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Abstract

In coastal engineering, Lagrangian meshless numerical methods have reached a

good popularity and they have been applied with success to describe wave break-

ing, impact of wave on structures and other rapid phenomena. This is due to the

fact that they have a number of advantages in comparison with classical Eule-

rian schemes: no explicit treatment of the free surface and no computational grid

mean that sophisticated meshing is not needed for complex geometries and there-

fore a number of problems that were considered largely intractable using classical

Eulerian numerical methods such as finite volume or finite elements can now be

simulated. As a relatively new method in Computational Fluid Dynamics, this

kind of methods may be considered immature and many fundamental aspects and

key characteristics remain to be fully investigated. The solid boundary condition

is such an example: imposing closed boundary conditions in meshless methods in

general, and in Smoothed Particle Hydrodynamic (SPH) in particular, is still an

open problem. In the first chapter of this thesis an approximate Virtual Boundary

Particle Method (VBP) for solid boundary conditions in two-dimensional (2-D)

SPH models is presented; this is a development of the original VBP method re-

cently proposed by Ferrari et al. (A new 3-D parallel SPH scheme for free-surface

flows, Computers & Fluids, 38(6), 1203-1217, 2009). The aim is to maintain the

zeroth moment of the kernel function as closely as possible to unity, (a property

referred to as zero-consistency), for particles close to solid boundaries. The main

advantage of the MVBP in comparison with other methods such as Mirrored

Particles is that curved boundaries or boundaries with angles can be easily re-

produced.

Some authors applied the Smoothed Particle Hydrodynamics (SPH) method to

integrate the Shallow Water Equations (SWE) obtaining promising results for

simple test cases where no open boundaries are present and the analytical formu-

lation of source terms are applied: with SPH the wet-dry fronts do not need any

special treatment, the equations are solved just where the fluid is present and
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this can potentially speed up the calculations if there are large dry areas in the

domain. A 2D Shallow Water code based on the SPH interpolation is developed

in the chapters 2 - 4 of this work, with the aim of further improving the capability

of these numerical schemes of simulating real flooding events. The SPH-SWEs

code is developed following the variational formulation, thanks to this approach

the numerical scheme is robust and both the total mass and the momentum are

conserved.

Some major improvements has been introduced in the SPH-SWEs model in order

to make the simulation of real floodings feasible. The Modified Virtual Boundary

Particles (MVBP) is used to describe the closed boundaries, the bottom and the

friction source term are described by a set of bottom particles. This discretization

is effective not just for simple test case but also in for real bathymetries. More-

over, a particle splitting procedure has been inserted: it has the purpose to avoid

the lack of resolution due to the variable kernel size being inversely proportional

to water depth. This splitting procedure conserves mass and momentum by vary-

ing the smoothing length, velocity and acceleration of each refined particle. This

improves predictions but does not necessarily provide good shock capturing. This

is improved by treating particle interactions as a Riemann problem with MUSCL

reconstruction providing stability.

The last limitation that inhibits the use of the SPH-SWEs for real flooding simu-

lation is the absence of any method to impose open boundary conditions. These

are introduced in chapter 4 by adopting a simplified version of the Characteristic

boundary method. Both supercritical and subcritical inflow and outflow bound-

ary conditions can be simulated.

Thanks to all the improvements described above, the simulation of two real events

by a SPH-SWEs is presented in chapter 4, for the first time. The first case is the

Okushiri tsunami occurred in Japan in 1993, whereas the second one is a flooding

flood inundation at Thamesmead (UK).

In Chapter 5 the simulation of rapidly varying flows is analysed removing the hy-

pothesis of Shallow Water flows: a meshless Lagrangian numerical model called

Finite Pointset Method (FPM) for the integration of Navier-Stokes equations in

presence of free-surface flow is presented. The Finite Pointset Method (FPM)

is a Lagrangian meshless method for numerical integration of pure incompress-

ible Navier-Stokes equations, applied to date just to internal flows. It belongs

to SPH like family because each particle carries a vector of field quantities such

as pressure, density, velocity etc. and information and physical quantities are

approximated using particles in a circular neighbourhood. FPM holds also some
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remarkable advantages in comparison with classical SPH methods: it is based

on a moving least squares approach, where particles are just interpolation points

without any associated mass and this means that any order of accuracy can be

reached regardless to the particles position. In FPM the fluid is described as

purely incompressible and the Navier-Stokes equation are solved numerically by

means of the projection method therefore no spurious oscillations in the pressure

field are present. Moreover in FPM boundary conditions can be analytically en-

forced using boundary particles and fluid particles can be added and removed

in order to preserve the stability of the solution. This fact represents another

fundamental advantage in comparison with classical SPH. Originally the FPM

has been confined to single or two phase flow, but in chapter 5 it has extended

also to free-surface flows by introducing a novel algorithm for free surface detec-

tion. In addition to that, a novel formulation of the Projection Method, called

Incremental Pressure Projection Method, has been applied in order to preserve

the hydrostatic condition.
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Chapter 1

Zeroth-order Consistent

Boundary Conditions

1.1 Literature review of closed boundary meth-

ods

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian meshless method orig-

inally introduced to simulate astrophysical problems by Gingold and Monaghan

[1977], Lucy [1977] where no solid boundaries were present. A variety of new

solutions have been suggested by many authors (Randles and Libersky [1996],

Kulasegaram et al. [2004], Lee et al. [2008], Hieber and Koumoutsakos [2008])

and each one has advantages and drawbacks. The work in this session is mo-

tivated by trying to apply an SPH-based solver for the shallow-water equations

to cases where other techniques for solid boundaries have failed, most notably

the ghost-particle technique (Randles and Libersky [1996]). In this chapter cer-

tain methods for simulating solid boundary condition are analysed, and a novel

method based on the idea of the virtual particles (Ferrari et al. [2009]) is intro-

duced, enhanced and implemented in a shallow water equation model.

Imposing boundary conditions in meshless methods in general and in SPH in

particular is still an open problem. This is due to the intrinsic nature of kernel

based interpolation; the interpolated value of a function 〈f〉i is, in general, dif-

ferent to the exact value at the same point. The first approach as proposed in

Monaghan [1994], Monaghan et al. [2003] is the repulsive force method; the key

idea is to describe the wall by particles which exert a repulsive short-range force
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Chapter 1. Zeroth-order Consistent Boundary Conditions

similar to a Leonard-Jones potential force on fluid particles.

Mirror or ghost particles as introduced by Randles and Libersky [1996] is an-

other widely used way to describe boundaries in SPH. Kulasegaram et al. [2004]

proposed a variant of this method; instead of using additional particles they in-

troduced an additional term in the momentum equation in order to mimic the

effect of the wall. This technique eventually uses an empirical function to approx-

imate the force originating from variational principles. However, this becomes

particularly unwieldy in calculations in 2-D and 3-D involving many boundaries

that may be moving. These methods have the advantage of restoring zeroth-order

consistency in the SPH interpolation; indeed the effect of kernel truncation near

the boundaries is eliminated by introducing either some artificial particles posi-

tioned at a symmetric position (with respect to the boundaries) or an additional

term in the momentum equation. Another form of the ghost particle method has

been used in Incompressible SPH models (Shao and Lo [2003], Lee et al. [2008])

where dummy particles represent the solid: the drawback of this method is that

special treatment for corners is needed and that sometimes particles penetrate

the solid boundaries.

The repulsive force method is more flexible because it can be used to describe

complex moving boundaries, but it can introduce a non-physical pressure oscil-

lation and it does not reduce the effect of kernel truncation near the wall. In

contrast the main drawback of mirror or ghost particle methods is that they are

not able to deal with complex geometries in a straightforward way.

Hieber and Koumoutsakos [2008] adopted an immersed boundary technique in

order to impose a non-slip boundary condition in an SPH method. This ap-

proach has some advantages because the conservation of physical quantities is

ensured and it is able to handle complex boundaries. Unfortunately a key aspect

of the immersed boundary method in an SPH formulation is a remeshing proce-

dure. Therefore it cannot be easily applied to flows where moving interfaces are

present such as free-surface flows or shallow water flow with wet/dry interfaces.

1.2 Zeroth-order consistency in SPH formalism

In the continuous domain the SPH interpolation method of a scalar function f(x)

is based on the following integral:

f(x) =

∫

Ω

f(x′) W (x − x′, h) dx′ (1.1)

4



1.2. Zeroth-order consistency in SPH formalism

∇f(x) =

∫

Ω

f(x′) ∇W (x − x′, h) dx′ (1.2)

where the integral is over the domain Ω and the smoothing length h is the parame-

ter that determines the size of the support for the weighting function, W (x−x′, h)

(Monaghan [1992] demonstrated that the SPH summation is second-order ac-

curate). In the discrete domain the integral of equations (1.1) and (1.2) are

approximated numerically by summations:

〈f〉i =

N
∑

j

fjWi(xj , hi)Vj (1.3)

〈∇f〉i =

N
∑

j

fj∇Wi(xj , hi)Vj (1.4)

where 〈· · · 〉 denotes the SPH approximation, Vj is the volume associated with

the jth particle, N is the number of particles inside a circle with 2h radius and

centred at point xi.

In general the exact value of the function fi is different from the SPH interpolation

〈f〉i. Many kernel functions are proposed in literature (Li and Liu [2003]), in this

work a cubic spline kernel is adopted:

W (R) = αd ×











2
3 −R2 + 0.5R3 R ≤ 1

1
6 (2 −R)

3
1 < R ≤ 2

0 R > 2

(1.5)

where R = |x − xi|/h, in one and two dimensional space αd = 1/h, αd =

15/(7πh2).

