

extend beyond the computational domain where there are no particles present. This

leads to inaccurate interpolations and/or particle penetration of the boundary. The

treatment of boundary conditions in SPH (both WCSPH and ISPH) is an ongoing

development, where researchers aim to provide treatments which are accurate and

robust for complex 3-D geometries directly applicable to engineering problems.

There are numerous approaches for the treatment of rigid wall boundaries. Au-

thors have proposed to fill the truncated area of the kernel with either additional

fixed particles [128, 158], virtual fictitious particles [157, 210–212], or mirror image

particles [14]. While others apply repulsive forces [111], to prevent penetration of

the boundary, or provide a more analytical approach [139, 159, 213, 214]. However,

with the extensive range of applications required in the engineering industry, it is

not clear which approaches are most suitable.

Other research has focused on the comparison and review of different boundary
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conditions [147, 215–217], and developing rigorous frameworks and theory on the

subject matter [218,219].

In this study, an appropriate boundary condition for a 3-D ISPH method must

be established which can be applied accurately to a range of free-surface engineering

problems.

2.5.2.4 Challenges in ISPH

It has been established that ISPH provides a pressure field which is near noise-

free and more accurate than that of traditional WCSPH. However, the method is

more complex. The pressure projection step requires more coding effort due to the

solution of the PPE, which requires the setup of a matrix system and the subsequent

linear solver. It has also been established that boundary conditions for SPH are a

significant challenge and an area of ongoing development. For ISPH, the presence

of the PPE adds complexity towards the implementation of flexible and accurate

boundary conditions.

Whilst there has been significant advances in improving the accuracy of ISPH

regarding conservation properties and recovering accuracy [11, 161, 179, 180, 217,

220, 221], there is little research that addresses the large computational expense

of the method, which is a significant, if not the most, limiting factor restricting

the advancement of ISPH. For most engineering applications, very large numbers

of particles (107 to 109) are required, with the solution of large sparse matrices

from the PPE accounting for over 90% of the computational time in a serial code.

Therefore, parallelisation of the method is a necessity to allow for the simulation

of higher particle numbers to be feasible. The next section of this literature review

therefore explores the role of hardware acceleration in SPH.
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2.6 Hardware acceleration and

parallel programming for SPH

SPH is criticised within the CFD community for its large computational cost. With

each particle having tens to hundreds of neighbours, searching for neighbouring

particles and computing particle-particle interactions each time step requires a high

number of computations. Moreover, the associated computational time increases

non-linearly with increasing number of particles [15, 222]. In WCSPH, particle-

particle interactions account for approximately 99% of the overall computation time

on a single-core CPU. In ISPH, in addition to particle-particle interactions, the

solution of the PPE must also be computed which takes up over 90% of the methods

computation time. Therefore, the computational expense of an ISPH time step is

significantly more expensive than that of the WCSPH time step.

The solution of the ISPH PPE is generally computed with an iterative linear

solver (as discussed in Section 4.6) where the PPE matrix elements can be either

stored or computed during execution of the solver. The former option of storing

the elements incurs a significant computational memory requirement. The latter

option was used by Leroy [190] where matrix-vector products were computed within

the linear solver, eliminating the need to store the PPE. However, this method is

very computationally expensive for simulations of large particle numbers as particle-

particle interactions are computed several times within each iteration of the linear

solver for the matrix-vector product. Therefore, the first option of storing the PPE

matrix is adopted as the aim here is to accelerate the ISPH method. This poses a

further challenge concerning the memory requirements of ISPH, which is discussed

in Section 2.7. This is contrary to WCSPH where the computational memory re-

quirements are relatively low [223].

There have been successful efforts to reduce the number of computations, such as

the elimination of unnecessary particle interactions through neighbourlists [224,225],

but improvements in computation time by such algorithms are limited. Thus, for real

engineering problems, the use of hardware acceleration and parallel programming
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is the most appropriate option for achieving efficient computation of large particle

numbers on the order of millions and above [138].

Hardware acceleration is the specialist use of computing hardware, instead of

a single central processing unit (CPU), to execute operations and functions more

efficiently. Hardware acceleration is utilised through parallel programming which

enables the computation of repetitive calculations over large data sets simultane-

ously. Hardware acceleration can be achieved through high performance computing

(HPC) on multiple CPU cores (ranging into the thousands), or through specialist

hardware architecture such as the graphics processing unit (GPU) [138].

2.6.1 HPC with message passing interface (MPI) and open

multi-processing (OpenMP)

One of the earliest parallel-computing enabling standards to arise is the message

passing interface (MPI), first drafted in 1993 [226] with the first version released in

1994. MPI invokes communication between different processes that are executed in

a parallel manner. MPI is powerful as it also allows the communication between

thousands of computing processors in a network across heterogeneous architectures

(distributed memory).

In the late 1990s, computing manufacturers’ ability to increase the processor’s

clock rate gradually became restricted and so they started looking towards develop-

ing multi-core CPU architectures with shared and distributed memory layouts [223].

The open multi-processing (OpenMP) standard [227] was thus designed to take ad-

vantage of such architectures. The OpenMP language hosts a set of compiler direc-

tives and runtime library routines that enables parallelism between multiple cores

sharing the same memory bank on a single processor (shared memory). Implement-

ing OpenMP into existing code (providing the algorithm can be executed in parallel)

is simple and acts as an extension to the users supported programming language.

However, the scalability of a code with OpenMP is restricted by the number of cores

hosted by the processor.

HPC has now evolved into the use of massively parallel CPU systems commonly



2.6. HARDWARE ACCELERATION AND PARALLEL PROGRAMMING FOR
SPH 65

consisting of 10,000s of cores (although the largest in the world at the time this

study is in the millions) [228], where a mixture of MPI and OpenMP is used to

make full use of parallelism between cores and processors.

SPH is ideal for massive parallelisation, and several authors have demonstrated

this with WCSPH [210, 229–231], where some achieve over 100 million particles on

more than 1000 cores. The literature regarding the parallelisation of ISPH through

HPC, on the other hand, is scarce. To date, Guo et al. [232] showed their model

achieved an overall efficiency of about 81.3% for 1024 cores and could simulate

up to 100 million particles. Yeylaghi et al. [233, 234] also implemented a parallel

ISPH with OpenMP and MPI, although their scheme solved the Poisson equation

explicitly without the use of a matrix, which affects accuracy and limits the time

step size, taking away the advantages of ISPH.

Whilst HPC through OpenMP and MPI is a very powerful form of parallel pro-

cessing and resolves the memory limitations in ISPH, the efficient implementation

of SPH onto a memory distributed system is complex and time consuming and

have only been recently addressed. Perhaps the most important challenge for an

MPI implementation is domain decomposition and dynamic load balancing, which

subdivides the domain into partitions over the number of processors in the com-

puting network, and then subsequently attempts to assign each processor the same

amount of computation work. This is especially difficult in SPH because of the

moving particles and constantly changing particle-particle connectivity and inter-

actions. Such a problem is further complicated when applying to heterogeneous

systems. Efficient domain decomposition and load balancing is very important for

reducing memory footprint and communication/latency times between processors.

In ISPH, the order of particles in the PPE matrix will change the condition num-

ber, and subsequently the solution time. Therefore, domain decomposition is very

important in this case [232].

Particles on the edge of a sub-domain in each partition also need to be identified

as they may move outside of the sub-domain or interact with particles on neighbour-

ing partitions. In ISPH, particles are advected three times per time step (projection
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step, correction step and shifting, see Section 3.3.1) so measures should be taken

to reduce the number of times particles migrate between processors. Similar issues

also arise with data management of particles between processors.

Communication is often a significant limiting factor in massively parallel CPU

systems as the transference of data is usually slow compared to the computation

of it [31]. Using hardware of higher memory bandwidth can also be done, but this

typically comes at an increased price.

In addition to the complexity of implementing SPH with HPC, massively par-

allel CPU clusters are large, expensive, and require continuous specialist mainte-

nance [235]. The investment or access of a HPC cluster is not a viable option for

many researchers and smaller companies in industry, and so the use of a graphics

processing unit (GPU) for scientific computing has become increasingly popular,

especially in SPH.

2.6.2 The graphics processing unit (GPU)

GPUs were originally designed for graphics visualisation within the video games

industry. Their unique parallel architecture, highly suitable for the rapid processing

of large quantities of data, were recognised as an alternative form of hardware accel-

eration for scientific simulations. Thus the development of general purpose GPUs,

and dedicated parallel programming languages such as CUDA (Compute Unified

Device Architecture) [12, 236] and OpenCL (Open Computing Language) [13, 237],

for such applications soon emerged, providing a cheap, energy efficient and portable

substitute to HPC [238].

The main component of a GPU, which attributes to its massively parallel archi-

tecture, is the streaming multiprocessor (SM). A GPU houses multiple SMs, where

each SM schedules the execution of instructions across hundreds of computing cores

concurrently. Further details of GPU architecture are found later in Section 4.2.

The earliest use of a GPU for SPH featured in the work of Amada et al. [239] in

2004, who parallelised the force computation stage on the GPU, but still conducted

the initialisation of variables and particle neighbour mapping on the CPU. Their
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CPU-GPU model was about two times faster than their CPU-only code for 2,000

particles. Greater speed ups were expected for simulations of more particles.

Shortly after, in 2005, Kolb and Cuntz [240] proceeded to demonstrate that

the entire SPH computation could be performed on the GPU and only the loading

and storage of data needed to be executed on the CPU. Since the output format

of the GPU was in 2D, 3-D simulations were computed and represented as sets of

2-D “slices” (arrays). Each slice was associated with a different particle position,

and contained within the slices were possible contributing particles. Any particle

found to have no contribution (outside the kernel support radius) were automatically

clipped from the slice. However, interpolation errors were apparent as sampling of

3-D quantities was carried out by communication of trilinear interpolation between

slices.

The major breakthrough for SPH on the GPU was achieved by Harada et al. [241]

in 2007. They kept memory transfer between the CPU and GPU, which hinders the

overall speed of computation, to a minimum by creating all the data arrays on the

GPU and described a neighbour searching algorithm appropriate for the GPU. A

3-D computational grid, called a “bucket”, was placed over the domain and a voxel

(a value on the grid) was computed for each particle. Neighbour searching for each

particle was then performed within each of their surrounding voxels. The creation

of a bucket for neighbour searching distributed the computational load across GPU

processors evenly, increasing efficiency. The authors saw consistent speed ups with

their new GPU computational model compared to a CPU implementation where, for

a 260,000 particle free-surface flow simulation, a speed up of 28 times was observed.

The three sets of aforementioned authors [239–241] required specialist knowledge

of computing graphics, using OpenGL (Open Graphics Library) and Cg (C for

Graphics) languages to manipulate the GPU. Shortly after Harada et al. [241], in

2007, the application of GPUs for scientific simulations was given more support when

the NVidia Corporation released the first version of the CUDA parallel programming

language and framework [12], which made GPU programming more accessible to the

general public in the form of a general-purpose GPU (GPGPU) framework. As an
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extension of the common programming language C++, users could program and

execute parallel functions on supported Nvidia GPU hardware with relative ease.

Since then, the application and development of WCSPH with GPUs has become

increasingly common.

Hérault et al. [242] investigated the use of CUDA for implementing SPH on

the GPU. The authors looked at which parts of the parallelised SPH algorithm

were either memory-bound (requiring large number of data accesses compared to

computations), or compute-bound (requiring large number of computations with

relatively little memory access). The force computation function was found to be

compute-bound following inspection of the near-linear speed up of the GPU to CPU.

The particle update was realised to be memory-bound with a high memory access

to operation ratio of 5 for 4. The creation of the neighbour list was a memory-

bound operation as expected because it is primarily a function of ordering data

structures. The authors also stated that the speed of memory access of multiple

data by the same processor could be improved by re-ordering the memory addresses

of such data close together. The work reported a 15.1, 207, and 23.8 times speed up

of the neighbour list, force calculation, and Euler step particle update procedures

respectively, by an Nvidia GTX 280 GPU, of 240 processors, compared to the CPU

code. Although, the CPU code was not optimised and the speed ups would have

been halved if done so.

The efficient implementation of WCSPH on the GPU (with CUDA) was then

further understood with the work of Crespo et al. [138]. They recognised that an

efficient CPU algorithm is not necessarily the most efficient one for the GPU. For

instance, on the CPU, the force computation procedure can make use of kernel

symmetry (the magnitudes of the kernel, or kernel gradient, between two particles

are equal and opposite for the reversed interaction) and reduce unnecessary com-

putations. For the GPU, on the other hand, the work of one instruction scheduling

thread is assigned to the interactions of one particle, and so kernel symmetry is not

used here because threads cannot write to the same memory address at the same

time. As in other publications before them [241, 242], the authors sought to keep
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data transfer between CPU and GPU to a minimum by storing all the particle data

on the GPU. In doing so, the use of shared memory for particle interactions, within

simulations of large numbers of particles, could not be done due to the limited size

of the memory. Their code also used algorithms provided by CUDA for optimisa-

tion including “radixsort”, to reorder particles and their respective data structures,

and “parallel reduction”, to compute minimum and maximum array values. It was

discovered that the most time consuming part of the SPH algorithm was the force

computation, for both CPU and GPU, and therefore, one’s processing power should

be concentrated towards that procedure. The primary aim of the authors was to

develop an SPH code capable of computing engineering applications. They managed

to reduce the computation time of a 1 million particle dam break simulation from 5

days on a CPU, to just a couple of hours on a GPU. However, they recognised that

the memory limitations of a single GPU would need to be addressed with a multi-

GPU implementation (although maximum available GPU memory has increased by

3-4 times now).

For free-surface flow applications, SPH models implemented on the GPU have

enabled detailed simulations including wave propagation and subsequent interac-

tion with structures [10, 127, 243–245], sloshing [8, 246], ship-motion with an anti-

roll tank [247], multi-phase applications in violent hydrodynamics [248], nuclear

flows [249], and extreme run-off [250]. Many of the applications listed above re-

quired GPU-acceleration for millions of particles because of either the domain size,

or the resolution needed to capture particular complex flow phenomena (or both).

Additionally, some simulations are required to compute long durations of physical

time. GPU speed-ups of over two orders of magnitudes compared to serial CPU

codes were observed in many of the publications.

The next stage of parallel computing after the GPU, would be HPC with multi-

ple GPUs. A few authors have demonstrated SPH with a multi-GPU implemen-

tation [222, 251, 252], with Domı́nguez et al. [251] achieving a 1 billion particle

simulation on 64 interconnected Tesla M2090 GPUs computed in 91.9 hours for

12 seconds of physical time. Multi-GPU clusters are programmed with a combina-
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tion of CUDA (or other GPU computing language), and MPI for communication

between GPU devices. The challenges of an SPH multi-GPU implementation are

similar to that of massively parallel HPC models as described in Section 2.6.1, with

the added complexity of programming for the GPU.

It should be noted that field-programmable gate arrays (FPGAs) serve as another

potential form of single-machine hardware acceleration. The devices contain pro-

grammable logic blocks where the user can configure the behaviour of the circuitry

without physically changing the hardware, which allows for tailoring to specific

applications for highly-optimised parallel processing. However, whilst FPGAs have

been shown to significantly accelerate SPH within the field of astrophysics [253,254],

there has been little research about the implementation of the numerical method on

such devices. This is unlike advances regarding SPH on the GPU in recent years.

Compared to GPUs, FPGAs require long development times and are less portable.

This due to the need to develop the application specific logic blocks for a specific

FPGA device [254], which is not ideal for the development of a general engineering

software in this study.

Based upon the literature surrounding hardware acceleration for SPH, it is clear

the GPU is the most favourable option. Exporting a GPU code is now a cost-

effective and energy efficient approach to parallel computing for researchers and the

engineering industry. The majority of the world’s most powerful and energy effi-

cient HPC computing clusters comprise of GPUs [228]. Implementing ISPH on the

GPU will give the method the computational acceleration needed to compete with

WCSPH’s established success with the GPU. Moreover, this research will provide

a stepping stone towards establishing a multi-GPU accelerated ISPH code, which

would also take advantage of MPI parallelisation (see Section 2.6.1).

The majority of literature in this section showcase GPU codes written with

CUDA. There exists another popular parallel programming framework, OpenCL [13,

237], which is the open industry standard for executing programs across heteroge-

neous platforms consisting of both CPUs and GPUs. However, it is not chosen as

the programming language here for a few reasons. Whilst OpenCL is desirable in the
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sense it is portable across all platforms, its generality naturally results in a perfor-

mance drop compared to CUDA-based applications that exclusively target NVidia

GPUs [255]. Although OpenCL can give competitive, if not the same, performance,

extra coding adjustments would be required [256]. CUDA has a larger amount of

support and development within the community whereby numerous libraries and

algorithms now exist for the language. For these reasons, the parallel programming

language CUDA is used in this study to execute ISPH on the GPU. It must be said,

however, there is no reason for most of the work conducted in this study to not

apply to an OpenCL framework written code.

It should also be noted that, due to ISPH’s close relation with the MPS method [94,

95], advances in the MPS method on GPUs should also be paid attention to during

development of ISPH on the GPU. The MPS method was first implemented on the

GPU for 2-D simulations in 2011 by Hori et al. [257] and Zhu et al. [258], where

the latter achieved a 26 times speed up over a traditional CPU-based MPS code.

MPS on a GPU has since been applied to multi-phase flows [259] and 3-D free-

surface flows [260]. Developments in MPS also include GPU-based neighbour list

algorithms for MPS by Murotani et al. [261] and the comparison of openMP/MPI

parallelised solvers for MPS [262]. Such advances in the method are particularly

relevant because a PPE is also solved in MPS, unlike WCSPH.

2.6.3 Open-source software for the GPU

The efficient implementation of an SPH code is a large and time consuming task. The

magnitude of the process is even more apparent for ISPH because, unlike WCSPH,

it requires multiple particle-particle computation loops for the pressure projection

step, including the population of the PPE matrix, and the presence of a linear solver

for the solution of the PPE matrix. There exists a range of open-source software for

the GPU which can be utilised to reduce the amount of work required to achieve an

efficient implementation of ISPH on the GPU.

A few open-source WCSPH solvers, namely GPUSPH [242,263], AQUAgpusph [223,

264], and DualSPHysics [15, 265], are of recognition within the literature. All
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have shown rigorous validation and an extensive record of publications, for exam-

ple: [10,126,247,266–268]. Of the three, this study makes use of DualSPHysics, for

several reasons:

• DualSPHysics, unlike the other two, contain both CPU and GPU implemen-

tations of WCSPH, which is useful for ease of implementation and debugging

purposes.

• It is highly optimised, and written in CUDA to maximise performance with

NVidia GPUs (GPUSPH is also written in CUDA, whereas AQUAgpusph uses

a combination of OpenCL and python).

• DualSPHysics is a package with dedicated pre- and post-processing software,

which allows for ease of application to engineering problems.

In addition to SPH software, numerous open-source linear algebra libraries for

the GPU have emerged [16, 269, 270]. Such libraries are also highly optimised and

contain algorithms for matrix and vector manipulation, and a variety of matrix

linear solvers and preconditioners which can be applied to the PPE matrix. Taking

advantage of these libraries will allow for quick evaluation of the best algorithms for

the solution of the ISPH PPE.

2.7 Challenges of ISPH on the GPU

To the best of the author’s knowledge, the only implementation of ISPH on a GPU

is from the Ph.D. thesis of Leroy [190], however no investigation or algorithmic

implementation is described.

By implementation of an ISPH algorithm run entirely on the GPU, a novel study

is made herein. Such a task is not necessarily unique solely because of the recent

advances in technology which make it possible, but also from the several associated

challenges requiring attention:

• A Lagrangian PPE matrix: For mesh-based methods, the coefficient ma-

trix of the PPE can be created just once at the beginning of a simulation (as-
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suming no remeshing is required) and reused [30]. Finite volume and difference

methods spend the majority of their computational power towards solving the

PPE, this is no different in ISPH, but there is the added effort of constructing

the matrix each time step due to moving computation points [271]. Moreover,

herein it is required to do so, in parallel, on the GPUs streaming multiproces-

sors, which can be difficult to perform efficiently because of the high number

of memory accesses associated with large numbers of particles [258].

• Memory limitations: The choice to store the PPE matrix provides a conve-

nience of simple compatibility with many highly optimised open-source linear

algebra libraries (see Section 2.6.3) for investigating quick solutions of the

PPE without additional coding effort. However, it poses a challenge in that

the memory requirements are large and the GPU’s physical memory is limited

and non-expandable. For an ISPH simulation to take place on the GPU with

intermediate data transfers only occurring for output, the memory available

is confined to a single GPU device. The modern high-end gaming GPUs host

about 10-11GB RAM, whereas the high-end scientific computing GPUs have

12-24GB RAM, but with a significant increase in purchase cost. Whilst a

multi-GPU implementation of ISPH would resolve the memory limitations, it

is a highly complex task. This study of ISPH on a single GPU will provide

a stepping stone towards massively parallel HPC simulations with multiple

GPUs. Memory footprint can be reduced with alternative sparse matrix stor-

age methods [272] which are also featured in the works of Guo et al. [232] and

Li et al. [260].

• ISPH boundary conditions on the GPU: Some authors [194, 197] in-

dicated the need for improved boundary conditions in their ISPH models.

Although relatively easy to parallelise, the simpler boundary treatments, such

as the use of dummy particles or repulsive boundary forces, present numerical

boundary layers due to misrepresentation of mathematical conditions. The

mirror particle method [11,157,161] or multiple boundary tangent method [9,

211] are such boundary conditions that can provide accurate representation of
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the desired mathematics. However, efficient generation of fictitious particles

each time step and complex boundaries still remain to be a challenge for the

methods. Guo et al. [232] redesigned the mirror particle generation procedure

for MPI parallelism, which saw partitions create mirror particles from within

their own sub-domain independent of each other. However, this cannot be

done on a GPU, as there is no such domain partitioning across the SMs, re-

sulting in large computational overhead. So there remains to be a challenge

in establishing a boundary condition that is accurate, able to model complex

geometries, and suitable for efficient parallelisation on the GPU.

• Exploiting fast linear solvers on the GPU: Fast and scalable linear

solvers and preconditioning for a Poisson equation is a well-researched area

for finite-element methods with fixed meshes [273, 274]. For particle methods

however, the solution of a linear system presents a different challenge because

the particle connectivity is constantly changing. The solution of large La-

grangian PPE matrices has been conducted through massive parallelisation of

MPI, from the work of Guo et al. [232] with ISPH, and Duan and Chen [262]

using MPS. The algorithms and libraries for CPU-based applications how-

ever, are much more sophisticated than those of their relatively young GPU

counterparts. Researchers working with MPS on the GPU [257,258,260] only

report the percentage of computation time spent solving the PPE matrix, and

do not investigate the effects on solution time induced by moving particles in

complex flow fields.

2.8 Conclusions

For the simulation of violent hydrodynamic free-surface flows within the context of

engineering applications, this study will use the SPH method. As a meshless method,

SPH is well-suited for the simulation of violent fluid flow featuring highly nonlinear

phenomena and discontinuities. Moreover, the representation of a free surface can

be handled with relative ease. Of the specific SPH formulations, ISPH will be
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used due to its near noise-free and highly accurate computation of the pressure

field, which is essential within the engineering industry for estimating hydrodynamic

forces. The ISPH method however, is very computationally expensive due to the

solution of the PPE. Most engineering applications would require several millions of

particles, meaning the need to solve large sparse matrices, and it is the associated

computational expense which is addressed in this study. It has been established that

for ISPH to advance towards large-scale simulations, parallelisation of the method

is a necessity.

GPUs have proven to be a powerful and cost-efficient alternative to massively

parallel CPU clusters, and so herein the novel parallel implementation of ISPH on

the GPU will be studied. The research presents some unique challenges, which will

be addressed: (i) the construction of a Lagrangian PPE matrix every time step on

the GPU’s SMs, (ii) addressing the memory limitations of the GPU for the inherently

expensive ISPH method, (iii) Establishing a robust and accurate ISPH boundary

condition suitable for GPU parallelisation, and (iv) exploiting fast linear solvers on

the GPU in the context of a Lagrangian particle method.

The next chapter presents the numerical methodology of SPH and ISPH used for

this study, including an ISPH boundary condition suitable for execution on a GPU.



Chapter 3

SPH Methodology

3.1 Introduction

This chapter presents the basic SPH methodology and state-of-the-art ISPH method-

ology used in this study. An ISPH boundary condition suitable for parallel process-

ing and implementation on the GPU is also detailed here by adapting and extending

the WCSPH method of Marrone et al. [14] for ISPH on the GPU.

3.2 SPH fundamentals

3.2.1 Interpolation and the SPH kernel

In SPH, the domain is discretised into a set of computational interpolation points

commonly referred to as “particles”. Particles are free to move according to govern-

ing physical equations and each one possesses physical quantities for their individual

representational material mass in the domain (velocity, density, pressure etc.).

The SPH formulation is based on the integral interpolant in Eq. (3.1) [4, 5],

which expresses any quantity, φ, of a particle at its respective position vector, r

with Cartesian coordinates (x, y, z), in the domain, Ω,

φ(r) =

∫
Ω

φ(r′)δ(r− r′)dΩ, (3.1)

where δ(r − r′) is the Dirac delta function [275], and dΩ is a differential volume

76
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element.

The Dirac delta function is defined as an infinitely valued and infinitesimally

thin function with a value of zero across the whole real number line except at its

location, r:

δ(r− r′) =

 →∞, r→ r′,

0, r 6= r′
, (3.2)

where the total area underneath the distribution is equal to unity and physically

represents the density of a point mass:

∫ +∞

−∞
δ(r− r′)dr′ = 1 (3.3)

However, computation of a particle summation with the Dirac delta function is

not possible because it is infinitesimally narrow. Therefore, in SPH, a weighted

smoothing kernel, ω, is used to approximate the δ-function and so the continuous

interpolation, Eq. (3.1), is approximated by Eq. (3.4), where 〈·〉 denotes an approx-

imation:

〈φ (r)〉 =

∫
Ω

φ(r′)ω(r− r′)dΩ, (3.4)

such that the partition of unity property of the δ-function is retained as

∫
Ω

ω(r− r′)dΩ ≡ 1 (3.5)

An SPH kernel with compact support will determine the influence a particle, j, has

on another particle, i, by function of:

• The distance between the particles, rij = |ri − rj|.

• The characteristic smoothing length, h, a quantity used to represent the kernel

support radius and is determined as a multiple of the original particle spacing,

dp. A kernel’s radius of influence, as illustrated in Fig. 3.1, is typically at least

2h to help maintain numerical stability. For computational efficiency though,

kernels are desired to be compactly supported [276], i.e. the weighting term

vanishes outside the radius of influence.
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Fig. 3.1: The SPH kernel radius of influence (highlighted in yellow).

To estimate Eq. (3.4) computationally, the integral is replaced by a summation such

that the value of any given quantity at an SPH interpolation point (particle), i, is

equal to the weighted summation of the quantities at the surrounding interpolation

points, j:

φ(ri) ≡ 〈φ (ri)〉 =
∑
j

Vjφjω(rij, h), (3.6)

where V is the particle volume and

∑
j

Vjω(rij, h) ≡ 1 (3.7)

For simplicity, the kernel weighting function will hereafter be written as ωij =

ω(rij, h).

In this work, two different kernels common in ISPH literature [9,11,184,190] are

used: a fifth-order quintic spline kernel [157],

ωij = αD



(3− q)5 − 6 (2− q)5 + 15 (1− q)5 , 0 ≤ q < 1,

(3− q)5 − 6 (2− q)5 , 1 ≤ q < 2,

(3− q)5 , 2 ≤ q < 3,

0, q > 3,

(3.8)
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and a fifth-order Wendland kernel [277],

ωij = αD


(

1− q

2

)4

(2q + 1) , 0 ≤ q ≤ 2,

0, q > 2,

(3.9)

where q = rij/h, and αD is a normalisation factor derived from the condition in

Eq. (3.5). The value of αD for both kernels in 2D and 3D are stated in Table 3.1.

For both kernels, the smoothing length h = 1.3dp.

Table 3.1: Normalisation factor (αD) values
Quintic spline Wendland Kernel

2D 7/(478πh2) 7/(4πh2)
3D 1/(120πh3) 21/(16πh3)

3.2.2 Kernel gradients

An advantage of SPH is its use of a differentiable kernel to estimate the gradient of

a function over an arbitrarily distributed set of points. This means the gradient of

any given quantity can simply be expressed as:

〈∇φi〉 =
∑
j

Vjφj∇iωij, (3.10)

where ∇iωij is the gradient of the kernel function between particle i and j with

respect to the position of particle i, in a Cartesian coordinate system:

∇iωij =

(
i
∂

∂xi
+ j

∂

∂yi
+ k

∂

∂zi

)
ωij, (3.11)

where i, j, and k are unit direction vectors. The gradient of the kernel with respect

to the x-, y-, and z-directions, is evaluated with Eqs (3.12), (3.13) , and (3.14)

respectively.

∂ωij
∂xi

=
∂ωij
∂rij

xi − xj
rij

(3.12)

∂ωij
∂yi

=
∂ωij
∂rij

yi − yj
rij

(3.13)



80 3.2. SPH FUNDAMENTALS

∂ωij
∂zi

=
∂ωij
∂rij

zi − zj
rij

(3.14)

The form of the gradient operator in Eq. (3.10) however, is generally not used for

fluid simulations as higher accuracy can be obtained [68]. By applying Eq. (3.10)

to the following identities:

ρ∇φ = ∇ (ρφ)− φ∇ρ, (3.15)

∇φ
ρ

= ∇
(
φ

ρ

)
− φ

ρ2
∇ρ, (3.16)

one can obtain the gradient operators [68]:

〈∇φi〉 =
∑
j

Vj(φj − φi)∇iωij, (3.17)

〈∇φi〉 =
∑
j

mj

(
φj
ρ2
j

+
φi
ρ2
i

)
∇iωij, (3.18)

where m is mass, and ρ is density. Divergence operators are obtained similarly.

Both of the two gradient operators are widely used in SPH (WCSPH in par-

ticular). Eq. (3.17) is used in WCSPH for the conservation of mass and is able to

conserve constant fields, but momentum violation is present with such an operator.

Eq. (3.18) on the other hand, satisfies Newton’s third law reaction principle (the in-

teraction between particles i and j is equal and opposite to the interaction between

particles j and i), and so possesses the advantage of conserving linear momentum.

Consequently however, Eq. (3.18) does not ensure zero gradients in constant fields

as it does not follow the Taylor expansion [155]. The findings of Oger et al. [155]

show that interaction reciprocity (as satisfied by Eq. (3.18)) is not as important

as interpolation accuracy. Therefore, Eq. (3.17) is chosen for the gradient operator

as it gains significant benefits in accuracy when combined with a renormalisation

procedure [155], which Eq. (3.18) gains no advantage from.
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3.2.2.1 Kernel gradient renormalisation

A renormalisation procedure for the kernel gradient as explained by Oger et al. [155]

is used in this work to improve consistency of the kernel interpolation gradients from

zeroth-order to first-order. The normalised kernel gradient, ∇iWij, is given by:

∇iWij = L(r)∇iωij, (3.19)

where in 3D for each particle i, L(r) is the inverse of a 3×3 matrix as in Eq. (3.20).

Herein, the inverse is computed using a compact version of the method of minors,

cofactors, and adjugate as shown in Appendix A.

L(r) =



∑
Vj (xj − xi)

∂ωij
∂xi

∑
Vj (xj − xi)

∂ωij
∂yi

∑
Vj (xj − xi)

∂ωij
∂zi∑

Vj (yj − yi)
∂ωij
∂xi

∑
Vj (yj − yi)

∂ωij
∂yi

∑
Vj (yj − yi)

∂ωij
∂zi∑

Vj (zj − zi)
∂ωij
∂xi

∑
Vj (zj − zi)

∂ωij
∂yi

∑
Vj (zj − zi)

∂ωij
∂zi



−1

(3.20)

The operator is used when calculating the divergence of velocity (Eq. (3.31)) and

similarly for when computing the pressure gradient (Eq. (3.33)).

Oger et al. [155] found that they needed to use a mixture of the pressure gradi-

ent operators to maintain stability when a free surface is present in their WCSPH

scheme. Instabilities were prevented by using the renormalized kernel gradient with

Eq. (3.18) for particles near the free surface and the renormalized kernel gradient

with Eq. (3.17) for everywhere else. Despite these original findings regarding renor-

malisation, only the antisymmetric pressure gradient (Eq. (3.17) is used here, even in

the presence of a free surface. Throughout this study, no instabilities related to the

renormalisation method were encountered. Although unconfirmed, the instabilities

might be prevented here due to the use of the projection step scheme.

3.2.3 Discretisation error

The error from approximating Eq. (3.1) with Eq. (3.6) is on the order of O(h2) [68].

For instance, taking the first two terms (and the error) from a Taylor series expansion
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of a general variable function φ (r′) around the point r with differentiable function

φ (r):

φ (r′) = φ (r) +∇φ (r) · (r′ − r) +O
(
|r′ − r|2

)
, (3.21)

and applying Eq (3.6), the expansion expressed in SPH terms is:

〈φ (r)〉 = φ (r)

∫
Ω

ω(r−r′)dΩ+∇φ (r) ·
∫

Ω

(r′ − r)ω(r−r′)dΩ+O
(
|r′ − r|2

)
(3.22)

Three steps are then applied to the terms on the RHS of Eq. (3.22):

1. Substituting the condition of Eq. (3.5) into the first term reduces it to φ (r).

2. Since the smoothing kernel is to be an even function about the position, r, the

second integral evaluates as an odd function [278] and vanishes,

∫
Ω

(r′ − r)ω(r− r′)dΩ = 0 (3.23)

3. An assumption is made in that the order of |r′ − r| is similar to that of the

kernel smoothing length.

Thus, second-order accuracy in space is demonstrated:

〈φ (r)〉 = φ (r) +O
(
h2
)

(3.24)

However, the proof is only applicable to regions of full (compact) kernel support [156].

Errors are also likely to increase with particle disorder due to the Lagrangian nature

of SPH. This has been partially addressed with the particle-shifting methodology as

explained in Section 3.3.5.
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3.3 ISPH methodology

For incompressible flows, the Lagrangian Navier-Stokes equations express conserva-

tion of mass and momentum according to:

∇ · u = 0, (3.25)

du

dt
= −1

ρ
∇P + ν∇2u + f , (3.26)

where u is velocity, t is time, ρ is density, P is pressure, ν is kinematic viscosity,

and f is the acceleration due to any external forces in the system such as gravity.

To solve these equations using an ISPH algorithm, a projection method [173] and a

pressure Poisson Equation (PPE) are used to enforce incompressibility.

3.3.1 A projection-based ISPH algorithm with shifting

In ISPH, there are a few ways to construct the PPE:

• ISPH with a divergence-free velocity field: Cummins and Rudman [172]

presented a projection based method which enforces incompressibility and con-

structs the PPE through a divergence-free velocity field on the RHS of the

PPE. True to a Lagrangian scheme, particles move along streamlines in this

form of ISPH which, whilst this may be physically accurate, it can cause ir-

regular particle spacings and consequently, numerical instabilities.

• ISPH with a density invariance: Shao and Lo [177] introduced an ISPH

method with an imposed density invariance. The algorithm uses a relative

density difference between initial and temporal fluid densities of each particle

on the RHS of the PPE. The method mitigates the particle clustering seen in

the divergence-free velocity ISPH. However, a divergence-free velocity field is

not maintained and the formulation does not truly represent an incompressible

fluid.



84 3.3. ISPH METHODOLOGY

• ISPH with velocity and density control: Following the other two forms

of ISPH, Hu and Adams [181] decided to combine them to achieve the best of

both methods. They solve a PPE with density invariance to advect particle

positions, and then a second PPE with a divergence-velocity field for updating

particle velocities. The advantages of both the former two formulations were

demonstrated with the solution of the two different PPEs. However, solving a

single PPE is a time consuming and memory intensive process. The require-

ment to solve two PPEs for every time step is likely to be too impractical for

large-scale 3-D engineering applications compared to the other methods.