One of the most important requirements for a kernel function is that the zeroth

moment of the kernel function is equal to 1:

∫

Ω

W (x − x′, h) dx′ = 1 (1.6)

this is called the zeroth-order consistency property. Using the summation ap-

proximation of the integral in equation (1.6) the same property is defined as the

zeroth moment:

m0 =

N
∑

j

Wi(xj , hi)Vj = 1 (1.7)
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In general in SPH, because of the kernel truncation effect, in a bounded domain

m0 6= 1 for particles close to the boundary. This means that the SPH interpola-

tion is not zeroth-order consistent for those particles and numerical inaccuracies

and instabilities arise. Therefore the approximation of m0 to unity can be con-

sidered a basic criterion for assessing the quality of a method for imposing solid

boundary conditions.

1.3 Virtual Boundary Particle method

Recently, Ferrari et al. [2009] introduced a new method called the Virtual Bound-

ary Particle (VBP) method where virtual particles are placed along boundary

walls which in turn are used to generate virtual interior mirror-like particles for

each flow particle near the wall. In this way complex boundaries may be readily

handled. These particles on the boundary walls are called virtual because they

do not move with the fluid. The virtual wall particles generate virtual interior

particles using a local point-symmetry: if the distance between a fluid particle i

and a virtual wall particle v is less than 2h, then a new virtual interior particle

k is generated and it is positioned at xk = 2xv − xi. It is emphasised that the

particles are called virtual because they are used just for interpolating the phys-

ical quantities of fluid particle i, and thereafter they are discarded.

We perform some analysis considering different shapes of boundary with the aim

of finding out the best distance between virtual wall boundary particles, and a

Modified Virtual Boundary Particle (MVBP) method is introduced to generalise

application for arbitrary geometries while minimising the errors associated with

kernel truncation.

The stencil plotted in Figure 1.1 is obtained for a generic particle positioned far

away from the boundary, considering a 2-D domain discretized using an idealized

set of particles positioned in a square grid of size dx and taking the smoothing

length h = 1.2dx, typical in SPH. An ideal boundary method should be able to

reproduce the same stencil for particles that are close to the boundaries, regard-

less of its shape.

Figure 1.2 shows neighbours (or stencil) for a particle close to a straight bound-

ary, generated by (a) VBP and (b) MVBP. Taking the distance between virtual

wall particles dxb = 0.5dx the interior column of the stencil of Figure 1.2-a ex-

actly reproduces a local artificial rectangular array of particles. This is thus an

appropriate value for dxb.

In the original VBP method, if one flow particle is interacting with a virtual
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wall particle, then only one virtual interior particle is generated. In the MVBP

method the number of virtual interior particles generated by each virtual wall

particle is increased to 2: they are positioned at

xk,1 = 2xv − xi

xk,2 = 4xv − xi
(1.8)

where xk,1, xk,2 are the positions of the two interior particles, xv is the position

of the virtual wall particle interacting with the fluid particle i.

The second modification introduced in the MVBP method is that two particles

are added inside corners with internal angles ≤ 180◦ (see Figure 1.3) and this

further reduces the kernel truncation effect for those singular points in comparison

with the original VBP.

The Figures 1.2 - 1.5 show the comparison between the stencils obtained using

the original VBP and the MVBP for different geometries of the boundaries:

the modifications we introduce allow the reproduction of stencils that are more

similar to the idealised one plotted in Figure 1.1. Strictly speaking, we can

actually place virtual wall particles at spacings of 0.25dx along the boundary in

order to generate virtual particles at (xi + 2dx, yi ± dx) where x and y are 2D

Cartesian coordinates. However, it can be shown that these have a far smaller

effect than the virtual particles at (xi + 2dx, yi). The same comparison between

the original and modified VBP method considering a curved boundary is plotted

in Figure 1.4. Finally Figure 1.5 shows the stencil of a particle close to a 270◦

internal angle. In this case both the original and the modified VBP reproduce

the same stencil.

Figure 1.1. stencil of a internal particle
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Chapter 1. Zeroth-order Consistent Boundary Conditions

(a) (b)

Figure 1.2. particle close to a boundary straight line: stencil generated using (a) the
original VBP and (b) the MVBP

(a) (b)

Figure 1.3. particle close to 90◦ internal angle: stencil generated using (a) the original
VBP and (b) the MVBP

1.4 Zeroth-order consistent evaluation for a range

of possible wall configurations

With the aim of testing the capability of the MVBP method to deal with any 2-D

boundary shape some numerical tests are performed by calculating the zeroth-

order consistent condition m0, (Equation 1.7), for different domains.

Figure 1.6 shows m0 calculated in a square domain filled with 1600 disordered

8



1.4. Zeroth-order consistent evaluation for a range of possible wall
configurations

(a) (b)

Figure 1.4. particle close to a curved boundary: stencil generated using (a) the original
VBP and (b) the MVBP

Figure 1.5. internal particle close to 270◦ internal angle: stencil generated using the
original VBP and the MVBP (there is no difference)
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particles, considering (a) no boundary treatment, (b) the mirror ghost particle

method (c) the VBP method and (d) the MVBP method: for this simple geome-

try (b), (c) and (d) methods reproduce approximately the same values and they

are all able to restore approximate zeroth-order consistency near the boundaries.

Here we have plotted the variation of m0 between the values of 0.9 to 1.1 to com-

pare with the no-boundary version in Figure 1.6-a. However it will be seen below

that the choice of boundary treatment does make a difference in the corners that

is not visible in these plots.

The same comparison, (but placing the particles over a uniform Cartesian grid)

is then performed with an L-shaped domain (see Figure 1.7) and a square domain

with an internal angle of 270◦ (see Figure 1.8). The mirror particle method (Ran-

dles and Libersky [1996]) is not able to deal with this kind of boundary because

the value of m0 in the proximity of internal angles ≥ 180◦ is overestimated: the

maximum error of m0 obtained by MVPM and VPM for both L-shape and inter-

nal angle of 270◦ geometries is two orders of magnitude less than that obtained

by virtual particles (see Table 1.1 discussed below). Finally a domain with the

curved boundaries of a toroid shape is considered (see Figure 1.9). In Figure

1.10 the value of m0 along y=0 is plotted: the MVBP method produces the best

estimate of m0, the mirror particle method overestimates m0 for particles close

to the inner boundary.

Table (1.1) shows the zero-th moment error |m0 −1| for different singular points,

such as the particle closest to the corner in Figure 1.3, with the aim of assessing

the quality of different boundary methods: no boundary treatment, mirror par-

ticles, original VBP and MVBP methods. The singular points considered are:

a point close to a straight line (Figure 1.2), points closest to 90◦ corner (Figure

1.3), 270◦ corner in the L-shape (Figure 1.5) and the 270◦ (Figure 1.8) internal

angles in the square, a point closest to an external circle (Figure 1.4) and an

internal circle boundary (Figure 1.9).

For the straight line and the internal 90◦ angle, mirror particles and the MVBP

method reproduce similar results, the error produced by mirror particles is slightly

less because in the MVBP method the particles furthest apart in the stencil are

still missing as explained in section 1.3. This difference will be seen not to influ-

ence the results of still water simulation presented in section 1.6 and therefore can

be considered negligible. Conversely the error reproduced by the VBP method

is remarkably bigger than the one obtained by MVBP.

For points closest to a 270◦ angles in the L-shape and square domains, both VBP

and MVBP reproduce remarkably better results than mirror particles which over-
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1.5. Correction for variable smoothing length

estimate significantly m0. For the external circular boundary the results obtained

by MVBP are one order of magnitude better than those reproduced by mirror

particles and VBP produces errors bigger than MVBP. Finally for the internal

circular boundary both MVBP and VBP produces better results than mirror

particles, for this case the difference between MVBP and VBP is negligible due

to the particular choice of the smoothing length and to the radial distribution of

fluid particles.

(a) (b)

(c) (d)

Figure 1.6. m0 calculated for a set of disordered particles in a square bounded domain:
(a) no boundary condition, (b) mirrored particle method, (c) VBP and (d) MVBP

1.5 Correction for variable smoothing length

In the SPH models for Shallow Water Equations a variable smoothing length is

considered (see chapter 2). At the begin of the simulation the initial smoothing

length of the particles h0 is h0 = cdx where dx is the initial interparticle spacing
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(a) (b)

(c) (d)

Figure 1.7. m0 calculated in a bounded domain with an 270◦ internal angle with an
L-shape geometry: (a) no boundary condition, (b) mirrored particle method, (c) VBP
and (d) MVBP
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(a) (b)

(c) (d)

Figure 1.8. m0 calculated in a bounded domain with 270◦ internal angle: (a) no
boundary condition, (b) mirrored particle method, (c) VBP and (d) MVBP
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(a) (b)

(c) (d)

Figure 1.9. m0 calculated in a bounded domain with a toroid shape: (a) no boundary
condition, (b) mirrored particle method, (c) VBP and (d) MVBP

Figure 1.10. comparison of m0 calculated in a bounded domain with a toroid shape
in the section y=0 using no boundary condition, mirrored particle method, VBP and
MVBP
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Table 1.1. |m0−1| calculated for different points using no boundary methods, mirrored
particles, MVBP and original VBP

no boundary mirrored part. VBP MVBP
straight line 2.15E − 001 2.00E − 004 3.60E − 003 6.00E − 004
90◦ 3.86E − 001 2.00E − 004 6.90E − 003 6.00E − 004
270◦ L-shape 4.44E − 002 4.39E − 002 2.00E − 004 2.00E − 004
270◦ 2.53E − 001 7.46E − 001 3.15E − 002 1.87E − 002
circ external 2.21E − 001 1.07E − 002 4.80E − 003 1.90E − 003
circ internal 1.95E − 001 4.40E − 002 1.04E − 002 1.35E − 002

(a) (b)

Figure 1.11. stencil generated for a particle close to a boundary: (a)-straight wall
and (b)-internal angle of 90◦

and c = 1.2 is a coefficient Balsara [1995], and the virtual boundary particles are

placed along the boundaries at a distance dxb = 0.5dx because this is the best

value to keep the zeroth-order consistency (see section 1.2).