For this study, the ISPH with a divergence-free velocity field method is implemented

due to its representation of a truly incompressible fluid. To prevent the occur-

rence of particle clustering and subsequent numerical instabilities, particle shifting

is employed following Xu et al. [161]. Therefore, their projection-based ISPH algo-

rithm with shifting is used. The scheme follows from Chorin’s original projection

method [173] and Cummin and Rudman’s [172] use of it in SPH. In the following

description the superscript refers to the time step, and the subscript refers to a par-

ticle. For a particle, i, at any particular time step, n, the pressure projection step

goes as follows:

1. Initially, a particle position, rni , is moved to an “intermediate” position, r∗i ,

using uni :

r∗i = rni + ∆tuni (3.27)

2. The intermediate positions are subsequently used to calculate an intermediate

velocity from the viscous term of the momentum equation only:

u∗i = uni +
(
ν∇2uni

)
∆t, (3.28)

such that, (
ν∇2uni

)
i

=
∑
j

Vj
(νi + νj) r∗ij · ∇iωij(

r∗ij
)2

+ η2
s

unij, (3.29)

as explained further in Section 3.3.3.



3.3. ISPH METHODOLOGY 85

3. Free-surface particles are identified and their pressure values are set to zero in

the next step. Further details of this are given in Section 3.3.4.

4. The next step is the solution of a pressure Poisson equation (PPE) [173], which

gives the pressure, p, for the following time step, n+ 1:

∇ ·
(

1

ρ
∇P n+1

)
i

=
1

∆t
∇ · u∗i , (3.30)

where the Laplacian operator used on the LHS of the equation is given in

Section 3.3.3, and the divergence of velocity, ∇ · u∗i , is calculated as:

∇ · u∗i =
∑
j

Vj(u
∗
j − u∗i ) · ∇iWij, (3.31)

where ∇iWij refers to the renormalised kernel gradient, as in Eq. (3.19), and

is also used later in Eq. (3.33).

A derivation of Eq. (3.30) can be found in Appendix B. The PPE is solved as

a linear matrix system in the form of [A] x = b, and is described further in

Sections 3.3.2 and 4.6. The numerical solution of the matrix is one the key

challenges of implementing an efficient ISPH algorithm both generally and on

the GPU. Free-surface particles provide Dirichlet conditions to the system,

and must be applied here to provide a unique solution, this is detailed later

in Section 3.3.4. At solid boundaries, Neumann conditions are applied as in

Section 3.4.3.

5. The momentum equation (Eq. (3.26)) is completed by using the resulting

pressure values from Eq. (3.30) for the pressure gradient and including external

forces to give a new velocity at time step n+ 1:

un+1
i = u∗i −∆t

(
∇P n+1

i

ρ
− fni

)
, (3.32)
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where the pressure gradient term, ∇P n+1
i , is calculated as:

∇P n+1
i =

∑
j

Vj(P
n+1
j − P n+1

i )∇iWij (3.33)

Herein, the external force, fni , is always gravity, which is a conservative vec-

tor field and hence consistent with the Helmholtz-Hodge decomposition when

included in the projection step [172] in Eq. (3.32). Furthermore, there is a

numerical advantage with this approach in that with the kernel gradient nor-

malisation (Eq. (3.19)), any linear pressure field is balanced by gravity to

within machine precision.

6. The new particle positions are calculated:

rn+1
i = rni + ∆t

(
un+1
i + uni

2

)
(3.34)

This is where Cummin and Rudman’s projection step ends. However, to pre-

vent particle clustering and ensure near noise-free pressure fields, particle shift-

ing is implemented. Following Nestor et al. [182], the method of particle shift-

ing in ISPH was first proposed by Xu et al. [161] and later extended for the

application of free-surface flows by Lind et al. [11].

7. Shift particles to avoid clustering, and maintain an ordered particle distribu-

tion (see Section 3.3.5):

rn+1
i = rn+1

i + δrs,i, (3.35)

where δrs,i is the particle shifting distance.

3.3.2 The PPE matrix

The pressure field is found implicitly through the solution of the PPE (Eq. (3.30)).

To solve the PPE, the equation is expressed as a linear matrix system in the form

of [A] x = b where:



3.3. ISPH METHODOLOGY 87

• [A] is a sparse coefficient matrix of N×N dimensions, where N is the number

of particles in the system.

• x is a vector consisting of N elements, representing the system solution, in

this case it is the pressures of each particle.

• b is a vector consisting of N elements, representing the source terms of the

system, here it is the divergence of velocity of each particle.

The individual elements of the matrix will be denoted by two numeric subscripts,

representing the elements row and column number respectively. The matrix element

notation is illustrated in Fig. 3.2 within the context of ISPH for a 5 particle system.

Each row will belong to one i particle, and each column represents an interacting j

particle. Similarly for vectors x and b, the subscript denotes the particle number.

For example, for the matrix elements associated with particle 2 interactions are

A20, A21, A22, A23, A24, and elements xm,2 and bm,2 for the two vectors. The actual

values of the PPE matrix elements are presented in the following sections of the

chapter.
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Fig. 3.2: PPE matrix element notation for ISPH. Example for a 5 particle system.

In larger systems, the majority of the elements in the matrix system will be
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of null value, due to a compact kernel support limiting the number of interactions

per particle, resulting in a sparsity property. Without boundary conditions, the

matrix is initially symmetric because of the symmetry of the kernel for pairwise

particle interactions. However, the inclusion of boundary conditions creates a non-

symmetric matrix, which is explained in Appendix C.

Herein, the matrix system will include all fluid particles and some, if not all

boundary particles, as explained later in Section 4.5.2.1 leading to very large sparse

matrices at high resolutions. Such large matrices with a potential for highly-irregular

particle distributions (especially in violent flows) may present ill-conditioned sys-

tems. Sections 4.5.2.1 and 4.6 explain how the PPE matrix system is treated and

solved on the GPU.

3.3.3 Laplacian operator

The operator of Morris et al. [157], commonly employed in ISPH [161, 175, 190] is

used to approximate the Laplacian during computation of the viscous diffusion term

in Eq. (3.28) and the LHS of the PPE in Eq. (3.30). The operator is based upon

Brookshaw’s [279] approximation of the Laplacian for the viscous diffusion term:

(
φ1∇2φ2

)
i

=
∑
j

Vj
(φ1,i + φ1,j) rij · ∇iωij

r2
ij + η2

s

φ2,ij, (3.36)

where ηs = 10−5, a constant to prevent singularities at rij = 0 during computation.

3.3.4 Free-surface identification

Identification of the particles on the free surface is important in ISPH for providing

the Dirichlet boundary conditions within the PPE system. Employed in this work

is the tracking method of Lee et al. [175], where for each particle, the divergence

of position is calculated and the presence of a truncated kernel support is used to

identify the free surface. The divergence of a particle’s position, ∇ · ri, is computed
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as:

∇ · ri =
∑
j

Vjrij · ∇iωij (3.37)

With a complete kernel support, Eq. (3.37) is equal to 2.0 in a 2-D domain, and 3.0

in a 3-D domain. Numerical tests indicate that in 2D, a divergence of position value

equal to or below 1.6 identifies a particle on the free surface. For 3D, values equal

to or below 2.6 are used. The near-free-surface smoothing criterion of Skillen et

al. [9] is also used here to smooth the transition of the PPE system from bulk fluid

to free-surface regions. Therefore, for the linear system (Eq. (3.30)) in the form of

[A] x = b (where x is a vector of particle pressures, P ), the entries are modified as

follows:

AiiPi +
∑
j

αm,iAijPj = αm,ibi, (3.38)

where,

αm,i =


0 if ∇.ri ≤ αl,

1

2

[
1− cos

(
π
∇ · ri − αl
αu − αl

)]
, if αl < ∇ · ri < αu,

1 if ∇ · ri ≥ αu

(3.39)

αl and αu are constants to describe the lower and upper limits of divergence of

position for near free-surface regions in the fluid. In 2D, αl = 1.6 and αu = 1.8. In

3D, αl = 2.6 and αu = 2.8.

3.3.5 Particle shifting

Following Nestor et al. [182], Xu et al. [161] introduced particle shifting into ISPH as

a method to avoid particle clustering. Particle shifting takes place every time step

after the projection step, where particle positions are “shifted” (adjusted) to avoid

particle disorder and then the hydrodynamic variables are corrected by Eq (3.40),

a Taylor series approximation. In this work, particle velocities are corrected after

shifting. For an arbitrary variable, φ, the fluid properties are updated according to

φi′ = φi + (∇φ)i · δrii′ +O(δr2
ii′), (3.40)
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where i and i′ denote the positions of particle i before and after shifting respectively,

and δrii′ is the vector between the two positions. The second-order error term in

Eq. (3.40) arises from the Taylor series expansion and can be found the same way

as the discretisation error described in Section 3.2.3. One can further quantify the

error further by seeing that shifting a particle a distance of no more than dp and

correcting the hydrodynamic variables through the Taylor series expansion, the error

introduced to the velocity field following shifting is second-order in particle-spacing.

Without correction of the hydrodynamic variables, it again follows from a Taylor

expansion that the velocity error is first-order after shifting. Assuming a fixed mass

of fluid, the error in velocity then translates to a first-order error in momentum.

Herein, the particle shifting distance is restricted to be an order of magnitude less

than the particle spacing, 0.1dp, to stay well within the aforementioned error bounds.

The method of Particle shifting here violates conservation of momentum in the

discrete particle system [161]. However, as established with Eq. (3.17) the method is

already non-conservative. Nevertheless, the use of particle shifting has been seen to

improve accuracy, stability, and convergence properties in SPH methods [11,161,183,

184]. An alternative particle shifting approach was proposed by Adami et al. [280]

who shift particles using a transport velocity obtained from a slightly modified

momentum equation. There is no correction of hydrodynamic variables undertaken,

even though particles are moved with a non-Lagrangian velocity. More recently,

Oger et al. [281] addressed this issue and have managed to preserve consistency and

conservation within the shifting methodology through an ALE formalism, where

transport with a non-Lagrangian velocity is also (correctly) accompanied by an

appropriate change in particle mass.

This work uses the improved shifting for free-surface flows algorithm of Lind

et al. [11] based on Fick’s law of diffusion where particles move from high to low

particle concentration regions. A particle’s shifting distance, δrs,i, is calculated as

δrs,i = −D∇Ci, (3.41)

where, D = 0.5h2∆t a diffusion coefficient, and ∇Ci is the concentration gradient
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expressed in Eq. (3.42). Included within the calculation of the concentration gradient

is a pairing instability term, Fij [160]:

∇Ci ≈
∑
j

Vj (1 + Fij)∇iωij, where Fij = R1

(
ωij

ω (dp, h)

)R2

, (3.42)

where dp is the initial particle spacing distance, and R1 and R2 are coefficients

taken as 4.0 and 0.2 respectively. Pairing instability arises from the gradient of the

kernel derivative [282] and negativity in the kernel Fourier transform [283]. This is

apparent in spline-based kernels, such as the quintic spline (Eq. (3.8)), when the

support radii (h/dp ratio) is sufficiently large [283]. Despite the efforts of shifting

to maintain a regular particle distribution, particles still clump together, hence the

use of the pairing instability term. The Wendland kernel however, is not affected

by such a phenomenon [283].

Using a particle shifting technique based on Fick’s law has the consequence that

the shifting of particles on, or near, the free-surface would rapidly diffuse away from

the fluid bulk. Therefore, Lind et al. [11] also controlled the amount of shifting,

normal to the free surface, of particles at, and nearby the free-surface (in 2D) via:

δrs,i = −D
[
∂Ci
∂s

s + αshift

(
∂Ci
∂n
− β

)
n

]
, (3.43)

where s and n are tangential and normal vectors respectively, αshift is a constant

in the range [0, 1] that controls the amount of normal diffusion at the free surface,

and β is an equilibrium term equal to ∂Ci

∂n
for particles near an unperturbed plane

free surface. For transient and violent flows, shifting normal to the free surface can

be eliminated entirely, αshift = 0. Mokos et al. [183] extended Eq. (3.44) to 3-D

simulations:

δrs,i = −D
[
∂Ci
∂s

s +
∂Ci
∂sb

sb + αshift

(
∂Ci
∂n
− β

)
n

]
∇Ci, (3.44)

where sb is the bi-tangent vector defined as a tangent to two points on a curve.

Whilst not presented in the implementation of this study, the work of Khayyer
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et al. [184] is worth noting here as it builds upon the Lind et al. formulation

presented. The tuning of the sensitive parameters in Eq. (3.44) are empirical so

Khayyer et al. [184] devised a new shifting formulation, optimised particle shifting

(OPS), which computed an accurate and consistent normal concentration gradient

of the free surface, and eliminated the use of parameters. OPS proved successful

for a number of analytical test cases displaying reduced errors and a smoother free-

surface profile when compared against method of Lind et al. [11] However, numerical

experiments have shown the scheme cannot handle violent flows effectively.

3.3.6 Time step constraint

For the simulations in Chapter 5, a fixed time step is used, restricted by the Courant-

Friedrichs-Lewys (CFL) condition [148]. The time step, ∆t, is determined by the

criterion that it is less than or equal to the convection time on the smoothing length,

h [284]:

∆t ≤ CCFL
h

umax
, (3.45)

where CCFL is the CFL condition number, a constant in the range [0.1, 0.2] in this

study, and umax is the expected maximum velocity of the flow.

3.4 An ISPH boundary condition suitable

for GPUs

In SPH, boundaries (wall and inflow/outflow) pose a problem in that there is a

truncation of the kernel which, if not treated, will cause inaccurate interpolation and

penetration of the boundary by moving fluid particles. Fig. 3.3 shows an example

of a fluid particle’s truncated kernel at a solid boundary. For ISPH on the GPU,

the desirable criteria for an SPH boundary condition are:

• Accurate computation of desirable mathematical boundary conditions: u ·n =

0, and ∂P/∂n = ρf · n.

• Relatively simple implementation.
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Fluid particles 
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Boundary line 

Fig. 3.3: The truncation of the kernel for a particle, i, near a solid boundary.

• Suitable for parallelism.

• Robust with regards to complex geometries.

The definition of a complex geometry here may include solid boundaries of curved

shapes, and non-right-angled corners. To account for the kernel truncation at

boundaries, the SPH boundary types employed for ISPH are typically mirror parti-

cles [157, 170] and fixed dummy particles [175, 177]. Unified semi-analytical bound-

ary conditions [159, 285] are also used, however, although accurate, the method is

complex and time consuming to implement and therefore not considered here.

3.4.1 Mirror particles

The mirror particle method sees fluid particles reflected across the boundary to gen-

erate “mirror particles” which possess the properties of their original counterparts.

Fig 3.4 illustrates a mirror particle generated from a fluid particle at a distance,

dr, perpendicular to the boundary. The method of reflection ensures the desired

mathematical conditions to be exact on the boundary line when interpolating be-

tween a fluid particle and its mirror. However, the generation of mirror particles

are required every time step and its most efficient implementation for a parallelised

code is not yet known. Furthermore, difficulties arise when representing complex

geometries with mirror particles.
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Fig. 3.4: A fluid particle (blue), i, at a distance, dr, perpendicular to the boundary
line generates the mirror particle (orange), im.

3.4.2 Fixed dummy particles

The method of fixed dummy particles includes extra particle layers to the boundary

to fill the kernel as shown in Fig. 3.5. Solid boundaries are represented by ”wall

particles” which remain fixed on the physical boundary line. ”fixed dummy parti-

cles” are placed in layers perpendicular to the boundary behind the wall particles.

Throughout the simulation dummy particle boundary layers are prescribed the same

pressure and velocity as their corresponding normal direction wall particles. The wall

particles are treated the same as fluid particles but without advection. Compared

 

 

 

 

Boundary line 

Wall particle,  
Pressure =  
Velocity = 0 

Uniformly distributed fixed 
dummy particles belonging 
to wall particle,  
Pressure =  
Velocity = 0 

Fig. 3.5: An example of fixed dummy particles for a stationary boundary (u =
0). Fixed dummy particles (grey) are uniformly distributed and possess the same
velocity and pressure as their corresponding normal direction wall particle (green).

to mirror particles, fixed dummy particles are simple to implement (generated once

at the beginning of a simulation), can be easily used with complex geometries, and

straight forward to parallelise. However, satisfaction of the mathematical bound-
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ary conditions are inaccurate due to uneven interpolation of properties at the wall

caused by the extra dummy particle layers.

3.4.3 Adapting the Marrone et al. boundary condition for

ISPH

Both mirror and fixed dummy particles meet only some of the aforementioned de-

sirable boundary condition criteria. The experiences of such boundary conditions

through numerical experiments are summarised in Table 3.2. An additional bound-

ary condition, as proposed by Adami et al. [158], is also included as a simple alter-

native to the fixed dummy particle boundary condition, where a zeroth order kernel

summation is used to extrapolate velocity and pressure values for fixed dummy par-

ticles. Although the Adami et al. [158] boundary condition has been evaluated as

an improvement over the standard fixed dummy particles, it can never fully satisfy

the mathematical boundary conditions due to the use of extrapolation.

Presented here is a new boundary condition for ISPH that combines the ad-

vantages of the different types of boundary conditions. Here, dummy particles are

employed to complete kernel summations, whilst boundary conditions are satisfied

using the method of Marrone et al. [14] (and similarly Bouscasse [286]), which is

modified for ISPH.

Fig. 3.6 illustrates the Marrone et al. [14] boundary condition where each fixed

dummy particle is mirrored into the fluid, perpendicular to the boundary to give a

unique interpolation point (UIP). For each fixed dummy particle, i, the associated

UIP generated is denoted as Ii, and interpolates properties from surrounding fluid

particles, j, where the interaction is denoted as (Ii)j.

The mirroring process for the generation of UIPs is executed once at the begin-

ning of the simulation during setup and detailed in Section 4.4.3. For moving rigid

boundaries, the velocity vector of a boundary particle is used to move its UIP. At

each time step, a moving least squares (MLS) interpolator, Eq. (3.46), is used to

estimate the velocities and pressures at the location of UIPs. The MLS interpolator
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Table 3.2: Experiences of different boundary conditions regarding the satisfaction
of desirable SPH boundary condition criteria.

Mirror particles
Fixed dummy

particles

Adami et al. [158]
- extrapolated

dummy particles

Accurate
u · n = 0 and
∂P/∂n = ρf · n

Yes -
straightforward to

enforce

No - Numerical
boundary layer

created

Improved
accuracy and
convergence

compared to fixed
dummy particles
but less accurate

than mirror
particles

Simple to
implement

Not as simple as
fixed dummy

particles - extra
effort for mirror

particle
generation,

memory
management, and

complex
geometries

Yes -
straightforward,
treated similarly
to fluid particles

Yes - Only one
extra summation

required for
extrapolation of

velocity and
pressure of

dummy particles

Suitable for
parallelism

No - efficient
parallel

generation of
mirror particles

on GPU unknown

Yes - parallelism
of boundary

particles similar
to fluid particles

Yes - parallelism
similar to fixed

dummy particles

Robust for
complex

geometries

No - Issues arise
with geometries

with singularities
(sharp corners)

Yes - placement of
particles specified
in pre-processing
and then treated
similarly to fluid

particles

Yes - Similar to
fixed dummy

particles
 

Boundary line 

1
2

 

1
2

 

Unique interpolation 
point  

Boundary particle  

Fig. 3.6: A fixed dummy particle, i, is mirrored perpendicular to the boundary line
to create a unique interpolation point (UIP), (Ii).
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is: 

ωMLS
(Ii)j = M−1

Ii e1 · c(Ii)jω(Ii)j,

cT(Ii)j = [1, (xIi − xj), (yIi − yj), (zIi − zj)], eT1 = [1, 0, 0, 0],

MIi =
∑
j

c(Ii)j ⊗ c(Ii)jω(Ii)jVj

(3.46)

The velocity at the UIP, Ii, and its corresponding dummy particle, i, is then de-

scribed as:

uIi =
∑
j∈fluid

ujω
MLS
(Ii)j Vj,

ui =

 uIi − 2u(Ii)norm, Free-Slip,

−uIi, No-Slip,

(3.47)

where u(Ii)norm is the velocity component in the direction perpendicular to the

boundary. For pressure:

PIi =
∑
j∈fluid

Pjω
MLS
(Ii)j Vj,

Pi = PIi + ∂Pi/∂n,

(3.48)

where ∂Pi/∂n = ρf · ri(Ii).

Applying the Marrone et al. boundary condition to the ISPH PPE fluid particles

involves a nested loop. Usually, the PPE is expressed in terms of fluid particles

only, where boundary particle pressures are expressed as equivalent fluid particle

pressures. This method results in a npf x npf matrix1. The LHS of the PPE for a

fluid particle, i, is: ∑
j

2Vj
(Pi − Pj)rij · ∇iωij

ρ(r2
ij + η2

s)
(3.49)

However, if the fluid particle interacts with any boundary particles, the summa-

tions with the Marrone et al. boundary condition involves extra terms,

∑
j∈fluid

2Vj
(Pi − Pj)rij · ∇iωij

ρ(r2
ij + η2

s)
+

∑
j∈boundary

2Vj

(
Pi −

∑
k∈fluid

[
Pkω

MLS
(Ij)k Vk

]
− ∂P/∂n

)
rij · ∇iωij

ρ(r2
ij + η2

s)
=

1

∆t
∇ · u∗i

(3.50)

1npf = number of fluid particles in simulation
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Eq. (3.50) is complex to implement and slow in execution due to the nested

particle sweeps. Instead, a more elegant solution involves allocating a row for every

particle in the simulation, giving an np x np sparse matrix2. Therefore, the nested

loop can be taken out of Eq. (3.50) to become a separate equation for boundary

particles and the ∂P/∂n term is moved to the RHS of the PPE. The LHS of the

PPE for fluid particles is then expressed exactly as written in Eq. (3.49).

To summarise, two sets of equations are defined that construct the linear system:

∑
j∈all

2Vj
(Pi − Pj)rij · ∇iωij

ρ(r2
ij + η2

s)
=

∑
j∈boundary

2Vj
rij · ∇iωij
ρ(r2

ij + η2
s)
ρf · rj(Ij) +

1

∆t
∇ · u∗i (3.51)

Pi −
∑
j∈fluid

Pjω
MLS
(Ii)j Vj = 0 (3.52)

Eq. (3.51) is used for fluid particles and Eq. (3.52) for boundary particles. Both

equations can be included in the same matrix because they are of the same form,

[A] x = b. When expressing Eq. (3.51) as Eq. (3.38), elements Aii and Aij are equal

to the coefficients of the pressures on the LHS of the equation; bm,i is equal to the

RHS of the equation, and αm,i equals the criterion specified in Eq. (3.39). When

expressing Eq. (3.52) as Eq. (3.38), Aii and αm,i = 1.0, Aij = ωMLS
(Ii)j Vj, bm,i = 0.

This method allows for simple parallelism across all particles during population of

the PPE matrix, which is described in Section 4.5.2.4.

3.4.3.1 Boundary setup

This section describes the mirroring process for obtaining each boundary particle’s

UIP). Fig. 3.7 details the steps, suitable for parallelisation, to find the positions of

each boundary particle’s UIP:

1. As illustrated in Fig. 3.7a, particles are placed on the physical boundary line

and distinctly defined, these belong to the set ΩPhys. Extra layers of bound-

ary particles are then placed, these belong to the set ΩDum. This particle

arrangement is the same as the WCSPH fixed dummy particle setup.

2np = total number of particles in simulation
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2. Each ΩDum particle is linked to its closest ΩPhys particle and this group of

particles is defined as ΩG,i, relating to the ΩPhys particle i. For example, in

Fig. 3.7b, particles 5-12 all belong to the set ΩDum, and their closest ΩPhys

particle is particle 19. The group of particles can then be referred to as ΩG,19.

3. The direction vector, dn,i, perpendicular to the boundary for each ΩG,i group

of particles is defined as
∑

j∈ΩG,i
(ri − rj). Subsequently, a mirror point for

a group, ΩG,i, can be created at the position, rm,i = ri + dn,i. Fig. 3.7b

demonstrates this for ΩG,19, where dn,19 =
∑12

j=5(r19 − rj). A mirror point is

then created by adding the resulting direction vector, dn,19, to particle 19’s

position.

4. The direction vectors are normalised and then multiplied by a distance of half

the original particle spacing, 0.5dp. Fig. 3.7c illustrates the rescaled direction

vector for ΩG,19, and the subsequent repositioning of the mirror point.

5. Every particle in a group ΩG,i is then mirrored across the group’s respective

mirror point to find the position of each particle’s UIP, rIi = 2.0rm,i− ri. The

resulting UIPs for group ΩG,19 are shown in Fig. 3.7d.

It should be noted that in step 4 of the process, the physical boundary is ef-

fectively moved by 0.5dp. This will however converge to the desired location of the

boundary with particle spacing refinement. The mirroring algorithm gives flexibility

to the ISPH code because once implemented there is no-hard coding of the physical

boundary required for specific test cases.

3.5 Conclusions

This chapter has described the mathematical model for this study. The key funda-

mentals of the SPH method are explained, and the ISPH algorithm for simulation

of the Navier-Stokes equations identified. The model has further developed that

of Lind et al. [11] as the method has been proven successful for violent free-surface

hydrodynamic applications. This study has a key difference in the method regarding
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create an initial mirror point
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for a final mirror point
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(d) Mirroring the boundary particles to create
UIPs

Fig. 3.7: The boundary mirroring process to find the positions of each boundary
particle’s UIP.

the boundary conditions. The method of Marrone et al. [14] has been adapted to es-

tablish an accurate and robust ISPH boundary condition suitable for parallelism on

the GPU. This is the first application of the Marrone et al. [14] boundary condition

to ISPH, which is more complex to implement due to the population of the PPE

matrix. Introducing the MLS kernel interpolation for pressure (Eq. (3.52)) into the

system of equations for boundary particles avoids a nested loop during computation

and allows for simple parallelisation in populating the matrix as discussed later in

Section 4.5.2.4.

After discussing the graphics processing unit (GPU), the next chapter details

the implementation of ISPH on the GPU.



Chapter 4

Implementing ISPH on the GPU

4.1 Introduction

The novel algorithmic implementation for ISPH on the GPU is detailed in this

chapter. A new engineering tool is created by conversion of the open-source WCSPH

code DualSPHysics v4.0 [15] into an ISPH code implemented for the GPU. Prior

to presenting the implementation of ISPH on the GPU, a brief summary of GPU

hardware architecture and the programming of such devices is given.

4.2 The graphics processing unit (GPU)

The graphics processing unit (GPU) originated from within the computer graphics

industry for real-time visualisation of video game graphics and image processing.

The specialist hardware’s massively parallel architecture is designed to process large

quantities of data where the same computation is required for each data element.

The general-purpose GPU (GPGPU) has since been created to parallelise code

that would normally be computed on the CPU in addition to producing computer

graphics. Thus, with the introduction of GPU dedicated parallel programming

languages, CUDA (Compute Unified Device Architecture) [12, 236] and OpenCL

(Open Computing language) [13,237], GPGPUs have since been used for accelerating

a variety of applications including scientific computations. The compute-intensive

capabilities of GPU hardware are well-suited for computing large N-body simulations

101
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involving pair-wise calculations [287] and therefore, meshless Langrangian methods

such as SPH.

In addition to computational performance, GPUs are being used as a cost-

effective approach to HPC, where a single high-end gaming GPU device (such as

the Nvidia GTX 10 series) can be purchased for less than £1000. Such an invest-

ment is relatively cheap when considering the cost of a small CPU cluster which

costs £10,000s as well as associated running costs (e.g. power consumption, cooling,

and maintenance). GPUs require little to no specialist maintenance, relatively low-

purchase cost, and are generally more energy efficient, with a higher performance-

per-watt rating i.e. they use less energy per math instruction [238,288].

Figure 4.1 shows the basic concept of how a GPU would be used in the sequence

of program execution. In the context of simulation computing, the GPU would deal

with all, if not the majority, of data processing in the core of the program and the

CPU manages the handling of input/output data.
 

CPU 

 Sequential code 
 Input data 

 

 

 

 

 

 

 Output data 

 Parallel code 
 Intensive/repetitive 

computing functions 

             GPU 

Send instructions 
and data to GPU 

Send calculated data 
back to CPU 

Fig. 4.1: A basic model for the interaction between the CPU and GPU.

4.2.1 GPU architecture

The large-data processing power of GPU hardware is enabled by its unique ar-

chitecture, which is rather different to that of the common CPU. A parallel CPU

architecture has a limited number of multi-threaded cores (typically 4-16 core in

a non-specialist CPU), able to efficiently handle a large complex instruction set

including calculations, memory fetching, input/output, and branch prediction.
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The GPU’s core purpose on the other hand, is to process problems of high

arithmetic intensity, so the flow control mechanisms and data cache of the hardware

need not be as sophisticated as the CPU’s. This allows for more space on the chip

to be devoted to housing algorithmic logic units (ALUs) for performing arithmetic

operations.

Nvidia are one of the largest manufacturers of GPUs and are one of the only

companies to produce GPUs specifically for scientific computing. They are the

developers of the CUDA programming language, which is exclusive to Nvidia GPUs

and detailed further in Section 4.2.4.

The architecture of every Nvidia GPU model is different, however they all have

the same general components for parallel processing. The main component is a

streaming multiprocessor (SM), which is depicted in Fig. 4.2. showing an example

of a modern GPU’s SM micro-architecture. An SM houses up to 100s1 of CUDA

computing cores and 1000s of threads. The multiprocessor schedules and executes

threads in groups of 32, known as a “warp”, and each CUDA core is defined as

having an ALU and a single-precision floating-point unit (FPU) to compute one

warp at a time.

All the threads in a warp can execute the same set of instructions simultane-

ously, and similarly, multiple cores within a SM can execute concurrently. As each

warp terminates, through completing the assigned set of instructions, a new warp is

scheduled and executed by the SM. The architecture respectively uses a mixture of

SIMT (single instruction, multiple threads) and SIMD (single instruction, multiple

data) parallelism through the CUDA cores and threads to achieve massively parallel

computations. Such a method of parallelism is of great benefit to SPH, as one par-

ticle’s interactions is typically computed through one thread. This means if a GPU

has 2500 CUDA cores (a reasonable number for the modern GPU) each executing

a thread warp, then theoretically 2500 × 32 = 80, 000 particles can be computed

simultaneously. This is a simplified example however, as the number of threads per

core can be limited by the size of data being processed (see Section 4.2.2).

1Usually in multiples of 32, up to 192 cores in modern architectures.
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Fig. 4.2: An example of an SM microarchitecture. This particular model is the
GP104 SM from the GTX 1080 [289]. “LD/ST” stands for load/store unit. “SFU”
stands for special function unit.

In practice, the programmer divides the work across threads, thread blocks, and

a grid. Thread blocks are groups of threads, and the grid is made up of thread
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blocks of identical size. SMs execute thread blocks with the appropriate number of

warps.

Most GPUs are intended for single precision calculations due to their original

purpose of graphics visualisation where accuracy is not such a concern. Double-

precision calculations are possible, but require more sophisticated algorithms and

the theoretical number of available threads at any one time is halved. Some Nvidia

architectures are however, specifically designed for use of double-precision calcula-

tions, with special double-precision cores built into the SM.

In terms of executing code, parallel functions called CUDA kernels are invoked

by the CPU, which in turn prompts the GPU to execute them through the SM(s) on

blocks of threads (warps) concurrently. A CUDA kernel in the context of GPU pro-

gramming, is not to be confused with the SPH kernel, but is a parallel-programming

GPU function. Further details of CUDA kernel programming are found in Sec-

tion 4.2.4).

4.2.2 The GPU memory model

The GPU has a unique memory structure very different to that of the CPU. Fig. 4.3

shows a diagram of the hierarchical memory layout of the GPU. The memory types

are:

• Global memory: This is the main memory on the GPU, analogous to

random-access memory (RAM) on the CPU, and has storage on the order

of gigbytes (GB) (Modern GPUs typically range between 4-12 GB, some ex-

ceptions give 16 or 20 GB, but at a greater cost). It is this memory space which

takes part in GPU-CPU and CPU-GPU data transference. Data within global

memory resides there for the lifetime of the program or until the memory ad-

dresses are freed up by the user. In the context of ISPH on a single GPU, all

the particle data, neighbour list data, the PPE matrix, and linear solver must

be able to fit here. All cores on each SM have access to the global memory,

and are able to access and overwrite data. Therefore, the synchronisation of

cores during parallel computation should be taken into account. Situated the
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furthest away from the computing threads, accessing global memory within a

kernel function is slower than accessing any of the other memory types.

• Registers: In contrast to global memory, GPU registers are the fastest mem-

ory type as they are situated immediately adjacent to the computing threads.

The access time is largely hidden by active threads so the memory latency is

minimal. However, the memory space is very limited in size with only a few

hundred kilobytes (KB) per SM distributed exclusively and evenly across each

thread within the SM. Register memory only exists as long as the lifetime of

the thread execution.

• L1 cache memory: Whenever register memory is filled up, variables are

“spilled” into the L1 cache. This memory space is located on the SM and

accessible by all threads on the SM and typically holds 48-96 KB. The transfer

rate between L1 cache and the threads is slower than that of the registers,

but still relatively fast compared to using global memory (about an order of

magnitude faster).

• Shared memory: Each thread block has access to its own private shared

memory on an SM, and each thread within the block is able to access it. Data

must be copied over to the shared memory where it lasts the lifetime of the

block execution. Shared memory resides next to the L1 cache on the SM so

has similar memory access latencies. However, because the memory space is

user-controlled, unlike the L1 cache, memory access patterns can be optimised

for faster execution times. Correct utilisation of shared memory can result in

significant speed ups, however one must be careful of memory bank conflicts2

which can incur very high latencies between threads.

• Local (L2 cache) memory: Local memory is the back-up memory space

for when the L1 cache is full. The local memory is accessible by all thread

blocks within each SM on the GPU and is therefore much larger (about 1-

2When 2 or more threads within the same warp access the different data elements in the same
memory bank
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2 megabytes (MB)). However, since the memory is no longer on the SM, the

memory latencies are much higher and more similar to those of accessing global

memory.

• Texture memory: Texture memory in modern architectures reside on the

SM. Although it is fast for the storing and transferring of 2-D data arrays

for graphics, the manipulation of numerical data can be complex due to their

unique formatting based on spatial locality.

• Constant memory: As the name suggests, constant memory is used to store

variables that will not, and cannot, change throughout the lifespan of the

kernel. Constant memory shares the same memory banks as global memory

but access is much quicker as it is cached.

To summarise, for the execution of a kernel, variables and arrays are transferred

to the different memory spaces for fast parallel computation. Threads will first use

their respectively allocated register spaces. When the registers are full (or the data

cannot fit onto the memory space e.g. large arrays), the temporary memory data

is allocated to L1 cache. Similarly once the L1 cache space is full, local memory is

used. If more data is still required after filling local memory, threads access global

memory. Moving through the hierarchy, from threads to global memory, memory

spaces get larger, but accessing data gets slower due to the physical location from

the threads. Fig. 4.4 depicts the number of clock cycles required for threads to

access the data within each memory space.

GPU memory works off temporal locality of data for low latency multiple accesses

to data. The GPU’s high memory-bandwidth also contributes towards efficient

parallelism [290]. This is another key difference between the GPU and CPU, as the

latter is limited by slow memory data accesses compared to a high processing speed

due to a simpler architecture configuration.
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Fig. 4.3: The GPU memory model. Figures are representative of a range of modern
Nvidia GPU architectures.
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Fig. 4.4: GPU memory access times.

4.2.3 GPU limitations

Despite the unique architecture of the GPU, tailored towards parallelism of compute-

intensive applications such as SPH, there are some inherent weaknesses one must

consider when programming.

Although the memory structure is tailored for massively parallel computation, a
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bottleneck of the GPU for scientific simulations, besides the overall limited memory

space, is the small sizes of the faster accessing memory types such as registers.

There is a risk of threads requiring access to the local and global memory spaces

which are an order of magnitude slower. Therefore, data locality must be managed

carefully and high-level optimisations usually require detailed deconstruction of the

program/algorithm. Full optimisation of an algorithm though, is specific to each

GPU model/architecture.

The DualSPHysics code (described in Section 4.4) can fit all the necessary data

to compute a 35 million particle simulation on a 6 GB GPU [15]. However, such a

figure is a gross overestimation for the number of particles capable with ISPH on a

GPU because the storage of the PPE matrix and linear solver needs to be accounted

for. Unfortunately, the maximum global memory cannot be upgraded unlike CPU

RAM. One could avoid this problem by transferring blocks of data between the CPU

and GPU when needed, but this solution is potentially complex and troublesome

to program. Moreover, Hérault et al. [242] and Domı́nguez et al. [291] have already

established that CPU-GPU transfers (and vice versa) at each time step takes up

a significant portion of execution time, concluding that data exchange should be

kept to a minimum throughout the simulation. The transference of data between

the CPU RAM and GPU global memory has such an impact because it is limited

by the Peripheral Component Interconnect (PCI) express bus, which is significantly

slower than the internal GPU memory. Additionally, for GPU-CPU transfer there

is latency in operations where the CPU must wait for all current GPU operations

to finish execution, then a signal must be sent back to the CPU to commence data

exchange.