When the smoothing length h of the i-th fluid particle become bigger than the

initial value h0 then the particle i interacts with an higher number of virtual

particles and the zeroth-moment m0 > 1. To restore the zeroth-order consistency

even in presence of variable h the mass associated to the virtual particle j mv,j

is corrected as:

mv,j =
h0

hi
mi (1.9)

where mi is the mass of i-th fluid particle.

Figure 1.12 shows m0 calculated for a particle close to a straight wall (see Figure

1.11-a) using both the corrected and uncorrected mass for virtual particle: the

correction of Equation (1.9) restore the zeroth-order consistency condition (m0 ≃
1) even in the presence of variable smoothing length.
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(a)

Figure 1.12. zero-th moment m0 calculated with and without the variable smoothing
length correction of Equation (1.9)

1.6 Still shallow water test cases

In this section the results of several test cases are presented, they are carried

out using the SPH Shallow Water numerical model described in detail in chapter

2. In all of the tests still water with different bottom topographies and with

or without a wet-dry interface is simulated. All the tests omit bottom friction,

which would damp any motion, because this is the most effective way to verify

the source bed gradient treatment described in section 2.3 and to compare the

different methods previously examined for boundary condition (see section 1.3).

For every 1-D test case a convergence analysis is also performed calculating the

norm of water depth error L2(d):

L2(d) =

√

√

√

√

1

N

N
∑

i=1

(di − di,ex)
2

(1.10)

where N is the total number of particles in the domain, di and di,ex are the

numerical and analytical water depth of ith particle.

The norm of the velocity error L2(v) is also calculated as follows:

L2(v) =

√

√

√

√

1

N

N
∑

i=1

(vi)
2

(1.11)
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In order to verify the attainment of a steady condition in time a global relative

error Ls (Zhou et al. [2001b]) is calculated at each time step:

Ls =

√

√

√

√

N
∑

i=1

(

1 − dn−1
i

dni

)2

(1.12)

where dn−1
i and dni are the water depth at the previous and current time step.

When the norm has reached a value of 1 · 10−3 then the steady condition is said

to be achieved and the simulation is stopped.

1.6.1 1-D

1.6.1.1 Bed with submerged and surface-piercing humps

In the first two test cases a bottom with a hump is considered with and without

a wet/dry interface, in both tests the equation of the bottom b is:

{

b = c(1 + sin(π(4x+ 0.5))) if 0.25 < x < 0.75

b = 0 otherwise
(1.13)

where c is equal to 0.05m and 0.25 m in the first and second test. Initial particle

spacing dx = 0.04, 0.02, 0.01 and 0.005 m are considered and the particle spacing

used for bottom particles is dxb = dx in every simulation.

Figure (1.13) shows the free surface and the velocity field for an initial particle

spacing of dx = 0.005 m; the results are plotted using both the analytical and

SPH interpolation of the bed gradient source term. The water depth obtained by

the numerical model is in good agreement with the analytical solution. The two

methods for the bed source term reproduce an analogous small maximum non-

dimensional velocity
(

|vmax|/
√
dmaxg

)

< 0.01. The variation of velocity might

appear large in Figure 1.13-(b), but the variation is less than 1% of
√
dmaxg.

In Figures (1.14) the norms of water depth L2(d) and velocity L2(v) errors are

plotted: both converge with a convergence rate almost equal to 1.

This analysis is repeated for a surface-piercing hump in Figures 1.15 and 1.16

where the depth and the velocity are shown to be convergent. The rate of con-

vergence of the velocity in Figure 1.16-(b) is slow due to the wet-dry interface.
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Chapter 1. Zeroth-order Consistent Boundary Conditions

(a)

(b)

Figure 1.13. still water over a hump: (a) water depth, (b) velocity
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1.6. Still shallow water test cases

(a)

(b)

Figure 1.14. still water over a hump, L2 norm of error: (a) water depth, (b) velocity
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(a)

(b)

Figure 1.15. still water over a hump and wetting and drying interface: (a) water
depth, (b) velocity
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1.6. Still shallow water test cases

(a)

(b)

Figure 1.16. still water over a hump and wetting and drying interface, L2 norm of
error: (a) water depth, (b) velocity
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1.6.1.2 Bed with step

In the third test case still water over a bottom step is simulated, this is a chal-

lenging test because of the discontinuity in the bottom elevation b. The SWEs

are derived assuming that the bed is slowly varying. However, the SWEs are

often applied to cases where there are abrupt changes in bed elevation and

they are not strictly valid. The aim here is to examine the effect of applying

the SPH-SWE without any form of the balancing techniques (Bermúdez and

Vázquez [1994], Vázquez-Cendón [1999], Hubbard and Garćıa-Navarro [2000],

Garćıa-Navarro and Vázquez-Cendón [2000], Zhou et al. [2001b], Rogers et al.

[2003]).

Initial particle spacing dx = 0.04, 0.02, 0.01 and 0.005 m are considered for fluid

particles. In order to deal with the abrupt change in the topography a particle

spacing for bottom particles dxb = 0.25dx is used.

In Figure (1.17) both water elevation and velocity are plotted; we see that the

maximum non-dimensional velocity
(

|vmax|/
√
dmaxg

)

< 0.02. The free surface

is in good agreement with the analytical solution everywhere but in the neigh-

bourhood of the step: this is due to the fact that the balancing between the SPH

approximations of the internal and external forces (equations 2.20 and 2.22) fail

in presence of abrupt changes of bed elevation. Despite this, no instabilities are

present, a steady state condition is obtained according to Equation (1.12), and

both the velocity and the water depth converge (see Figure 1.18). A technique

to circumvent this problem over the step is however needed.

1.6.1.3 Parabolic submerged and surface-piercing beds

In the fourth test case a 1-D parabolic topography is considered and the ca-

pability for simulating still water in the presence of a wet/dry interface is also

demonstrated. The equation of the bottom is:

b = b0

(

x− 0.5L

a

)2

where b0=10 m, a=3000 m and the dimension of the domain is L=10000 m. The

still water level is 10 m.

Initial particle spacings of dx = 80, 40, 20 and 10 m are considered for fluid

particles and the bottom particle spacing is dxb = dx. The simulations are run

using both an analytical and SPH discretization of the bed source term. In

Figure 1.19 the water depth and velocity for the simulation with the smallest dx
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1.6. Still shallow water test cases

(a)

(b)

Figure 1.17. still water over a step: (a) water depth, (b) velocity
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(a)

(b)

Figure 1.18. still water over a step, L2 norm of error: (a) water depth, (b) velocity
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1.6. Still shallow water test cases

are plotted, the water depth is in good agreement with the analytical solution

and the two methods for the bed source term reproduce the same velocity field,

with the maximum non-dimensional velocity
(

|vmax|/
√
dmaxg

)

< 0.02. In Figure

(1.20) the norms L2(d) and L2(v) are plotted and they show that both the water

depth and the velocity converge to the exact solution with a convergence rate

that is less than 1. This is due to the fact that near the wet-dry interface there

is a kernel truncation effect that reduces the accuracy of SPH interpolation. In

(a)

(b)

Figure 1.19. still water over a parabolic topography with wetting and drying interface:
(a) water depth, (b) velocity

the last 1-D test case the parabolic bottom and the same initial particle spacing

is considered. However there is no wet/dry interface but there are side walls

instead. The dimension of the domain is L=3000 m and two wall boundary

conditions at x=0 m and x=3000 m are imposed. As in the previous test case

both analytical and SPH discretizations of the bed source term are considered. In

Figure (1.21) the free surface and the velocity are plotted: the water depth is in
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Chapter 1. Zeroth-order Consistent Boundary Conditions

(a)

(b)

Figure 1.20. still water over a parabolic topography with wetting and drying interface,
L2 norm of error: (a) water depth, (b) velocity
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1.6. Still shallow water test cases

good agreement with the analytical solution and the maximum non-dimensional

velocity
(

|vmax|/
√
dmaxg

)

< 0.006. In Figure (1.22) the norm L2(d) and L2(v)

are plotted; both converge to the exact solution.

(a)

(b)

Figure 1.21. still water over a parabolic topography: (a) water depth, (b) velocity

1.6.2 2-D

In these two-dimensional cases both the boundary conditions introduced and

examined in sections 1.3 and 1.4, and the bed discretization will be tested.