The cores of a GPU are less sophisticated so capabilities for data caching and flow

control are limited. The use of flow-control statements such as “if” and “switch”

promotes “warp divergence” where threads within the same warp follow different

execution paths. Ideally, the whole warp would execute the same instructions si-

multaneously. However, if different levels of branching within a warp occur, then

latencies will arise from threads executing varying numbers of instructions, delaying
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the block.

The use of transcendental functions, such as square root, can also slow a program

down. On the GPU there is a special unit for such operations called the “special

function Unit” (SFU) (as seen in Fig. 4.2). There is typically only 1 SFU for every

4-8 cores, and so each thread warp for each of those cores must wait for the SFU to

be free before executing their respective computations. Such a case is also similar for

double precision computations. The majority of GPUs only have 1 double precision

computation for every 24 or 32 cores. Some scientific computing tailored GPUs do

have a specific double precision core for every 3 regular CUDA cores though, but at

a significant purchase cost increase (approximately 3-6 times more expensive).

4.2.4 The CUDA parallel programming framework

CUDA [12] is a programming language developed by Nvidia. It is an extension of

C/C++ and can be used for programming on any CUDA-enabled Nvidia GPU. The

CUDA platform provides the user with two mutually exclusive types of possible

application programming interface (API) for programming on the GPU, the CUDA

driver API, and the CUDA runtime API. The former uses low-level programming

allowing for more control over features such as contexts, module loading, and the

lifetime of kernels. However, the code is relatively complex including the configu-

ration and launching of kernels, and debugging. The CUDA runtime API, on the

other hand, is generally easier to use. Kernel launching, initialisation, and context

and module management are all done implicitly. It should be noted that between

the two APIs there is no noticeable performance difference as the kernels are the

same [236]. The main difference is the increased functionality of the driver API such

as certain GPU device queries. With the runtime API, the code is generally easier

to manage, and more portable as CUDA kernels can be compiled into executables

without the need to distribute CUDA binary files. Therefore, the runtime API is

used herein as does the DualSPHysics code detailed in Section 4.4.

There is some terminology within the CUDA programming framework also used

herein:
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• The CPU and GPU are referred to as the “host” and “device” respectively.

• There are three types of CPU/CUDA kernel functions:

– A host function is executed on the host (CPU) and can be only called

by the host.

– A global function is a GPU kernel executed across the specified num-

ber of threads on the device, and is usually called by the host. In later ver-

sions of CUDA (version 5.5 and higher), global functions can be called

by other global functions for an extra level of parallelism, known as

dynamic parallelism. However, such a technique is not explored in this

study.

– A device function is a GPU thread subroutine executed on the device

and can only be invoked by the device.

In the CUDA programming model, the configuration of threads used to execute a

global kernel is shown in Fig. 4.5. As stated in Section 4.2.1, there is a hierarchy

whereby a grid is made up of thread blocks, which use a number of threads per block

to execute the kernel.

Fig. 4.5: The CUDA programming model [236].

When a global kernel function is “launched”, or in other words, to be invoked

by the host for execution on the device, the number of blocks on the grid and number

of threads per block is specified. Each thread is then given a unique thread address

for the device to refer to during execution. Within the kernel, each thread address
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is converted, with use of CUDA code standard for all applications, such that all the

threads specified by the kernel launch grid are enumerated. In SPH, each enumerated

thread address is used to refer to particle i. The line of code in Alg. 1 refers to the

CUDA code used for the enumeration of a thread address, also known as a thread

index number.

Algorithm 1 Acquiring the thread index number and associated particle

1: i=blockIdx.y*gridDim.x*blockDim.x+blockIdx.x*blockDim.x+threadIdx.x;

In early versions of CUDA (less than version 6.0), the memory must be managed

explicitly. Therefore, for a device array pointer, device memory must be allocated to

it, and then initialised by either a CUDA kernel, or copying data from the equivalent

host array. At the end of intended use, the GPU memory must be freed (similar to

CPU programming). Allocating memory for large arrays on the device is relatively

slow so it is beneficial to allocate all device memory at the beginning of a program.

Here, the memory required for particle data and the storage of the PPE matrix is

allocated prior to simulation execution (see Sections 4.4.1 and 4.7).

Since CUDA version 6.0, there is the option of unified memory management,

which provides a single memory address for data that can be accessed by both the

host and device. However, the feature is just a programming simplification and

bears no implication of a physical memory bank shared between CPU and GPU

hardware. The data is still required to travel between the CPU and GPU, where

in this case a deficiency in performance is normally incurred. Therefore, explicit

memory management is used here as it is compatible with all CUDA versions and

Nvidia GPUs.

The CUDA programming features used in this study are largely governed by the

use of the DualSPHysics v4.0 code [15], which is compatible with CUDA versions

4.0 and upwards. DualSPHysics is explained in more detail in Section 4.4.

The rest of the chapter is devoted to explaining the novel methodology of im-

plementing ISPH on the GPU. The next section summarises how the challenges of

ISPH on the GPU, mentioned in Section 2.7, are addressed before presenting the

details in the subsequent sections.
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4.3 Addressing the challenges of ISPH on

the GPU

In Section 2.7, several challenges associated with implementing ISPH on the GPU

are identified. These difficulties are investigated and addressed within this thesis.

The challenges are:

1. Constructing a new Lagrangian PPE matrix every time step on GPU streaming

multiprocessors.

2. Implementing the inherently expensive ISPH method onto the limited memory

of the GPU.

3. Establishing an accurate and robust ISPH boundary condition suitable for

parallelisation on the GPU.

4. Exploiting fast, scalable linear solvers on the GPU for the Lagrangian ISPH

PPE matrix.

The foundation for the implementation of ISPH on the GPU comes from open-

source software, providing a base to build upon. The WCSPH code DualSPHysics [15]

is converted to solve ISPH whilst maintaining the software’s efficient data manage-

ment, particle reordering, and neighbour list algorithms. The DualSPHysics code

conversion is detailed in Sections 4.4 and 4.5. In Section 4.6.4, the open-source

ViennaCL [16] linear algebra library is utilised for fast solutions of the PPE matrix

on the GPU. By using the well-developed and validated open-source software, im-

plementation time is saved. Furthermore, both sets of codes are highly optimised

for use on the GPU, where efficient memory management is included.

Section 4.5.2 shows how the parallel construction of the ISPH PPE matrix every

time step on the GPU can be achieved by establishing the order of particles in the

matrix, pre-calculating the number of interactions for each particle, and the use of

separate CUDA kernels for boundary and fluid particles. The matrix is also stored

in compressed sparse row (CSR) storage format to reduce memory consumption.
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In addition to the use of memory optimised open-source software and the CSR

storage format, the GPU memory limitations for ISPH are addressed with a mixed

precision storage and calculation model in Section 4.7. A method for estimating the

memory required to store the PPE matrix, prior to the simulation, is also presented.

Section 3.4 presented the mathematical formulation of the Marrone et al. [14]

boundary condition adapted for ISPH. Throughout Sections 4.4 and 4.5, the imple-

mentation of the boundary condition into DualSPHysics is detailed, and the process

of parallel computation with it.

The ViennaCL linear algebra library provides a number of different linear solvers

and matrix preconditioners implemented on the GPU. Such flexibility in the library

is useful for exploring the different options to solve the PPE matrix. Section 4.6.7

exposes the complexity of solving a Lagrangian PPE matrix on the GPU, as it is

shown the library’s maximum independent set (2) algebraic multigrid (MIS(2)AMG)

preconditioner requires modification in order to successfully solve the ISPH PPE.

During validation of the code in Section 5.6.3, an investigation of preconditioners

shows how they are affected by violent flow characteristics.

The following section describes the open-source WCSPH code DualSPHysics

v4.0, and its conversion to solve ISPH on the GPU.

4.4 WCSPH DualSPHysics v4.0 and elements

requiring conversion to ISPH

DualSPHysics [15] is an open-source WCSPH code aimed for application to real-

life hydrodynamic engineering problems. Development of version 4.0 of the code,

used here, is a collaborative effort of researchers from several institutions, namely

Universidade de Vigo (Spain), The University of Manchester (UK), EPHYTECH SL

(Spain), Science & Technology Facilities Council (UK), Instituto Superior Tecnico,

Lisbon (Portugal), Università degli studi di Parma (Italy), and Universiteit Gent -

Flanders Hydraulics Research (Belgium). Originally developed from the FORTRAN

code SPHysics [292, 293], the software has yielded many successes in its history
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where published literature has featured the use of the code either in its release form,

or by modification for specific applications [294]. To date, the software has been

downloaded at least 35,000 times worldwide.

4.4.1 Software package structure

The code uses either C++/OpenMP for execution on the CPU only, or C++/CUDA

for a CPU/GPU hybrid approach. The option allows one to execute CPU-based

SPH simulations even when a CUDA-enabled GPU is not available. The codes for

the CPU and GPU implementations use similar structure and algorithms, which

simplifies the understanding and debugging of the CUDA (GPU) side and allows

for straightforward comparison between CPU and GPU results. Both variants of

the code share CPU procedures for initial simulation configuration and data out-

put. There is also dedicated pre- and post-processing software in the DualSPHysics

package which works regardless of which hardware is used for the SPH computation.

Fig. 4.6 shows a flow diagram of the DualSPHysics package simulation process. In

pre-processing, the user defines the initial configuration of the case via an eX tensible

M arkup Language (XML) file. In the file, parameters such as the particle spacing,

smoothing length, reference density, and gravity are defined in addition to the initial

geometry of fluid and boundary (stationary and/or moving). The DualSPHysics

dedicated pre-processing software “GenCase”, then reads the XML file and creates

the particles for the specified geometry outputting to a binary file. The resulting

binary file can subsequently be read by DualSPHysics to initialise the simulation

setup.

Once pre-processing by GenCase is completed, DualSPHysics reads the data

and initialises the test case by loading particles and assigning initial data etc. If

the CPU solver is specified, then the SPH computation is performed in either serial,

or parallel (with OpenMP), on the CPU. However, if a GPU is to be used, then

all the initialised case data is transferred to the GPU for a parallel computation

governed by CUDA. In both cases, output data is saved occasionally (at a specified
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Fig. 4.6: Flow diagram the DualSPHyics software package [15].

simulation time interval) in binary file format for efficiency3. For GPU simulations,

the relevant information must be transferred back to the CPU. After the simulation

has finished, post-processing can take place.

The software package provides numerous dedicated post-processing tools which

converts the binary files, containing particle positions and properties, into visualiza-

tion toolkit (VTK) files for visualisation of various properties of the data. In this

project, once the VTK files have been obtained, the ParaView [295] software is used

for data visualisation and post-processing.

In the DualSPHysics program model, the force computation comprises of three

parts: (i) neighbour list, (ii) force computation, and (iii) system update. The latter

two parts deal with computing the necessary derivatives and updating the hydrody-

namic variables respectively. Changing these for ISPH on the GPU is a significant

3Binary files are efficient in terms of, memory storage, fast data access, maintaining data pre-
cision, and portability across all computing platforms.
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amount of work and is detailed in Section 4.5. Included in the system update is also

data output (when required). This does not need modification.

The following three subsections detail important information about the neigh-

bour list, particle sorting, boundary conditions, and time stepping scheme in Dual-

SPHysics required for converting from a WCSPH algorithm to ISPH.

4.4.2 Neighbour list and particle sorting

In SPH, a neighbour list is a method for storing the local neighbours of a particle.

In the domain, the total possible number of interactions is O(np2), where np is

the number of particles. However, due to the limiting kernel support radius, many

interactions, and thus computations, are unnecessary. A neighbour list reduces a

particle’s neighbour search radius from the whole domain, to just their respective

local area.

The neighbour list used in DualSPHysics is the cell-linked list as described by

Domı́nguez et al. [225] and illustrated in Fig. 4.7. The computational domain is

divided into square cells (for 2D, or cubic cells for 3D) and particles are placed into

cells based upon their positions in the domain and then reordered into a 1-D array

based upon their cell and position within that cell. For example, all particles in cell

0 will be placed in the ordered list before all particles in cell 1 and so on. During

force computations, particles now need only search for neighbours in their respective

and surrounding cells.

Another common neighbour list in SPH is the Verlet list, which stores the actual

neighbours of each particle, eliminating the need to search for particles altogether

during the force computation stage. However, studies [225, 296] have shown that

despite the more direct approach of computing (non-zero) kernel summations, the

performance speed up of the Verlet list compared to the cell-linked list is marginal.

On a GPU, the Verlet list only seems beneficial for simulations of less than a million

particles [296], which is insufficient for this project. Moreover, the larger memory

requirements of the Verlet list limits the maximum number of particles to a few

million (for WCSPH) on the GPU. Therefore, the DualSPHysics cell-linked list is
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kept intact here with the exception of the cell size for when the quintic spline is

used (Eq. (3.8)), which has a support radius of 3h. Otherwise, it is kept as 2h for

simulations using the Wendland kernel (Eq. (3.9)).

In addition to the placement of particles in cells, DualSPHysics will also sort

the particles according to their positions within the cells to improve GPU memory

data locality (see Section 4.2.2). Another constraint to the particle ordering is the

particle type as shown in Fig. 4.8.
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… … … … … … 

Near fluid 
Away 
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Fig. 4.8: The order of particle groups in DualSPHysics.

A simulation of np total particles, consists of npb boundary particles, and npf =

np−npb fluid particles. The boundary particles are placed into positions 0 to npb−1

of the particle order array, and then followed by the fluid particles in positions npb

to np− 1. Boundary particles are also separated into two categories, those particles
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near the fluid, and those outside the local vicinity of the fluid. During the particle

sorting at each time step, a halo equal to twice the kernel support radius is built

around the fluid domain. Any boundary particles outside of the halo are excluded

from computation for the rest of the time step, as they do not influence the fluid.

The number of boundary particles that do influence the fluid is denoted by npbok,

and such particles are placed in the particle order array before those that do not

affect the fluid.

The separation of differing particle types saves computational time and also

gives rise to separate cell-linked lists for the fluid and boundary particles, which

is useful for reducing unnecessary computations, including for the implementation

of the Marrone et al. [14] boundary condition (see Sections 3.4 and 4.4.3), which

requires for interaction with fluid particles only.

Particle sorting [225] will rearrange all fluid and boundary related particle data

arrays (this is part of achieving data locality). Therefore, every particle is also given

a unique particle ID number, so specific particles can be distinguished even if their

position in the particle order array has changed.

4.4.3 Extending the DualSPHysics boundary condition

DualSPHysics uses fixed dummy particles (also known as dynamic boundary par-

ticles [128] as stated in their documentation). However, the Marrone et al. [14]

boundary condition, as described in Section 3.4, is implemented for ISPH on the

GPU.

For implementation of the Marrone et al. [14] boundary condition in Dual-

SPHysics, the code’s fixed dummy particles require unique interpolation points

(UIPs). These are obtained with the mirroring process detailed in Section 3.4.3.1.

In addition to the mirror process, new arrays also need to be stored for the

boundary condition’s UIPs:

• A 3-tuple array for storing their positions.

• An array for storing the cell numbers. The cell number here is obtained from
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existing DualSPHysics code used to find the cell number of fluid or boundary

particles.

• A 4-tuple array for storing their MLS coefficients.

UIPs are not included within the neighbour list and particle sorting algorithm

(Section 4.4.2). Instead, for efficient summation of neighbouring fluid particles, their

cell numbers are simply inserted into an existing DualSPHysics function used for

fetching the cell-linked list of particles within surrounding cells.

Since the UIPs are not included in the particle order array, their array data

is ordered according to boundary particle IDs. Therefore, the position of data for

any particular UIP stays fixed throughout the whole simulation, and can be easily

accessed according to the corresponding boundary particle ID.

4.4.4 Time stepping scheme in DualSPHysics

DualSPHysics has the option of using a Predictor-Corrector (Symplectic) time step-

ping scheme for WCSPH, which requires modification for ISPH. To understand the

changes required for ISPH, a more detailed version of the GPU branch in Fig. 4.6

is depicted in Fig. 4.9, showing the main steps of the WCSPH DualSPHysics code:

• First, the initial configuration and simulation setup is executed on the CPU.

All the necessary memory for the simulation is allocated on the GPU and then

the initial data is transferred from the CPU to the GPU.

• The simulation then takes place entirely on the GPU. There are three main

procedures: (i) neighbour list creation, (ii) force computation , and (iii) sys-

tem update. The three procedures are the same for both the Predictor and

Corrector stages using the same particle sweep algorithm (highlighted in blue).

• The desired particle data is transferred back to the CPU at specified intervals

for output and post processing.

The conversion process requires a significant amount of modification for ISPH on

the GPU and is explained in the following section.
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Fig. 4.9: Flow diagram of the key repeating steps in the DualSPHysics Predictor-
Corrector time step on a GPU: neighbour list, force computation, system update.

4.5 The pressure projection implementation

For implementation of the pressure projection step (from Section 3.3.1) some key

changes to the process depicted in Fig. 4.9 are required. The predictor-corrector

elements of the time step need to be modified, the “predictor” step is also renamed to

the “intermediate” step for the pressure projection time step. The setup and solution

of the PPE matrix needs to be inserted between the intermediate and corrector steps.

Particle shifting, which is an important element of the ISPH algorithm to maintain

stability, then takes place after the corrector step. These changes are shown in

Fig. 4.10. Hence, the “intermediate” step involves functions for the initial advection,

viscous force computation, and intermediate velocity u∗ (Eqs (3.27) and (3.28)). The

“corrector” step includes the pressure gradient computation and position/velocity

time step integration. (Eqs (3.32) and (3.34)).

The four stages are therefore: (i) intermediate step, (ii) setup and solve PPE

matrix, (iii) corrector step, and (iv) particle shifting. All four stages require separate

particle sweeps that must be distinct from each other.

To include the boundary conditions, after transferring all the initial data from

the CPU to the GPU, the fixed dummy particles are mirrored to find their unique

interpolation points. This only needs to be performed once, even in the presence of

rigid moving boundaries (see Section 3.4).
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4.5.1 Stage 1 - Intermediate step

In Particle sweep 1, fluid and boundary particles require different computations.

The order and function of the particle sweeps are computed as follows:

1. A sweep for i boundary particles computes the MLS coefficients (Eq. (3.46))

for each of the UIPs.

2. A second sweep for the i boundary particles is then executed which calcu-

lates the imposed boundary velocities for slip/no-slip conditions. These are

computed using the MLS coefficients found in the previous sweep.

3. A single particle sweep for fluid particles calculate the acceleration due to vis-

cous forces (Eq. (3.28)), the kernel gradient correction variables (Eq. (3.20)),

divergence of position (Eq. (3.37)), and the number of interactions per particle

used later for the PPE matrix setup in Stage 2 (see Section 4.5.2.3). All these

quantities can be computed at this stage using the same SPH kernel calcula-

tions to reduce the number of arithmetic operations later in the algorithm.

4.5.2 Stage 2 - Setup and solve PPE matrix

In order to perform Particle sweep 2, which populates the PPE matrix in parallel, it

is first required to establish the ordering of particles within the matrix, free-surface

particles, and matrix storage array lengths.

4.5.2.1 The order of particles in the matrix

For moving computational points in a Lagrangian system, the PPE matrix generated

for each time step is different. This can be significant for violent and transient flows.

Due to the changing connectivity between particles, ill-conditioned matrix systems

will result from placing particles within the matrix every time step in the same

sequence as their particle ID numbers. Ultimately, this leads to slow convergence and

longer solution times. Therefore, to reduce such negative effects, the arrangement of
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particle ID numbers within the matrix is changed every time step using the following

procedure.

For each time step, in Stage 1, a new cell-linked list is generated and the same

ordered particle list is used to dictate the order of particles within the matrix (as

described in Section 4.4.2). The particle reordering algorithm used for optimisation

in the WCSPH DualSPHysics code [15] is re-used here to order the particles for

entry into the matrix. It should be noted that boundary particles away from the

fluid as determined in Section 4.4.2 are also excluded from the matrix as with the

rest of the time step. Thus, the PPE matrix dimensions for each time step are

(npbok + npf)× (npbok + npf).

With a cell dimension equal to the kernel support radius, this arrangement of

particles produces a sparse matrix where the majority of entries lie within a diagonal

band, an attempt to maintain similar system condition numbers and solution times

between time steps. However, this is not always possible depending on the flow

evolution where such a case is observed in Section 5.6.3.

4.5.2.2 Free-surface particles

Free-surface particles are identified with the criterion specified in Section 3.3.4 and

are used to provide a unique solution to the matrix system by forcing P = 0 at

the surface. Free-surface particles are identified in Stage 1 (see Section 4.5.1) prior

to populating the matrix, to avoid computing the particles’ matrix entries, saving

computational time.

4.5.2.3 Computing matrix storage array lengths

Due to the sparsity of the PPE matrix, the compressed sparse row (CSR) storage

format [272] is used to reduce the memory requirements by storing only the non-zero

entries of the matrix.

For example, in a uniformly distributed configuration of particles with an aver-

age kernel support of 44 neighbours (using the quintic spline); including the main

diagonal of the matrix, a conservative maximum number of values stored is 45npm,
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where npm is the number of particles included in the matrix. This is significantly

less than storing the entire matrix including the zero-value entries which would re-

quire npm2 entries. Herein, the number of non-zero entries in the matrix is denoted

by Nnz.

The CSR storage format comprises three arrays:

• aValues - contains the non-zero entries of the matrix [A]. Array length =

Nnz.

• column - contains the corresponding column index of each non-zero entry.

Array length = Nnz.

• rowPtr - contains pointers to the memory location of entries that start a new

row in the matrix. Array length = npm + 1, where the last entry is used to

store Nnz.

Due to the CSR storage format, populating the matrix in parallel cannot be

done immediately because the positions of the particles and their neighbouring data

in the arrays, aValues and column, to store each value are unknown. Therefore

some preparation is required prior to parallel matrix population on the GPU. In

Stage 1 of the main loop, free-surface particles are identified, and the number of

interactions per particle are calculated (see Section 4.5.1) and stored in the rowPtr

array: rowPtr[i]= Number of interactions for particle i. The rowPtr quantities

for the interactions are then utilised within a single-threaded GPU function, which

is sequential in nature at the beginning of Stage 2 (Labelled “Setup CSR for PPE

matrix” in Fig. 4.10) to find the number of non-zero entries in the matrix and

the actual values required for rowPtr. Algorithm 2 shows the operation, which

loops through in order, and concatenates the rowPtr values. An extra entry is

added for every row to take account of the main diagonal. For identified free-surface

particles, the number of interactions for those particles is ignored. The function

will also simultaneously calculate the number of non-zero entries in the matrix and

the total number of free-surface particles, which is used for the algebraic multigrid

preconditioner during the matrix solution process (see Section 4.6.7.3).
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Algorithm 2 Compute Nnz and rowPtr()

1: unsigned Nnz = 0; . Number of non-zero entries
2: unsigned NFSP = 0; . Number of free-surface particles
3: for i particles included in PPE matrix do . Single-threaded sequential loop
4: if i is free-surface particle then
5: rowPtr[i] = 0;
6: NFSP = NFSP + 1;
7: end if
8: unsigned NnzOld = Nnz;
9: Nnz = Nnz + rowPtr[i] + 1; . +1 to include particle i itself

10: rowPtr[i] = NnzOld;
11: end for
12: rowPtr[npm] = Nnz; . npm = number of particles in matrix

In addition to the CSR arrays, two arrays bValues and x, of length npm are

used to store the right-hand side of the PPE equation (Eq. (3.30)) and the matrix

solution respectively.

4.5.2.4 Populating the PPE matrix in parallel on a GPU

Once the values for rowPtr and Nnz are obtained, the matrix is ready to be

populated in parallel. Fig. 4.11 shows a basic example of the CSR array values,

column and aValues, for fluid particles (in the bulk fluid and on the free surface)

and boundary particles.

• The position rowPtr[i], in the column and aValues arrays, for particle

i stores the non-zero entry, Aii, of the matrix main diagonal. Subsequent

positions before entries for particle i + 1 are allocated for the neighbours of

particle i. For example, Fig. 4.11a shows the highlighted kernel support radius

and neighbour list of particle 17. rowPtr[17] denotes the position of the

matrix main diagonal for the particle’s row in the matrix, A17,17, then its

neighbouring particles (particles 5, 18, 11, 14, 15, 16, 18, 19 and 20) are

placed in the positions immediately afterwards.

• For a free-surface particle, such as particle 18, the main matrix diagonal for

that particle, Aii = 1.0, which is a Dirichlet boundary condition in the linear

system.
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• Boundary particles follow the same procedure. However, the kernel support

radius, neighbour list, and free-surface criterion (see Section 4.5.1) is taken

about the boundary particle’s unique interpolation point. For example, in

Fig. 4.11b, unique interpolation point I8 (of boundary particle 8) has a neigh-

bour list of fluid particles only (see Section 3.4), (particles 16, 17, 19, 20, and

22).

• The matrix entries are as explained in Section 3.4 (Eqs 3.51 and 3.52).
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Fig. 4.11: An example of the CSR matrix arrays column and aValues for a fluid
particle, 17, a boundary particle, 8, and a free-surface particle, 18.

The equivalent algorithmic code for populating the CSR matrix arrays on the

GPU, as discussed for Fig. 4.11, is shown in Algorithms 3, 4, and 5, which are

explained in the following.
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The population of the matrix on the GPU is executed with two global func-

tions, one for fluid particles and the other for boundary particles. Both perform

the same basic instructions shown in Algorithm 3, which identifies the location of

entries for each particle in the CSR arrays. Lines 5-7 of Algorithm 3 executes parti-

cles interactions for i particles not on the free surface. After fetching the neighbour

list of a particle, a device function is called for particle interaction computa-

tions dependent on the particle type (lines 5-7, Algorithm 3; Eq. (3.51) for fluid,

Eq. (3.52) for boundary). Separate global functions are called depending on if a

particle i is a fluid or boundary particle because of the differing neighbour list data

required for each particle type. Fluid particles compute interactions about their

own positions (see Eq. (3.51)), whereas boundary particles compute kernel inter-

actions about their respective unique interpolation points and with fluid particles

only (see Eq. (3.52)). As a result, the majority of boundary particles will contribute

less entries to the matrix than the majority of fluid particles. Thus the execution

time of boundary particle matrix population is less than for fluid particles and so

the use of two global functions reduces latency for multiple threads of different

types in a parallel scheme (in a GPU this prevents branch divergence and latency

between threads within the same warp). The device functions called for fluid

Algorithm 3 global PopulateMatrix

1: i=GetThreadIndex; . CUDA Thread indexing
2: if i in PPE matrix then
3: unsigned diag=rowPtr[i]; . “diag” = element (i,i)
4: column[diag]=i; . First entry is always for element (i,i)
5: if i is NOT on free surface then
6: GetNeighbourList . Fetch neighbour list for particle i
7: ParticleInteractions . Populate matrix for particle i
8: else
9: aValues[diag]=1.0; . For free-Surface particles

10: end if
11: end if

and boundary particles are described in Algorithms 4 and 5 respectively. Here, the

interactions of a boundary particle i refer to the interactions of its unique interpo-

lation point with fluid particles. Each function cycles through the neighbour list

of particle i in order to populate the matrix. The variable diag represents the
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position in the aValues and column arrays for element (i, i) in the matrix, and

the variable index is used to represent the positions for all other elements (i, j)

of the matrix starting at position diag + 1. For each neighbour interaction, the

associated matrix equations for particle i are computed (see Eqs (3.51) and (3.52):

• For fluid particles (Algorithm 4):

– The Laplacian operator (LHS of Eq. (3.51)) is computed, this value is

added to the main diagonal (Aii), aValues[diag], and subtracted for

the non-diagonal elements of the matrix (Aij), aValues[index]. The

variable index is then incremented to consider the next interaction.

– The divergence of velocity and ∂P/∂n (if j is a boundary particle) (RHS

of Eq. (3.51)) are calculated and added to bValues[i].

• For boundary particles (Algorithm 5):

– The main diagonal element (Aii), aValues[diag], is set to, and stays

as, 1.0.

– The MLS Kernel (Eq. (3.46)) multiplied by the volume of particle j is

calculated and subtracted from the non-diagonal elements of the matrix

(Aij), aValues[index] (see Eq. (3.52)). The variable index is then

incremented to consider the next interaction.

Algorithm 4 device PopulatePPEFluidInteractions

1: unsigned index=diag + 1 . Represents elements (i,j)
2: for j in neighbour list do . Including fluid and boundary particles
3: if i interacts with j then
4: Calculate Laplacian between i and j . LHS of Eq. (3.51)
5: aValues[diag] = aValues[diag] + Laplacian; . Element (i,i)
6: aValues[index] = -Laplacian; . Element (i,j)
7: column[index] = j
8: index = index + 1; . Increment for the next neighbour
9: Calculate DivergenceOfVelocity; . RHS of Eq. (3.51)

10: Calculate dp/dn; . RHS of Eq. (3.51)
11: bValues[i] = bValues[i] + DivergenceOfVelocity + dp/dn;
12: end if
13: end for
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Algorithm 5 device PopulatePPEBoundInteractions

1: unsigned index=diag + 1 . Represents elements (i,j)
2: aValues[diag] = 1.0; . Element (i,i) = 1.0
3: for j in neighbour list do . Including fluid particles only
4: if (Ii) interacts with j then
5: Calculate MLSKernel between Ii and j . Eq. (3.46)
6: aValues[index] = -MLSKernel*(Volume of j); . Element (i,j)
7: column[index] = j
8: index = index + 1; . Increment for the next neighbour
9: end if

10: end for

4.5.3 Stage 3 - Corrector step

In Stage 3, the third particle sweep of the pressure projection step calculates the

acceleration due to the pressure gradient, ∇P n+1
i /ρ, for every fluid particle. This is

used to compute the fluid particle velocities for the next time step (Eq. (3.32)). This

particle sweep is also used to prevent particle penetration through the boundaries. If

a fluid particle is within 1dp of any boundary particles, the closest boundary particle

is recorded for each fluid particle. Between Eqs. (3.32) and (3.34), any fluid particles

identified as being within 1dp of the boundary are checked for boundary penetration.

If a fluid particle is approaching a boundary, the fluid velocity component normal to

the boundary is set equal to the normal velocity component of the boundary. This

procedure prevents spray particles penetrating into the boundary as the Marrone et

al. [14] boundary condition in the PPE will not generate the necessary pressures to

prevent penetration.

4.5.4 Stage 4 - Particle shifting

In Stage 4, all interactions are considered to calculate the concentration gradients of

fluid particles in the final particle sweep (Eq (3.42)). The particles are then shifted

as described in Section 3.3.5.

This concludes the implementation of the pressure projection step into Dual-

SPHysics on the GPU. The solution of the ISPH PPE matrix on the GPU is de-

scribed in the next section.
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4.6 Solving the PPE matrix on the GPU

The solution of the PPE (Eq. (3.30)) is the most computationally expensive, and

arguably, most complex part of the ISPH algorithm. It is however, very important

in ISPH for enforcing incompressibility and obtaining the method’s highly desirable

accurate and stable pressure field. The PPE is commonly solved by representing

the equation through the linear matrix system:

[A] x = b, (4.1)

such that [A] is a large sparse N × N matrix, and x and b are vectors with N

elements. Obtaining the values of each element in the matrix [A] and vector b

are described in detail throughout Sections 3.3.2, 3.3.4, and 3.4.3. The goal of this

Section is to evaluate the solution, x, of the linear system and therefore the pressure

field. With the exception of the symbols defined in Eq. (4.1), the mathematical

symbols used in this section (4.6) are to be considered separate to the rest of this

thesis to allow for consistency of notation with external literature.

The solution of linear systems, including those of large sparse matrices, is widely

studied in mathematics [272, 297, 298]. In CFD, engineers seek to solve the system

with a linear solver which is efficient and robust, as it can largely influence the use of

one’s code for varying applications. As with many other applications, the advances

in computing over the years has also prompted the use of hardware acceleration

techniques for achieving fast linear solvers [288,299,300].

Whilst the research on solving sparse matrices is theoretically applicable to both

meshed- and meshless-based systems, benchmarks and investigations of solving the

latter are in short supply unlike those of the former. This is because solutions of

these linear systems in CFD have mainly developed with applications employing an

Eulerian approach. In general, the matrix systems generated in meshless methods

are more complex than those in meshed methods due to:

• The number of neighbours per data point and therefore non-zero en-
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tries in the matrix: For a simple comparison, an FDM central differencing

scheme has a 5-point stencil (in 2D), and thus the same number of non-zero en-

tries per cell in the matrix. ISPH on the other hand, using the quintic spline

gives approximately 45 non-zero entries per particle in the matrix. Expan-

sion into 3D amplifies the difference further with 7 and 250 non-zero entries

for FDM and ISPH respectively. A high number of non-zero matrix entries

generally means a high number of computations required for solution, and

potentially larger matrix condition numbers.

• The distribution of data points: Meshless methods, and in particular par-

ticle methods such as ISPH, have the potential for the organisation of data

points to be highly irregular. This contributes towards the properties of an

ill-conditioned matrix, and thus increases the complexity of the system. More-

over, a new matrix is created at each time step due to moving computational

points. This means that the best method for solving a particular matrix sys-

tem at one time step may not necessarily be the best for the solution of the

system at the next. Such is not the case for methods with a fixed mesh.

To reduce the complexity of solving such large and/or ill-conditioned matrix

systems, preconditioning is usually employed.

4.6.1 Matrix preconditioning

A preconditioner is a transformation matrix, [M], of the matrix, [A], such that the

linear system is reduced to an equivalent problem but of reduced solution complex-

ity [300]. A linear system can be treated in multiple ways with a preconditioner [301],

however here it is applied as:

[M1]−1 [A] [M2]−1 y = [M1]−1 b, where y = [M2] x, (4.2)

such that [M] = [M1] [M2] ≈ [A]. The idea is that the new system, Eq. (4.2),

possesses the same solution as Eq. (4.1), but can be solved more efficiently because

it has a lower condition number. The use of preconditioning techniques are almost
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mandatory now due to the size of the linear systems being solved, usually involving

no less than several millions of equations. They are widely recognised as the key

ingredient to improving performance and reliability of linear system solvers [301].

The choice of available preconditioning techniques is vast due to the infinite

number of possible systems arising from scientific computing, so there is much de-

velopment for creating efficient and robust preconditioners. Benzi [301] provides

an extensive review of preconditioning techniques up to the early 2000s, presenting

literature results of various methods’ performance which show that the speed-ups

can vary drastically depending on the problem and preconditioner. Identifying the

most suitable matrix preconditioners for ISPH alone would warrant an extensive

study. The study of combined implementation on the GPU is recommended for

further study in Chapter 7. The preconditioners explored in this thesis are limited

to the Jacobi and maximum independent set (2) algebraic multigrid (MIS(2)AMG)

preconditioners from the ViennaCL library, which are all discussed in Section 4.6.4.

The Jacobi preconditioner is chosen to be part of this study because it is commonly

used in ISPH literature [9, 11, 170, 232]. Algebraic multigrid preconditioners have

been shown to give fast solution convergence and high scalability for increasing lin-

ear system sizes in CFD [302,303], so their applicability to ISPH on the GPU (with

large numbers of particles) is investigated here.

For the actual solution of Eq. (4.1), methods can be broadly categorised into two

areas: direct methods and iterative methods.

4.6.2 Direct methods

Direct methods are often based upon the factorization of the coefficient matrix

resulting in upper and/or lower triangular matrices. The most well-known methods

are perhaps the Gaussian elimination and LU decomposition.

The Gaussian elimination makes use of elementary row operations to manipulate

the lower triangle entries of the matrix to equal zero. The solution vector can

subsequently be solved one element at a time through the simple sequence of linear

equations left in the matrix’s upper triangle.
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LU decomposition finds lower and upper triangular matrices, [L] and [U], such

that [A] = [L] [U]. The system can then be solved through two stages via [L] y = b,

and subsequently [U] x = y. The key advantage of the LU decomposition compared

to the Gaussian elimination is if one requires to solve the same matrix multiple

times with different source-terms then the upper and lower triangular matrices can

be pre-calculated and re-used for the differing b vectors [304].