1.6.2.1 Parabolic basin with surface-piercing and submerged beds

In this paragraph the results of two 2-D test cases simulating still water over

a 2-D parabolic topography are investigated; the SPH bottom discretization of

Section 2.3 is applied.
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(a)

(b)

Figure 1.22. still water over a parabolic topography, L2 norm of error: (a) water
depth, (b) velocity
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1.6. Still shallow water test cases

In the first test case the presence of the wet/dry interface is considered and the

equation of the bottom is:

b = b0
(x− 0.5Lx)

2 + (y − 0.5Ly)
2

a2
(1.14)

where b0=10 m, a=3000 m and the dimension of the domain are Lx = Ly=10000

m. The simulation is run using 448 particles and stopped at time 1000 s, when

the condition (1.12) applies. In Figure 1.23 the particle positions and the velocity

field are plotted. The water elevation and velocity magnitude maps are plotted

in Figure 1.24, where the maximum velocity magnitude is less than 1.5% of√
gdmax. Finally Figure 1.25 shows the water surface elevation and the velocity

magnitude at section y = 0. In the second 2-D test case, the parabolic bottom of

Figure 1.23. still water over a parabolic topography 2-D at time 1000 s: velocity field
and particle positions

Equation (1.14) with b0=10 m, a=3000 m and the dimensions of the domain are

Lx = Ly=3000 m. A circular solid boundary condition with a radius at 1500 m

is imposed. This test case is simulated using 699 fluid particles and two different

methods for boundary conditions: in Figures (1.26) and (1.27) the results are

plotted using the MVBP method whereas Figures (1.28) and (1.29) show results

obtained using the mirror particle method. We can see that the results obtained

using the two method are very similar: the maximum velocity magnitude is less

than 0.4% of
√
gdmax and the free surface elevation is in good agreement with

the analytical solution. Therefore for a circular concave geometry, the choice of

boundary condition is not critical. As will be demonstrated next, the choice of

boundary condition is important for more irregular geometries.
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Chapter 1. Zeroth-order Consistent Boundary Conditions

(a)

(b)

Figure 1.24. still water over a parabolic topography 2-D with wetting and drying
interface at time 1000 s: (a) free surface elevation, (b) velocity magnitude
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1.6. Still shallow water test cases

(a)

(b)

Figure 1.25. still water over a parabolic topography 2-D with wetting and drying
interface:, section y=0: (a) free surface elevation, (b) velocity magnitude

Figure 1.26. still water over a parabolic topography 2-D with MVBP boundary
condition at time 1000 s: velocity field and particle positions
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(a)

(b)

Figure 1.27. still water over a parabolic topography 2-D with MVBP method at time
1000 s: (a) free surface elevation, (b) velocity magnitude

Figure 1.28. still water over a parabolic topography 2-D with mirrored particle bound-
ary condition at time 1000 s: velocity field and particle positions
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1.6. Still shallow water test cases

(a)

(b)

Figure 1.29. still water over a parabolic topography 2-D with mirrored particle bound-
ary condition at time 1000 s: (a) free surface elevation, (b) velocity magnitude
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Chapter 1. Zeroth-order Consistent Boundary Conditions

1.6.2.2 Domains with vertical walls including acute angles

The last test case is done in order to compare the three methods for boundary

conditions with a box with an internal angle of 300◦ and a flat bottom. The

simulation is run using 1552 particles, and it is stopped at time 1 s, when (using

MVBP) the condition of Equation (1.12) is satisfied. The results obtained using

MVBP are plotted in Figure (1.30) and (1.31) and Figures (1.32) and (1.33)

shows the particle positions, water level and velocity magnitude obtained using

the mirror particle method. The comparison between the two methods shows

that the MVBP achieves the best results. In the simulation with the mirror

particle method particles near to the internal angle of 300◦ start to move and

this happens because in the area close to that angle it is difficult to generate the

mirror particles within the internal angle and avoid placing mirror particles upon

fluid particles.

The original VBP method is not able to achieve the steady state condition; the

kernel truncation effect generates instabilities and particles start to penetrate

the walls. In Figure 1.34 the particle positions and the velocity field are plotted

after 0.1 s of simulation. In order to prove the capability of MVBP to deal

(a) (b)

Figure 1.30. still water in a box with an internal angle of 300◦ with MVBP method
at time 1 s: velocity field and particle positions, (a) whole domain (b) zoom

with large internal angles, i.e. acute solid angles, the same test is repeated

with an internal angle equal to 345◦. In Figure (1.35) the position of particles

after 1 s of simulation is plotted. Figure (1.36) shows the water depth and the

velocity magnitude fields at the same time; the steady state condition is reached

according to equation (1.12) and the maximum velocity magnitude is less that
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1.6. Still shallow water test cases

(a)

(b)

Figure 1.31. still water in a box with an internal angle of 300◦ with MVBP method
at time 1 s: (a) free surface elevation, (b) velocity magnitude

(a) (b)

Figure 1.32. still water in a box with an internal angle of 300◦ with mirrored particle
boundary condition: velocity field and particles position, (a) whole domain (b) zoom
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(a)

(b)

Figure 1.33. still water in a box with an internal angle of 300◦ with mirrored particle
boundary condition: velocity field and particles position: (a) free surface elevation, (b)
velocity magnitude
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(a) (b)

Figure 1.34. still water in a box with an internal angle of 300◦ with VBP: velocity
field and particles position after 0.1 s of simulation, (a) whole domain (b) zoom

0.8% of
√
gdmax, and is similar to the value obtained in the simulation with an

internal angle equal to 300◦ (see Figure 1.31-a).

Figure 1.35. still water in a box with an internal angle of 345◦ with MVBP method
at time 1 s: velocity field and particle positions

1.7 Concluding Remarks

An improved method for solid wall boundary conditions in 2-D SPH has been

presented. This is motivated for application of SPH to the shallow water equa-

tions and is based on the idea of using virtual boundary particles to approximate

closely the zeroth-order consistency condition. This has been assessed for various
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(a)

(b)

Figure 1.36. still water in a box with an internal angle of 345◦ with MVBP method
at time 1 s: (a) free surface elevation, (b) velocity magnitude
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shapes including some with large internal angles. The method has been imple-

mented in a shallow water algorithm and tested by reproducing still water in

1-D and 2-D domains. Furthermore, in order to generalise the SPH model for

irregular bathymetries, the bed gradient source term has been discretised by in-

troducing a set of bottom particles to define the bed elevation and its derivatives

in an SPH interpolation. This new method has been tested by simulating still

water in domains of different shape with different bed topographies in the ab-

sence of bottom friction: a submerged and a surface-piercing hump, a bed step,

a submerged and surface-piercing parabolic bed and domains with an acute solid

angle. The bed treatment is able to reproduce motionless water with an accuracy

similar to an analytical treatment of the bed source term.

39





Chapter 2

SPH numerical model for

Shallow Water equations

2.1 Introduction

The 2-D SWEs are a widely used description of flows over shallow domains for

a great range of rapidly (and slowly) varying free surface flows, for example,

dam break flood waves, flood waves in rivers, tides in estuaries. Such equations

are derived from the conservation principles of mass and momentum by depth

integrating the continuity and Navier Stokes equations over the water depth d.

Recently SPH methods have been applied to the SWEs (Rodriguez-Paz and Bonet

[2005], Ata and Souläımani [2004]) obtaining promising results; these Lagrangian

models have some distinct advantages: no mesh is needed, the wet/dry interfaces

require no special treatment and the mass is automatically conserved.

In this chapter a 2D Shallow Water code based on the SPH interpolation is

derived by means of the variational formulation proposed by Bonet and Lok

[1999]. A novel bed gradient source term SPH dicretization is also presented,

and finally different formulations of the stabilization term are derived and tested

against 1D and 2D circular Dam Breaks reference solutions.
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Figure 2.1. flow with a free surface under the effect of gravity

2.2 SPH for Shallow water: Variational formula-

tion

SWEs are formally identical to Euler equation if we re-define the density ρ as the

amount of fluid per unit of area in a 2-D domain; given this new definition of ρ

we can connect it to the depth of water d with :

ρ = ρwd (2.1)

where ρw denote the constant 3D density. Using the definition of Equation 2.1

SWEs can be written as follow:

dρ

dt
= −ρ∇ ·v (2.2)

dv

dt
= − g

ρw
∇ρ+ g (−∇b+ Sf ) (2.3)

where v is the horizontal velocity vector, b is the bottom elevation, g is the ac-

celeration due to gravity and Sf is the bed friction source term.

There is a linear dependence of the density ρ to the water depth and ρi of a

particle i can vary enormously during a simulation, therefore a SPH scheme with

variable smoothing length h in time and space should be used in order to keep

the number of neighbour particles roughly constant during both inundation and

drying stages. Nelson and Papaloizou [1994] have derived an SPH h-variable for-
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2.2. SPH for Shallow water: Variational formulation

mulation where ∇h correction terms are included in the momentum equation but

this introduces some numerical oscillations (Springel and Hernquist [2002]) and

therefore has not found a widespread usage in SPH codes. Bonet and Lok [1999]

have derived the SPH equations for a continuum using a variational approach,

Springel and Hernquist [2002] extended this new approach for a system of par-

ticles with variable smoothing lengths and this leads to an elegant formulation

of the momentum equation where a correction factor α is introduced (section

2.2.2). The latter approach is used in this work because is simple and robust and

conserves both the mass and the momentum.

2.2.1 Density evaluation

SPH approximation for density of the i-th particle ρi is (Monaghan [1992]) :

ρi =
∑

j

mjWi(xj , hi) (2.4)

In general, h is connected to the density (Benz [1990]) with :

hi = h0

(

ρ0

ρi

)1/dm

(2.5)

where ρ0, h0 are the initial density and smoothing length for the i-th particle

and dm is the number of space dimensions (1 in 1D and 2 in 2D).

The above equation is implicit because the density is itself a function of hi as

reported in Equation (2.4). In this paper a simple Newton - Raphson iteration

is adopted in order to solve this system of two Equations (2.4) and (2.5).

The residual of the density ψ is defined at the kth iterative cycle as

ψ
(

ρki
)

= ρki −
∑

j

mjWi (xj , hi) (2.6)

The root of Equation (2.6) can be found using Newton Raphson iterative formula:

ρk+1
i = ρki −

ρki −
∑

jmjWi (xi, hi)
[

dψ
dρ

]k

i

(2.7)
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the derivative of the residual is calculated differentiating Equation (2.6) and using

the chain rule:

dψ

dρ
= 1 −

∑

j

mj
dWi (xi, hi)

dhi

dhi
dρi

(2.8)

substituting Equation (2.27) into Equation (2.8) and remembering that (dh/dρ) =

−h/(dmρ) leads to

dψ

dρ
= 1 − 1

ρi

∑

j

mjWi (xi, hi) + αi (2.9)

where α is defined in Equation (2.32).

Substituting Equation (2.9) into Equation (2.7) gives the final iterative formula

for ρi

ρk+1
i = ρki

[

1 − ψki
ψki + ρki α

k
i

]

(2.10)

The initial guess ρ0
i,n+1 for starting the iteration is calculated integrating in time

Equation(2.30):

ρ0
i,n+1 = ρi,ne

γn (2.11)

where

γn =
1

αiρi





∑

j

mj
dWij

drij
(xi − xj) · (vi − vj)





The Newton Raphson iterations can be conducted independently for each particle

and it will be stopped when

|ψk+1
i |
ρki

≤ εΨ (2.12)

The coefficient εΨ affects remarkably the speed of the code because it controls

the number of iteration needed to calculate the water depth d of each particle.

Taking εΨ 1 · 10−3 allows to reduce the simulation time and does not affect very

much the precision of the results, therefore we use this value in our simulations.

44



2.2. SPH for Shallow water: Variational formulation

2.2.2 Momentum equation

The Euler-Lagrange equation of motion for a particle i is (Marion and Thornton

[1988]):

d

dt

∂L

∂vi
− ∂L

∂xi
= 0 (2.13)

where the Lagrangian functional L is defined in term of kinetic energy K and

potential energy π as: L = K − π. π is a function of particles position but not

of their velocity, so substituting this expression into Equation (2.13) leads to:

d

dt

∂K

∂vi
− ∂K

∂xi
=

∂π

∂xi
(2.14)

The kinetic energy for a system of particles can be approximated as the sum of

energy of each particle:

K =
1

2

∑

i

mi

[

vi ·vi + v2
z

]

; vz = vi · ∇bi (2.15)

where vz is the vertical component of the velocity. This term is usually neglected

in classical SWE, but due to the Hamiltonian approach it is possible to include

it in our analysis.

2.2.2.1 Potential Energy

Defining a system of coordinates as in Figure (2.1) the potential energy of each

column of water can be evaluated in the baricenter (this is because of the hydro-

static pressure assumption). So π can be expressed as a sum of potential energy

of each particle:

π = πext + πint =
∑

i

migbi +
1

2

∑

i

mighi (2.16)

where g is the gravity acceleration and bi is the bottom elevation of particle i. The

first term πext is an external potential energy and the second πint is considered

as an internal one.

The Equation (2.14) is equivalent to Newton’s second law as:

Ii = Fi − Ti (2.17)
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where Ii, Fi and Ti are inertial, external and internal forces and they are:

Ii =
d

dt

∂K

∂vi
− ∂K

∂xi
;Fi =

∂πext
∂xi

;Ti =
∂πint
∂xi

(2.18)

Inertial forces can be evaluated with the help of Equation (2.15) as:

Ii =
d

dt
[mivi +mi (vi · ∇bi)∇bi] −mi (vi · ∇bi)kivi (2.19)

where ki = ∇ (∇bi) is the curvature tensor of b(x, y).

Substituting the Equation (2.16) in second Equation of (2.18) gives :

Fi = mig∇bi; (2.20)

The discretization of ∇bi is obtained by the method described in section 2.3.

The formulation for internal force T is obtained using the continuity equation

and the internal energy expressed in term of energy per unit mass (see 2.2.3):

Ti =
∑

j

mimj

(

pj
αjρ2

j

∇Wj(xi, hj) −
pi
αiρ2

i

∇Wi(xj , hi)

)

(2.21)

substituting the pressure p obtained by means of hydrostatic law: p = 0.5gd2 the

final formulation for T is:

Ti =
∑

j

mimj
g

2ρw

(

1

αj
∇Wj(xi, hj) −

1

αi
∇Wi(xj , hi)

)

(2.22)

Finally particles accelerations a can be found by substituting Equations (2.19),

(2.20) and (2.22) in (2.17)

ai =
g + vi ·kivi + ti · ∇bi

1 + ∇bi · ∇bi
∇bi − ti (2.23)

where ti = Ti/mi.
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2.2.3 Internal force calculations

Differentiating Equation(2.4) and using the chain rule for the kernel leads to:

Dvρ =
∑

j

mjDvWi(xj , hi) =
∑

j

mj

[

d Wi(xj , hi)

d rij
Dvrij+

d Wi(xj , hi)

d hi
Dvhi

]

(2.24)

where Dv indicates the directional derivative and rij is the distance between

particle i and particle j. Differentiating Equation(2.5) and using the chain rule

again we can obtain de directional derivative of h:

Dvh = − h

dmρ
Dvρ (2.25)

the kernel is a function of R = rij/hi and in general has the form

Wij = 1/hdmf(R). where Wij is a short form for Wi(xj , hi) The derivative of

the kernel function is:

dWij

drij
=

1

hdm+1

dWij

dR
(2.26)

and the derivative of the kernel function respect to h is obtained by means of the

chain rule:

dWij

dhi
= − dm

hdm+1
i

dWij

dR
− rij

hdm+2
i

Wij = − 1

hi

(

dmWij + rij
dWij

drij

)

(2.27)

and differentiating rij we obtain

Dvrij =
1

rij
(xi − xj) · (δvi − δvj) (2.28)

where Dvx = δvi because of definition of directional derivative.

Substituting Equations (2.25) (2.27) (2.28) into Equation (2.24) leads to:

Dvρ =
∑

j

mj
dWij

drij
· xi − xj

rij
· (δvi − δvj)

+
∑

j

mj
1

hi

(

dmWij + rij
dWij

drij

)

hi
ρidm

Dvρi

(2.29)
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splitting in two the second summation in the RHS of previous equation leads to:



1 −
∑

j

mj

ρi
Wij



Dvρi =
∑

j

mj
dWij

drij
· xi − xj

rij
· (δvi − δvj)

+
1

dm

∑

j

mj

ρi
rij
dWij

drij
Dvρi

(2.30)

since ρi =
∑

jmjWij then the LHS of Equation (2.30) is zero, and we can obtain:

Dvρi =
1

αi





∑

j

mj
dWij

drij
· xi − xj

rij
· (δvi − δvj)



 (2.31)

where αi is defined as

αi = − 1

ρidm

∑

j

mjrij
dWij

drij
(2.32)

and remembering that

∇Wij =
dWij

drij

xi − xj
rij

(2.33)

it is possible to manipulate Equation(2.31) and obtaining

Dvρi =
1

αi





∑

j

mj∇Wij · (δvi − δvj)



 (2.34)

noting that taking δvi = vi and δvj = vj gives the derivative of the density

dρi
dt

=
1

αi





∑

j

mj
dWij

drij
(xi − xj) · (vi − vj)



 (2.35)

which is similar to the standard SPH formulation for the density (Monaghan

[1992]), apart for the αi correction factor.

The total internal energy stored in the group of particles is:

πint =

N
∑

i=1

V 0
i U(Ji) (2.36)
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2.3. Bed gradient source term

where N is the total number of particles in the domain, V 0
i is the volume at

initial time for ith particle, U is the stored internal energy per unit of volume,

Ji is the compression ratio between initial and current state:

Ji =
V 0
i

Vi
=
ρ0
i

ρi
(2.37)

the pressure p can be defined as: p = dU/dJ .

Recalling third equation of (2.18), the directional derivative of the internal energy

functional is

Dvπint =

N
∑

i=1

Ti · δvi (2.38)

using Equation(2.36), (2.37) and the definition of pressure the directional deriva-

tive of πint is (see Bonet and Lok [1999])

Dvπint = −
N
∑

i=1

mi

(

pi
ρ2
i

)

Dvρi (2.39)

substituting in Equation(2.39) the directional derivative of ρ (Equation (2.34))

and rearranging the summations gives

Dvπint =
∑

i





∑

j

mimj

(

pj
αjρ2

j

∇Wji −
pi
αiρ2

i

∇Wij

)



 · δvi (2.40)

The comparison of Equation(2.40) with Equation(2.38) gives the expression for

the internal force Ti of Equation (2.21).

2.3 Bed gradient source term

In order to deal with irregular bathymetries we introduce a general method for

discretizing the bed gradient source term: in Equation (2.23), we need to calculate

the gradient ∇b and the tensor k for every particle of the domain. Rodriguez-

Paz and Bonet [2005] used an analytical function for the bed description. For

general application we present here an SPH-based interpolation technique that

is applicable to any geometry. We thus discretize these two terms ∇b and k by

an SPH interpolation.