Direct methods are generally suited to dense linear systems, but can also benefit

some sparse matrices of specific non-zero-element structure [298]. They are popular

in industry because of their robustness and reliability. Mathematically speaking,

they can solve a linear system exactly using a fixed and finite amount of work. In the

context of computing the solution however, precision errors can lead to erroneous

results. Moreover, during the process of computing the triangular factors, zero-

elements may turn into non-zero elements, also known as “fill-ins”. The problem of

fill-ins are two fold, namely the extra computational work required to complete the

solution, and the additional memory storage requirements which may not exist in

some cases. The development of direct methods for addressing these issues are well

researched4 [301].

The main challenge for direct methods are the solution of very large linear sys-

tems as the problem becomes increasingly expensive to solve. Although the exact

answer can be achieved (in the absence of rounding errors), direct solvers’ poor scal-

ing deems the computational time and memory requirements too impractical. Thus

for such systems, iterative methods are commonly employed.

4.6.3 Iterative methods and Krylov subspace methods

The idea of an iterative method is to start with an initial approximation of linear

system solution, x0, and systematically improve the approximation towards the

exact answer by use of solving a simpler system “near” the matrix, i.e. a new

system that is an approximation of the original [298].

4Pivoting, reordering and bandwidth reducing, and scaling strategies are such techniques im-
proving computation time and addressing some issues of direct solvers
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For instance, the initial guess can be obtained by solution of [K] x0 = b, where

[K] is a coefficient matrix closely related to [A]. The Gauss-Seidel method provides

such an example where [K] is a lower triangular matrix with the elements equal to

their corresponding values in [A]. The solution of Eq. (4.1) can then be represented

as its initial approximation, and the correction for the approximation, xc:

x = x0 + xc. (4.3)

Therefore, the linear system can be expressed as:

[A] (x0 + xc) = b. (4.4)

Rearrangement of Eq. (4.4) yields a new linear system:

[A] xc = b− [A] x0. (4.5)

The solution of the new system is also approximated, commonly by the use of [K]

again:

[K] xc
0 = b− [A] x0. (4.6)

The solution of Eq. (4.6) is then used to find a new approximation, x1 = x0+xc
0, that

is closer to the exact answer i.e. Eq. (4.3). The process of Equations (4.4) to (4.6)

is then repeated until the solution has converged to within some measurement of

error [298], for which there are various ways of determining the residual.

It should be noted that the use of a convergence criterion within the linear

solver implies a cut-off in the numerical precision of solution which also implies

some allowance of compressibility effects. The methodology prevents a truly incom-

pressible flow. However, such criterion are widely used in CFD for incompressible

flows [272, 298], and it is presented later in Sections 5.3 and 6.3.1 that a high pre-

cision of accuracy and convergence is achieved here for two incompressible flow test

cases with analytical solutions.

For large sparse systems, iterative methods are usually favoured over direct meth-
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ods. Providing the appropriate iterative solver is employed, convergence to a solu-

tion has the potential to take significantly less time whilst using a fraction of the

memory required by a direct solver [298, 304]. Iterative solvers also preserve the

coefficient matrix in its original form and therefore the sparsity. Consequently, the

risk of fill-ins are eliminated and rounding errors, which tend to hinder convergence,

minimised [305].

Within the taxonomy of iterative solvers, the so-called Krylov subspace methods

have yielded much success for the solutions of large sparse matrix systems [272,298].

The subset of subspace methods are based upon projection methods5 where solution

approximations of the Krylov subspaces, Km, extracted from the matrix [A] (as a

real number set R) are found. The Krylov subspaces are defined as the span of

repeated multiplications of the initial residual, r0, and system matrix:

Km ([A] , r0) = span
{
r0, [A] r0, ..., [A]m−1 r0

}
, (4.7)

where Km ([A] , r0) is the mth Krylov subspace.

Variations of methods arise from the choosing of a subspace, Lm , orthogonal to

Km, and the choice of preconditioning method (see Section 4.6.1). Further details

on the theory and origins of Krylov subspace methods are detailed by Saad [272].

The preservation of the system matrix means that the Krylov subspaces can be

constructed by means of matrix-vector multiplications through a single function,

and so the system matrix does not require storage. Leroy [190] took advantage of

this property for ISPH. However, the matrix elements of each matrix-vector product

would also require a particle summation each time, which is computationally inef-

ficient for large linear systems requiring many solver iterations for convergence per

time step. This study, on the other hand stores the matrix for computational effi-

ciency and compatibility with open-source linear algebra libraries (see Section 4.6.4).

In theory, Krylov subspace methods are able to converge within a finite number

of iterations [301, 306]. In practice however, the computational precision behaviour

of the chosen algorithm plays a role in the convergence such that performing a higher

5Mathematical definition, not to be confused with Chorin’s [173] projection method for CFD.
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number of iterations does not necessarily result in increased solution accuracy. This

is the reason for varying residual tolerance criteria with different solvers. For very

large or highly ill-conditioned (or a combination of both) systems, the convergence

behaviour of Krylov subspace methods can be erratic, or may not even find a solution

at all. Therefore, preconditioned versions of the solvers are employed, which are

generally more reliable and can reduce the solution time even further.

Two common Krylov subspace methods suitable for the solution of non-symmetric

matrix systems are used in ISPH literature [170,190,232,284] the generalized minimal

residual (GMRES) method, and the bi-conjugate gradient stabilized (Bi-CGSTAB)

method.

4.6.3.1 Generalized minimal residual method (GMRES)

Saad and Schultz [307] introduced the generalized minimal residual method (GM-

RES) iterative solver as a more flexible form of the minimal residual method (MIN-

RES) [308] algorithm able to solve non-symmetric systems. GMRES has the ability

to converge to an exact solution with m number of iterations equal to the dimension

of the problem matrix, N [307]. However, although there is guaranteed convergence,

two problems arise when it comes to the solution of large systems:

• It would be too impractical for the solver to converge after N iterations when

N is large. Naturally there is a longer solution time for larger systems, and

GMRES is no exception.

• With each iteration, the memory storage requirements increase because there

is an orthogonalisation, using Arnoldi’s method [309], which results in a new

vector every iteration. The additional vector also incurs extra computations

per iteration where the number of performed multiplications is proportional

to the square of the number of iterations [304].

Preconditioning can be used to reduce the number of required iterations for con-

vergence, potentially alleviating some of the computational expense issues. However,

there is still no guarantee that computational resource usage will be kept to a reason-

able amount. Therefore, a popular method to limit the computational requirements
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of GMRES is to have the solver “restart” after every m iterations. Such a method

is known as GMRES(m). When the mth iteration is reached, the solver restarts the

Arnoldi process with the latest solution approximation as the new initial solution

guess. Saad and Schultz recognised that the performance of GMRES(m) substan-

tially improved with values of m higher than 5 and stated the rate of convergence

increased with m. However, the best definition of m is still not clear. Depending on

the problem, GMRES(m) may be significantly more expensive, in terms of number

of required iterations, than GMRES(m+ 1), or vice versa [298]. In some cases, the

solver may not ever converge. There is no indicative “best” value for m, other than

that derived from experience. In ISPH, a new system will be created every time

step due to moving particles, which could potentially give highly variant systems

throughout a simulation. For large particle numbers, the behaviour of GMRES(m)

could be too unpredictable in practice.

4.6.3.2 Bi-conjugate gradient stabilized method (Bi-CGSTAB)

The bi-conjugate gradient stabilized method (Bi-CGSTAB) was designed by van der

Vorst [310] to find a variant of the conjugate gradients-square method (CG-S) [311]

with improved convergence properties. Bi-CGSTAB is just as popular as GMRES

for the solution of non-symmetric systems [300].

The algorithm relies on a short iteration step to reduce rounding-errors within

iterations. Another advantage is the finite memory requirements being 7N vs (m+

2)N of the GMRES(m) algorithm. This means for GMRES(m) to be competitive,

in terms of storage requirements, m should be equal to 5 or less, which may not yield

an acceptable performance from the solver (see Section 4.6.3.1). The convergence

behaviour of Bi-CGSTAB is “smoothed” by use of a polynomial defined at each

step with the goal of “stabilising” the residual. This means the achieved solution

does not possess a minimum property (residual) in the current Krylov subspace, but

nevertheless the convergence can be faster than GMRES [300].

For implementation on a GPU with limited memory storage, Bi-CGSTAB is the

favourable choice due to the well-defined memory requirements and its relatively
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short and simple algorithm. Algorithm 6 shows the preconditioned Bi-CGSTAB

method [310].

Algorithm 6 Preconditioned Bi-CGSTAB algorithm [310]

1: ρ0 = α = ω0 = 1; v0 = p0 = 0;
2: r0 = b− [A] x0; . Initial residual; x0 is an initial guess
3: r̄0 = r0;
4: for i = 1 to max number of iterations do
5: ρi = (r̄0, ri−1); β = (ρi/ρi−1) (α/ωi−1);
6: pi = ri−1 + β (pi−1 − ωvi−1);
7: Solve y from [M] y = pi;
8: vi = [A] y;
9: α = ρi/ (r̄0,vi);

10: s = ri−1 − αvi;
11: Solve z from [M] z = s;
12: t = [A] z;
13: ωi =

(
[M1]−1 t, [M1]−1 s

)
/
(
[M1]−1 t, [M1]−1 t

)
;

14: xi = xi−1 + αy + ωiz;
15: if xi is accurate enough then quit;
16: ri = s− ωit;
17: end for

From Algorithm 6, it can be seen that Bi-CGSTAB is well-suited for paralleli-

sation (this is true for other iterative schemes). The method consists of mainly

matrix-vector and vector-vector multiplications, which have well established algo-

rithms for the GPU. The relatively slow computations belong to the inner product

additions, as the process is inherently serial in nature, but the CUDA “parallel

reduction” kernel can still be used for parallel computation.

4.6.4 Open-source linear algebra libraries and ViennaCL

Due to the size of linear systems increasing with advances in computational process-

ing power over the years, the development of robust and efficient linear solvers, and

preconditioners, in the context of high performance computing has become a thriv-

ing area of study. There are numerous studies, such as [273,288,312,313], describing

algorithms and performance comparisons of the solution methods on a GPU.

In recent years, GPU-implemented open-source libraries for linear solvers and

matrix operations have become available such as cuSPARSE [270], PETSc [314],
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PARALUTION [315] CUSP [269], and ViennaCL [16]. The CSR matrix storage for-

mat employed here is widely used and compatible with the majority of the available

libraries. In this study, the ViennaCL library [16] is coupled with DualSPHysics

to precondition and solve the PPE matrix on the GPU. Like DualSPHysics, the

library is implemented in C++, OpenMP, and CUDA, therefore direct speed up

comparisons between CPU and GPU versions of the new ISPH code are simple.

There is a high range of functionality with a variety of linear solvers and matrix

preconditioners (including the Jacobi and algebraic multigrid) and available for the

execution on the CPU or GPU. Benchmark comparisons [316] against Nvidia’s own

sparse linear solver library, cuSPARSE [270], show the ViennaCL library performs

similarly or better.

The library is simple to implement into DualSPHysics for both Windows and

LINUX versions. The library is a series of header files which are easily portable

between different computers. Only the library folder file path is required to be

specified as an additional include directory during DualSPHysics compilation, and

then the necessary “#include file name.h” pre-processor directives inserted into the

appropriate DualSPHysics C++/CUDA files.

For this work, the method of solving the PPE linear system is limited to using,

from the library, the Bi-CGSTAB linear solver with either the Jacobi preconditioner,

or the maximum independent set (2) aggregation algebraic multigrid preconditioner

(MIS(2)AMG). In Section 7.2.2, solution time comparisons using the two different

preconditioners for a range of problem sizes are presented. The next two sections

provide some more detail about these preconditioners.

4.6.5 The Jacobi Preconditioner

Of all preconditioning techniques, the Jacobi preconditioner is one of the simplest.

As shown in Fig. 4.12, a coefficient matrix (Fig. 4.12a) will have a corresponding

Jacobi preconditioner matrix (Fig. 4.12b) containing all zeros, except the main di-

agonal, which is equal to that of the coefficient matrix. The Jacobi preconditioner

enforces the principle of diagonal dominance in the coefficient matrix. For ISPH,
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(a) Coefficient matrix
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(b) Jacobi preconditioner matrix

Fig. 4.12: An example coefficient matrix and the corresponding Jacobi precondi-
tioner matrix. Blank elements indicate a value of zero.

the Jacobi preconditioner is advantageous in that its element values can be taken

straight from the coefficient matrix without the need for storage. This is possible

because the matrix is preserved when using an iterative method (see Section 4.6.3).

Furthermore, the application of the preconditioner to the coefficient matrix is sim-

ple and fast. Anzt et al. [317] showed that for several different Krylov-type solvers

on the GPU, the Jacobi-preconditioned versions could give speed-ups of up to two

orders of magnitude. Although, it was found that the robustness of the Bi-CGSTAB

solver showed no improvements with its preconditioned counterpart for the several

hundred matrix systems tested.

4.6.6 Algebraic multigrid as a Preconditioner

Multigrid methods partially fall within the iterative-type solver classes (but can

sometimes be interpreted well within a class of their own), which use a hierarchy of

systems to solve the problem matrix. Of the various multigrid methods available,

the algebraic multigrid (AMG) [318] is used here.

AMG methods start with the values of the system coefficient matrix and use

a chosen smoothing operator to construct and interpolate different “levels” of a

grid hierarchy. In the hierarchy, the original matrix level (level 0) is referred to as

the finest level and the last calculated level is known as the coarsest level (level
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a, where a is the number of coarse levels after the system matrix). These levels

are illustrated in Fig. 4.13, where coarser representations of the same system are

successively obtained. To achieve the next coarse level in the hierarchy, the most

influential system points from the current level are identified and then interpolated

onto the coarser, smaller matrix level. Each successive coarser level is a simpler

approximate representation of the previous finer level that is theoretically quicker

to solve. The idea of AMG methods is for the coarsest (and therefore smallest)

matrix level to be relatively easy and quick to solve. The solution is then used as

a close approximation to the next system level, which will therefore also be quick

to solve. Each system is solved in this way up to the original matrix level. By

providing appropriate approximations and interpolations throughout the levels, less

iterations are required to reach convergence for the larger matrix levels than if there

was no grid hierarchy.

 

Setup 
Phase 

Level 0 
(Original matrix) 

Level 1 Level n 

Solve 
Phase 

… 

Initial solution, xn = {xi}, 
for level n:  |xn|=0 

Solve level n 
using xn  

n=n-1  Initial solution for 
level n-1, xn-1=xn  

Is n=0?  

No  
Yes  

Solution acquired  

Fig. 4.13: AMG matrix levels

The advantage of AMG methods is the property of mesh independence, where

the factor by which the error is reduced with each iteration no longer depends upon

the resolution of the problem [319,320]. As a result, convergence with an appropriate

multigrid solver often requires relatively few iterations compared to other methods.

This is thanks to the grid hierarchy which targets the reduction of both low and

high frequency errors (linear system error components in the direction of small and

large-value system eigenvectors). Iterative methods and other preconditioners are

quick to minimise the high frequency components, but struggle with the low [272].

Axelsson and Vassilevski [321, 322] showed that AMG methods can also be

applied as a preconditioner in combination with an iterative solver (such as Bi-
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CGSTAB) to provide rapid convergence. AMG preconditioners also often provide a

higher degree of robustness for a wider range of problems compared to their solver

counterparts [318]. However, it should be noted that there is a downside of multigrid

preconditioners, compared to the Jacobi, which are the associated computational ex-

penses in setting up and storing the multiple levels.

Various AMG methods exist defined by the chosen smoothing operator and coars-

ening strategy of defining which matrix entries (also known as the “coarse aggre-

gates”) belong to each successive coarse level. The AMG method used here is called

the maximum independent set (2) AMG.

4.6.7 Modifying the ViennaCL MIS(2)AMG preconditioner

for ISPH

The ViennaCL library’s CUDA implementation of the maximum independent set

(2) AMG (MIS(2)AMG) [323] preconditioner is used herein. The MIS(2)AMG is an

AMG preconditioner specifically designed for GPU execution and the only AMG-

type preconditioner available at the present time for the GPU. However, modification

to the algorithm within the library has been required in order for the preconditioner

to setup correctly for the application of ISPH.

To understand why the modification is required for ISPH, it is useful to first

understand the AMG setup phase and the difference between a standard sequential

aggregation coarsening strategy and the parallel MIS(2)AMG aggregation strategy.

The aim of the AMG setup phase is to obtain all the AMG matrix levels in the

grid hierarchy. Fig. 4.14 illustrates the process of obtaining a successive coarser level

(in this case from levels 0 to 1) in the context of ISPH, visualising the domain. The

finest level of the hierarchy (level 0) is the original ISPH PPE matrix, containing all

particles. Each particle here occupies its own region of the domain, as illustrated in

Fig. 4.14a. These regions are also known as “aggregates” and are denoted by Cnum,

where subscript num is the region number. In level 0, the number of aggregates is

equal to the number of particles in the system.

The next matrix level in the hierarchy (level 1) is obtained through identifying
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“coarse particles” in the system and forming aggregates around these points only.

The algorithmic identification of coarse particles/aggregates are explained later in

Sections 4.6.7.1 and 4.6.7.2. These new aggregate regions are called “coarse ag-

gregates” and are used to form the next matrix level, where the number of coarse

aggregates is equal to the current number of identified coarse particles. For instance,

in Fig. 4.14b particles 2, 9, and 15 have been identified as coarse particles of level

0, and the surrounding non-coarse particles, also referred to as “fine” particles, are

associated to one of the three coarse particle neighbours, where coarse particle 2 as-

sociates with fine particle neighbours 0, 1, 3, 4, 5, and 6, coarse particle 9 associates

with fine particle neighbours 7, 8, 10, 11, and 12, and coarse particle 15 associates

with fine particle neighbours 13, 14, 16, and 17.

In preparation for constructing the next matrix level, the next step of the pro-

cess, as depicted in Fig. 4.14c, redefines the coarse aggregate regions as C0, C1, and

C2, one for each coarse point within the current matrix level. Each aggregate now

encompasses a different coarse particle and its associated fine particle neighbours.

For example, the coarse particles 2, 9, and 15, and their respective associated fine

particle neighbours, are assigned to coarse aggregate regions C0, C1, and C2 respec-

tively.

Finally to complete the construction of the next (coarser) matrix level, for each

coarse aggregate region the information of the particles within is interpolated to

create a new system data point (particle) associated with that aggregate. This is

depicted in Fig. 4.14d, where there are new “level 1 particles”, 0, 1, and 2, for coarse

aggregate regions, C0, C1, and C2 respectively. The original system, as depicted in

Fig. 4.14a, is now represented but with fewer data points (particles).

The example in Fig. 4.14 presents a small system of particles, where only one

additional level to the original matrix is obtained. In practice, large-scale simulations

are likely to give rise to AMG hierarchies of several matrix levels which can be

obtained through repetition of the process in Fig. 4.14.

The mathematical/computational algorithm for obtaining successive coarse lev-

els, corresponding to Fig. 4.14 can be split up into 4 stages:
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(a) Step 1: In level 0, there is an aggregate section for every particle. This is the
original matrix, stored in memory for level 0.
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(b) Step 2: Identify coarse particles (red). Each non-coarse (fine) particle (blue) is
associated with one coarse particle neighbour only.
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(c) Step 3: Define new “coarse aggregate” sections from coarse particles and associ-
ated fine particles.
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(d) Step 4: Define level 1 by interpolation of particle information to a create new
“level 1 particle” for each aggregate. This data is stored in memory for level 1.

Fig. 4.14: Obtaining AMG matrix level 1 from level 0, in the context of ISPH.

• Stage 1: The construction of coarse and fine points through a chosen coars-

ening strategy. This stage has been illustrated with steps 1-3 of Fig. 4.14.

• Stage 2: Building the interpolation matrix, [P] from the coarse points ob-
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tained in stage 1. This stage and the following two are all part of step 4 of

Fig. 4.14.

• Stage 3: Constructing the next coarse matrix level (a+1), [Aa+1] = [P]T [Aa] [P],

where the superscript of the system matrix denotes the level number.

• Stage 4: Constructing the solution and RHS vectors for the next coarse level

(a+ 1), xa+1 and ba+1

Stages 2-4 can be computed in both serial or parallel and the algorithms are

common amongst various AMG methods. For stage 1 however, the process of coars-

ening strategies is inherently sequential, so the parallel MIS(2)AMG aggregation

coarsening strategy is more complex than previous techniques. The differences are

described in the following two sections explaining both the sequential and parallel

GPU algorithms (form the ViennaCL library) in the context of ISPH.

4.6.7.1 The sequential aggregation coarsening strategy

The aim of the coarsening strategy is to identify which points on the grid matrix level

are defined as “coarse” or “fine”. In the context of ISPH, the points are particles.

There are numerous ways to complete such a process, but presented here is the basic

sequential aggregation coarsening strategy.

Fig. 4.15 shows the sequential process for identifying the point types. The exam-

ple uses shows a portion of a coefficient matrix with the row and column numbers

denoted by the associated particle number. The non-zero element matrix entries

marked are with a cross and indicate an interaction between a particle i, of row i,

and a particle j, of column j. Throughout the process, particles can be defined as

one of three states: “Coarse”, “Fine”, or “Undecided”, denoted by “C”, “F”, and

“U” respectively. The state of each particle can be seen in each column in the figure.

At the beginning of the process (Fig. 4.15a, step 1), all particles are marked as

undecided (U). The identification of coarse and fine particles is carried out by going

through each matrix row, in sequence, using the two rules:
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• Rule 1: If all the neighbouring j particles of particle i, are associated with

particles of undecided state only, then the particle i is marked as coarse, and its

neighbouring j particles are marked as fine. This is demonstrated in Fig. 4.15b

(step 2) where for particle (row) 0, the neighbours (non-zero) entries in that

row are for particles 0 and 1, which are both in an undecided state. Therefore,

particle 0 (particle i) is marked as coarse, and particle 1 is marked as fine.

• Rule 2: If particle i has at least one neighbouring j particle marked as coarse

or fine, or is marked as coarse or fine itself, then there is no change of state for

any particles and the process moves onto the next particle row in the matrix.

For instance in Fig. 4.15c (step 3), consider particle (row) 1 with neighbours 0,

1, and 2. Although particle 2 is in an undecided state, the other two particles

are coarse or fine, so the marking process is ignored and the procedure moves

on to consider particle (row) 2. This is a similar case for the next particle (row),

where particle 2 is neighbours with particle 1 which is fine, so no changes of

state are made here.

The example in Fig. 4.15 can be finished by looking at Fig. 4.15d (step 4). For

particle (row) 3, only particle 3 is included as a non-zero entry and is of an undecided

state. Therefore, rule 1 is used and particle 3 is marked as coarse. Similarly for

particle (row) 4, the neighbours (non-zero entries) belong to particles 2 and 4, which

are both undecided, so particle 4’s state becomes coarse, and particle 2 becomes fine.

The marking process is such that each fine particle will be associated with only one

coarse particle.

Repeating the process for all particles is such that once completed, every particle

is marked as either coarse or fine. The final step of the coarsening strategy is to group

the points together into “coarse aggregates” (see Section 4.6.7, Fig. 4.14c), where

the number of coarse aggregate regions is equal to the number of coarse particles.

The coarse particles are enumerated in sequence, for example in Fig. 4.15e, coarse

particles 0, 3 and 4, are labelled as belonging to coarse aggregate regions, C0, C1,

and C2 respectively. The fine particles are assigned to the same coarse aggregate

region as their respective coarse particle neighbour i.e. fine particle 1 is neighbours
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(a) Step 1: Make all particles “undecided” (U).
Crossed boxes indicate matrix entries between
particles.
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(b) Step 2: Row 0 initially all undecided points,
particle 0 = coarse (C), particle 1 = fine (F).
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(c) Step 3: Rows 1 and 2 are ignored as they
contain non-undecided particles.
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(d) Step 4: Particle 3 = coarse, Particle 4 =
coarse, and its neighbour, particle 2 = fine.
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(e) Step 5: Coarse particles 0, 3, and 4 and their neighbours are
labelled C0, C1, and C2 respectively.

Fig. 4.15: Sequential aggregation coarsening strategy example.

with coarse particle 0, so belongs to coarse aggregate region C0, and fine particle

2 is neighbours with coarse particle 4, and therefore assigned to coarse aggregate

region C2.

The sequential coarsening strategy is now complete, the enumerated coarse ag-

gregates are used to build an interpolation matrix, [P], with dimensions, n × ca,

where ca is the number of coarse aggregate regions. For instance the interpolation

matrix for the example in Fig. 4.15 is constructed from the Fig. 4.15e and shown in

Fig. 4.16.

The columns and rows represent the coarse aggregate indices and particles re-

spectively. There can be numerous variations of the interpolation matrix entry

values, depending on the interpolation strategy, but for simplicity, each non-zero
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Fig. 4.16: The interpolation matrix corresponding to the example in Fig. 4.15. Blank
entries indicate a zero entry.

element is of value 1, here.

The interpolation matrix, and its transpose, are multiplied against the current

matrix level, to build the next, [Aa+1] = [P]T [Aa] [P]. The coarse aggregates are

similarly used to communicate back up the grid hierarchy when solving the system.

The sequential nature of the coarsening algorithm is such that particles in the

matrix marked as coarse are well distributed throughout the system. This is facil-

itated by the “skipping” of particles with neighbours already marked as coarse or

fine, which is crucial to understanding where the parallel MIS(2)AMG algorithm

requires modification for ISPH.

4.6.7.2 The parallel MIS(2)AMG aggregation coarsening strategy and

modification for ISPH

The parallel MIS(2)AMG algorithm by Bell et al. [323] finds a maximal indepen-

dent set (MIS) in the matrix system graph using a variant of Luby’s parallel al-

gorithm [324]. The particles included in the MIS are referred to as MIS nodes (of

coarse state), otherwise they are called non-MIS nodes (of fine state). Just as in the

sequential coarsening strategy algorithm, explained in Section 4.6.7.1, the parallel

MIS(2)AMG algorithm also aims to organise particles of a current matrix level into

coarse aggregate regions for the next level. The algorithm was specifically designed

to take advantage of the GPU’s unique parallel computing architecture.

When applied to ISPH however, the ViennaCL library’s MIS(2)AMG algorithm

requires modification to prevent a potential error due to the meshless nature and

moving computation points of the method. When at least two coarse particles share

exactly the same neighbours as each other (and including each other), the original

algorithm has the potential to overwrite data such that a coarse aggregate region
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exists without any particles present within, which ultimately leads to divisions of

zero during the solution of the PPE matrix.

Just as in the sequential aggregation coarsening strategy algorithm, all particles

begin with an undecided state. Then each particle is given a random weighting

and a parallel lexicographical ordering algorithm is used to find the MIS nodes,

where each particle’s state is determined based upon their respective neighbours’

state, random weighting and particle/row matrix number. The ordering scheme is

repeated until there are no more undecided state particles left. Resulting coarse

nodes here are likely to be different to that of the sequential coarsening algorithm

at this point because the parallel algorithm considers the influence of neighbours for

each i particle as completely independent to all others. This means that particles

within each others kernel support radii can be identified as coarse.

Next, the fine particles are reset to an undecided state. All particles in the

matrix are now in a state of either coarse, or undecided. The coarse particles are

enumerated into their aggregate indices in the same way as that in the sequential

algorithm (similarly to that in Fig. 4.15e). The undecided particles are then assigned

to coarse aggregates in parallel. This procedure is known as the propagation of coarse

aggregate indices. It is here that the MIS(2)AMG algorithm requires modification

for ISPH.

In the ViennaCL library’s parallel MIS(2)AMG GPU algorithm, the undecided

particles (non-MIS nodes) are organised into the aggregate regions, in parallel, by

assigning every j particle neighbour of coarse particle i, the same coarse aggregate

region number, Cnum, as that of particle i. The algorithm does not take into ac-

count whether any of the j neighbour particles are also of coarse state and will

overwrite/re-assign the j particles current coarse aggregate region regardless. If two

coarse particles share the same particle neighbours as each other, and are therefore

within each other’s neighbourhoods, the propagation of coarse aggregate indices al-

gorithm has the potential to assign all the involved particles into just one of the two

associated coarse aggregate regions, leaving the other one without any particles.

For example, in Fig. 4.17a, particles 2 and 5, in the system have been identified
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with a coarse state, they have coarse aggregate indices C0 and C1 respectively. The

two coarse particles also share exactly the same neighbours, particles 0, 1, 3, 4,

and 6, which before the propagation process, do not have a coarse aggregate region

assigned. The propagation of coarse aggregate indices is executed for both particles

2 and 5 at the same time in parallel. Data-write race-conflict6 between threads

can easily occur here and there is a possibility that data is overwritten such that

a coarse aggregate region will no longer contain any particles. Fig. 4.17b shows

this resultant arrangement of particles amongst coarse aggregate regions, where all

particles originally assigned to region C1 have been re-assigned to C0 within the

same instance of the parallel algorithm execution. The resultant coarse aggregates

are C0, with all particles in the system, and region C1 containing no particles at all.

The consequence of this is that the interpolation matrix, [P], will have a column,

assigned to a particular coarse aggregate region, with no non-zero entries such as

that for C1 in Fig. 4.17b. Empty columns in the interpolation matrix leads the

resultant matrix system in the next level to have empty rows and therefore divisions

by 0 during execution of the linear solver.

In ISPH, the error is possible because the particles are constantly moving. In

transient or violent flows, particle distributions may become highly irregular (even

with shifting) at the free surface. To resolve the issue here, a conditional-if statement

which allows propagation of coarse aggregate indices to non-coarse particles only is

inserted. This prevents the occurrence of an interpolation matrix with entirely empty

matrix columns associated with a coarse aggregate index, increasing the reliability

of the parallel MIS(2)AMG preconditioner for ISPH.

The procedure is not usually an issue in meshed-based methods as the stencil,

and therefore number of cell “neighbours” (as an analogy to SPH), is fixed. This

is demonstrated in Fig. 4.18a, which shows a simple 1-D case. Cells 1 and 2 have

been identified as coarse cells (this is possible due to the parallel lexicographical

ordering algorithm) and have cell neighbours [0, 1, 2], and [1, 2, 3] respectively. In a

parallel GPU framework, the propagation of coarse aggregate indices results stored

6When two, or more, individual threads try to write data into the same memory address at the
same time, this leads to an uncertainty of which value the memory address ultimately takes.
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(a) The coarse aggregate indices of particles be-
fore propagation.
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(b) Possible resulting propagation of coarse ag-
gregates indices and corresponding interpola-
tion matrix.

Fig. 4.17: A system of particles with identified 2 coarse particles, which have the
same neighbours as each other.

in cells 0, 1, and 2 will be assigned to coarse aggregate regions C0, associated with

coarse cell 1, and cells 2, 3, and 4 will be assigned to coarse aggregate region C1,

associated with coarse cell 2. Dependant on the order of thread execution there are

two resulting possibilities for the assignment of cells to coarse aggregate regions as

seen in Fig. 4.18b, where a thread assigning coarse aggregate regions to neighbours

of cell 1, may overwrite the associated region of cell 2, and another thread executing

the same task but for cell 2, may re-assign cell 1’s coarse aggregate region. This is

harmless however, as there will still be matrix entries for both the columns of C0

and C1 in the interpolation matrix, preventing the error as seen for ISPH.

4.6.7.3 ViennaCL MIS(2)AMG parameters

The ViennaCL library requires several parameter inputs for the MIS(2)AMG pre-

conditioner. The parameters and their values used in this study (for Chapter 5)

obtained from numerical experiments are listed as follows:

• Aggregation interpolation type: The parameter determines whether ag-

gregation or smoothed aggregation is used to interpolate solution approxima-
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Fig. 4.18: Simple 1-D meshed method example for the propagation of coarse aggre-
gate indices resulting from the parallel MIS(2)AMG algorithm

tions between matrix levels. The standard “aggregation” method uses an in-

terpolation matrix, [P], of ones as demonstrated in Fig. 4.16. In the ViennaCL

library, “smoothed aggregation” also applies a weighted Jacobi iteration to the

approximation solution between matrix levels in addition to the interpolation

matrix. Smoothed aggregation aims to improve the quality of interpolation

between matrix levels. From numerical experiments, the solution of the PPE

matrix using a smoothed aggregation method generally requires less solver

iterations and is thus used here.

• Jacobi smoother weight value: This parameter is to be used in conjunction

with the smoothed aggregation. It defines the relaxation value for the Jacobi

smoother. The parameter would ideally be 1.0 for higher accuracy, but this

value leads to an error from empty entries in the main diagonal of a matrix

level (and subsequent divisions of zero) when there are free-surface particles.

Therefore, a value of 0.999999 is used here, which has been found to provide

a balance between accuracy and computation speed of results.

• Pre-smoothing steps: The number of times the Jacobi smoother is applied

to a fine level before restricting the residual to the coarse level. Numerical

experiments have found that applying such steps have increased the precon-

ditioner setup time and solution so there are no pre-smoothing steps used
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herein.

• Post-smoothing steps: The number of times the Jacobi smoother is applied

to the coarse grid correction when interpolating back to a fine level. Numerical

experiments have shown that the use of one post-smoothing step significantly

improves the solution time over having no steps, and is therefore used here.

Values more than one have shown the extra steps increase the number of solver

iterations required.

• Coarse level cut-off: Defines the lower threshold for the number of coarse

aggregates in a matrix level before the preconditioner setup stops creating new

matrix levels. In the ViennaCL library, an exception is thrown if this threshold

is not reached in the setup phase and so the simulation execution is halted.

The algorithm is such that all free-surface particles will always be identified

as coarse particles, so by using the number of such particles each time step for

the coarse level cut-off parameter, the prevention of the exception is achieved

dynamically. The number of free-surface particles in a time step is computed

during the serial GPU function (see Alg. 2) at the beginning of Stage 2 of the

pressure projection.

The final challenge to address for the implementation of ISPH on the GPU are

the associated memory limitations. The penultimate section of this chapter details

some of the techniques used to treat this.

4.7 Addressing the GPU memory limitations

The memory usage of the new code is not completely optimised because of the limited

time to conduct this study. However, presented here are the methods implemented

to address the challenges of memory limitations for ISPH on the GPU:

• To aid the issue of memory limitations on the GPU, mixed precision storage

is used. With the exception of particle positions and CSR matrix arrays, all

the particle data is stored in single precision. Particle positions, r, are stored
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in double precision to maintain accuracy in the kernel. Numerical experi-

ments have concluded that the CSR matrix arrays are required to be stored

in double precision in order for the linear solver to converge for simulations of

approximately more than 500,000 particles.

• The majority of the code computations are performed in single precision, tak-

ing advantage of high single-precision FLOPS produced from Nvidia GPUs.

For the CSR matrix arrays, calculations are performed with float register

variables. The final values of the PPE matrix entries are cast to double for

the matrix arrays. The library then performs the solving of the matrix us-

ing double precision. To minimise error in calculating the inverse of matrices

for the MLS kernel and kernel gradient normalisation variables (Eqs (3.46)

and (3.20), double registers are created to perform the calculation and then

cast to float for storage.

• Similar to the WCSPH DualSPHysics code, all memory is allocated before

the main simulation execution to save time. In ISPH, it is unknown how

many non-zero entries are required for the PPE matrix because of the moving

computational points. However, given the kernel support size, it is possible

to estimate the maximum value number of non-zero entries, Nnzmax, required

for the matrix and therefore the memory allocation size of the CSR matrix

arrays, aValues and column. In Chapter 5, as an upper bound for matrix

memory storage, Nnzmax ≈ 1.5Nn,max, is used where Nn,max is the maximum

number of neighbours a particle has within a uniformly distributed Cartesian

arrangement. For example, for a 2-D case using the quintic spline, Nn,max = 44

and therefore Nnzmax = 70. The memory for the CSR arrays are subsequently

allocated as follows:

– aValues=new double[Nnzmax × np];

– column=new unsigned[Nnzmax × np];

This estimation is usually sufficient as the use of shifting will maintain an even

distribution of particles throughout most of a simulation.
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4.8 Conclusions

This chapter described the key details of the novel methodology of this thesis, im-

plementing ISPH on the GPU. An overview of GPU programming was first given

before explaining the changes required for conversion of the WCSPH DualSPHysics

code [15] to an ISPH algorithm where an algorithm for the parallel population of

the matrix on the GPU was included. Methods for solving the ISPH PPE were

discussed with the conclusion of combining DualSPHysics with the ViennaCL [16]

open-source linear algebra library for fast solutions of the linear matrix system. The

implementation of the library’s MIS(2)AMG preconditioner also requires modifica-

tion for ISPH. Finally the associated computational memory limitations of ISPH on

the GPU have been acknowledged. All the challenges identified in Section 2.7 for

ISPH on the GPU have been addressed.

The next chapter presents several test cases to validate the methodology of Chap-

ters 3 and 4. The performance of the new code is also assessed.



Chapter 5

Validation Tests

5.1 Introduction

This chapter presents a series of test cases and numerical experiments to validate

and test the performance of the new GPU-accelerated ISPH code, Incompressible-

DualSPHysics, created from the implementation methodology of ISPH on the GPU

presented in Chapters 3 and 4.

5.2 Technical specifications of hardware

and software

The ISPH algorithm has been implemented for both the CPU (serial and multi-

threaded OpenMP) and GPU in DualSPHysics version 4.0. The CPU experiments

were run on an Intel(R) Xeon(R) CPU E5-2640 v3 (16GB RAM, 2.60GHz) with 8

cores (16 threads). Two different Nvidia GPUs are used for comparison, the Nvidia

GeForce GTX 1070, and the Nvidia Tesla K40c. A summary of the GPU device

properties are found in Table 5.1.

Run time comparisons between all devices are made in Sections 5.4 and 5.6 where

a simulation time is defined as the time taken from the beginning of the “Mirror

boundary” set-up (see Fig 4.10) to computing a desired number of time steps (to

be stated for each case). The runtimes presented are the averages of 10 simulation

runtimes for each resolution.

157
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Table 5.1: GPU properties. GFLOPS stand for floating-point operations per second
on the order of giga (109).

GPU GeForce GTX 1070 Tesla K40c
Compute capability 6.1 3.5
Multiprocessors (CUDA cores) 15 (1920) 15 (2880)
Clock rate (GHz) 1.78 0.88
GFLOPS (single precision) 6463 5040
GFLOPS (double precision) 202 1680
Global memory (GB) 8 12
Memory bandwidth (GB/s) 256 288

The ViennaCL library’s Bi-CGSTAB solver requires the specification of the rela-

tive solver tolerance. It has been found for higher resolution test cases, the tolerance

setting should be adjusted in order to achieve the desired accuracy of results. The

adjustment is required more when using the Jacobi preconditioner at higher res-

olutions than the MIS(2)AMG preconditioner, but is still needed for both. The

preconditioner and solver tolerance value used for each test case will be stated.

5.3 Impulsively started plate

The case of an impulsively started plate sees the instantaneous movement of a solid

boundary against a body of fluid. This demanding test with an analytical solution

is used to show that Incompressible-DualSPHysics produces accurate results for the

free surface as well as demonstrating convergence of the methodology. The flow is

also assumed to be inviscid and without gravity.

Fig. 5.1 shows the initial setup of the test case; a vertical plate moves instan-

taneously with a constant velocity up = 0.2 m/s against a body of still water.

Symmetry is used to impose the horizontal boundary indicated with a dashed line.

Roberts [325] generalised Peregrine’s [17] analytical solution of the flow to suit

different plate velocities. The solution describes the progression of the free-surface

elevation, η, of the fluid at a position, x, relative to the moving plate for a water

depth, d, as described in Eq. (5.1). Herein, comparisons are made with Peregrine’s

solution where the water depth is 0.5 m measured from the dashed centreline in

Fig. 5.1:
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Fig. 5.1: The initial geometry of the impulsively started plate test case. The centre
line (dashed) indicates a symmetry between the top and bottom half of the setup.

η = −2upt

π
ln
(

tanh
(πx

4d

))
. (5.1)

Three resolutions with initial particle spacings, 0.025 m, 0.0125 m, and 0.00625

m are used to demonstrate the convergence of the L2 error norm, of the free-surface

elevation in the top half of the flow given by Eq. (5.2). The Jacobi preconditioner

is used for this test case with a solver tolerance of 10−5 for all resolutions. Fig. 5.2

shows that linear convergence is achieved with an order of convergence of 1.18.

L2 =

√∑
i(Theoretical − ISPH)2∑

i Theoretical
2

(5.2)

Fig. 5.3 shows particle positions at t = 0.6 s near the plate and free surface for

the finest resolution, dp = 0.00625 m. The free-surface particles coloured in red are

included within the L2 error norm calculation. Due to a singularity of the solution

at the boundary, particles within 1dp of the moving plate (indicated with the dashed

line) and particle spray, detached from the main body of fluid, are omitted from the

results. The theoretical free surface calculated from Eq. (5.1) is plotted with the

solid line.

Fig. 5.4 shows a snapshot of pressure field, corresponding to that in Fig. 5.3, in

the upper half of the simulation. Spray caused by approximation of the singularity

and impulsive motion of the plate can be seen near the tip of the water jet. The

pressure field plotted shows a smooth distribution without instabilities. This case



160 5.3. IMPULSIVELY STARTED PLATE

L 2

dp
10-3 10-2 10-1

100

10-1

10-2

10-3

1st order

2nd order

Fig. 5.2: Impulsively started plate convergence plot for both CPU (crossed marker)
and GPU (square marker) codes; the relative L2 error norm of the free surface
elevation for up = 0.2 m/s, d = 0.5 m at t = 0.6 s. The solid trendline shows a
convergence rate of 1.18 and the dashed lines above and below represent first and
second order convergence respectively.
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Fig. 5.3: Impulsively started plate (dp = 0.00625 m) close-up of fluid particle (blue)
positions near the plate and free surface. Particles coloured in red are included
within the calculation of L2 (Eq. (5.2)). The solid line shows the theoretical free
surface according to Eq. (5.1).
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demonstrates that the new solver can produce accurate results for an impulsively

moving plate.

Fig. 5.4: Impulsively started plate pressure plot for up = 0.2 m/s, h = 0.5 m at
t = 0.6 s. Here, the initial particle spacing is 0.00625 m. Units in Pa.

5.4 2-D incompressible flow around a moving square

in a rectangular box

The case of 2-D incompressible flow around a moving square in a rectangular box is

the 6th benchmark test case [18] proposed by the SPH European Research Interest

Community (SPHERIC). The case further demonstrates the stability and flexibility

of the Incompressible-DualSPHysics code.

Fig. 5.5a shows the geometry of the test case. The fluid domain covers a 10

m x 5 m area and is surrounded by solid boundaries enforcing Neumann boundary

conditions. In the left handside of the domain is a 1 m x 1 m square which is initially

at rest, then accelerates to a final maximum velocity of 1 m/s using the prescribed

motion, as in Fig. 5.5b, provided with the benchmark test [18]. The density of the

fluid is 1 kg/m3, so therefore its kinematic viscosity, ν, can be adjusted for different

Reynolds numbers, Re equal to 1/ν.
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Fig. 5.5: The setup for the 6th SPHERIC benchmark test case: 2-D incompressible
flow around a moving square in a rectangular box.

Despite the creation of a singular matrix system in the absence of a Dirichlet

boundary condition, a solution to the PPE matrix was found by combining the linear

solver, set to a tolerance of 10−6, with a Jacobi preconditioner. The linear system

here is such that a Krylov subspace method converges to a solution [326,327].

5.4.1 Re=100

Approximately 500,000 particles were used to compute 8.0 s of physical time (4,001

time steps) on the GTX 1070 GPU in 40 minutes. Figs 5.6a and 5.6b compare the

velocity fields of the ISPH solution with a reference finite difference solution [18] at

times, t = 5.0 s and t = 8.0 s respectively. Both figures show general agreement

between the two methods, where the contours are of similar shape and size. The
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main difference is seen at the front corners of the square, however resolving flow

around external corners in SPH is generally a problem [211].

Reference Solution 

Incompressible-
DualSPHysics 

ModV : Re = 100 
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(a) t = 5.0 s

Reference Solution 
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(b) t = 8.0 s

Fig. 5.6: 2-D incompressible flow around a moving square in a rectangular box
velocity magnitude field comparison between Incompressible-DualSPHysics and a
finite difference reference solution [18]. Units in m/s.

Fig. 5.7a presents the average times to compute the first 50 time steps of the

test case for various resolutions up to nearly two million particles. The two GPU

devices demonstrate a clear improvement over both the CPU single and 16-threaded

runtimes where their respective speed ups are illustrated in Fig. 5.7b. The GTX

1070 GPU provides the best performance, for the highest resolution it gives a 27.5

times and 4.5 times speed up over the CPU single thread (serial) and 16-threaded

(parallel) codes respectively.



164
5.4. 2-D INCOMPRESSIBLE FLOW AROUND A MOVING SQUARE

IN A RECTANGULAR BOX

0

500

1000

1500

2000

2500

3000

3500

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e 
(s

)

Number of fluid particles (x106)

CPU Single Thread

CPU 16 Threads

GTX 1070

Tesla K40c

(a) Run times for the first 50 time steps

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Sp
ee

d 
up

Number of fluid particles (x106)

GTX 1070 vs CPU single thread
Tesla K40c vs CPU single thread
GTX 1070 vs CPU 16 threads
Tesla K40c vs CPU 16 threads

(b) GPU speed up

Fig. 5.7: Runtime comparisons for computing the first 50 time steps of the 2-D
incompressible flow around a moving square in a rectangular box test case. A Jacobi
preconditioner is used for all tests.

5.4.2 Re=1 million

To emphasise the stability of the code, the test case is repeated but for Re = 1

million (ν = 10−6 m2/s). The GTX 1070 GPU completed the experiment in 3 hours
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and 40 minutes. Fig. 5.8 shows snapshots of the flow evolution. The particle ID

numbers are displayed at 2 second intervals to demonstrate flow characteristics. As

the box moves forward, particles in its path are pushed to either side and vortices are

created by the front two corners of the box. These vortices are fractal in nature and

move down the side of the box before residing in the box’s wake. Vortex shedding

is observed in Figs 5.8c and 5.8d. Although there is no reference solution, the

behaviour here is typical of similar flows in CFD [328,329].

(a) t = 2.0s (b) t = 4.0s

(c) t = 6.0s (d) t = 8.0s

Fig. 5.8: 2-D incompressible flow around a moving square in a rectangular box,
Re = 1 million. Particle are coloured according to ID number.

5.5 Dambreak

In this section, the classical SPH dambreak test is used to investigate the perfor-

mance gains from accelerating ISPH with the GPU for free-surface flows in 2D and

3D. The solver tolerance for all results presented was set to 10-8, a value found to

be necessary for avoiding pressure fluctuations during impact.
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5.5.1 2-D validation

The dambreak test by Koshizuka and Oka [19], as shown in Fig. 5.9, is simulated

here. The geometry of the tank here however, is extended in the z-direction to

account for spray after impact on the RHS wall of the tank. A column of fluid with

width, L, and height, 2L, where L = 0.146 m, is placed on the LHS of a tank with

a width of 4L and height of 2 m. At t = 0 s, the fluid accelerates with gravity,

g = 9.81 m/s2. A free-slip condition is applied to all solid boundaries, and the fluid

is modelled as water such that ν = 10−6 m2/s and ρ = 1000 kg/m3.

 

 

 

 

 

 

 

 

 

Water 
column 2L 

L = 0.146 m 

4L 

2.0 m 

Fig. 5.9: Dambreak test geometry. A replication of the experiment of Koshizuka
and Oka [19], but with extended tank walls.

The following validation test uses 680,000 fluid particles and a Jacobi precon-

ditioner. Fig. 5.10 shows snapshots of the pressure field during critical points of

the flow evolution. Figs 5.10a and 5.10b display the impact on the right-hand wall

and subsequent overturning wave event respectively. For SPH, distortions in the

pressure field are most likely to occur during impact events, but here the pressure

distribution remains smooth and noise-free throughout the simulation. Fig. 5.10c

shows a close-up snapshot of the fluid overturning just before impacting on itself.

The smooth pressure distribution near the free surface is clearly evident. Moreover,

the use of a high resolution, enabled by the GPU, and the PPE in ISPH with P = 0

enforced on the surface highlights the two distinct free surfaces of the overturning
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wave’s tip and fluid on the tank bottom. Each of these free-surface locations are

within a kernel support radius of each other. Such a noise-free pressure field would

not be observed in WCSPH as the free-surface particles would affect each other’s

kernel summations.

(a) Impact with wall, t = 0.3 s

(b) Initial flip over impact, t = 0.759 s

(c) Close-up snapshot of the flip-over just before impact, t = 0.758 s

Fig. 5.10: 2-D dambreak using 680,000 fluid particles. Pressure is plotted in Pa.

The leading toe position of the dambreak is compared with the Koshizuka and
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Oka’s experimental data [19] in Fig. 5.11. The non-dimensionalised values of toe

position, X/L and time, t∗ = t(2g/L)0.5, are plotted against each other where X

is the x-position of the toe. Although the ISPH simulation shows the flow to move

faster than the experimental data, there is agreement for the rate of change of

position. The discrepancy may come from excluding the release gate as occurred in

the experiment [131].
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Fig. 5.11: Comparison of the dambreak toe with experimental data of Koshizuka
and Oka [19].

5.5.2 3-D validation

For 3-D simulations, the computational expense increases significantly. From 2D to

3D, the number of neighbours, for a particle in a uniformly distributed arrangement,

using the quintic spline increases from 44 to 274 and, for ISPH, this means a large

increase in memory expenditure due to the PPE matrix. Therefore, the maximum

number of particles that can be computed on the GPU is limited. For the same

number of particles, a WCSPH simulation is not subject to the additional memory

expenditure and subsequent particle limitation.

To reduce the memory usage for 3-D simulations, the Wendland kernel with a

smoothing length, h = 1.3dp, and support size, 2h, is used resulting in 80 neighbours

for a particle in a uniformly distributed arrangement.
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To validate the use of the Wendland kernel for 3-D simulations, the toe com-

parison from Fig. 5.11 is repeated in 3D. The geometry from Fig. 5.9 is used and

extended in the y-direction by 0.2 m, the height of the tank walls are also reduced to

0.3 m. A dp of 0.002 m was used resulting in a total of 384,687 particles. A snapshot

of the 3-D simulation at t = 0.3 s is shown in Fig. 5.12. Spray can be observed in

the figure as the fluid travels up the wall post-impact. Although other ISPH litera-

ture [11,175] exhibits such fragmentation, the accuracy of the simulation regarding

this is unclear due to the lack of quantitative experimental data and difficulties in

obtaining accurate qualitative comparisons.
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1000 

 

0 

Pressure 

Fig. 5.12: 3-D dambreak simulation, t = 0.3 s. The geometry is the same as that in
Fig. 5.9 and extended in the y-direction by 0.2 m. dp = 0.002 m. Pressure is plotted
in Pa.

Fig. 5.13 shows the toe position results of the 3-D ISPH simulations using the

Wendland kernel and the quintic spline, which are once again compared to the exper-

imental results of Koshizuka and Oka [19]. Both kernels produce results which are

near identical to each other and to the 2-D validation in Fig. 5.11. The figure shows,

for 3-D simulations, the Wendland kernel can produce similar results for a reduced

computational expense. For instance, the memory reserved for the aValues array

to store the non-zero entries of the PPE matrix is 367 MB (Nnzmax = 125) and
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1,174 MB (Nnzmax = 400) for the Wendland kernel and quintic spline respectively.

Therefore, in the following section, the Wendland kernel is used for performance

analysis of 3-D simulations.
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Fig. 5.13: Comparison of the quintic spline and Wendland kernel for the position of
the dambreak toe in 3D with experimental data of Koshizuka and Oka [19].

5.6 Performance Analysis

Here, the performance of the new Incompressible-DualSPHysics code is analysed

using the 2-D and 3-D dambreak test cases in Section 5.5. Firstly, the number

of particles that can be simulated on different GPUs is presented. Then, runtime

comparisons are conducted. This is followed by analysis of the effect of the matrix

preconditioning choice for a full simulation. Finally, the different stages of the full

solution algorithm are profiled.

5.6.1 Maximum particles for GPU RAM

Tables 5.2a and 5.2b show the approximate maximum total number of particles that

are able to be computed for GPUs limited to 2 4, 8, and 12 GB of RAM with the

Jacobi and MIS(2)AMG preconditioners respectively. The largest GPU RAM size

is able to compute up to approximately 10 million particles in 2D and 6.1 million
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particles in 3D using the Jacobi preconditioner. The use of the MIS(2)AMG pre-

conditioner reduces the maximum allowable number of particles to 3.6 million and

2.4 million (for 2D and 3D respectively) because it requires extra memory usage

to store the components of the AMG. The values presented here are approximate

because the linear solver’s memory requirements will vary with the number of par-

ticles and non-zero entries in the matrix per time step, depending on the test case.

With just 4 GB of GPU RAM, Incompressible-DualSPHysics can still compute up

to approximately 3 million particles in 2D and 2.2 million particles in 3D (when

Nnzmax = 1.5Nn,max, see Section 4.7).

Table 5.2: Approximate maximum total number of particles (in millions) that can
be computed for a various GPU RAM size. 2-D simulations use the quintic spline,
3-D simulations use the Wendland kernel.

(a) Jacobi preconditioner

4 GB 8 GB 12 GB
2D 3.0 6.2 10.0
3D 2.2 3.9 6.1

(b) MIS(2)AMG preconditioner

4 GB 8 GB 12 GB
2D 1.3 2.2 3.6
3D 0.9 1.4 2.4

5.6.2 Dambreak runtime comparisons

Fig. 5.14 shows the times taken to complete the first 10 time steps of the 2-D

dambreak simulation (as in Section 5.5.1) for various resolutions using either the

Jacobi or MIS(2)AMG preconditioners. For the Jacobi preconditioner runs, up to

approximately 4.3 million fluid particles were computed on the GTX 1070 GPU,

and up to 9.8 million fluid particles on the Tesla K40c GPU. For the MIS(2)AMG

preconditioner, the highest number of fluid particles computed on the GTX 1070

GPU was 2 million, and for the Tesla K40c, up to 2.7 million were computed. For

clarity, Fig. 5.15 shows the MIS(2)AMG preconditioner plots only. The full range

of CPU runs were unable to be computed due to memory allocation issues with the

linear solver library.

Both GPUs show clear improvements in execution time over the CPU single and

16-threaded simulations. Regardless of the device used, for simulations using the

Jacobi preconditioner, the overall simulation runtime increases exponentially with
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Fig. 5.14: Runtime comparisons for the first 10 time steps of the 2-D dambreak case
(as in Section 5.5.1) with the Jacobi and MIS(2)AMG preconditioners.
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Fig. 5.15: As in Fig. 5.14 showing the MIS(2)AMG plots only.

increasing number of particles. On the other hand, for the MIS(2)AMG, the trend

between runtime and number of particles appears to be near linear. Therefore, for

this case the use of the AMG preconditioner results in quicker simulation times,

although the number of particles are limited comparative to the Jacobi.

The GPU speed ups over the CPU single and 16-threaded runs are plotted in
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Fig. 5.16a for the Jacobi preconditioner runtimes, and Fig. 5.16b for the MIS(2)AMG

preconditioner runtimes. Simulations executed on both GPUs are performed fastest

by the GTX 1070 GPU, which is aided by its higher clockspeed. Comparing simula-

tions using the Jacobi preconditioner, it is shown GPUs can provide speed ups vary-

ing between 10-17.3 times compared to a CPU single-threaded device, and 2.7-4.5

times speed ups against CPU multi-threaded devices. The use of the MIS(2)AMG

preconditioner produces lower speed ups, 6-16 times vs CPU single-threaded and

1.1-3.2 times vs CPU 16-threaded. However, it does give a significant reduction in

overall runtime here, the runtime for approximately 1 million fluid particles on the

GTX 1070 with the MIS(2)AMG preconditioner, compared with the CPU single-

threaded run with the Jacobi preconditioner, a typical ISPH solver setup, a speed

up of 61.7 times is produced.

Ten-time step runtime comparisons are also made for the 3-D case (from Sec-

tion 5.5.2) with different extensions of the geometry in the y-direction in Fig. 5.17.

Plots for the Jacobi preconditioner only are shown in Fig. 5.18 where there is an

additional plot showing runtimes performed using the quintic spline on the Tesla

K40c GPU for comparison against the Wendland kernel.

For the Jacobi preconditioner runs, up to approximately 3.4 and 5.1 million fluid

particles were computed on the GTX 1070 and Tesla K40c GPUs respectively. Using

the quintic spline limited the Tesla K40c to a maximum of approximately 1.6 million

fluid particles. For the MIS(2)AMG preconditioner, runs of up to approximately 1.0

and 1.8 million fluid particles were executed on the GTX 1070 and Tesla K40c GPUs

respectively. Once again, the GTX 1070 GPU performs the best for its allowable

number of particles.

Both preconditioners display near-linear trends for the runtime against the num-

ber of fluid particles where, unlike the 2-D case, the Jacobi preconditioner provides

the faster solution times. For accurate representation of real engineering applica-

tions, simulations need to be in 3D. So here, the use of the Jacobi preconditioner

over the MIS(2)AMG preconditioner is more favourable as it also does not require

any additional memory usage.
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Fig. 5.16: 2-D dambreak GPU speed ups

The quintic spline plot (solid black line) in Fig. 5.18 shows that simulations are

limited to approximately 1.6 million fluid particles on the Tesla K40c GPU due

to an increased kernel support radius and therefore approximately 3 times more

memory usage compared to the Wendland kernel runs. Fig. 5.24a shows that using

the Wendland kernel is also 2-3 times faster than the quintic spline.
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Fig. 5.17: Runtime comparisons for the first 10 time steps of the 3-D dambreak case
(as in Section 5.5.2) with the Jacobi and MIS(2)AMG preconditioners.
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Fig. 5.18: As in Fig. 5.17 showing the Jacobi plots only, and an additional plot for
runs using the quintic spline.

The GPU against CPU speed-ups for all runs, seen in Figs 5.24a and 5.24b (for

Jacobi and MIS(2)AMG preconditioners respectively), reach a peak speed-up for

fluid particle numbers of less than approximately 100,000 and then drop to a value

with little variation for increasing numbers of fluid particles. The highest speed-

ups are observed from the Jacobi preconditioner runs, the Tesla K40c is about 12
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and 2.5 times faster than the CPU single and 16-threaded runs respectively, and

approximately 16 and 3.5 times speed ups are observed from the GTX 1070.
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Fig. 5.19: 3-D dambreak GPU speed ups
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5.6.3 Preconditioner performance for ISPH

In ISPH, the performance of the linear solver will change with the evolution of the

flow due to moving computational points. The runtimes presented in Fig. 5.15 should

therefore only be an indicative representation and not be assumed for every test case.

The 2-D dambreak was repeated for a full 1.0s of physical time (10, 000 time steps)

to compare the linear solver’s performance throughout the simulations using the

Jacobi and MIS(2)AMG preconditioners. Fig. 5.20 compares the number of solver

iterations executed per time step of the simulation between the two preconditioners.

The solid black line on the graph (between time steps 2,000 and 3,000) marks the

instant at which the flow strikes the right-hand wall of the tank. Before the impact

event, the results here correlate to those in Fig. 5.15, the MIS(2)AMG preconditioner

requires less solver iterations and therefore less time to solve the PPE (and the overall

time step/simulation). However, after the impact event, the number of iterations

required with the MIS(2)AMG preconditioner rapidly increases and becomes highly

unpredictable. The time required to setup the preconditioner was also observed to

increase substantially (milliseconds to seconds). On the other hand, the number of

iterations required with the Jacobi preconditioner decreases.

The change in behaviour with each preconditioner originates from fragmentation

of the fluid after the impact event. Such fragmentation is displayed in Fig. 5.21a,

where a snapshot of the simulation shows the entire domain. The main bulk of the

fluid stays at the bottom of the tank, but there is also a body of water (along with

spray) in the upper half of the domain separated from the main fluid bulk after

impact with the RHS wall. Fig. 5.21b shows a close-up shot of the fragmentation

encircled in Fig. 5.21a. The MIS(2)AMG preconditioner takes significantly longer

to setup because it treats all of the fluid particles as one connected system, where

in fact, there are at least two effectively independent systems. The linear solver

then subsequently takes longer to find a solution. Such an occurrence was not

observed in the dambreak simulations of Guo et al. [232] because they did not

extend their domain in the z-direction. It should also be noted that the HYPRE

BoomerAMG preconditioner [330] used in their work is more developed, with a
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Fig. 5.20: Comparison of the number of solver iterations taken per time step during
the 2-D dambreak simulation between the Jacobi and MIS(2)AMG preconditioners.
Here, dp = 10−3, resulting in 42, 632 fluid particles.

greater range of functionality and robustness on CPUs than the ViennaCL library’s

AMG preconditioners.

(a) From afar (b) Close-up

Fig. 5.21: A snapshot of the 2D dambreak simulation from afar and a close-up of the
area encircled. These images show the fragmentation that occur in the flow leading
to more than one linear system within the computational domain. The snapshot
correlates to time step 3500 in Fig. 5.20. Multiple independent systems of fluid are
more evident with higher resolutions.

Fig. 5.22 plots the cumulative time spent solving the PPE matrix per time step

for the simulations in Fig. 5.20, i.e. the time spent using the ViennaCL library,

with the two preconditioners. For the MIS(2)AMG, this includes the setup time of
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the preconditioner. The total time spent solving the PPE matrix with the Jacobi

preconditioner was 0.03 days, and when using the MIS(2)AMG, a cumulative time

of 3.8 days was spent.
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Fig. 5.22: Comparison of the cumulative time spent solving the matrix for the
simulation as in Fig. 5.20.

Concluding, although the use of the Jacobi preconditioner initially gives slower

solution times, its ability to deal with fragmentation ultimately results in a lower

cumulative time spent solving the PPE matrix, and subsequently a faster total

simulation execution time. The dambreak however, is a particularly unique flow

with an extreme case of fragmentation, for the majority of 2-D flows with ISPH, the

MIS(2)AMG preconditioner may be favourable in terms of execution time, although

this would need to be investigated more thoroughly.

Comparisons here are for just a single case in 2D and 3D, different combinations

of preconditioners and solvers will need to be investigated for a variety of cases.

Moreover, algorithmic libraries for the GPU are still in their early stages relative

to CPU libraries, there is still much needed development for robust and optimised

linear solver algorithms for the GPU.
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5.6.4 Profiling

A short profiling study is conducted to assess how well ISPH has been implemented

onto the GPU. All results here are taken from the 2-D and 3-D dambreak simulations

similar to those presented in Figs 5.14 and 5.17 with approximately 1 million fluid

particles and using the Jacobi preconditioner.

Fig. 5.23 shows pie charts where each one presents the time spent on each stage

of the pressure projection step as a percentage of the total time spent in the main

ISPH loop over the first ten time steps of the dambreak case. Here, Stage 2 of the

algorithm has been split up into Stage 2a, the time spent setting up and populating

the PPE matrix, and Stage 2b, the time spent solving the matrix, that is the amount

of time spent in the linear solver library.
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Fig. 5.23: Percentage of time spent on the 4 stages of the algorithm out of the ISPH
pressure projection time step for different devices. The first 10 time steps of the of
the dambreak case (Section 5.5), in 2D and 3D, are tested using approximately 1
million fluid particles and the Jacobi preconditioner. Stage 2 is split up into two
parts, Stage 2a and Stage 2b, for the population and solving of the PPE matrix
respectively.

It is clear that solving the PPE matrix (stage 2b) takes up the highest percentage

of time in ISPH, which agrees with other researchers [190, 232]. Therefore, the

majority of computational effort should be concentrated towards solving the PPE

matrix, as done here. For the 2-D simulations, from CPU single-threaded to GPUs,
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the percentage of time spent solving the PPE matrix increases from 91.4 % to about

96-97 %, and for 3-D simulations the increase is from 71.6 % to 83-88 %. The CPU

16-threaded runs also display similar behaviour to the GPUs, reinforcing the parallel

algorithm benefits for ISPH.

The figure is also ordered such that from left to right shows increasing number

of cores, suggesting higher levels of parallelism. This is further confirmed with the

percentage of time spent on Stages 1, 3, and 4 decreasing with increasing numbers

of cores. For example, for the 3-D simulation, the percentage of time spent on the 3

stages (1, 3, and 4) is 21.88, 11.47, 3.35, and 2.48 % for the CPU single-threaded (1

core), CPU 16-threaded (8 cores), GTX 1070 (1920 CUDA cores), Tesla K40c (2880

CUDA cores) runs respectively.

An important aspect of the algorithm that hinders the potential speed up gains

from the GPU lies in Stage 2a, which accounts for the single-threaded sequential

function for setting up the CSR arrays and particle sweep 2 for populating the PPE

matrix in parallel. The trend between percentage of time spent on particle sweep

2 and the number of cores will be similar to that explained for stages 1, 3, and 4.

However, the sequential function (Algorithm 2) relies on the clockspeed and mem-

ory hardware of the computing device. The CPU single-threaded and 16-threaded

runs use the same hardware, therefore the time spent on the serial function should

theoretically be exactly the same. The reduction in overall percentage of time spent

in Stage 2a (6.52 to 3.82 % for the 3-D simulation) comes from a quicker execution

of particle sweep 2 with the CPU-16 threads. Both GPUs show a larger percentage

of time spent on Stage 2a because they have significantly lower clockspeeds (see Sec-

tion 5.1) and therefore execution of the sequential function takes longer. This is a

contributing factor to explain why the Tesla K40c GPU results in slower simulation

times compared to the GTX 1070 GPU.

The analysis of the results from Fig. 5.23 can be further clarified with Table 5.3,

which shows the speed ups achieved for each stage of the ISPH algorithm. The

components of the algorithm which consistently achieve the highest GPU speed

ups are Stages 1, 3, and 4. Speed ups in these stages against the CPU single-
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threaded run range from approximately 139.1-502.8 times and 65.6-197.6 times in

2D and 3D respectively. When compared to the CPU 16-threaded runs, speed ups

are approximately an order of magnitude lower. Such speed ups are expected in

these stages as they consist of mainly particle sweeps (see Section 4.5) similar to

the original DualSPHysics code [15]. As observed in Fig. 5.23, the overall potential

speed of the algorithm is hindered by the single-threaded sequential function in

Stage 2a, which is confirmed here in Table 5.3 where the stage exhibits the lowest

GPU speed ups (ranging from 0.7-11.8 times) in the whole algorithm. Lower speed

ups here achieved by the Tesla K40c confirms the single-threaded serial function

relies upon the clockspeed of the hardware. Parallelising the single-threaded serial

function will allow the speeds shown for Stage 2a to be more similar to the other

particle sweep stages (1, 3, and 4). The GPUs achieve speed ups in the range of

2.6-16.3 times for the solution of the PPE matrix in Stage 2b. This is an order of

magnitude lower than the particle sweep stages, and thus hinders the overall speed

ups of the ISPH algorithm previously shown in Figs 5.16 and 5.19. Concentrating

research efforts towards solving the PPE matrix more efficiently on the GPU will

gain the most improvements in overall simulation speed up and computation time.

This will be demonstrated in Section 5.6.5.

Table 5.3: GPU speed ups for each stage of algorithm with approximately 1 million
particles in 2D and 3D. Results are obtained from the same data used Fig. 5.23.
CPU (1) and CPU (16) refer to CPU single and 16-threaded respectively.

Stage 1 Stage 2a Stage 2b Stage 3 Stage 4

2D

GTX 1070 vs CPU (1) 139.1 11.8 16.3 198.3 222.2
Tesla K40c vs CPU (1) 205.4 6.2 11.8 203.8 502.8
GTX 1070 vs CPU (16) 14.3 1.3 3.8 20.4 23.1
Tesla K40c vs CPU (16) 21.2 0.7 2.7 21.0 52.2

3D

GTX 1070 vs CPU (1) 66.9 10.9 12.5 110.7 162.8
Tesla K40c vs CPU (1) 83.5 5.4 9.9 65.6 197.6
GTX 1070 vs CPU (16) 7.6 1.4 3.3 13.6 18.4
Tesla K40c vs CPU (16) 9.5 0.7 2.6 8.0 22.3

Table 5.4 shows statistics of the GPU implementation for the CUDA kernels ex-

ecuted for each particle sweep in the ISPH pressure projection algorithm (Fig. 4.10)

in the first time step of the simulation. The functions are named in the format of

“Function-Particle type” such that “PS” stands for particle sweep, “MLS” is the
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function for determining the MLS coefficients for each boundary particles unique in-

terpolation point (Eq. (3.46)), and “F” and “B” are i particles of fluid and boundary

particle type respectively. Four measures are presented here:

• Theoretical Occupancy: A measure of the upper limit for the average per-

centage of warps active during the kernel execution derived from the compila-

tion of the code and the GPU device capabilities. A “warp” is a block of 32

threads, if at least one thread in a warp is being used, then the warp is defined

to be active. Only very simple CUDA kernels with low register (local memory)

usage can achieve 100 % occupancy. Here the theoretical occupancies range

from 25 to 50 %, values similar to the force computation kernels from the

original WCSPH DualSPHysics code when the same problem was run.

The original DualSPHysics code used the same particle sweep function for the

predictor and corrector phase (see Fig. 4.9), and this function was modified

to compute PS1-F and PS3-F during the ISPH conversion process with a

conditional if-statement to separate the two different computations. Therefore,

more registers than necessary are used for both PS1-F and PS3-F, which results

in a reduced theoretical occupancy. However, the inefficiency does not affect

the overall computation time greatly as seen from Fig. 5.23. Implementing

the two as separate dedicated kernel functions will increase the theoretical

occupancy and efficiency of the algorithm.

• Achieved Occupancy: The measured percentage of warps active during the

kernel execution. All kernel functions here achieve a value the same as or very

close to the theoretical occupancy. This means, the code has been implemented

such that the device can hide latency between computations. Therefore, lower

register usage and so higher theoretical and achieved occupancies have been

identified as a method to increase performance within each kernel for the same

ISPH methodology.

• Branch divergence: A branch instruction is defined as an instruction with

a conditional result where the outcome may vary. The branch divergence
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is therefore defined as the average percentage of branch instructions executed

within a warp of threads which resulted in different code paths for participating

threads in the same warp. Branch divergence introduces latency and can have

a significant impact in the context of GPUs, therefore it is ideally avoided.

Here, the branch divergence has similar values to the WCSPH DualSPHysics

run for the same problem [248].

• Computational throughput (single and double precision): The com-

putational throughput is an important measure of performance, specifying the

number of Giga-floating-point operations per second (GFLOP/s) computed

kernel. The single precision computational throughputs of kernels range from

73.3-522.6 GFLOP/s. The theoretical single-precision peak performance of

the GTX 1070 GPU is 6,463 GFLOP/s, which means each kernel achieves less

than 10% GPU efficiency. However, the low value of efficiency is due to the

use of mixed precision computations in the algorithm and is thus an unfair

metric here. For the double precision computational throughputs of kernels,

a range of 15.3-49.0 GFLOP/s are achieved. Compared to the GPU’s theo-

retical double-precision peak performance of 202 GFLOP/s, double precision

throughput efficiencies range from 7.6-24.2%. The highest throughput efficien-

cies are usually achieved through small and simple CUDA kernels [236]. The

CUDA kernels here for computing particle sweeps are larger and more com-

plex comparative to other GPU applications (e.g. matrices manipulation).

Reassessing the implementation of particle sweep CUDA kernels to increase

efficiency is an area of further study, however as mentioned before, to improve

the overall simulation time, efforts should be concentrated more towards solv-

ing the matrix efficiently.

In the first time step of the simulation from Table 5.4, the total floating-point

operation count (FLOP count) across all particle sweeps was 43.14× 109 for single-

precision operations and 6.85 × 109 for double precision operations. The integer

math operation count was recorded to be 18.35× 109. A total of 2.17 GB of RAM
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Table 5.4: Theoretical and achieved occupancy and branch divergence percentages,
and single and double precision computational throughput for the CUDA kernels
(parallel GPU functions) executed for each particle sweep in the algorithm. Results
are taken from the first time step of the 3-D dambreak simulation (see Section 5.5.2)
and performed on the GTX 1070 GPU.