This interpolation is performed using not the fluid particles but a new set of
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interpolation points called bottom particles. These points are introduced at

the beginning of the simulation, they are distributed on a Cartesian uniform

grid over the domain and they do not move during the simulation. The only

physical quantity associated with bottom particles is the bottom height b and an

associated volume Vj (dxb in 1-D and dxb · dyb in 2-D). The bottom elevation of

the ith fluid particle bi is calculated using a SPH summation formula using the

bottom particles:

bi =
∑

j

bbjW̄i(xi − xbj , hb)Vj (2.41)

where bbj indicates the bottom elevation of the jth bottom particle located at xbj ,

hb is the constant smoothing length of bottom particles and W̄i is the kernel for

ith particle corrected using a Shepard filter (Randles and Libersky [1996]):

W̄i(xi − xbj , hb) =
Wi(xi − xbj , hb)

∑

jWi(xi − xbj , hb)Vj
(2.42)

To improve the accuracy of the SPH interpolation of the bottom, the gradient

of the kernel is corrected by introducing a correction matrix L as proposed by

Bonet and Lok [1999]:

∇̃Wi(xi − xbj , hb) = Li∇Wi(xi − xbj , h
b) (2.43)

the correction matrix L is calculated as follows:

Li =





∑

j

∇Wi(xi − xbj , hb) ⊗
(

xbj − xi
)

Vj





−1

(2.44)

This correction ensures first order zero-consistency, or in other words that the

gradient of any linear function is exactly evaluated. After correcting the kernel,

the gradient of the bottom ∇bi is evaluated using a classical SPH interpolation:

∇bi =
∑

j

bbj∇̃Wi(xi − xbj , h
b)Vj (2.45)

Several methods are proposed in the literature to approximate second-order

derivatives, a recent review of these methods is reported by Basa et al. [2008] and

Schwaiger [2008]. Two approaches are possible, the first is based on the evalua-

tion of the second derivatives using a second-order kernel derivative in the SPH
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2.4. Friction source term

interpolation, but this approach produces instabilities and inaccuracy; a second

approach is the possibility to use both a finite difference and an SPH interpo-

lation for first derivatives, but here we use a formulation based on an integral

approximation (Cleary and Monaghan [1999], Monaghan [2005]):

(

∂2b

∂xα∂xβ

)

i

=
∑

j

(

4
xαijx

β
ij

r2ij
− δαβ

)

bi − bbj
rij · rij + η2

rij · ∇̃Wi(xi−xbj , h
b)Vj (2.46)

where α and β are two generic coordinates, η = 0.01hb, rij = xi − xbj .

The effectiveness of equations (2.41-2.46) is investigated in section 1.6.

2.4 Friction source term

In Equation (2.3) the last term that needs to be discretized is the bed friction

source term Sf . It can be rewritten as:

Sf = v
gn2|v|
d

(2.47)

where n is the Manning coefficient.

The Manning coefficient n is an empirical coefficient that describes bed friction.

In order to vary arbitrarly the Manning coefficient all over the domain the same

SPH-based interpolation technique presented in section 2.3 is used to discretize

the friction source term: a value of the n coefficient is assigned to each bottom

particles, and it is calculated at each time step at the ith fluid particles by means

of the following SPH interpolation:

ni =
∑

j

nbjW̄i(xi − xbj , hb)Vj (2.48)

where nbj indicates the manning coefficient of the jth bottom particle located at

xbj .
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2.5 Time integration scheme

In order to integrate in time particle positions and velocities we use the leap-frog

time integration scheme defined as (Hernquist and Katz [1989]):

v
n+1/2
i = v

n−1/2
i + ∆tani

xn+1
i = xni + ∆tn+1v

n+1/2
i

vn+1
i = v

n+1/2
i + 1

2∆tani

(2.49)

where ∆t is the time step. For explicit methods the time step must satisfy a

Courant-Friedrichs-Levy (CFL) condition (Toro [1999]). In SPH this condition

is imposed considering the smoothing length as a reference length :

∆t = CCFL
N

min
i=1

(

hi
ci + ‖vi‖

)

(2.50)

where c is the wave propagation speed that is equal to c =
√
gd. CCFL is the

Courant number.

The stabilization term described in the following section influences the value of

the maximum CCFL that can guarantee the stability: with the artificial viscosity

if a Courant numbers bigger then 0.1 is used a numerical instability can be

observed, conversely the Lax-Friedrichs flux or the Riemann solver guarantee the

numerical stability even if the CCFL = 0.5 is used. Therefore using one of the

two last stabilization term a significant acceleleration of the numerical code is

obtained.

2.6 Postprocessing output

In SPH models the physical quantites are calculated at the fluid particles and no

mesh (or particles’ connections) are present. The visualization of results obtained

in SPH (or any other meshless model) is still a challenging subject (Jang et al.

[2008]). Neverthless the possibility to analyze contour or 3-D maps of physical

quantities represents an indispensable tool to assess the quality of the results

obtained and to compare them with reference solutions. These difficulties are

overcame calculating the main physical quantities not only at fluid particles but

also over a uniform cartesian grid with side length equal to dxg; so the contour

maps can be drawn by the classical tools avaliable for Eulerian models.
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2.7. Stabilization term

The physical quantities are calculated at the cartesian grid vertex by means of an

SPH interpolation based on the fluid particles such as in a remeshing procedure.

It is important to underline that this remeshing is used only within the scope of

postprocessing the results, and no fluid particle reinizialization is adopted during

the simulation.

The generic physical quantity fv is calculated at vertex with coordinates xv by

means of the following SPH interpolation:

{

fv =
∑

j fjW̄ (xv − xj , hj)
mj

ρj
if dxv < dxg

fv = blank value elsewhere
(2.51)

where j is the subcript for fluid particles and W̄i is the kernel corrected by means

of a Shepard filter Randles and Libersky [1996] and dxv is defined as the minimum

distance between the vertex v and the N fluid particles in its neighborhood:

dxv = min [xv − xj ,xv − x2, · · ·xv − xN ]

As will be seen in chapter 4, this procedure of postprocessing the SPH data is

effective: water depth and velocities contour maps can be easly created. The

only element that is not satisfactory is the position of the wet-dry front over

complicated bathymetry (as in sections 4.5 and 4.6). If the density of the particles

at the front is very low the position of the front is not well defined; the reason

of that is due to the fact that the smoothing length of the particles close to

the front is bigger than the side length of the cartesian grid dxg therefore the

conditon dxv < dxg of Equation (2.51) is not satisfied.

2.7 Stabilization term

Balsara showed via Von Neumann stability analysis (Balsara [1995]) that the

SPH method can be interpreted as a central finite difference scheme and some

viscosity is needed in order to avoid numerical oscillation in presence of shock

waves, therefore Equation (2.21) should be modified as follow:

Ti =
∑

j

mimj
g

2ρw

[(

1

αj
+ Πij

)

∇Wj(xi, hj)−
(

1

αi
+ Πij

)

∇Wi(xj , hi)

]

(2.52)
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where the parameter Πij represents the additional numerical viscosity added in

order to preserve the stability.

In the original SPH formulation introduced by Monaghan [1988], Πij is an arti-

ficial viscosity turned on when two particles are approaching:

Πij =

{ −ac̄ijµij+bc̄ijµ
2

ij

ρij
if vij ·xij < 0

0 if vij ·xij ≥ 0
(2.53)

where a and b are parameters that regulate the strength of the artificial viscosity,

c is the speed of sound which is c =
√
gd in SWE and µij is:

µij =
h̄ijvij ·xij
|xij |2 + ζ2

where ζ is a small quantity to prevent division by zero. Note that in these

expressions the notation fij = fi − fj and f̄ij = 0.5(fi + fj) has been used.

The main drawback of the artificial viscosity is that the two parameters a and b

have to be tuned according to the necessary numerical viscosity which is different

for every test case. Ata and Souläımani [2004] introduced a new stabilized SPH

formulation based on the idea of the Lax-Friedrichs flux where the centred flux

0.5 [F (xi) + F (xj)] is replaced by:

0.5 [F (xi) + F (xj)] − λ
vij ·xij
|x2
ij |

where λ is a characteristic wave speed. After simple algebra the following ex-

pression of the stabilizing term Πij is obtained:

Πij =
c̄ijvij ·xij

ρij
√

|xij |2 + ζ2
(2.54)

The main advantage of this formulation, in comparison with Equation (2.53), is

that there are no parameters that have to be tuned but the necessary level of

viscosity is automatically introduced thanks to the Lax-Friedrichs flux.

An alternative way to deal with shock waves in hyperbolic equation are the

Riemann Solvers. They are widely used in finite volume schemes for hyperbolic

equations (Toro [1997, 1999]) and there are some attempt to introduce them in

SPH formalism: Inutsuka [2002] introduced a Riemann solver for gas dynamic

equations, whereas Cha and Whitworth [2003] applied the non-iterative Riemann
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2.7. Stabilization term

solver proposed by Balsara [1994] to isothermal gas. Comparing this approach

with the artificial viscosity method, the advantage of the Riemann Solvers is that

no extra numerical dissipation is introduced.

In this work we introduced the two-Shock Riemann Solver (Toro [1995]) into the

Shallow Water models: the main idea is consider each interaction between i-th

and j-th particles as a Riemann Problem and therefore to replace the pressures

pi and pj in Equation (2.21) with the resultant pressure p∗:

Ti =
∑

j

mimjp
∗
(

1

αjρ2
j

∇Wj(xi, hj) −
1

αiρ2
i

∇Wi(xj , hi)

)

(2.55)

The pressure p∗ is obtained applying the hydrostatic law p∗ = 0.5g(d∗)2 and the

depth d∗ is obtained by the exact Riemann Solver under the assumption that

both the non-linear waves are shocks:

d∗ =
gldl + grdr + vl,n − vr,n

gl + gr
(2.56)

where, according to the two-Shock Riemann Solver, dl and dr are the left and

right water depth, and gl and gr are defined as follow:

gk =

√

0.5
g(d0 + dk)

d0dk

with k = l or k = r for the left and right state, d0 is an estimate of the water

depth that can be obtained from some other direct Riemann Solvers, for example

a two-rarefaction one:

d0 =
1

g
[0.5(cl + cr) + 0.25(vl,n − vr,n)]

2

In order to reduce the level of numerical viscosity a MUSCL-non upwind proce-

dure (Edwards [2006]) is used to reconstruct a generic phisical quantity f of the

left and right state of the Riemann problem :

fl = fj +
1

2
Φ(ξ+)fij

fr = fi +
1

2
Φ(ξ−)fij

(2.57)

where Φ is the minmod slope limiter function (Toro [1999]), ξ+ = ∇jf ·xij/fij
and ξ− = ∇if ·xij/fij . Please nothe that this is a non upwind reconstruction
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and it is different from the one proposed by Vila [2005] where:

fl = fj +
1

2
Φ(ξ+)∇fij ·xij

fr = fi −
1

2
Φ(ξ−)∇fij ·xij

the approach of Equation (2.57) guarantees that the reconstructed values are

min[fi, fj ] ≤ fl, fr ≥ max[fi, fj ] and therefore no further limiting has to be

applied. The MUSCL reconstruction of Equation (2.57) is used to reconstruct

velocities and water depth in the Two-Shock Riemann solver and in the Πij term

of the Lax-Friedrichs flux (see equation 2.54) where vij is replaced with vr − vl.