Stage 1 Stage 2 Stage 3 Stage 4
Function MLS-B PS1-B PS1-F PS2-B PS2-F PS3-F PS4-F

Theoretical
occupancy (%)

37.5 50.0 25.0 50.0 37.5 25.0 50.0

Achieved
occupancy (%)

37.4 49.9 25.0 50.0 37.5 25.0 50.0

Branch
divergence (%)

1.58 1.22 0.29 1.48 0.29 0.38 0.26

Single precision
throughput
(GFLOP/s)

[Efficiency (%)]

73.3
[1.1]

233.3
[3.6]

149.4
[2.3]

77.0
[1.2]

94.0
[1.5]

256.6
[4.0]

522.6
[8.1]

Double precision
throughput
(GFLOP/s)

[Efficiency (%)]

43.6
[21.6]

35.1
[17.4]

31.2
[15.5]

16.6
[8.2]

15.3
[7.6]

42.9
[21.2]

49.0
[24.2]

was allocated to the GPU at the beginning of the simulation by DualSPHysics, this

excludes memory allocated by the linear solver library.

5.6.5 Solver initialisation

In the preceding sections of this chapter, all simulation results are based upon using

an initial zero solution, ‖x0‖2 = 0, for the Bi-CGSTAB linear solver at each time

step. This section shows that by initialising the solver with an approximate solution

guess, the required computational time can be reduced. Here, simulations with

solver initialisation uses the pressure field obtained from the previous time step as

an initial solution guess. At the first time step, where there is no available preceding

pressure field, ‖x0‖2 = 0.

The 2-D and 3-D dambreak runtime comparisons for the GTX 1070 GPU and

single and 16-threaded CPU experiments, from Section 5.6.2, are repeated with

the use of solver initialisation. Only runtimes with the Jacobi preconditioner are

considered here.

Fig. 5.24 compares the results of the runtimes using solver initialisation (SI),
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denoted as “SI” in the plots, against those without (No SI), from Section 5.6.2. For

all experiments, in 2D and 3D, initialising the solver provides reductions in overall

runtimes. For the previous 2-D experiments, the Jacobi preconditioner showed an

exponential-type increase in runtimes with increasing particle numbers. However,

with the use of solver initialisation, the trend now appears to scale linearly. The

3-D cases show linear scalability for both with and without solver initialisation.

The use of solver initialisation supposedly reduces the time taken to solve the

PPE matrix, and subsequently overall runtimes, because it provides a more suitable

approximation to the system solution than ‖x0‖2 = 0. Therefore, the linear solver

requires less iterations (and computational time) to reach convergence. This is based

on the assumption that the overall pressure field from one time step is similar to the

next.

The reduction of runtimes, as a percentage, gained by solver initialisation are

plotted in Fig. 5.25. In both 2D and 3D, the GPU benefits more from solver initial-

isation than the CPU with a single or 16-threaded implementation. In 2D, for fluid

particles numbers of over 200,000, the overall runtimes for the GPU are reduced

by approximately 80-85% of the original runtimes without solver initialisation. The

single and 16-threaded CPU runtimes are improved by 70-80%.

For the 3-D cases, percentage reductions are lower, as the Jacobi preconditioner

already scales linearly without initialising the solver solution. Runtime reductions

of 30-35% are observed for the GPU, compared to 20-30% and 15-22% for the single

and 16-threaded CPU experiments respectively.

The higher reductions in overall runtimes for the GPU, compared to those of the

CPU, subsequently improves the speed ups observed between the two hardware as

shown in Fig. 5.26. In 2D, the GPU-CPU single thread speed ups increase from 13.0-

17.3 times to 18.3-25.3 times for particle numbers of 1-4.5 million. Similarly, GPU-

CPU 16-threaded speed ups with solver initialisation range 4.6-8.1 times compared

to the original 3.8-4.5 times. In 3D, for up to 2 million particles, it is shown that

the use of solver initialisation improves the GPU speed ups from 15.8-17.5 times

to 18.2-21.0 times and 3.5-3.8 times to 4.2-4.7 times against the CPU single and
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Fig. 5.24: Dambreak runtimes using solver initialisation (SI) and comparing to
results obtained from Figs 5.14 and 5.17 without the use of SI (No SI).

16-threaded runtimes respectively.

Fig. 5.27 looks at the percentage of time spent in the different stages of the

algorithm, as in Fig. 5.23, for the GTX 1070 GPU and compares the difference

between with and without solver initialisation . The measured time spent in all
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Fig. 5.25: Runtime reductions, as a percentage, achieved by the use of solver initial-
isation.

stages other than solving the PPE matrix, i.e. Stages 1, 2a, 3, and 4, are similar

between the runs whether solver initialisation is used or not. Overall simulation-

time reductions are made within Stage 2b only, where the percentage of time spent

solving the PPE is now 83.81% in 2D (from 96.71%) and in 3D, the percentage

is reduced from 97.49% to 80.88%. As established in Section 5.6.4, the processing

power of the GPU is well utilised as the majority of its computational time is spent

solving the PPE in Stage 2b. However, here the reduction in time spent in that

stage is an indication of improvement to the numerical methodology or algorithm.

As numerical methods for solving the ISPH PPE advance, the evolution of the pie

chart should see the percentage reduce further.

5.7 Conclusions

The performance and accuracy of the new GPU-accelerated ISPH code, Incompressible-

DualSPHysics, has been investigated in this chapter. The code’s accuracy, robust-

ness, and stability has been proven through a variety of test cases: an impulsively

started plate, 2-D incompressible flow around a moving square in a rectangular box,
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Fig. 5.26: New GPU-CPU speed ups with use of solver initialisation (SI) and com-
paring to results obtained from Figs 5.14 and 5.26b without the use of SI (No SI).

and 2-D and 3-D dambreaks. A series of runtime comparisons show, for particles

numbers of between 1-4.5 million in 2D, GPU (GTX 1070) speed-ups of 18.3-25.3

times and 4.6-8.1 times against single-threaded and 16-threaded CPU runtimes re-

spectively. In 3D for up to 2 million particles, GPU-CPU speed ups of approximately
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Fig. 5.27: Percentage of time spent on the 4 stages of the ISPH pressure projection
step algorithm on the GTX 1070 GPU using solver initialisation (SI) compared to
results obtained from Fig. 5.23 without use of solver initialisation (No SI).

18.2-21.0 times are achieved compared to the CPU single-threaded runtimes, and

4.2-4.7 times versus the CPU 16-threaded experiments. A profiling study shows the

efficiency of the WCSPH DualSPHysics code has been maintained throughout its

conversion to an ISPH algorithm.

Performance investigations concerning different components of the methodology

were also made:

• Kernel: On comparison of the quintic spline with the Wendland kernel for

the 3-D dambreak simulation, both kernels gave near identical results for the

propagation of the toe front. However, the latter provides the advantages of

lower memory consumption and quicker solution times.

• Preconditioner: The Jacobi and MIS(2)AMG preconditioners were also

compared where the former proves favourable showing superior speed solu-

tion times and an apparent robustness for highly fragmented flows. The

MIS(2)AMG preconditioner has potential but the algorithm requires more

development for ISPH.

• Solver initialisation: When using the pressure field of the previous time
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step for the linear solvers initial solution guess, runtimes were reduced by up

to 85% and 35% for 2-D and 3-D simulations respectively.

The penultimate chapter of this thesis fulfills the aim of the project by demon-

stration of the ISPH on the GPU code for a real violent hydrodynamic engineering

application: breaking wave-structure interaction.



Chapter 6

Application of ISPH to a Numerical Wave

Basin

6.1 Introduction

This penultimate chapter demonstrates how the new Incompressible-DualSPHysics

code, accelerated with a GPU, can simulate fully 3-D engineering applications in-

volving violent free-surface flows.

Offshore environments are amongst some of the most aggressive that man-made

structures must experience. Ships, wind turbines, and offshore platforms are subject

to violent hydrodynamics including extreme waves, wave-breaking, and greenwater

overtopping and slamming. For engineers, the design of such applications through

laboratory experiments is limited. So the desire for the development of a numerical

wave basin has long been sought after as an engineering tool to simulate complex

wave-structure interactions. Such a concept has become increasingly realisable with

recent advancements of computational power involving parallel processing and im-

proving numerical schemes and algorithms.

The intention is that a numerical wave basin code may simulate all nonlinear ef-

fects associated with steep, possibly breaking, waves on bodies which may be fixed or

dynamically responding. Ideally the simulations would be two-phase for slam effects

where the influence of compressible air and aeration may be significant [198, 331].

In this study however, simulations are restricted to a single-phase (water). Numer-

ical models of particular note include the volume-of-fluid code OpenFOAM [1, 66],

192
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the weakly-compressible smoothed particle hydrodynamics (WCSPH) codes Dual-

SPHysics [15] and GPU-SPH [242, 263] and the mixed finite-volume/particle code

PICIN [332]. As previously mentioned in Section 2.4.1, finite-volume methods show

disadvantages with mass dissipation at the free surface and the need for a mesh that

adapts to the body shape which may be moving, requiring an ALE-type approach or

overset meshing. Even then, flows of a fragmented nature such as breaking-waves,

cannot be dealt with effectively. The PICIN solver method [332] uses a hybrid

Eulerian-Lagrangian approach with a body-fitted mesh and moving interpolation

points (particles), offering a higher degree of flexibility, but at the expense of some

complex interpolation procedures. Fragmentation of the fluid domain is possible

with the PICIN method, however breaking-waves are yet to be demonstrated.

Section 2.5 has already highlighted some successes of SPH for violent hydrody-

namic free-surface flow applications demonstrating that the method is well-suited for

the simulation of breaking waves. Unfortunately, the large number of particles re-

quired for the large domain of a 3-D numerical wave basin can significantly increase

the already high computational expense of the method. There are some hybrid

methods which address this expense, where a near-field SPH model is coupled with

either, a finite-volume [333, 334], or highly efficient nonlinear potential flow solver

in the outer domain [200].

The new Incompressible-DualSPhysics code developed from this study addresses

the expense through GPU-acceleration and, in this chapter, used to model a 3-D

numerical wave basin for simulating breaking-wave impacts with vertical cylinder

structures. The advantage over successful GPU-accelerated WCSPH codes [15,223,

263] is the near noise-free pressure field of ISPH. It will be seen in Section 6.3 that

a single GPU is capable of simulating over 5 million particles in a reasonable time.

However, further development to the methodology described in Section 3 is required

to maintain the accuracy at the free surface for long-duration flows such as wave

propagation.

This chapter is structured as follows: in Section 6.2, the numerical wave basin

methodology is presented in three subsections describing new extensions to the



194 6.2. A NUMERICAL WAVE BASIN

methodology from Chapter 3 for increased accuracy of wave-structure impact, the

numerical domain of the test cases presented, and the wave generation model. For

the numerical wave basin, focused wave groups are simulated because they allow for

the direct generation of steep waves responsible for peak loadings on a structure,

eliminating the need to simulate a random sea state for long periods of physical time.

Section 6.3 then presents the results of focused wave groups impacting a cylinder

compared to the experimental data of Zang et al. [20], examining the role of hydro-

static and non-hydrostatic pressures to the force exerted on the cylinder. Finally,

Section 6.4 draws conclusions on the work conducted.

6.2 A numerical wave basin

6.2.1 Extensions to the methodology

For development of a numerical wave basin, changes in parameters and extensions

to the ISPH methodology presented in Chapter 3 are required for the application of

wave-structure impacts. A summary of these changes is listed as follows:

• As a result of the investigations made in Chapter 5, the Wendland kernel

(Eq. (3.9)) with a h/dp ratio of 1.3 is used for all simulations in this chapter.

The kernel provides similar accuracy for a lower computational expense, in

terms of both time and memory, compared to the quintic spline (Eq. (3.8)).

The GPU memory assigned for the storage of the PPE matrix is Nnzmax ×

Np where for the case of wave propagation, Nnzmax ≈ 1.0Nn,max = 80 (see

Section 4.7).

• Free-surface particles are identified with a divergence of position value, ∇·r as

in Eq. (3.37), less than 1.5 in 2D, or 2.5 in 3D. The near-free-surface smoothing

criterion of Skillen et al. [9], as in Section 3.3.4, is not applied to the PPE here.

Numerical experiments revealed the shifting methodology of Skillen et al. [9]

is unable to maintain an accurate free-surface for long durations of physical

time in slow-flow regions.



6.2. A NUMERICAL WAVE BASIN 195

• The PPE matrix is solved using the Bi-CGSTAB iterative solver with a Jacobi

preconditioner and a solver tolerance of 10−6. The initial solution guess of the

solver for the first time step is set to ‖x‖2 = 0. The linear solver solution from

there on is initialised with the pressure field from the previous time step which

can significantly reduce overall runtimes by up to 35% in 3D (see Section 5.6.5).

• Additional correction terms are added to the Laplacian Morris operator [157]

(Eq. (3.36)) for use of the Schwaiger operator [156] to improve accuracy at

near-free-surface regions. This is explained further in Section 6.2.1.1.

• As detailed later, in Section 6.2.1.2, a kernel-weighted normal is used when

shifting particles near the free-surface to reduce error propagation during wave

simulations.

• A variable time step size is employed, as described in Section 6.2.1.3, to reduce

overall numerical error growth.

• Two extensions to the boundary conditions are made: (i) boundary particles

above the free-surface in any given time step are excluded from kernel summa-

tions to improve the accuracy at the interface between the fluid’s free-surface

and solid boundary, and (ii) instead of the Cartesian-positioned boundary

particles generated by GenCase in pre-processing (see Section 4.4.1), a radial

arrangement of particles is adopted for improved fluid-structure interaction of

waves against a vertical cylindrical structure. Further details of these exten-

sions are given in Section 6.2.1.4.

6.2.1.1 Laplacian operator

Lind et al. [11] showed the Schwaiger operator possessed significant reductions in

error near the free surface, when compared to the commonly used Morris operator,

and is therefore advantageous for modelling long duration flows such as wave prop-

agation. Therefore, instead of the Morris operator as described in Section 3.3.3,

the Schwaiger operator [156] is used to approximate the Laplacian terms during the
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computation of the acceleration due to viscous forces (Eq. (3.28)) and LHS of the

PPE (Eq. (3.30)):

(
φ1∇2φ2

)
i

=
tr (Γ)−1

nd

{∑
j

Vj (φ1,j + φ1,i) (φ2,j − φφ,i)
rij · ∇iωij

r2
ij

− [∇ (φ1,iφ2,i)− φ2,i∇φ1,i + φ1,i∇φ2,i] ·

(∑
j

Vj∇iωij

)}
, (6.1)

where φ1 and φ2 are variables, nd is the number of dimensions, and Γ is a tensor

defined as

Γψ1ψ2ψ3 =
∑ rij · ∇iωij

r2
ij

∆χψ1∆χψ2∆χψ3, (6.2)

such that χψ1, χψ2, and χψ3 stand for coordinate directions.

The Schwaiger operator is simply implemented into the existing code with an

additional GPU-kernel for the computation of the acceleration due to viscous forces,

and an extra computation term during the population of the PPE matrix. The first

term within the curly brackets on the RHS of Eq. (6.1) is equivalent to the Morris

operator, therefore the remaining terms can be included as an extra computation

step.

The sum of kernel gradients,
∑

j Vj∇iωij, requires there to be an extra particle

sweep to the algorithm depicted in Fig. 4.10, but the impact on the overall computa-

tion time is relatively low compared to the solution of the PPE matrix as determined

from the profiling study in Section 5.6.4.

6.2.1.2 Particle shifting

There are two differences to the shifting technique presented in Section 3.3.5:

• Since the Wendland kernel is used here, a tensile instability term of Eq. (3.42)

is not required [190,283].

• When shifting particles near the free surface, Khayyer et al. [184] confirmed the

need for corrected free-surface normal vectors. Here, a kernel-weighted normal

is employed as used by Lind et al. [191]. Numerical experiments showed that,
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for wave propagation, the weighting helps reduce error propagation at the free

surface. The kernel-weighted normal to the free surface, n̂s−shift,i, of a particle

can be found by:

n̂s−shift,i =
ns−shift,i
|ns−shift,i|

, where ns−shift,i =
∑
j

Vj(−∇Cj)ωij, (6.3)

such that the concentration gradient, ∇Ci, of a particle is equal to the sum of

the kernel gradient,
∑

j∇ωij. The tangential direction to the free surface is

subsequently computed from the new smoothed normal direction. The shifting

distance of particles near the free surface (evaluated as 1.5 ≤ ∇ · r ≤ 1.7 in

2D, or 2.5 ≤ ∇·r ≤ 2.7 in 3D) are restricted by elimination of shifting entirely

in the kernel-weighted normal direction to the free surface.

The process requires an additional particle sweep for the kernel summation.

However, as explained in Section 6.2.1.1, the added computational time is relatively

low compared to the overall simulation time.

6.2.1.3 Variable time step size

A variable time step size based upon the CFL condition is employed to reduce overall

simulation numerical-error growth. The largest particle velocity at each time step,

umax,n is used to dictate the following time step size, ∆tn+1:

∆tn+1 = CCFL
h

umax,n
, (6.4)

where CCFL is a constant equal to 0.2 for all simulations. The initial time step size,

∆t0 = CCFLh, at time, t = 0, for all simulations.

Nvidia’s CUDA “parallel reduction” algorithm is used to obtain the maximum

of an array of particle velocities for umax,n.

6.2.1.4 Boundary conditions

For the rectangular numerical wave basin with a vertical cylinder, as described later

in Section 6.2.2, Eq. (3.47) is used to impose no-slip boundary conditions on the
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surface of the tank bottom, cylinder and far right-hand wall, and free-slip conditions

on the side walls, down the length of the tank, and the piston wavemaker.

Two additions to the Marrone et al. boundary condition described in Section 3.4

are presented here for improved accuracy at the free and solid surface interfaces

during wave-structure impact:

Modification 1: The first improvement is the exclusion of unnecessary bound-

ary particles from the computation in each time step. Fig. 6.1 shows the boundary

particles included in a time step for a particular fluid domain with and without

the improvement. Fig. 6.1a shows the original configuration where, near the free

surface, fluid particles will interact with boundary particles above the mirrored free-

surface line, which results in inaccuracies in the kernel summations. Fig. 6.1b shows

the improved configuration where certain boundary particles are excluded and the

shape of the fluid domain is more accurately mirrored within the boundary particle

region. The treatment has also been carried out by Bouscasse [286], however their

determination of such particles for exclusion is computed differently. 

Physical boundary line 

Free-surface line 

Boundary 

Fluid 

 

Physical boundary line 

Free-surface line 

(a) Original configuration

 

Physical boundary line 

Free-surface line 

Boundary 

Fluid 

 

Physical boundary line 

Free-surface line 

(b) Configuration after improvement

Fig. 6.1: Improving the boundary condition by exclusion of boundary particles above
the free-surface line for each time step.

Excluded boundary particles are determined by evaluation of their ∇· r value at

unique interpolation points (UIPs). The computation fits into the projection step,
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between Eqs (3.27) and (3.28), as follows:

1. After computing Eq. (3.27), execute a particle sweep for each boundary par-

ticle’s unique interpolation point, i, which will calculate: MLS interpolation

variables using neighbouring fluid particles only (this is no different to the

methodology explained in Section 4.5), and ∇ · ri using both neighbouring

fluid and boundary particles.

2. Any unique interpolation point whose value of ∇·ri less than 1.0 in 2D, or 1.5

in 3D, is deemed to be outside of the fluid domain. The associated boundary

particles will now be referred to as “excluded” particles and denoted by the

set E . A second particle sweep takes place for the unique interpolation points

of the non-excluded boundary particles, with neighbouring boundary particles

only, to correct ∇ · ri as:

∇ · ri = (∇ · ri)0 −
∑
j ∀E

mj

ρj
rij · ∇ω(rij), (6.5)

where (∇ · ri)0 is the original value of ∇ · r computed in step 1. The second

particle sweep results in a further refinement of which boundary particles are

marked as excluded or not.

3. From here on, excluded boundary particles are not involved in any computa-

tions for the rest of the time step. The time step now continues with Eq. 3.28.

To demonstrate the effect of excluding such boundary particles near the fluid

domain free surface, a simple 2-D still water test case (fluid domain is rectangular,

1.0 m wide by 0.5 deep, dp = 0.005 m) is conducted where the pressure field is

observed after the first time step. Fig. 6.2 shows the non-dimensional absolute error

in the pressures of the column of particles adjacent to one of the tank walls. As

expected there is no error at the free surface between the original and improved

boundary conditions because the pressure here is enforced. However, just below the

free surface there is an error spike for the original conditions due to the effect of
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boundary particles above the horizontal free-surface line. Excluding such particles,

however, eliminates the error spike.
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Fig. 6.2: Non-dimensional absolute error of pressure from fluid particles directly
adjacent to the boundary on one side of the tank in a 2-D still water case. dp = 0.005
m, still water depth d = 0.5 m. The theoretical pressure at the bed is 4900 Pa.

Modification 2: The second improvement, is not related to the mathematical

formulation of the boundary condition, but is instead concerned with the arrange-

ment of particles for modelling a cylindrical column (as required for simulation of the

test cases, see Fig. 6.6). The DualSPHysics pre-processing software, GenCase (as in-

troduced in Section 4.4.1), generates the setup of the case by specifying a Cartesian

grid with a regular spacing, equal to dp in each direction, and then placing particles

on the nodes within specified geometry shapes (at specified locations in the domain)

defined by the user. This means the surface of the column will have a “step” type

arrangement as shown in a Fig 6.3a. Such a representation of the column can result

in particle penetration of the physical boundary line and thus produce noisy pres-

sures detrimental to the accuracy of results. Therefore, before simulation execution,

the cylindrical column particles are arranged in terms of polar coordinates about the

column centre, as shown in Fig. 6.3b, for accurate representation of the geometry.

Fig. 6.4 illustrates the detailing of the new arrangement. Each inner boundary

layer of the column is 1dp apart and the distance between each adjacent boundary

particle within the same layer is 1dp (as in Fig. 6.4a).
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(a) Cartesian arrangement from DualSPHysics (b) New radial arrangement

Fig. 6.3: Plan view of different arrangements of particles for representation of a
cylindrical column. Red indicates a column particle, blue indicates a boundary
particle on the tank bottom.
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Fig. 6.4: Implementation details for the radial arrangement of the column. Plan
views are used for clarity of the particle distributions.

The introduction of radially arranged column particles to a surface of boundary

particles placed over a uniform Cartesian grid can give rise to a highly irregular par-

ticle distribution at the Cartesian/polar coordinate (tank-bottom/column) interface.

This is depicted in Fig. 6.4b, where the irregularity of particles is reduced by remov-

ing any tank-bottom boundary particles on the Cartesian grid, within a distance

rc + 0.25dp m of the column centre where rc is the radius of the column. Generated

fluid particles within the same distance of column centre are also removed at the

beginning of the simulation. Although the process described does not eliminate the

irregularity and is non-conservative of volume, it is however sufficient enough to

create an arrangement that does not generate any noticeable non-physical effects

during simulation. Fluid particles in the vicinity of the column quickly become
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regularised with shifting following the start of the simulation.

Positions of unique interpolation points associated to column particles in the new

arrangement are simply computed from pre-defined information about the column

i.e. the column radius, centre, and size. Once the column boundary particles and

unique interpolation points are generated, no additional coding effort is required for

the implementation of the boundary condition as described in Section 3.4.

The benefits of the new particle arrangement are demonstrated in Fig. 6.5, which

shows the total horizontal force (obtained using the method described later in Sec-

tion 6.3.2.2) on the two different particle arrangements for the column subjected to

regular wave loading (where the tank geometry used is that described in detail in

the next section). For the original Cartesian arrangement, as generated by Gen-

Case, in Fig. 6.5a, the time series plot is smooth for the first few wave impacts.

However, thereafter, fluctuations begin to appear and increase with time. The plot

for the radial particle arrangement in Fig. 6.5b on the other hand, shows no signs

of fluctuation for the whole simulation.
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(b) New radial arrangement

Fig. 6.5: Total horizontal force on a column (with different particle arrangements)
subject to regular wave loading.



6.2. A NUMERICAL WAVE BASIN 203

6.2.2 Numerical wave tank geometry

The numerical wave basin model is validated by comparison to the physical exper-

iments of Zang et al. [20], which investigated the interaction of non-breaking and

breaking focused waves with a cylinder. Fig. 6.6 illustrates a plan view of the numer-

ical wave basin of height (z-direction), 0.7 m. The width (y-direction) of the basin

is 1.5 m and is symmetrical across the xz-plane. A piston wavemaker on the LHS

spans across the width of the tank and is initially placed −12 m in the x-direction

from the right hand tank wall. The piston generates focused waves by moving in the

x-direction according to a pre-defined movement, as described in Section 6.2.3. The

tank is therefore extended (in the x-direction) an additional −0.2 m from the initial

piston placement to account for wavemaker motion in the negative x-direction. A

cylindrical column of radius, rc = 0.125 m, and height, 1.0 m, is centred such that

it lies on the tank centreline and 7.52 m away from the initial position of the piston.

A numerical damping zone (shaded) is 3 m in length (approximately twice the

largest wavelength generated here) is located at the far end of the tank, 9 m away

from the piston and is described further in Section 6.2.3.
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Damping zone 
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radius, 𝑟𝑟𝑐𝑐 = 0.125m 
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x 

y 

Fig. 6.6: Plan view of the numerical wave basin geometry

The geometry of Fig. 6.6 is similar to the 2-D ISPH simulations by Lind et

al [191], who also conducted comparisons to the data of Zang et al. [20], and their

results are in Section 6.3. However, Lind et al. [191] avoided the need to explicitly

include a column by using the Froude-Krylov forcing approximation to estimate

the 3-D loads based on 2-D plane incident waves. Their model was limited to 2D

because the computational expense of a 3-D model on a single CPU core was too
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impractical.

6.2.3 Focused wave generation

A focused wave is created from an irregular wave group such that the superposition

of each component will give a desired wave height, or peak wave amplitude, at a

specified focal point away from the wavemaker. Wave breaking will occur if the peak

amplitude of the focused wave is sufficiently large. The motion of the piston-type

wavemaker is prescribed from linear theory.

The wave spectrum is split into N = 100 components, where each wave com-

ponent has an associated amplitude, aN , wave number, kN , frequency, fN , angular

frequency, ωN = 2πfN , phase, φN , required piston amplitude, sN , and power spec-

tral density, SN . The spectral frequencies, are defined by a JONSWAP spectrum

and are in the range of (0.5− 3.0)fp, where fp is the frequency at the spectral peak:

SN =

(
fp
fN

)5

exp

(
−5

4

(
fp
fN

)4
)
γr0, (6.6)

where

r = exp

(
−(fN − fp)2

2σ2f 2
p

)
, (6.7)

using γ0 = 3.3, and σ = 0.07 if fN ≤ fp else σ = 0.09. Subsequently, wave

component amplitudes can be found as calculated from Tromans et al’s “NewWave”

group [335]:

an =
ANSN∆f∑
N (SN∆f)

(6.8)

where AN is a specified peak amplitude of the wave group components which super-

impose at a focal point, xf , and ∆f is the frequency step equal to (3.0− 0.5)fp/N .

The generation of each wave component requires the piston to move by an ampli-

tude distance, sN , which is found using the respective wave component variables [21]:

sN = aN
sinh (2kNd) + 2kNd

2 (cosh (2kNd)− 1)
, (6.9)
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where d is the still water depth and kn is found by solution of the dispersion equation:

(ωN)2 = gkN · tanh (kNd) (6.10)

The phase angle φN allows for the superposition of each component at a specified

focal point. A component’s phase angle is given as:

φN = ωN tf − kNxf , (6.11)

where tf is the focal time equal to 2xf/cg such that cg is the group celerity found

as:

cg =
ωp
2k

(
1 +

2kd

sinh (2kd)

)
, (6.12)

such that ωp = 2πfp, and k is found from Eq. (6.10) with ωp.

The velocity of the piston wavemaker is therefore given as:

up =
∑
N

sNωN cos(−ωN t+ φN), (6.13)

This process can be applied to generate waves of small amplitude, defined by

AN/d . 0.1. However for larger waves, such that AN/d & 0.1, non-linear interac-

tions affect the outcome of the desired wave, and so for the cases presented in Sec-

tion 6.3.2, the specified peak amplitude value of the wavemaker is slightly adjusted

in order to achieve the actual desired value of AN for experimental comparison [191].

To reduce wave reflection effects from the end of the domain at the focal point,

a numerical damping zone [11], as depicted in Fig. 6.6, exponentially dissipates the

wave energy across a damping length, LD, with the following equation:

Ai = A0,i

(
1.0− e−2.0(LD−(xi−xD))

)
, (6.14)

where xi is the x-position of a particle, xD is the starting point of the damping zone,

and A0,i and Ai are the values of a given variable before and after the damping

formula is applied. Here, the variables to be damped are the fluid velocity given
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by the computation of Eq. (3.32), and the particle shifting distance following its

evaluation.

6.3 Results comparisons and analysis

This section compares Incompressible-DualSPHysics’ new 3-D numerical wave basin

model to the focused wave-cylinder impact experiments of Zang et al. [20] and the

numerical results of Lind et al. [11], who used a 2-D ISPH model with a Froude-

Krylov approximation for the prediction of 3-D loads on the cylinder. Unique insight

to the physical processes of the wave-structure interaction are also demonstrated

from the results of the 3-D Incompressible-DualSPHysics model.

6.3.1 Validation of free-surface elevation vs linear theory

Prior to the experimental case study, validation of the generated waves is demon-

strated by a 2-D spatial-refinement study for the wave tank in Fig. 6.6, where all

motion in the y-direction is prevented and the cylinder is absent, so the free-surface

elevation can be measured, undisturbed, to confirm generation of the focused wave-

form. The free-surface elevation at a given point (xfs, yfs) in space, for each time

step, is determined by extracting all free-surface particles (i.e. using Eq. 3.37) within

the bounds of (xf ± 2dp, yf ± 2dp) and taking the average z-coordinate position.

Fig. 6.7 compares the ISPH results, with multiple particle spacings in the range

of dp = 0.00125-0.02 m, for the free-surface elevation at the focal point (xfs = 7.52

m) predicted with linear theory. The peak amplitude of the JONSWAP wave group

at the focal point is equal to 0.05 m, and the water depth is the same as that in

the experiments, 0.505 m. There is close agreement for all resolutions, where the

refinement of the particle spacing demonstrates clear convergence towards the peak

free-surface elevation of the analytical solution as seen in the inset of the figure.

Fig. 6.8 shows the L2 error norm for the peak free-surface elevation at the focal

point for each of the resolutions. Two ratios of peak amplitude, and still water

depth, to particle spacing are displayed next to the respective resolution. For the
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Fig. 6.7: Spatial convergence of the ISPH model with linear theory for the free-
surface elevation of a JONSWAP wave group. AN = 0.05 m. The RHS of the plot
shows enlarged peak elevations.

coarsest two particle spacings, dp = 0.02 and 0.01 m, the water depth cannot be

resolved exactly in addition to a relatively low number of particles representing the

wave. Therefore, the convergence rate of the L2 error norm with the refinement of

dp is calculated from those resolutions, dp = 0.005, 0.0025, and 0.00125 m, which

can represent the domain geometry exactly. The result is a convergence rate of near

second order (1.78), as represented by the solid black line.

For the comparisons with experimental data in the next section, dp = 0.0125 m

(d/dp = 40.4) for all cases. Ideally, the chosen particle spacing represents the still-

water-level exactly and provides an appropriate number of particles to resolve the

wave height (as discussed for Fig. 6.8), but it is the finest resolution allowed within

the chosen GPUs memory, for the required dimensions of the 3-D wave basin in

Fig. 6.6. Nevertheless, it will be seen the resolution is sufficient to provide accurate

results. Information on the hardware and computation time for the experimental

comparisons are discussed in Section 6.3.4.
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Fig. 6.8: Convergence rate of the L2 error norm of the peak free-surface elevation
at the focal point for the simulation in Fig. 6.7. AN = 0.05 m, d = 0.505 m.

6.3.2 Experimental comparisons

Four focused wave group experiments from the work of Zang et al. [20] are chosen

for simulation. Table 6.1 shows the peak frequency and wave height, H, of each

focused wave group from the chosen experiments. For consistency with the data,

the same naming convention as [20] is used. Two non-breaking wave groups, F3 and

F16, are chosen, and also two breaking wave groups, F14 and F15.

Table 6.1: Focused wave groups.
Wave group fp (Hz) H Type

F3 0.61 0.12 Non-breaking
F16 0.61 0.23 Non-breaking
F14 0.82 0.14 Breaking
F15 0.82 0.22 Breaking

Zang et al. [20] provides experimental data for the free-surface elevations, in the

absence of the cylinder, and the total horizontal forcings on the cylinder when it

is present. The results of the 2-D ISPH with Froude-Krylov (FK) approximation

model of Lind et al. [191] are also included.
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To improve post-processing time, python scripts were created for execution in

Paraview to obtain the results in the following sections. Refer to Appendix D for

more details.

6.3.2.1 Comparison of free-surface elevation with experiment

Before comparing 3-D simulations with experiments that include the cylinder, they

are compared with experimental data where the cylinder is absent.

Fig. 6.9 compares the free-surface elevation, at the position where the cylinder-

front would be (xfs = 7.395 m, yfs = 0 m) for the different focused wave groups,

with the experimental data and the 2-D ISPH results of Lind et al. [191].

The Incompressible-DualSPHysics results, for all wave groups, are very similar to

those of the 2-D simulations of Lind et al. [191], which is expected as the two ISPH

methodologies are similar and the problem is essentially 2-D due to the absence of

the cylinder. Throughout all simulation cases, Incompressible-DualSPHysics main-

tains the mean still water-level within one particle spacing. For cases F16 and F15

(Figs 6.9b and 6.9d respectively), the peak free-surface elevations measured from

this work match those of the experimental data. Both the F3 and F14 (Figs 6.9a

and 6.9c respectively) cases however, over-predict the highest elevations by more

than one particle spacing. The discrepancy in case F3 is likely due to insufficient

particle numbers representing such a relatively small wave height, and the error in

case F14 is attributed to “spray”-like particles in a fragmented free-surface due to

breaking as seen in Fig. 6.10 which shows a simulation snapshot at the time, t = 12.0

s, when the peak free-surface elevation is measured. The wave is in post-breaking

at this stage.

6.3.2.2 Total horizontal force on cylinder

The simulations in Section 6.3.2.1 are repeated with the presence of the cylinder.

Fig. 6.11 shows simulation snapshots of the breaking-wave case F15 at times t = 11.7,

11.9, and 12.0 s, corresponding to the instants before, at, and after the cylinder

experiences the peak total horizontal force. For clarity, only fluid particles on the
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Experiment Lind et al. Incompressible-DualSPHysics
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Fig. 6.9: Free-surface elevation of the various focused wave groups at the position
of the cylinder-front.

free surface (P = 0) are shown, where they are coloured by their velocity magnitudes.

The cylinder surface particles are coloured by their pressure.

In Fig. 6.11a, before the cylinder experiences the peak total forcing, the oncom-

ing wave starts to break before the cylinder. The breaking-wave reaches the cylinder

at t = 11.9 s, as seen in Fig. 6.11b, where the water-surface elevation and velocities

increase around the stagnation point. The shape of the wave around the cylinder

at this instant, is such that a hydrostatic pressure gradient across the width of the
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Fig. 6.10: Post-breaking event of focused wave group F14 at t = 12.0 s.

structure is clearly present and responsible for the maximum loading which is dis-

cussed later. Just after the initial impact, in Fig. 6.11c, fluid particles separate away

from the water-surface due to the interaction with the structure. Such fragmentation

cannot be so easily or efficiently represented by OpenFOAM [336] and PICIN [38]

models. The presence of spray, as seen in the experiments [20], is well-captured

here, but under resolved. Fluid velocities and cylinder pressures during the peak

total forcing event are analysed further in the Section 6.3.3.

The total horizontal force, Ftotal,x, on the cylinder can be obtained in post-

processing by use of each particle on the cylinder surface, defined as belonging to

the set Ωcs, and their corresponding pressure values, as obtained from the solution

of the PPE (Eq. (3.30)):

Ftotal,x =
∑
i∀Ωcs

Pidp
2 cos θci , (6.15)

where θci is the angular position of a particle from the centreline, as illustrated in

Fig. 6.12, calculated using the cosine rule. θc = 0 faces the propagating wave-fronts

in the negative x-direction relative to the structure.

Fig. 6.13 shows the total horizontal force experienced with time by the cylinder

for each case. The time axes are adjusted to match the timing of the peak force

event (of the numerical simulations) at t = 9.7, 9.6, 11.95, and 11.9 s for cases F3

(Fig. 6.9a), F16 (Fig. 6.9b), F14 (Fig. 6.9c), and F15 (Fig. 6.9d) respectively.

Prior to the peak force event, Incompressible-DualSPHysics shows reasonable

agreement with the experimental data for all cases. Most discrepancies before the
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Fig. 6.11: Simulation snapshots of breaking-wave case F15.
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Fig. 6.12: θc around the cylinder.
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Experiment Lind et al. Incompressible-DualSPHysics
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(b) F16: fp = 0.61 Hz, H = 0.23 m (non-
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(c) F14: fp = 0.82 Hz, H = 0.14 m (breaking)
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(d) F15: fp = 0.82 Hz, H = 0.22 m (breaking)

Fig. 6.13: Total horizontal force on the cylinder subject to the various focused wave
groups.

peak event show an overprediction by the numerical model, but these correspond

with lower amplitude waves (see Fig. 6.9) which would be represented by very few

particles as discussed in Section 6.3.2.1. Accuracy of these forcings can be improved

with finer particle spacings.

The actual peak force events show excellent correspondence with the loadings

recorded in the experiments, and in some cases, better than the 2-D FK results.

After these peak impacts, the experimental data in the three steep wave cases (F16,
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F14, and F15) appear to exhibit higher frequency oscillations, which are not captured

by either of the numerical models. The features are thought to originate from the

response of the cylinder following the high-impact event. This could be confirmed

by replacing the current ISPH model’s fixed structure with a model which moves

in response to the flow mechanics. Nevertheless, the 3-D ISPH model captures the

general profile of the experimental force data. Comparing the 2-D FK and 3-D

models, the results are generally similar, further validating the FK approximation

technique for predicting peak focused-wave forces used by Lind et al [191]. In some

places however, the 3-D model shows closer agreement with the experiments. This

is expected since the actual fluid-structure interaction is simulated. For the 2-D

simulations, the absence of the cylinder means the validity of the model deteriorates

as time progresses after the initial waves pass the focal point. The last 3-5 seconds

of each plot show fluctuations in the results of Lind et. [191] due to numerical errors

at the free surface propagating over many fixed time steps. This is not observed in

the Incompressible-DualSPHysics model, using a variable time step, for this length

of simulated physical time.

Perhaps the most noticeable discrepancy between numerical and experimental

data comes from case F15, where both the ISPH models failed to capture the ex-

periment’s peak total force on the column around t = 13.0 s. Attempts to reduce

the disparity by increasing the tank dimensions and changing parameters associated

with the ISPH formulation produced similar results. Increasing the resolution of the

simulation was not possible due to GPU memory limitations. If this is not due to

particle spacing or dynamic structural response from the cylinder, then more infor-

mation and data from the experiments (such as photos of the wave form) would be

required to determine the cause of the discrepancy.

6.3.3 Investigating hydrostatic and non-hydrostatic

pressure during peak loading

The full 3-D numerical model allows for detailed analysis concerning the flow me-

chanics of non-breaking and breaking waves interacting with the cylinder, which
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cannot be identified easily in experiments or with the 2-D ISPH model. To examine

the pressure fields immediately adjacent to the cylinder, the surface of the structure

herein will be visualised in a 2-D θc-z plane.

The mechanics of a steep wave impinging upon an object is a complex prob-

lem [21] which cannot be de-constructed analytically with ease. Herein, the pres-

sures on the cylinder are split into components of hydrostatic and non-hydrostatic

pressure to investigate the effects of non-breaking and breaking waves impacting on

the cylinder.

The two components of pressure about the cylinder are found by first determin-

ing the free-surface elevations around the structure using the process depicted in

Fig. 6.14. Cylinder surface particles within the same vertical plane i.e. they have

the same x- and y-position coordinate, are considered to be of the same Ωc,col set

as illustrated in Fig. 6.14a, where subscript col denotes a unique set number within

the cylinder. Each Ωc,col set of particles is observed independently and possesses

a free-surface elevation value, ηc,col. As shown in Fig. 6.14b, the particles in a set

on, or above, the free surface, i.e. Pi = 0, are excluded. Therefore, the free-surface

elevation is found as the highest z-coordinate of a particle in the set of remaining

particles plus the original particle spacing, dp1.

Particles with P = 0 are also excluded for visualisation purposes where the

free-surface elevation around the cylinder can be qualitatively observed using the

remaining particles without knowledge of their pressures.

The method for evaluating the free-surface profile around the column is checked

by mapping all fluid particles, within a kernel support of the cylinder surface, over

a snapshot of the cylinder particles below the free-surface (with P 6= 0). This is

illustrated in Fig. 6.15 with the case F14 at the time, t = 11.95 s, of the peak

horizontal force on the cylinder. The free-surface elevation identified around the

cylinder matches the position of the surrounding particles. Any errors are within a

particle spacing and will reduce with refinement.

1Alternatively, the lowest z-coordinate of particles with P = 0 within the Ωc,col set can also be
taken as the set’s free-surface elevation. This technique may be more robust for cases of plunging
breakers due to multiple points of contact with the cylinder.
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Fig. 6.14: Evaluating the free-surface elevation around the cylinder where subscript
col represents a unique set within the cylinder.

Once ηc,col for a Ωc,col set is found, the hydrostatic pressure, PH,i, of a particle,

i, within the set is calculated as:

PH,i = ρg (ηc,col − zi) (6.16)

The non-hydrostatic component, PNH,i is then found as the pressure (obtained from

the PPE solver) minus the hydrostatic part:

PNH,i = P − PH,i (6.17)
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Fig. 6.15: The method for determining the free-surface elevation around the cylinder
is validated by mapping nearby fluid particles (coloured by pressure value) over the
cylinder-surface particles (coloured in black) with P 6= 0.

The total horizontal forces attributed to hydrostatic or non-hydrostatic pressures

around the cylinder are computed via Eq. (6.15), but with the appropriate pressure

component in place of Pi. Fig. 6.16 plots these forces for each case, the time axes

are scaled as in Fig. 6.13 to highlight the main event including the peak total force

on the cylinder.

All plots possess similar characteristics. Hydrostatic pressure is the dominant

component producing global loadings where magnitudes of the peaks and troughs

are larger than, and in phase with, those of the overall total force. The force from

the non-hydrostatic pressure component is out of phase with lower magnitudes. The

interpretation of such data can be aided by observing snapshots of each simulation,

as in Fig. 6.17, at the time of peak total force showing a slice through the centre of

the cylinder and the fluid domain in the x-z plane.

There is clearly a difference in free-surface elevations on either side of the cylinder

in the direction of the propagating wave. The plots in Fig. 6.16 therefore, shows that

the force due to the changing free-surface elevation gradient across the cylinder, as

described by Dean and Dalrymple [21], is responsible for the maximum loading in

both cases of non-breaking and breaking waves when the difference in hydrostatic
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(a) F3: fp = 0.61 Hz, H = 0.12 m (non-
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(b) F16: fp = 0.61 Hz, H = 0.23 m (non-
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(c) F14: fp = 0.82 Hz, H = 0.14 m (breaking)

-180
-160
-140
-120
-100
-80
-60
-40
-20

0
20
40
60
80

100
120
140
160
180
200
220
240

8 9 10 11 12 13 14 15

H
or

iz
on

ta
l F

or
ce

 (
N

)

Time (s)

Total Hydrostatic Non-hydrostatic

(d) F15: fp = 0.82 Hz, H = 0.22 m (breaking)

Fig. 6.16: Incompressible-DualSPHysics results for the total, hydrostatic, and non-
hydrostatic horizontal force on the cylinder subject to the various focused wave
groups.

pressure is greatest.

Fig. 6.18 plots the free-surface profile around the cylinder, for all cases, at the

times where the peak horizontal force is experienced. The values are taken as those

computed from the process depicted in Fig. 6.14 which gives rise to the “step”-

type nature of the plot. On comparison of the three steeper waves (F14, F15, and

F16), the non-breaking case, F16, exhibits a lower free-surface height at the front

of the cylinder to the two breaking cases, F14 and F15. Despite this, as found

in Fig. 6.13, case F16 imposes a maximum total loading of approximately 95 N,



6.3. RESULTS COMPARISONS AND ANALYSIS 219

 

0 1000 2000 3000 4000 5000 

Pressure (Pa) 

 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

7.2 7.3 7.4 7.5 7.6 7.7 7.8 

𝒛 (m) 

𝒙 (m) 

Cylinder 

(a) F3: fp = 0.61 Hz, H = 0.12 m (non-
breaking)

 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

7.2 7.3 7.4 7.5 7.6 7.7 7.8 

𝒛 (m) 

𝒙 (m) 

Cylinder 

(b) F16: fp = 0.61 Hz, H = 0.23 m (non-
breaking)

 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

7.2 7.3 7.4 7.5 7.6 7.7 7.8 

𝒛 (m) 

𝒙 (m) 

Cylinder 

(c) F14: fp = 0.82 Hz, H = 0.14 m (breaking)

 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

7.2 7.3 7.4 7.5 7.6 7.7 7.8 

𝒛 (m) 

𝒙 (m) 

Cylinder 

(d) F15: fp = 0.82 Hz, H = 0.22 m (breaking)

Fig. 6.17: Centreline vertical planes through the centre of the cylinder and fluid
domain in the x-z plane for each case at the times, t = (a) 9.7, (b) 9.6, (c) 11.95,
and (d) 11.9 s, corresponding to peak total force experienced by the cylinder for F3,
F16, F14, and F15 respectively. The wave direction is from left to right.

a force larger than those present in the two breaking-wave cases with larger wave

heights, F14 and F15, which exhibit forces of about 78 N and 87 N respectively.

This shows that the largest total forces originate from steep free-surface gradients

and a globally dominant hydrostatic pressure difference around the cylinder. The

three wave heights may be comparable, but the steepness of a wave is shown to be

an important factor in considering the largest loads.

The findings so far however, only consider pressures forces on the cylinder as
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an integrated global horizontal load. As hydrostatic pressure is dominant, the data

says little about the fluid-structure interaction near the free surface. Experimen-

tal studies [192, 337, 338] have identified the effects of wave-breaking to be a local

phenomenon and induce high magnitudes of force locally. This is investigated in

Fig. 6.19, which plots the normalised cylinder particle pressures relative to the mean

still-water-level pressure at the times of peak wave loading. Thus, the local effects

of the free surface on the structure are isolated. The plots highlight the pressures in

the wave crest for non-breaking and breaking cases. Despite the similarities in peak

free-surface elevation and global cylinder loading between cases F14, F15, and F16,

there exists significantly higher localised forces at the front of the cylinder by the

free surface in the former two events. These larger pressures are due to the dynamics

of breaking at the free-surface where particle velocities are relatively high compared

to non-breaking waves, as investigated in Fig. 6.20. The plots show velocities of

free-surface fluid particles within a distance h of the cylinder’s surface for all cases.

Fig. 6.20a shows the magnitude of the fluid particle’s velocity component normal to

the cylinder surface. Fig. 6.20b shows the tangential components, and 6.20c presents

the z-velocity component, w.

Comparing the normal and tangential velocities, the former component is small
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(a) F3: fp = 0.61 Hz, H = 0.12 m (non-
breaking)
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(b) F16: fp = 0.61 Hz, H = 0.23 m (non-
breaking)
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(c) F14: fp = 0.82 Hz, H = 0.14 m (breaking)
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(d) F15: fp = 0.82 Hz, H = 0.22 m (breaking)

Fig. 6.19: Normalised cylinder particle pressures relative to the mean still-water-
level for each case at times of peak total force experienced. Particles with zero
pressure are omitted.

compared to the latter for all cases. The plot of tangential velocities however,

displays much larger magnitudes near the front of the cylinder (θc) for the breaking

cases (F14 and F15), than in the non-breaking cases (F3 and F16). Similarly, the

z-velocity components shown in Fig. 6.20c are also much higher in the breaking

cases (approximately 1.5-2 times) and greatest at the cylinder front.

6.3.4 Computation time and memory

All simulations in Section 6.3 were computed on an Nvidia Tesla K40c GPU (2880

CUDA cores at 0.88GHz, 12GB RAM). A total of 5,302,318 particles comprising

4,551,640 fluid and 750,678 boundary were used for dp = 0.0125 m. Table 6.2 shows

the time taken to compute each case (20 s of physical time) and the number of time

steps involved.

The computation times here are on the order of hours, compared to weeks or
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Fig. 6.20: Fluid velocities of free-surface particles within a distance h of the cylinder
surface for all cases at instances of peak horizontal force experienced (as in Fig. 6.19).
Normal and tangential components consider x- and y-velocity components, u and v.

Table 6.2: Incompressible-DualSPHysics computation times
Case Computation time (h) time steps
F3 11.5 2763
F16 20.8 4871
F14 21.3 5006
F15 22.4 5251

even months for previous single-core CPU ISPH codes [190]. The equivalent code for

a single-thread CPU, based on the runtime comparisons in Sections 5.6.2 and 5.6.5,

is estimated to take about 1 week.



6.4. CONCLUSIONS 223

Regular waves of wavelength L = 2.2 m, wave height H = 0.14 m, and period

T ≈ 1.25 s were simulated for 20s of physical time to compare runtimes with re-

cent PICIN [38] and OpenFOAM [336] parallel-CPU simulations. The comparison

between the three models are shown in Table 6.3.

Table 6.3: Number of particles for simulations in Section 6.3.2
Incompressible-
DualSPHysics

PICIN [38] OpenFOAM [336]

Hardware Tesla K40c GPU 80-core CPU 8-core CPU
Simulated time, ts (h) 20.0 18.0 24.5

Computed wave
periods, nw = ts/T

16 14.4 19.6

Computation time, tc (h) 29.3 12.16 126.20
Time for 1 wave
period, tc/nw (h)

1.83 0.84 6.44

The performance of each model for the application is evaluated as the average

computational time required to simulate a single wave period. From a practical per-

spective, Incompressible-DualSPHysics compares well against the other two models.

The PICIN solver is approximately 2.2 times faster, but at the cost of using 80 CPU

cores, which requires greater expenditure and maintenance than a single GPU. A

fairer comparison, in terms of cost, shows OpenFOAM with 8-cores taking about 3.5

times longer than Incompressible-DualSPHysics to compute a wave period. How-

ever, the OpenFOAM model simulates two-phases (water-air) and uses nearly twice

as many cells as there are particles in ISPH. Upon examining a previous study [248],

of a GPU-implemented multi-phase WCSPH model using DualSPHysics, it is esti-

mated that a multi-phase Incompressible-DualSPHysics code would result in similar

times to the OpenFOAM solver.

A total of about 6.13 GB of memory was assigned to the GPU from DualSPHysics

where approximately 80% (4.84 GB) accounts for storing the PPE matrix.

6.4 Conclusions

This chapter has applied the new GPU-accelerated ISPH code developed with this

study, Incompressible-DualSPHysics, to a real engineering application, modelling a
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3-D numerical wave basin for simulating focused breaking wave-structure interaction.

This is the first time that ISPH has been evaluated for such a complex application.

Extensions to the numerical methodology from Chapter 3 are made to reduce

errors near the free surface and enable wave propagation. Correction terms in the

Laplacian Morris operator are added for implementation of the Schwaiger opera-

tor [156]. In particle shifting, the vector normal to the free surface is improved with

smoothing by kernel summation. Boundary particles above the free surface are ex-

cluded to prevent false summations. Additionally a variable time step size, based on

the CFL condition, is implemented to improve runtimes and reduce numerical-error

accumulation. Cylinder boundary particle positions are altered from a Cartesian

arrangement, produced by the pre-processing software of DualSPHysics, to a radial

configuration which minimizes noise during fluid-structure interaction.

Simulating non-breaking and breaking focused wave groups impacting a surface-

piercing cylinder with the 3-D numerical model compares well with the peak cylinder

forcings and focal point free-surface elevations provided in the experimental data

of Zang et al. [20]. However, further experimental data is required to verify the

discrepancies. It is speculated here whether dynamic structural response of the

cylinder is a cause of higher frequency oscillations in the experimental force readings.

Post-processing analysis of the numerical data reveals new insights into the hy-

drodynamic characteristics of the cases studied here:

• In steep waves, the hydrostatic component of the global pressure field around

the cylinder is dominant, and so the free-surface elevation and steepness of

a wave across the cylinder is responsible for the maximum loading on the

structure.

• Local cylinder pressure forces near the free-surface of a breaking-wave are large

compared to those of a non-breaking wave.

• The change in jet momentum in the normal direction is directly responsible

for local pressure increase. High vertical and tangential velocities then follow

from conservation of energy.



6.4. CONCLUSIONS 225

Suggestions to improve the results of the numerical model for the application

include implementing a multi-phase model [198, 331] to consider compressible air-

effects, and increasing the resolution of simulations, where smaller amplitude waves

and the still water depth can be resolved more accurately. Here, the mean still-

water-level was 0.005 m lower than that of the experiments, and thus a mismatch of

volume, due to the initial particle arrangement. Adopting a different arrangement

or packing algorithm [165] could help to better represent the correct volume of fluid.

For increased resolutions or problems requiring larger particle numbers, the memory

usage of Incompressible-DualSPHysics requires optimisation. Alternatively, a multi-

GPU implementation of ISPH would accommodate for 10s of millions of particles

using 2-4 GPUs working in parallel on a single machine.

The following and final chapter of this thesis summarises and draws conclusions

of the research conducted in this study, and recommendations for future research

are made.



Chapter 7

Conclusions and Recommendations

7.1 General conclusions

This thesis developed an incompressible free-surface flow solver for violent hydrody-

namic engineering applications by the novel methodology of accelerating the incom-

pressible smoothed particle hydrodynamics (ISPH) method on a graphics processing

unit (GPU). Smoothed particle hydrodynamics (SPH) is well-suited for violent free-

surface flows because it implicitly handles highly non-linear phenomena, such as

fragmentation. The method’s independence of a mesh also allows for complex flows

involving large deformations and discontinuities, which are present in many violent

flows. ISPH in particular is ideal for such engineering applications, requiring accu-

rate predictions of pressure, because of its ability to produce and maintain a near

noise-free pressure field via the solution of a pressure Poisson equation (PPE).

For engineering applications however, very high numbers of particles are needed,

and so the ISPH PPE subsequently requires the solution of extremely large sparse

matrices which account for over 90% of the simulation time. This thesis has ad-

dressed the associated computational expense by means of hardware acceleration

with a GPU. GPUs are relatively cheap, compact desktop devices with massively

parallel architectures, highly suitable for the acceleration of SPH. The weakly-

compressible SPH method has previously achieved speed ups of two orders of mag-

nitude with the GPU. However, before now, there has been no rigorous attempt to

implement ISPH on a GPU due to the increased complexity of the numerical algo-

226
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rithm compared to WCSPH. Multiple challenges are presented and addressed within

this work: (i) Constructing the Lagrangian ISPH PPE matrix on GPU streaming

multiprocessors each time step due to moving computational points, (ii) Overcom-

ing the GPU memory limitations for the inherently computationally expensive ISPH

algorithm, (iii) Establishing a robust and accurate ISPH solid boundary condition

suitable for parallel processing on the GPU, (iv) Exploiting fast linear algebra GPU

libraries.

The open-source hybrid CPU-GPU WCSPH code DualSPHysics v4.0 [15] was

modified considerably by converting the algorithm to execute the ISPH pressure

projection step and combining the code with the open-source ViennaCL linear alge-

bra library [16] for fast solutions of the PPE matrix on the GPU. The Marrone et

al. [14] boundary condition was extended and applied to ISPH for the first time, re-

quiring development for parallel execution on the GPU and application to the ISPH

PPE. Addressing the GPU memory limitations were facilitated with mixed precision

storage and computation. The ViennaCL library’s GPU-based algebraic multigrid

(AMG) preconditioner required modification for application to Lagrangian particle

systems in ISPH.

The resulting GPU-accelerated code, Incompressible-DualSPHysics, enables sim-

ulations involving millions of particles to be computed in only a few hours. The

target applications would be too impractical for other single-device CPU-based

codes, taking several weeks or months to compute. The GPU was shown to pro-

vide simulation runtimes 18.2-25.3 times and 4.2-8.1 times faster than single and

multi-threaded CPU-based codes respectively. In addition to determining speed

ups, Incompressible-DualSPHysics has been rigorously evaluated. The code’s accu-

racy and flexibility were validated through a series of demanding test cases. The

practical use and performance of two kernels and two preconditioners for ISPH im-

plemented on a GPU are also investigated. A profiling study showed Incompressible-

DualSPHyics concentrates the majority of the GPU’s processing power on solving

the PPE.

Finally, the new Incompressible-DualSPHysics code was used to simulate a real-
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engineering 3-D application of breaking focused-wave impacts on a surface-piercing

cylinder for the first time. Simple extensions to the numerical methodology and code

were made to enable wave propagation and impact with the cylinder. Four cases

(two non-breaking and two breaking) of focused-wave groups impacting a cylinder

were investigated, and the results compared against experimental data [20] and 2-D

ISPH results [191]. Post-processing analysis, which cannot be conducted by means

of experiments or 2-D simulations, revealed the similarities and differences between

non-breaking and breaking waves during the fluid-structure impact events providing

new insight into the physical processes.

7.2 Detailed conclusions

7.2.1 Implementing ISPH on the GPU

Addressing the challenges highlighted in Section 7.1 to implement ISPH on GPU

required several new developments.

7.2.1.1 The pressure projection step

The ISPH pressure projection step was implemented as four stages: Stage 1 - Inter-

mediate step, Stage 2 - Setup and solve PPE, Stage 3 - Corrector step, and Stage 4

- Particle shifting. Each stage featured a distinct particle sweep.

In Stage 2, a single-threaded GPU function, to setup the PPE matrix storage

arrays, is detailed prior to presenting parallel GPU algorithms, for fluid and bound-

ary particles, regarding the matrix population. Populating the matrix with separate

algorithms for fluid and boundary particles reduces thread-latencies due to their

different neighbourlist sizes. After population, the matrix is given to, and solved

by, the ViennaCL linear algebra library [16]. The solution (pressure field) is then

returned to Incompressible-DualSPHysics for the calculation of pressure gradients

in Stage 3.
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7.2.1.2 Applying the Marrone et al. boundary condition

The Marrone et al. [14] boundary condition, originally formulated for WCSPH,

mirrors boundary particle positions across the physical boundary line into the fluid

domain to obtain unique interpolation points (UIP). An SPH MLS interpolation

kernel determines fluid properties at each UIP, which are used by corresponding

boundary particles to impose desired boundary conditions. Herein, the boundary

condition was applied to ISPH for the first time, requiring modification for use within

the PPE by evaluating the pressure at boundary particles, and their respective

UIPs, with use of the MLS interpolation kernel. This is an additional equation

introduced to the PPE matrix system, in contrast to the Laplacian operator used for

fluid particles. The use of the two equations to construct the linear system avoids

the occurrence of an additional expensive nested for-loop and allows for parallel

population of the matrix by explicitly including both boundary and fluid particles

in the system.

The established boundary condition can be efficiently parallelised on the GPU

for ISPH and is capable of representing complex geometries and rigid moving bodies.

However, the current boundary conditions cannot deal with a situation where surface

of different objects are close to each other. This is because the UIPs, which are

positioned away from the object surface, would interpolate from within another

object where there are no fluid particles. Consequently, non-physical quantities and

instabilities may occur from inaccurate kernel interpolations.

7.2.1.3 Mixed precision storage and computation

Memory consumption is reduced by means of mixed precision storage where the

majority of particle data is stored in single precision. Otherwise, double precision is

used to store particle positions, maintain accuracy in the kernel and during particle

advection, and the matrix storage arrays, required for the linear solver to converge

with large particle numbers. The PPE matrix is represented by the compressed

sparse row (CSR) format where only the non-zero elements of the sparse matrix are

stored, reducing the number of retained elements from npm2 to a value proportional
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to npm, where npm is the number of particles in the matrix.

GPU computations are executed through a mixed precision computation model.

Most computations are performed with single precision because Nvidia GPUs exhibit

high single-precision FLOPs. Fast single precision register memory variables are used

during intermediary computations. Double precision register variables are utilised

when computations require a summation of values, followed by a division, such as

within the inverse of matrices during the calculation of MLS kernel coefficients or

the kernel gradient normalisation variables. Once computation is finished, the value

of a double precision register is cast to single precision for global memory storage.

The mixed precision model achieves a balance between speed and accuracy, how-

ever it can be difficult to maintain consistency during implementation. The complete

use of double precision computation and storage will require new methods to address

the memory limitations, a rearrangement of the code structure, and new algorithms

to improve double precision FLOPs performance with a GPU. A single precision only

model would significantly reduce memory consumption for large numbers of particles

but require computational methods to recover loss in accuracy. This particularly

applies during the solution of the PPE matrix.

7.2.1.4 GPU-based algebraic multigrid preconditioner modification

Algebraic multigrid (AMG) preconditioners possess the property of mesh indepen-

dence and therefore are highly scalable for increasing matrix sizes. This demands

for the investigation of such a preconditioning technique for the solution of the ISPH

PPE matrix when large numbers of particles are used.

To take advantage of the ViennaCL library’s GPU-based maximum indepen-

dent set (2) AMG preconditioner (MIS(2)AMG) for ISPH, the algorithm required

modification to prevent an error in the preconditioner’s setup phase. During the

parallel computation of aggregates, if two particles share exactly the same neigh-

bours (and including each other) there is the risk of coarse aggregate indices data

being overwritten. This ultimately leads to errors in the next-level matrix system

with divisions of zero. This was solved by including a conditional if-statement to
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prevent the elimination of certain coarse aggregate indices data.

The need to modify the GPU-based MIS(2)AMG preconditioner for ISPH has

exposed the complexity of solving a Lagrangian PPE matrix system. Further de-

velopment of faster and more robust methods for the solution of such systems on a

GPU is needed [271,339].

7.2.2 Performance

The performance of the code was evaluated through CPU-GPU speed ups, memory

consumption, a profiling study, and comparing options of SPH kernels and precondi-

tioners for ISPH accelerated with a GPU. All simulations used a Bi-CGSTAB linear

solver for the solution of the PPE matrix system.

The performance comparisons were conducted on two Nvidia GPU devices, a

GTX 1070 and a Tesla K40c, and an Intel(R) Xeon(R) CPU E5-2640 v3 with 8 cores

(16 threads). Two types of CPU runs were made, executing the CPU-equivalent

code of the GPU algorithm, using either a single thread (serial computation) or 16

threads (OpenMP parallel computation). For all cases observed, the GTX 1070 was

the fastest of the two GPUs and so speed-ups stated in this section are for that

specific GPU.

The first 50 time steps of the 2-D incompressible flow around a moving square in

a rectangular box were timed and repeated for various resolutions using the Jacobi

preconditioner. For approximately 2 million fluid particles, GPU speed-ups of 27.5

times and 4.5 times were observed against the single-threaded and 16-threaded CPU

times respectively.

Speed ups were also investigated using 2-D and 3-D dambreaks, timing the first

10 time steps of the simulation. Initialising the solver with an initial guess solution

of the pressure field from the previous time step was found to reduce overall runtimes

by up to 85% and 35% in 2D and 3D respectively. The GPU-CPU speed ups with

solver initialisation were also greater. For 1.0-4.5 million fluid particles in 2D, the

GPU was approximately 18.3-25.3 times faster than the single-threaded CPU runs,

and about 4.6-8.1 times faster than the 16-threaded CPU timings. Similarly in
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3D for up to 2 million fluid particles, the GPU observed runtimes 18.2-21.0 times

faster than the serial CPU runs, and speed ups of 4.2-4.7 times over the parallel

multi-threaded CPU timings.

Upon examination of the CUDA kernels in the new Incompressible-DualSPHysics

code, it was found that the theoretical and achieved occupancy, and branch diver-

gence of the functions were similar to those within the original DualSPHysics code.

Therefore, it was determined the performance of Incompressible-DualSPHysics GPU

code was maintained during conversion from WCSPH to ISPH. The main computa-

tional expense of ISPH remains to be the solution of the PPE after acceleration on

a GPU. The greatest improvements in overall speed can be achieved with relatively

little effort by investigating current linear solvers and preconditioners from various

open-source GPU libraries.

The performance of the Jacobi and MIS(2) AMG preconditioners during a 2-D

dambreak simulation were compared. Although the MIS(2) AMG preconditioner

proved significantly faster in the initial stages of the flow, fragmentation of the fluid

from impact on the far wall caused a significant increase of PPE solution time.

The Jacobi preconditioner on the other hand, appeared to be more robust when

dealing with discontinuities. This indicates the need for future investigations of the

behaviour of preconditioning techniques during the solution of systems arising from

meshless methods whereby the connectivity of computational points change with

time.

7.2.3 Numerical wave basin

The new ISPH-DualSPHysics code was used as a numerical wave basin to simulate

the application of focused breaking-wave impact on a vertical cylinder.

Extensions to the methodology are made for the application of the numerical

wave basin, these include:

• Additional terms to the Laplacian Morris operator for implementation of the

Schwaiger operator [156] for improved accuracy near the free-surface.
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• Defining the normal direction to the free-surface with a kernel-weighted sum-

mation to reduce error propagation with particle shifting near the interface.

• Excluding boundary particles above the free surface from particle interactions

to minimise false summations.

• Adopting a radial arrangement of particles to represent a cylindrical structure

for improved accuracy and prevention of spurious pressures. This is contrary to

the Cartesian-based configuration produced by DualSPHysics’ pre-processing

software, GenCase.

A convergence study of the wave generation model shows a convergence rate

of 1.78 for the L2 error norm of the peak free-surface elevation at the focal point,

compared to linear theory for a low amplitude JONSWAP spectrum focused wave

group. However, this is achieved only when the particle spacing is sufficiently fine

to resolve accurately the still-water depth and propagating wave.

For four focused wave groups (two non-breaking and two breaking), measure-

ments of the free-surface elevation and cylinder forcing show acceptable agreement

with the experimental data of Zang et al. [20]. The sources of error are unclear due

to insufficient information about the physical experiments. Potential solutions are

the use of a finer resolution, or modelling the cylinder as a non-rigid structure, as

high frequency oscillations in the forcings were observed in the experimental data.

Snapshots of a simulation featuring the impact of a breaking-wave with the cylinder

show high levels of fragmentation at the free surface which cannot be easily achieved

with a mesh-based method.

Post-processing analysis reveals the variation of the free-surface elevation around

the cylinder is significant particularly in steep waves with a correspondingly large

force contribution from hydrostatic pressure. While breaking does not have a marked

effect on total force, the associated high particle velocities amplify local pressures

considerably on the cylinder near the water surface.

For a particle spacing, dp = 0.0125 m, over five million particles were used to

model the numerical wave basin and a total of 6.13 GB of memory was assigned to
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the GPU of which approximately 80% was required for the PPE matrix. To improve

the accuracy of the wave propagation model, the inclusion of an air phase or high

resolutions are suggested, although both would require work to reduce the memory

consumption of the code, or a multi-GPU implementation to remove the memory

limitations of a single GPU device as recommended later the Section 7.3.4.

7.3 Recommendations for future research

The work presented in this thesis has been shown to provide a robust GPU-accelerated

ISPH solver demonstrating significant speed ups over CPU-based codes and facili-

tated the practicality of the ISPH method for engineering applications. However,

this is the first time ISPH on the GPU has been researched and there are numer-

ous possibilities for improving the numerical model, developing the algorithm, and

applying the model to challenging cases.

7.3.1 Algorithmic developments

Regarding the algorithmic implementation of ISPH on the GPU, there are several

areas that can be explored to reduce the total memory consumption of the current

model and/or speed of the code.

Due to the memory limitations of the GPU, the original intention of this study

was to use single precision. However, it was found that for systems of more than

500,000 particles, double precision computation accuracy is required for conver-

gence of the linear solver. This required double precision storage of the PPE matrix

elements by the ViennaCL library. As seen in Chapter 6, PPE matrix memory

requirements for a 3-D simulation of approximately 5 million particles used about

60% of the total GPU memory assigned by Incompressible-DualSPHysics. Research

into reducing the memory storage requirements of the PPE matrix is therefore rec-

ommended, including algorithms that enable linear solver convergence with single

precision storage for large particle numbers.

Leroy [190] did not store the PPE matrix, and instead computed matrix-vector
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products during the execution of the linear solver. However, this can be time con-

suming (particularly in 3D) requiring the computation of particle-particle interac-

tions multiple times within each solver iteration. This problem could potentially ben-

efit from the use of “CUDA dynamic parallelism”, where threads within a global

kernel function can launch their own global kernels.

However, memory management and latencies, and thread synchronisation pose

further challenges. Nevertheless, dynamic parallelism could at least be explored for

accelerating the linear solver as shown by Aliaga et al. [340].

Memory consumption can also be reduced through means of adaptivity. The

numerical wave basin in Chapter 6 required millions of particles due to the large do-

main size, yet the actual area of application interest which requires a fine resolution

is relatively small. This may include variable resolution [163, 341] or higher order

Eulerian-Lagrangian ISPH schemes [203,206]

Murotani et al. [261] developed algorithms for MPS on the GPU to improve

the efficiency and speed of neighbour searching and particle interactions during

the computation of differential operators. With a focus on the arrangement and

locality of particle-data, the same principles in their work can be applied to SPH.

Further considerations should follow recent works [342–344] focused on analysing

and improving the accuracy of the Laplacian operators for the PPE, which can have

an impact on the conditioning of the resultant linear systems.

7.3.2 Linear solvers and preconditioners for ISPH

The work conducted in this study for implementing ISPH on the GPU has drawn

attention to the complexities of solving the ISPH PPE efficiently. Consequently,

new areas of research concerning the solution of the ISPH PPE have been identified.

The ViennaCL linear algebra library was selected here to solve the PPE for its

ease of coupling with DualSPHysics and functionality. CPU and GPU algorithms

within the library allowed for direct speed-up comparisons, and the range of linear

solvers and preconditioners. Within the library there are many more algorithms,

besides those tested here, which can be investigated for solving the PPE matrix.
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Moreover, there are numerous other GPU-based linear algebra libraries [269, 270,

315, 345, 346] with varying ranges of functionality. Investigating all of the options

is a simple exercise which could lead to faster execution times with the current

Incompressible-DualSPHysics code.

In Section 5.6.2, the 2-D runtimes of the MIS(2)AMG preconditioner showed

linear scalability and PPE solution times much faster than the Jacobi (without ini-

tialisation). Unfortunately, convergence slowed down considerably in a fragmented

flow and also showed poor scalability in 3D. AMG methods usually require specialist

manipulation and knowledge of a problem for the best performance. Development of

a parallel AMG preconditioner tailored for ISPH applications would be a significant

advancement for the numerical method.

7.3.3 Improving the physical model

The proposed ISPH methodology has been proven robust and applicable for a range

of free-surface flows, but there are still numerous developments that could enhance

the accuracy and enable the wider range of applications for the model.

Multi-phase SPH models [248, 331] have shown the presence of an air phase in

violent hydrodynamic applications has a marked effect on the accuracy of the flow

mechanics and pressure field.

Incorporating a multi-phase model would improve predictions of flows such as

wave propagation and impact, tank sloshing, and channel flows.

The presented boundary condition is suitable for rigid solid boundaries of various

geometries, with the possibility of linear motion. To extend the capabilities towards

the wider range of engineering applications, floating bodies and rotational motion

can be simply included by using the code from the original DualSPHyics. However,

further development of the the Marrone et al. [14] boundary condition for situa-

tions involving interactions between multiple independent boundaries is required.

Ultimately, one would be able to simulate applications involving multiple bodies,

floating and non-floating.

High frequency oscillations observed from the forcing data of Zang et al. [20],
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in Chapter 6, has been speculated to arise from structural response. Including a

flexible boundary model would confirm this [204].

7.3.4 Multi-GPU implementation

Whilst this work has achieved the computation of millions of particles on a single

GPU, industrial applications still require many more on the order of 107 to 109. The

physical memory of a GPU is limited and non-expandable, affecting scalability and

the maximum allowable number of particles. This can be addressed with the devel-

opment of a multi-GPU ISPH code. WCSPH accelerated by multiple interconnected

GPUs has already been achieved through use of MPI processes for communication

between devices [222,251].

Modern day motherboards can support four to six GPU devices, and so sim-

ulations of 100 million particles can be achieved for ISPH on a single desktop if

the memory requirements of the code are also reduced using the suggestions from

Section 7.3.1.