In order to check the differences between the stabilization schemes two different

test cases were carried out. The first one is a 1-D dam break with the following

initial condition: still water with a water depth d = 10 m in the upstream

part of the domain (x < 1000m) and d = 5m in the downstream part, the

domain is dicretized by 150 particles. Figure 2.2 shows the comparison between

the Stoker analytical solution and the numerical one obtained using different

kind of numerical viscosity. The results in Figure 2.2-a show that some kind of

stabilization term is necessary if a shock wave is present, the artificial viscosity

term (Equation (2.53), Figure 2.2-b) is able to stabilize the solution but the shock

wave is remarkably smeared out, the Lax-Friedrichs flux (Equation (2.54) Figure

2.2-c) is able to reproduce a sharper shock wave but an additionally unnecessary

viscosity is introduced in the rarefaction wave. The Lax-Friedrichs flux and the

two-shock Riemann solver (Equation (2.56)) with the MUSCL reconstruction

(Figures 2.2-d and 2.2-e) are both able to reproduce the sharper shock without

introducing any viscosity in the rarefaction wave, but the two-shock Riemann

solver overpredict the water depth in the intial part of the rarefaction wave.

For this test case an error analysis is also performed calculating the norm of

non-dimensional water depth error L2:

L2 =

√

√

√

√

1

N

N
∑

i=1

(

di − dei
dei

)2

(2.58)

where N is the total number of particles in the domain, di and dei are the numer-

ical and the reference water depth of ith particle.

In Table 2.1 the norm L2 is shown for different stabilization terms, considering

four intial particle interspacing: the MUSCL reconstruction is able to reduce the

overall error using both the Lax-Friedrichs and the Two-Shock Riemann Solver in
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comparison with other stabilization term where no reconstruction is done. The

(a) (b)

(c) (d)

(e)

Figure 2.2. Water depth for 1-D Dam Break with wet bed at time 50 s: (a) no
viscosity, (b) artificial viscosity (c) Lax-Friedrichs flux (d) Lax-Friedrichs flux with
MUSCL reconstruction (e) two-shock Riemann solver with MUSCL reconstruction

comparison between the different stabilization terms is made also against a 2-D

cylindrical Dam Break with wet bed: the water is motionless at the beginning of

the simulation and the water depth d is 10 m in the central part of the domain
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Table 2.1. L2 norm of non-dimensional water depth error calulated for 1-D dam
break with wet bed at time 50 s and considering different stabilization terms: Artificial
Viscosity (AV), Lax-Friedrichs (LF), Lax-Friedrichs with MUSCL reconstruction and
Two-Shock Riemann solver (TS) with MUSCL reconstruction

dx AV LF LF MUSCL TS MUSCL
2.5 m 3.70E-003 4.30E-003 2.60E-003 2.70E-003
5 m 5.80E-003 6.40E-003 3.90E-003 4.10E-003
10 m 9.30E-003 9.80E-003 5.90E-003 6.00E-003
20 m 1.52E-002 1.57E-002 1.00E-002 1.02E-002

(|x − x0| < 100m) and 5 m outside this circle. The domain is discretized using

39,781 particles. The reference solution is obtained using a classical Eulerian

Finite volume scheme.

Figure 2.3 shows the results using a Lax-Friedrichs flux whereas the results with

the same flux but introducing the MUSCL reconstruction are plotted in Figure

2.4; finally figure 2.5 shows the results using the two-shock Riemann solver. For

this test case the L2 norm of the non-dimensional error of the water depth and

the velocity components are calculated; the L2 of the water depth is calculated

according to Equation 2.58 whereas the same norm of the velocity component vk

is obtained from the following formulation:

L2 =

√

√

√

√

√

1

N

N
∑

i=1





vi,k − vei,k
√

gdei,k





2

(2.59)

where vei,k is the k velocity component of the reference solution.

The L2 norms of errors are plotted in Table 2.2 for different time steps; the results

obtained using the MUSCL reconstruction (both with the Riemann solver and

the Lax-Friedrichs flux) are more accurate than the ones obtained without this

procedure even for this second test case.

2.8 Wetting - drying test case: Thacker basin

The capability of the proposed method of providing accurate results in the pres-

ence of 2D wetting and drying moving boundaries on non-flat topographies is an

important test case to demonstrate the SPH-SWE is capable of simulating real

cases. Here we can compare numerical results with the exact solutions given by

Thacker [1981], which concerns the oscillation of a water volume in a frictionless
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(a) (b)

(c)

Figure 2.3. Circular dam break with wet bed: water depth in radial direction at time
steps 10, 30, 50 s, with Lax-Friedrichs flux
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(a) (b)

(c)

Figure 2.4. Circular dam break with wet bed: water depth in radial direction at time
steps 10, 30, 50 s, with Lax-Friedrichs flux and MUSCL reconstruction
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2.8. Wetting - drying test case: Thacker basin

(a) (b)

(c)

Figure 2.5. Circular dam break with wet bed: water depth in radial direction at time
steps 10, 30, 50 s, with Riemann solver and MUSCL reconstruction

Figure 2.6. Definition sketch for the Thacker test with planar water surface
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Table 2.2. L2 non-dimensional norm of water depth, vx and vy error calulated 2-D
cilindrical dam beak with wet bed at times 10, 30 and 50 s and considering different
stabilization terms: Lax-Friedrichs (LF), Lax-Friedrichs with MUSCL reconstruction
and Two-Shock Riemann solver (TS) with MUSCL reconstruction

Stabilization term time(s) L2(d) L2(vx) L2(vy)
LF 10 0.018 0.012 0.012
LF with MUSCL 10 0.014 0.007 0.007
TS with MUSCL 10 0.014 0.007 0.007
LF 30 0.026 0.018 0.018
LF with MUSCL 30 0.015 0.009 0.009
TS with MUSCL 30 0.016 0.010 0.010
LF 50 0.029 0.020 0.020
LF with MUSCL 50 0.016 0.011 0.011
TS with MUSCL 50 0.017 0.012 0.012

paraboloid basin having equation:

z = z0

(

1 − x2 + y2

L2

)

. (2.60)

In Equation (2.60) the depth function z is positive below the equilibrium level,

z0 is the depth of the vertex of the paraboloid and L is the radius at z = 0. In

the particular case considered the water body is initially planar and the velocity

field is uniform; the analytical solution and the initial conditions are given by:







η (x, y, t) = 2ξ
z0
L

[

x

L
cosωt− y

L
sinωt− ξ

2L

]

u (x, y, t) = −ξω sinωt; v (x, y, t) = −ξω cosωt,
(2.61)

where η is the surface elevation, positive above the equilibrium level and ω =√
2gz0/L is the frequency of the rotation around the centre of the basin. The

magnitude of the velocity vectors is constant over time at the value |V| = ξω,

whereas the direction rotates over time.

The test was performed in a square domain [0m ≤ (x, y) ≤ 10000m] with z0 =

10m, L = 3000m and ξ = 1500m; the basin dimensions are such that the water

never reaches the boundaries. The numerical simulation was carried out for one

periods T = 2π/ω with 11304 fluid particles. Figure 2.7 shows the contour maps

of the water depth at different times: the shoreline is circular, the surface almost

perfectly planar. The comparison between numerical and analytical water depth

and velocities are plotted in Figures 2.8, 2.9 and 2.10 in the following three

points: (5000; 5000), (5000; 6000), (5000; 70000). The first and the second point
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remain wet all the time whereas the third point gets wet and dry during the

periodic motion, in all three point the numerical solution is able to reproduce the

analytical solution.

(a) (b)

(c) (d)

(e)

Figure 2.7. Thacker test case, water depth at non dimensional time steps t/T : (a)
0.015, (b) 0.253, (c) 0.505, (d) 0.742 and (e) 0.980

2.9 Concluding Remarks

In this chapter an SPH method for numerical discretization of shallow water

equations has been presented. The method presents some attractive features

in comparison with classical Eulerian methods because no mesh and no special
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(a) (b)

(c)

Figure 2.8. Thacker test case, comparison between analytical and numerical solution
at point of coordinates (5000 m, 5000 m): (a) water depth, (b) vx velocity and (c) vy

velocity

(a) (b) (c)

Figure 2.9. Thacker test case, comparison between analytical and numerical solution
at point of coordinates (5000 m, 6000 m): (a) water depth, (b) vx velocity and (c) vy

velocity
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(a) (b) (c)

Figure 2.10. Thacker test case, comparison between analytical and numerical solution
at point of coordinates (5000 m, 7000 m): (a) water depth, (b) vx velocity and (c) vy

velocity

treatment of wet/dry interface are needed.