7.3.5 Suggestions of future applications

The proposed methodology has been successfully applied to the dambreak case and

a numerical wave basin involving breaking-waves. Incompressible-DualSPHysics

opens up a vast potential of new 3-D applications previously too impractical:

• In addition to wave impacts with structures (cylinder arrays, floating devices

etc.) other than that in Chapter 6, the numerical wave basin can be used to

simulate flow around moving vessels. Computational models investigate the

complex hydrodynamic phenomena created by a moving ship hull in water in

the presence, or absence, of waves.

• In coastal engineering there is the need to assess fluid-structure impact loading

and flow behaviour for breakwaters, bridges, and buildings etc.

• In earthquake engineering, the code can be used to investigate the behaviour

of the fluid inside water towers or buildings with liquid tuned dampers. Sim-
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ulation of forces exerted on the structure by the violent motion of the fluid

during an earthquake event can help optimise design. Similar applications

include anti-roll tanks and liquid transportation vessels.

• In open-channel flows, weirs, fish passes, spillways etc. can be modelled with

high resolutions in 3D to give full detail of flow behaviour for engineering

design. Additionally, impact loading on the infrastructure during violent flash-

flood events can be predicted.

Incompressible-DualSPHysics provides the means to simulate a vast amount of

complex and violent hydrodynamic engineering applications in 3D enabled by ac-

celeration on the GPU. The list is non-exhaustive, and the presented methodology

can be applied to many areas of industrial/research applications. The methodology

also provides a basis for expansion into other areas such as multi-phase flows.
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Ferreira, J. A. Cuminato, S. McKee, A front-tracking/front-capturing method

for the simulation of 3D multi-fluid flows with free surfaces, J. Comput. Phys.

198 (2004) 469–499.

[42] C. W. Hirt, B. D. Nichols, Volume of Fluid (VOF) Method for the Dynamics

of Free Boundaries, J. Comput. Phys. 39 (1981) 201–225.

[43] N. Ashgriz, J. Y. Poo, FLAIR: Flux Line-Segment Model for Advection and

Interface Reconstruction, J. Comput. Phys. 93 (1991) 449–468.

[44] M. Rudman, A Volume-Tracking Method for Incompressible Multifluid Flows

with Large Density Variations, Int. J. Numer. Meth. Fluids 28 (1998) 357–378.

[45] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, S. Zalenski, Volume-of-

Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-

Dimensional Flows, J. Comput. Phys. 152 (1999) 423–456.

[46] J. E. Pilliod Jr., E. G. Puckett, Second-order accurate volume-of-fluid algo-

rithms for tracking material interfaces, J. Comput. Phys. 199 (2004) 465–502.

[47] S. Osher, J. A. Sethian, Fronts propagating with curvature-dependent speed:

Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1)

(1988) 12–49.



244 REFERENCES

[48] M. Sussman, E. G. Puckett, A Coupled Level Set and Volume-of-Fluid Method

for Computing 3D and Axisymmetric Incompressible Two-Phase Flows, J.

Comput. Phys. 162 (2) (2000) 301–337.

[49] X. Yang, A. J. James, J. Lowengrub, X. Zheng, V. Cristini, An adaptive cou-

pled level set and volume-of-fluid interface capturing method for unstructured

triangular grids, J. Comput. Phys. 217 (2) (2006) 364–394.

[50] D. L. Sun, W. Q. Tao, A coupled volume-of-fluid and level set (VOSET)

method for computing incompressible two-phase flows, J. Comput. Phys.

53 (4) (2010) 645–655.

[51] J.-C. Marongiu, F. Leboeuf, J. Caro, E. Parkinson, Free surface flows simula-

tions in Pelton turbines using an hybrid SPH-ALE method, J. Hydraul. Res.

48 (2010) 40–49.

[52] C. W. Hirt, J. Amsden, J. L. Cook, An arbitrary lagrangian-eulerian comput-

ing method for all flow speeds, J. Comput. Phys. 14 (1974) 227–253.

[53] J. Donea, A. Huerta, J.-P. Ponthot, A. Rodriguez-Ferran, Arbitrary

Lagrangian-Eulerian Methods, in: Encyclopaedia of Computational Mechan-

ics, John Wiley & Sons, Ltd, 2004, Ch. 14.

[54] J. Baiges, R. Codina, A. Pont, E. Castillo, An adaptive Fixed-Mesh ALE

method for free-surface flows, Comput. Meth. Appl. Mech. Eng. 313 (2017)

159–188.

[55] G. R. McNamara, G. Zanetti, Use of the Boltzmann Equation to Simulate

Lattice-Gas Automata, Phys. Rev. Lett. 61 (1988) 2332.
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M. Gómez-Gesteira, P. Trocj, Long-crested wave generation and absorption

for SPH-based DualSPHysics model, Coast. Eng. 127 (2017) 37–54.
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Appendix A

Kernel gradient normalisation

matrix inverse

The normalised kernel gradient (as described in Section 3.2.2.1):

∇iWij = L(r)∇iωij, (A.1)

requires the computation of the inverse of a 3 × 3 matrix for the term L(r). The

inverse is computed using the method of minors, cofactors, and adjugate. however

the number of computations have been reduced by using a shorthand version as

shown in the following:

L(r) =


A11 A12 A13

A21 A22 A23

A31 A32 A33


−1

=
1

det


AI,11 AI,12 AI,13

AI,21 AI,22 AI,23

AI,31 AI,32 AI,33

 , (A.2)

where

det =(A11A22A33 +A12A23A31 + A21A32A13)−

(A31A22A13 +A21A12A33 + A23A32A11)
, (A.3)

AI,11 = A22A33 − A23A32, AI,12 = A13A32 − A12A33, AI,33 = A12A23 − A13A22,

AI,21 = A23A31 − A21A33, AI,22 = A11A33 − A13A31, AI,23 = A13A21 − A11A23,

AI,31 = A21A32 − A22A31, AI,32 = A12A31 − A11A32, AI,33 = A11A22 − A12A21

(A.4)
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Appendix B

Derivation of the pressure

Poisson equation (PPE)

The pressure Poisson equation (PPE), as described in Section 3.3.1, is a key part

of the ISPH methodology for enforcing incompressibility and obtaining an accurate

pressure field by implicit solution of the equation via a linear matrix system. In WC-

SPH, where density is permitted to vary, velocity and pressure are coupled through

the continuity equation and equation of state. However, in ISPH representing truly

incompressible flow, where dρ/dt = 0, the coupling of pressure and velocity is not

as straightforward and instead requires a Poisson equation. In this appendix, the

derivation of a Poisson equation within the (2D) continuous domain is presented

in the next section. Then the particular form of the PPE, used here for ISPH,

is derived from Chorin’s pressure projection method [173], where a divergence-free

velocity field is maintained.

B.1 A Poisson equation for a continuous domain

The Lagrangian form of the Navier-Stokes equations for incompressible flow are the

equations for conservation of mass (where dρ/dt = 0):

∇ · u = 0, (B.1)
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and momentum:

du

dt
= −1

ρ
∇P + ν∇2u (B.2)

For simplicity, Eqs (B.1) and (B.2) are expressed in their Eulerian form, i.e.

Eq. (B.1) for the conservation of mass can also be written as:

∂u

∂x
+
∂v

∂y
= 0, (B.3)

and similarly, Eq. (B.2) for the conservation of momentum can also be expressed in

x and y-component directions in Eqs (B.4) and (B.4) respectively:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
, (B.4)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
, (B.5)

where the LHS has been obtained from the equivalence:

d

dt
≡ ∂

∂t
+ u · ∇ (B.6)

A Poisson equation can be obtained by first taking the divergence of the mo-

mentum equations (Eqs (B.4) and (B.5)):

∂

∂x

∂u

∂t
+

(
∂u

∂x

)2

+ u
∂2u

∂x2
+
∂v

∂x

∂u

∂y
+ v

∂2u

∂x∂y
= −1

ρ

∂2P

∂x2
+ ν

(
∂3u

∂x3
+

∂3u

∂x∂y2

)
, (B.7)

∂

∂y

∂v

∂t
+
∂u

∂y

∂v

∂x
+ u

∂2v

∂y∂x
+

(
∂v

∂y

)2

+ v
∂2v

∂y2
= −1

ρ

∂2P

∂y2
+ ν

(
∂3v

∂y∂x2
+
∂3v

∂y3

)
(B.8)

Eqs (B.7) and (B.8) are combined to give:

∂

∂t

(
∂u

∂x
+
∂v

∂y

)
+

(
∂u

∂x

)2

+

(
∂v

∂y

)2

+ 2
∂u

∂y

∂v

∂x

+ u
∂

∂x

(
∂u

∂x
+
∂v

∂y

)
+ v

∂

∂y

(
∂u

∂x
+
∂v

∂y

)
= −1

ρ

(
∂2P

∂x2
+
∂2P

∂y2

)
+ ν

(
∂2

∂x2

(
∂u

∂x
+
∂v

∂y

)
∂2

∂y2

(
∂u

∂x
+
∂v

∂y

))
(B.9)
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B.2. THE PPE WITH DIVERGENCE-FREE VELOCITY FIELD

IN THE PROJECTION METHOD

The divergence-free velocity field condition is met by applying Eq. (B.3), which

reduces Eq. (B.9) to:

(
∂u

∂x

)2

+

(
∂v

∂y

)2

+ 2
∂u

∂y

∂v

∂x
= −1

ρ

(
∂2P

∂x2
+
∂2P

∂y2

)
, (B.10)

which is a Poisson equation for coupling velocity with pressure, whilst satisfying the

conservation of mass equation (Eq. (B.1)). The Poisson equation is usually written

as:

∇2P = −s, (B.11)

where s is a source term. Here, the source term comes from the velocity field. The

next section explains how to obtain the PPE with a divergence-free velocity field

numerically.

B.2 The PPE with divergence-free velocity field

in the projection method

In a numerical scheme, the divergence-free velocity condition is desired at timestep

n+ 1:

∇ · un+1 = 0 (B.12)

In Chorin’s pressure projection method [173], this problem is solved with frac-

tional timestepping where the momentum (Eq. (B.2)) is solved in two parts consid-

ering the accelerations due to the pressure gradient and viscous forces separately.

Ultimately, one would solve:

un+1 − un

∆t
= −1

ρ
∇P n+1 + ν∇2un − un · ∇un, (B.13)

with the condition of Eq. (B.12).

In the projection method, an intermediate velocity field, u∗, is introduced which

is obtained by considering the acceleration due to viscous terms and the advection
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term:

u∗ = un +
(
ν∇2un

)
∆t− un · ∇un (B.14)

The momentum equation would be completed by including the pressure gradient

term:

un+1 = u∗ −
(

1

ρ
∇P n+1

)
∆t (B.15)

However, the pressure field is unknown at this instant, therefore the divergence of

Eq. (B.16) is taken:

∇ · un+1 = ∇ · u∗ −∇ ·
(

1

ρ
∇P n+1

)
∆t, (B.16)

where ∇ · u∗ the expanded is:

∇ · u∗ = ∇ · un +∇ ·
(
ν∇2un

)
∆t−∇ · (un · ∇un) (B.17)

Assuming incompressibility at all times, ∇ ·un+1 = 0 in Eq. (B.16) and the first

two terms on the RHS of Eq. (B.17) all become 0, leaving only the time discretised

version of Eq. (B.10) in Eulerian form:

∇ ·
(

1

ρ
∇P n+1

)
=

1

∆t
∇ · u∗ (B.18)

In Lagrangian form, the calculation of the advection term, un · ∇un, is not

explicit, but is implicity included following the change in particle position over

timestep ∆t.



Appendix C

Effect of boundary conditions on the

Lagrangian PPE matrix

In ISPH, because of the kernel symmetry between particle pairs, when it comes

to construction of the PPE matrix for fluid-fluid particle interactions, the form of

the matrix is symmetric. However, when SPH boundary conditions are involved,

the fluid-boundary particle interactions differ to that of the boundary-fluid particle

interactions resulting in a non-symmetric matrix system defined as [A] 6= [A]T. For

instance, in this study, the matrix coefficients of the i-fluid particles are governed

by the Laplacian operator using a standard SPH kernel, whereas the coefficients

i-boundary particles use an MLS kernel summation due to the use of the Marrone

et al. [14] boundary condition. Moreover, boundary particle summations are made

about unique interpolation points (UIPs) (see Section 3.4.3) where the UIP-fluid

interactions are different to the respective boundary-fluid particle interactions. One

can simply see this effect visually, without calculation, from Fig C.1, where the

non-zero elements are highlighted in the PPE matrix for a simple 1-D system of

regularly distributed particles. The system contains 6 fluid particles (particles 2, 3,

4, 5, 6, and 7) and 2 boundary particles (particles 0 and 1). Boundary particles 0

and 1 are at the LHS of the domain with their respective UIPs positioned at the

same locations of particles 2 and 3 respectively. For simplicity, the kernel support

radius of a particle spans no more than 2 adjacent particles (4 interactions in total).

The matrix elements within the red box, indicate the fluid-fluid particle interactions.

If these elements were to be a separate matrix, that system would be symmetric.

280



281

However, with the presence of Marrone et al. boundary particles here, the matrix

is non-symmetric because the summations are taken about each boundary particle’s

respective UIP and not at the position of the particle itself.

 

 0 1 2 3 4 5 6 7 

0         

1  
 

      

2         

3         

4         

5         

6         

7         

1 0 2 3 4 5 6 7

Boundary line 

UIP1  UIP0  

Main diagonal 

Fig. C.1: An example 1-D case of uniformly distributed fluid particles (blue) and
fixed dummy particles (grey) with unique interpolation points. Arrows labelled
“UIP” point to the location of a UIP belonging to the boundary particle indicated
by the subscript. The associated matrix is shown where non-zero elements are
shaded in grey. Elements within the red box indicate fluid-fluid particle interaction
values.



Appendix D

Paraview python scripts

The results for the numerical wave basin experiments in Chapter 6 were obtained

with the post-processing data visualisation software Paraview [295]. This appendix

shows python script codes used in Paraview for automation of processing large quan-

tities of data obtained from the 5 million particle simulations. Scripts were made

for:

• Extracting fluid free-surface particles at the location of the cylinder-front and

plotting their elevation. The corresponding code, as in Section D.1), was used

to obtain results for Fig. 6.9.

• Displaying the cylinder’s surface in a 2-D θ-z plane and obtaining forcing and

free-surface elevation data about the cylinder. The corresponding code, as in

Section D.2), was used to obtain results for Figs 6.13, 6.16, 6.18, and 6.19.

• Extracting fluid free-surface particles around the cylinder for plotting of par-

ticle velocities in a 2-D θ-z plane. The corresponding code, as in Section D.3),

was used to obtain results for Fig 6.20.

The variable “Rhop” in the scripts stands for pressure, not density. In the

original WCSPH DualSPHysics code, the variable “velrhop” is a tuple of velocity

components and density, however this has been replaced with “velPressp” for the new

Incompressible-DualSPHysics code. The data output functions were not changed so

the pressure component has been labelled as Rhop.
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D.1 Free-surface elevation at a focal point

1 from paraview . s imple import ∗

2

3 f l u i d 0 0 0 = FindSource ( ’ F lu id 0 ∗ ’ )

4

5 foca lPointX =7.395

6 foca lPointY=0

7 dp=0.0125

8 depth =0.5

9

10 #F i l t e r out f ree−su r f a c e p a r t i c l e s

11 thresholdnew = Threshold ( Input=f l u i d 0 0 0 )

12 thresholdnew . S c a l a r s = [ ’POINTS ’ , ’Rhop ’ ]

13 thresholdnew . ThresholdRange = [ 0 , 0 ]

14 renderView1 = GetActiveViewOrCreate ( ’ RenderView ’ )

15 thresho ldnewDisplay = Show( thresholdnew , renderView1 )

16 thresholdnew . S c a l a r s = [ ’POINTS ’ , ’ Idp ’ ]

17 thresholdnew . S c a l a r s = [ ’POINTS ’ , ’Rhop ’ ]

18 Hide ( thresholdnew , renderView1 )

19

20 #Get x−coord ina te o f p a r t i c l e s

21 ca l cu la to rnew = Calcu la to r ( Input=thresholdnew )

22 ca l cu la to rnew . ResultArrayName = ’X ’

23 ca l cu la to rnew . Function = ’ coordsX ’

24

25 #Get y−coord ina te o f p a r t i c l e s

26 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

27 ca l cu la to rnew . ResultArrayName = ’Y ’

28 ca l cu la to rnew . Function = ’ coordsY ’

29

30 #F i l t e r out p a r t i c l e s near f o c a l po in t

31 thresholdnew = Threshold ( Input=ca l cu la to rnew )

32 thresholdnew . S c a l a r s = [ ’POINTS ’ , ’X ’ ]

33 Lower=focalPointX−dp∗2

34 Upper=foca lPointX+dp∗2
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35 thresholdnew . ThresholdRange = [ Lower , Upper ]

36 renderView1 = GetActiveViewOrCreate ( ’ RenderView ’ )

37 thresho ldnewDisplay = Show( thresholdnew , renderView1 )

38 thresholdnew . S c a l a r s = [ ’POINTS ’ , ’ Idp ’ ]

39 thresholdnew . S c a l a r s = [ ’POINTS ’ , ’X ’ ]

40 Hide ( thresholdnew , renderView1 )

41

42 thresholdnew = Threshold ( Input=thresholdnew )

43 thresholdnew . S c a l a r s = [ ’POINTS ’ , ’Y ’ ]

44 Lower=focalPointY−dp∗2

45 Upper=foca lPointY+dp∗2

46 thresholdnew . ThresholdRange = [ Lower , Upper ]

47 renderView1 = GetActiveViewOrCreate ( ’ RenderView ’ )

48 thresho ldnewDisplay = Show( thresholdnew , renderView1 )

49 thresholdnew . S c a l a r s = [ ’POINTS ’ , ’ Idp ’ ]

50 thresholdnew . S c a l a r s = [ ’POINTS ’ , ’Y ’ ]

51 Hide ( thresholdnew , renderView1 )

52

53 #Ca lcu l a t e e l e v a t i o n

54 ca l cu la to rnew = Calcu la to r ( Input=thresholdnew )

55 ca l cu la to rnew . ResultArrayName = ’ FreeSur faceE levat i on ’

56 ca l cu la to rnew . Function = ’ coordsZ−depth ’

57 renderView1 = GetActiveViewOrCreate ( ’ RenderView ’ )

58 Show( ca lcu latornew , renderView1 )

59 Hide ( f l u i d 0 0 0 , renderView1 )

60

61 #p l o t data

62 query = ’ Id >= 0 ’

63 s = S e l e c t P o i n t s ( query )

64 plotSe lect ionOverTime = PlotSelect ionOverTime ( Input=calcu latornew ,

S e l e c t i o n=s )

65 view = CreateView ( ’ Quarti leChartView ’ )

66 Show( plotSe lect ionOverTime , view )

67

68 # ge t d i s p l a y p r o p e r t i e s

69 plotSe lect ionOverTimeDisp lay = GetDisp layProper t i e s (
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plotSe lect ionOverTime , view=quart i l eChartView1 )

70

71 # Proper t i e s modi f ied on p lo tSe l ec t ionOverTime1Disp lay

72 plotSe lect ionOverTimeDisp lay . ShowQuarti les = 0

73 plotSe lect ionOverTimeDisp lay . ShowRanges = 0

74 plotSe lect ionOverTimeDisp lay . ShowAverage = 1

75 plotSe lect ionOverTimeDisp lay . ShowMedian = 0

D.2 Extracting cylinder data

1 from paraview . s imple import ∗

2 import math

3

4 viewPointColumns=63

5

6 column 000 = FindSource ( ’ Column 0∗ ’ )

7

8 c a l c u l a t o r 1 = Ca lcu la to r ( Input=column 000 )

9 c a l c u l a t o r 1 . ResultArrayName = ’Z ’

10 c a l c u l a t o r 1 . Function = ’ coordsZ ’

11

12 #Ca lcu l a t e ang l e phi o f p a r t i c l e around c y l i n d e r

13 c a l c u l a t o r 4 = Ca lcu la to r ( Input=c a l c u l a t o r 1 )

14 c a l c u l a t o r 4 . ResultArrayName = ’ phi ’

15 c a l c u l a t o r 4 . Function = ’ ( ( coordsY+1e−15)/abs ( coordsY+1e−15) ) ∗ acos

((0.125ˆ2+(7.52− coordsX ) ˆ2−(7.395− coordsX ) ˆ2) / (0 .25∗ s q r t ((7.52−

coordsX ) ˆ2+(coordsY+1e−15) ˆ2) ) ) ’

16

17 #exc lude p a r t i c l e s be low tank bottom

18 thre sho ld1 = Threshold ( Input=c a l c u l a t o r 4 )

19 thre sho ld1 . S c a l a r s = [ ’POINTS ’ , ’Z ’ ]

20 ZLower=−0.0125/2

21 ZUpper=1.2

22 thre sho ld1 . ThresholdRange = [ ZLower , ZUpper ]

23 renderView1 = GetActiveViewOrCreate ( ’ RenderView ’ )

24 thre sho ld1Di sp lay = Show( thresho ld1 , renderView1 )
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25 thre sho ld1 . S c a l a r s = [ ’POINTS ’ , ’ Idp ’ ]

26 thre sho ld1 . S c a l a r s = [ ’POINTS ’ , ’Z ’ ]

27 Hide ( thresho ld1 , renderView1 )

28

29 #Pressure magnitude

30 ca l cu la to rnew = Calcu la to r ( Input=thre sho ld1 )

31 ca l cu la to rnew . ResultArrayName = ’ MagPressure ’

32 ca l cu la to rnew . Function = ’ abs (Rhop) ’

33

34 #exc lude P=0 p a r t i c l e s

35 thre sho ld1 = Threshold ( Input=ca l cu la to rnew )

36 thre sho ld1 . S c a l a r s = [ ’POINTS ’ , ’ MagPressure ’ ]

37 thre sho ld1 . ThresholdRange = [0 . 00001 , 1000000 ]

38 renderView1 = GetActiveViewOrCreate ( ’ RenderView ’ )

39 thre sho ld1Di sp lay = Show( thresho ld1 , renderView1 )

40 thre sho ld1 . S c a l a r s = [ ’POINTS ’ , ’ Idp ’ ]

41 thre sho ld1 . S c a l a r s = [ ’POINTS ’ , ’ MagPressure ’ ]

42 Hide ( thresho ld1 , renderView1 )

43

44 #Ca lcu l a t e f ree−su r f a c e e l e v a t i o n around column

45 p i=math . p i

46 phiLower=pi/2+pi /viewPointColumns+14∗2∗ pi /viewPointColumns

47 phiUpper=pi/2+pi /viewPointColumns+15∗2∗ pi /viewPointColumns

48

49 for x in range (0 , viewPointColumns ) :

50 thresholdnew = Threshold ( Input=thre sho ld1 )

51 thresholdnew . S c a l a r s = [ ’POINTS ’ , ’ phi ’ ]

52 thresholdnew . ThresholdRange = [ phiLower , phiUpper ]

53 renderView1 = GetActiveViewOrCreate ( ’ RenderView ’ )

54 thresho ldnewDisplay = Show( thresholdnew , renderView1 )

55 thresholdnew . S c a l a r s = [ ’POINTS ’ , ’ Idp ’ ]

56 thresholdnew . S c a l a r s = [ ’POINTS ’ , ’ phi ’ ]

57 Hide ( thresholdnew , renderView1 )

58

59 pythonCalculatornew = PythonCalculator ( Input=thresholdnew )

60 pythonCalculatornew . ArrayName = ’FS ’
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61 pythonCalculatornew . Express ion = ’max(Z) +0.0125 ’

62

63 phiUpper=phiLower

64 phiLower=phiLower−2∗pi /63

65

66 #Group data t o g e t h e r f o r easy proce s s ing

67 data =[ FindSource ( ’ PythonCalculator1 ’ ) ]

68

69 for x in range (2 , viewPointColumns+1) :

70 data=data +[ FindSource ( ’ PythonCalculator ’ + str ( x ) ) ]

71

72 groupDatasets1 = AppendDatasets ( Input=data )

73

74 #Ca lcu l a t e h y d r o s t a t i c pre s sure

75 ca l cu la to rnew = Calcu la to r ( Input=groupDatasets1 )

76 ca l cu la to rnew . ResultArrayName = ’ Hydros ta t i cPre s sure ’

77 ca l cu la to rnew . Function = ’ (FS−Z) ∗9810∗ abs (Rhop) /abs (Rhop+1e−15) ’

78

79 #Ca lcu l a t e non−h yd r o s t a t i c pre s sure

80 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

81 ca l cu la to rnew . ResultArrayName = ’ NonHydrostat icPressure ’

82 ca l cu la to rnew . Function = ’Rhop−Hydros ta t i cPre s sure ’

83

84 #Ca lcu l a t e h y d r o s t a t i c f o r c e

85 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

86 ca l cu la to rnew . ResultArrayName = ’ Hydrostat i cForce ’

87 ca l cu la to rnew . Function = ’ Hydros ta t i cPre s sure ∗0.0125∗0.0125∗(7 .52−

coordsX ) / s q r t ((7.52− coordsX ) ˆ2+(coordsY+1e−15) ˆ2) ’

88

89 #Ca lcu l a t e non−h yd r o s t a t i c f o r c e

90 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

91 ca l cu la to rnew . ResultArrayName = ’ NonHydrostaticForce ’

92 ca l cu la to rnew . Function = ’ NonHydrostat icPressure

∗0.0125∗0.0125∗(7 .52− coordsX ) / s q r t ((7.52− coordsX ) ˆ2+(coordsY+1e

−15) ˆ2) ’

93
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94 #Ca lcu l a t e g l o b a l t o t a l f o r c e

95 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

96 ca l cu la to rnew . ResultArrayName = ’ Force ’

97 ca l cu la to rnew . Function = ’Rhop∗0.0125∗0.0125∗(7 .52− coordsX ) / s q r t

((7.52− coordsX ) ˆ2+(coordsY+1e−15) ˆ2) ’

98

99 #Ca lcu l a t e g l o b a l h y d r o s t a t i c f o r c e

100 pythonCalculatornew = PythonCalculator ( Input=ca l cu la to rnew )

101 pythonCalculatornew . ArrayName = ’ Tota lHydrostat i cForce ’

102 pythonCalculatornew . Express ion = ’sum( Hydrostat i cForce ) ’

103

104 #Ca lcu l a t e g l o b a l non−h yd r o s t a t i c f o r c e

105 pythonCalculatornew = PythonCalculator ( Input=pythonCalculatornew )

106 pythonCalculatornew . ArrayName = ’ TotalNonHydrostat icForce ’

107 pythonCalculatornew . Express ion = ’sum( NonHydrostaticForce ) ’

108

109 #Ca lcu l a t e g l o b a l t o t a l f o r c e

110 pythonCalculatornew = PythonCalculator ( Input=pythonCalculatornew )

111 pythonCalculatornew . ArrayName = ’ TotalForce ’

112 pythonCalculatornew . Express ion = ’sum( Force ) ’

113

114 #Ca lcu l a t e pre s sure r e l a t i v e to h y d r o s t a t i c pre s sure f o r mean

s t i l l −water l e v e l

115 ca l cu la to rnew = Calcu la to r ( Input=pythonCalculatornew )

116 ca l cu la to rnew . ResultArrayName = ’MinusAvHP ’

117 ca l cu la to rnew . Function = ’ (Rhop−(0.5−Z) ∗9810) /4905 ’

118

119 #Vi sua l i s e in the ta−z p lane

120 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

121 ca l cu la to rnew . ResultArrayName = ’MoveX ’

122 ca l cu la to rnew . Function = ’ 7.52− coordsX ’

123

124 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

125 ca l cu la to rnew . ResultArrayName = ’MoveY ’

126 ca l cu la to rnew . Function = ’ phi ∗0.2− coordsY ’

127
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128 warpByScalar1 = WarpByScalar ( Input=ca l cu la to rnew )

129 warpByScalar1 . S c a l a r s = [ ’POINTS ’ , ’MoveY ’ ]

130 warpByScalar1 . Normal = [ 0 . 0 , 1 . 0 , 0 . 0 ]

131

132 warpByScalar1 = WarpByScalar ( Input=warpByScalar1 )

133 warpByScalar1 . S c a l a r s = [ ’POINTS ’ , ’MoveX ’ ]

134 warpByScalar1 . Normal = [ 1 . 0 , 0 . 0 , 0 . 0 ]

135 renderView1 = GetActiveViewOrCreate ( ’ RenderView ’ )

136 Show( warpByScalar1 , renderView1 )

D.3 Fluid particles around cylinder

1 from paraview . s imple import ∗

2

3 f l u i d 0 0 0 = FindSource ( ’ F lu id 0 ∗ ’ )

4

5 #Get x−coord ina te o f p a r t i c l e s

6 ca l cu la to rnew = Calcu la to r ( Input=f l u i d 0 0 0 )

7 ca l cu la to rnew . ResultArrayName = ’X ’

8 ca l cu la to rnew . Function = ’ coordsX ’

9

10 #Get y−coord ina te o f p a r t i c l e s

11 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

12 ca l cu la to rnew . ResultArrayName = ’Y ’

13 ca l cu la to rnew . Function = ’ coordsY ’

14

15 #Ca lcu l a t e d i s t ance from cy l i n d e r cen t re

16 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

17 ca l cu la to rnew . ResultArrayName = ’ Cyl inderDis tance ’

18 ca l cu la to rnew . Function = ’ s q r t ((7.52− coordsX )ˆ2+(0−coordsY ) ˆ2) ’

19

20 #Inc lude only p a r t i c l e s c l o s e to c y l i n d e r

21 thresholdnew = Threshold ( Input=ca l cu la to rnew )

22 thresholdnew . S c a l a r s = [ ’POINTS ’ , ’ Cy l inderDis tance ’ ]

23 Lower=0.125

24 Upper =0.125+0.0125∗1.3
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25 thresholdnew . ThresholdRange = [ Lower , Upper ]

26 renderView1 = GetActiveViewOrCreate ( ’ RenderView ’ )

27 thresho ldnewDisplay = Show( thresholdnew , renderView1 )

28 thresholdnew . S c a l a r s = [ ’POINTS ’ , ’ Idp ’ ]

29 thresholdnew . S c a l a r s = [ ’POINTS ’ , ’ Cy l inderDis tance ’ ]

30 Hide ( thresholdnew , renderView1 )

31

32 #Ca lcu l a t e phi f o r each p a r t i c l e

33 ca l cu la to rnew = Calcu la to r ( Input=thresholdnew )

34 ca l cu la to rnew . ResultArrayName = ’ phi ’

35 ca l cu la to rnew . Function = ’ ( ( coordsY+1e−15)/abs ( coordsY+1e−15) ) ∗

acos ((0.125ˆ2+(7.52− coordsX ) ˆ2−(7.395− coordsX ) ˆ2) / (0 .25∗ s q r t

((7.52− coordsX ) ˆ2+(coordsY+1e−15) ˆ2) ) ) ’

36

37 #Vi sua l i s e in a the ta−z p lane

38 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

39 ca l cu la to rnew . ResultArrayName = ’MoveX ’

40 ca l cu la to rnew . Function = ’ 7.52− coordsX ’

41

42 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

43 ca l cu la to rnew . ResultArrayName = ’MoveY ’

44 ca l cu la to rnew . Function = ’ phi ∗0.2− coordsY ’

45

46 thresholdnew = Threshold ( Input=ca l cu la to rnew )

47 thresholdnew . S c a l a r s = [ ’POINTS ’ , ’Rhop ’ ]

48 thresholdnew . ThresholdRange = [ 0 , 0 ]

49 renderView1 = GetActiveViewOrCreate ( ’ RenderView ’ )

50 thresho ldnewDisplay = Show( thresholdnew , renderView1 )

51 thresholdnew . S c a l a r s = [ ’POINTS ’ , ’ Idp ’ ]

52 thresholdnew . S c a l a r s = [ ’POINTS ’ , ’Rhop ’ ]

53 Hide ( thresholdnew , renderView1 )

54

55 #Ca lcu l a t e normal v ec t o r x−d i r e c t i o n to c y l i n d e r su r f a ce at

p a r t i c l e p o s i t i o n

56 ca l cu la to rnew = Calcu la to r ( Input=thresholdnew )

57 ca l cu la to rnew . ResultArrayName = ’NormDirX ’
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58 ca l cu la to rnew . Function = ’ ( coordsX −7.52) / s q r t ( ( coordsX −7.52) ˆ2+(

coordsY−0)ˆ2) ’

59

60 #Ca lcu l a t e normal v ec t o r y−d i r e c t i o n to c y l i n d e r su r f a ce at

p a r t i c l e p o s i t i o n

61 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

62 ca l cu la to rnew . ResultArrayName = ’NormDirY ’

63 ca l cu la to rnew . Function = ’ ( coordsY−0)/ s q r t ( ( coordsX −7.52) ˆ2+(

coordsY−0)ˆ2) ’

64

65 #Ca lcu l a t e p a r t i c l e normal x−v e l o c i t y

66 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

67 ca l cu la to rnew . ResultArrayName = ’NormVelX ’

68 ca l cu la to rnew . Function = ’NormDirX∗( Vel X∗NormDirX+Vel Y∗NormDirY)

’

69

70 #Ca lcu l a t e p a r t i c l e normal y−v e l o c i t y

71 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

72 ca l cu la to rnew . ResultArrayName = ’NormVelY ’

73 ca l cu la to rnew . Function = ’NormDirY∗( Vel X∗NormDirX+Vel Y∗NormDirY)

’

74

75 #Ca lcu l a t e p a r t i c l e normal v e l o c i t y magnitude

76 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

77 ca l cu la to rnew . ResultArrayName = ’NormVelMag ’

78 ca l cu la to rnew . Function = ’ s q r t (NormVelX∗NormVelX+NormVelY∗NormVelY

) ’

79

80 #Ca lcu l a t e p a r t i c l e t a n g e n t i a l x−v e l o c i t y

81 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

82 ca l cu la to rnew . ResultArrayName = ’ TangVelX ’

83 ca l cu la to rnew . Function = ’ Vel X−NormVelX ’

84

85 #Ca lcu l a t e p a r t i c l e t a n g e n t i a l y−v e l o c i t y

86 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

87 ca l cu la to rnew . ResultArrayName = ’ TangVelY ’
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88 ca l cu la to rnew . Function = ’ Vel Y−NormVelY ’

89

90 #Ca lcu l a t e p a r t i c l e t a n g e n t i a l v e l o c i t y magnitude

91 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

92 ca l cu la to rnew . ResultArrayName = ’TangVelMag ’

93 ca l cu la to rnew . Function = ’ s q r t ( TangVelX∗TangVelX+TangVelY∗TangVelY

) ’

94

95 #Ca lcu l a t e p a r t i c l e v e l o c i t y magnitude

96 ca l cu la to rnew = Calcu la to r ( Input=ca l cu la to rnew )

97 ca l cu la to rnew . ResultArrayName = ’VelMag ’

98 ca l cu la to rnew . Function = ’ s q r t ( Vel X∗Vel X+Vel Y∗Vel Y+Vel Z∗Vel Z

) ’

99

100 warpByScalar1 = WarpByScalar ( Input=ca l cu la to rnew )

101 warpByScalar1 . S c a l a r s = [ ’POINTS ’ , ’MoveY ’ ]

102 warpByScalar1 . Normal = [ 0 . 0 , 1 . 0 , 0 . 0 ]

103 warpByScalar1 . S c a l a r s = [ ’POINTS ’ , ’ Cy l inderDis tance ’ ]

104 warpByScalar1 . S c a l a r s = [ ’POINTS ’ , ’MoveY ’ ]

105

106 warpByScalar1 = WarpByScalar ( Input=warpByScalar1 )

107 warpByScalar1 . S c a l a r s = [ ’POINTS ’ , ’MoveX ’ ]

108 warpByScalar1 . Normal = [ 1 . 0 , 0 . 0 , 0 . 0 ]

109 warpByScalar1 . S c a l a r s = [ ’POINTS ’ , ’ Cy l inderDis tance ’ ]

110 warpByScalar1 . S c a l a r s = [ ’POINTS ’ , ’MoveX ’ ]

111

112 renderView1 = GetActiveViewOrCreate ( ’ RenderView ’ )

113 Show( warpByScalar1 , renderView1 )
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