The capability of the method to deal with shock waves has been improved by

removing artificial viscosity and considering particle interactions as a Riemann

problem. Moreover non-upwind MUSCL reconstruction procedures have been

introduced with the aim of obtaining a good representation of rarefaction waves.

In order to extend the method to real case problems the slope and the friction

source terms are calculated by means of a SPH interpolation method based on

bottom particles which can be applied for any bathymetry.

The code has been tested against different 1-D and 2-D dam break problems

showing satisfactory results. Thacker’s 2-D analytical solution has been also

simulated showing the capability of the method to reproduce accurate results

with moving 2-D wetting and drying boundaries on non-flat topographies.
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Chapter 3

Particle Splitting

3.1 The need for particle splitting

One of the problems in SPH-SWE code is lack of resolution when inundation of

the fluid occurs over an initially dry bottom: whereas in Eulerian models the

area of the cells is usually constant during the simulation, this is not valid for

SPH models with variable smoothing length. The area Ai of i-th particle can be

defined, using an SPH formalism, as

Ai =
mi

ρi
(3.1)

or, substituting Equation (2.1) into Equation (3.1), as

Ai =
mi

diρw
(3.2)

since the mass of each particle is constant but the density ρ (or the water depth

d) is not, Ai varies during the simulation: when a particle i is moving from a

region with an initially high water depth to one with a shallow water Ai increases

accordingly to Equation (3.2); this means that the resolution that is present in

the region with high water is much bigger than the one with small water depth.

In order to overcome this problem the following splitting criteria is introduced:

when Ai ≥ Ā where Ā is a fixed value, then the original particle is splitted into

7 daughter particles.

The capability of the 2D numerical model to simulate flow expansion is tested

against a 1-D dam break with a dry bed in an infinite rectangular channel. This
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test case was previously simulated by Crespo et al. Crespo et al. [2007] by a fully

3-D SPH code. The channel is 1000 m wide and the water domain behind the

dam is 1000 m long with an initial water depth of 10 m; the numerical results are

compared with the analytical solution of the 1-D Ritter test case Ritter [1892]. In

Figure (3.1) the particles position and the velocity field at time 20 s are plotted,

whereas Figure (3.2) shows the water depth and the velocity vx at the section

y=500 m, at the same time. In this test case the particles remain at the same

distance along the y direction but they drift apart in the x direction and therefore

there is no interaction in x direction. This leads to an overestimation of the water

depth and a consequent underestimation of the x-component of the velocity, as

shown in Figure 3.2. The particle splitting procedure will be able to overcome

this issue, as proven in section 3.4.2.

Figure 3.1. velocity field in the 1-D dam break in a rectangular channel over dry bed
without splitting at time 20s

3.2 Splitting procedure

Once a splitting criteria is defined, then an appropriate procedure should be

assessed: in 2D SWE Eulerian models mesh adaptivity is becoming more and

more popular (Rogers et al. [2001]); there are also some attempts to introduce

a splitting strategy in SPH models: Kitsionas and Whitworth [2002] have ap-

plied particle splitting to astrophysics problems, Lastiwka et al. [2005] applied

an adaptive particle distribution to 1-D shock tube problem. Feldman and Bonet

[2007] defined a dynamic splitting procedure for particles in an SPH model for

Navier-Stokes equations which is conservative, and is suitable also for multidi-

mensional domains but without considering the variable smoothing length. In

this section we recall briefly the particle splitting procedure introduced in Feld-

man and Bonet [2007] and we adapt it to our SWE model with a new extension

taking into account also the effects of variable smoothing length: the key idea is
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(a)

(b)

Figure 3.2. 1-D Dam Break in a rectangular channel without splitting: (a ) water
depth and (b) vx at the section y=500 m at time 20s

to define a splitting algorithm that is able to conserve both the mass (m) and the

momentum (m ·v) and minimize the error in the density and velocities fields.

If one particle is splitted into M daughter particles we have to define the mass

Figure 3.3. splitting patterns

mk position xk, velocity vk, and the smoothing length hk for any k = 1 . . .M

refined particle, therefore the total number of degrees of freedom is 6 for each

k-th daughter particle. In order to reduce the degrees of freedom of the problem

the number of new particles M and their relative positions are defined by using
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a fixed splitting pattern which identifies the relative particle position of daughter

particles and their masses.

The hexagonal splitting pattern (plotted in Figure 3.3) is adopted in this work be-

cause it is a good balance between the total number of particles and the reduction

of the density error (Feldman and Bonet [2007]) where the parameter ǫ defines

the position of the new daughter particles placed on the vertices of the hexagon

inscribed in a circle with radius equal to ǫh. The initial smoothing lengths of the

daughter particles are defined as hk = αh where α is another scalar parameter

called smoothing ratio. The framework of this procedure is to fix arbitrarily the

parameters ǫ and α and then to calculate the masses of the daughter particles

mk by minimizing the error between the refined and unrefined local density field.

This local density ρ(x) is computed using a scatter formulation Hernquist and

Katz [1989]:

ρ (x) =

N
∑

j=1

mjWj (x, hj) (3.3)

If the N -th particle is refined into M daughter particles then the density distri-

bution changes because of the splitting as follows:

ρ∗ (x) =

N−1
∑

j=1

mjWj (x, hj) +

M
∑

k=1

m∗
kWk (x, hk) (3.4)

where the m∗
k k = 1 . . .M are the unknown.

the local splitting error e at generic point x is defined as:

e (x) = ρ (x) − ρ∗ (x) = mNWN (x, hN ) −
M
∑

k=1

m∗
kWk (x, hk) (3.5)

Note that the error of the density field is due only to the refined particles k =

1 . . .M . The global splitting error E is also defined as the integral over the whole

domain of the local splitting error e(x):

E =

∫

Ω

e (x)
2
dx (3.6)

The unknown masses of the daughter particles can be rewritten as m∗
k = λkmN

where the constraint
∑M
k=1 λk = 1 holds in order to conserve the total mass.
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Rewriting also the total error terms of the unknown coefficients λk gives

E = m2
N

[

∫

Ω

W 2
N (x, hN ) dx − 2

M
∑

k=1

λk

∫

Ω

WN (x, hN )Wk (x, hk) dx

+

M
∑

k,l=1

λkλl

∫

Ω

Wk (x, hk)Wl (x, hl) dx





(3.7)

defining the following quantities:

C =

∫

Ω

W 2
N (x, hN ) dx

bk =

∫

Ω

WN (x, hN )Wk (x, hk) dx

Alk =

∫

Ω

Wk (x, hk)Wl (x, hl) dx

it is possible to rewrite the global error as:

E = C − 2λ
Tb + λ

TAλ (3.8)

where λ is the vector of λ coefficients.

Given a splitting pattern with splitting parameters α and ǫ the best vector of

coefficients λ
∗ is calculated minimizing the global error E :

E
∗ = min

λ

{

C − 2λ
Tb + λ

TAλ

}

(3.9)

with the constraint:

M
∑

j=1

λj = 1 (3.10)

The splitting error depends on the choice of the splitting parameters α and ǫ

and on the vector of coefficient λ and it is independent of the initial mass mN

and smoothing length hN ; therefore it is possible to define the optimal mass

distribution λ
∗ before the beginning of the simulation solving a model problem

of equations (3.9) and (3.10).

In order to asses the minimum value of global density error the model problem is

solved using different values of α and ǫ. Using the classical cubic kernel (Li and

Liu [2003]) the minimum value of E is obtained with α = 0.9 and ǫ = 0.4 (see
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Table 3.1) and therefore this values are used in the SPH-SWEs numerical code.

Figure 3.4 shows that the refined pattern with α = 0.9 and ǫ = 0.4 is able to

reproduce the original kernel shape with a good level of approximation.

Table 3.1. results of particle split procedure: splitting parameters α and ǫ, global
splitting error E , relative optimal mass distribution for central particle λ1 and for other
particles λ2...7

α ǫ E λ1 λ2...7

0.90 0.40 1.76E − 05 0.1787 0.1369
0.90 0.50 3.80E − 05 0.4476 0.0921
0.60 0.60 2.41E − 03 0.1203 0.1466
0.80 0.60 3.31E − 05 0.3239 0.1127

(a)

(b)

Figure 3.4. 2-D cubic kernel approximation using (a- unrefined and (b)-refined con-
figuration

The velocities of the daughter particles of particle N are defined in order to
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3.3. SWE-SPH code with splitting procedure

conserve the total momentum, therefore the following constraints holds:

dNvNAN =

M
∑

k=1

dkvkAk (3.11)

where AN is the area of the original particle and Ak are the areas of the daughter

particles.

In addition to the constraint (3.11) we introduce the assumption that:

vk · dk = cvdNvN (3.12)

Substituting Equation (3.12) into Equation (3.11) it is possible to obtain the

following expression for cv:

cv =
AN

∑M
k=1Ak

(3.13)

and the final expression of the velocities of the daughter particles is:

vk = cv
dN
dk

vN (3.14)

3.3 SWE-SPH code with splitting procedure

We recall that the mass of daughter particles are defined through the procedure

described in section 3.2 before the beginning of the simulation: the best values

of λj (with j = 1 . . .M) are calculated solving the model problem based on the

scatter evaluation of the density (Equation 3.3). Conversely the density ρ is

calculated in the SPH-SWE, by the gather formulation (2.4) (see Hernquist and

Katz [1989] for details about the difference of the two formulations).

3.3.1 Theoretical test case

In order to test the error introduced by the splitting in the density field a simple

numerical test has been set up: ρ is calculated in a square domain where the

particles in the centre of the domain are refined (see Figure 3.5), the originally

unrefined particles are equispaced and positioned in a square Cartesian grid. The

smoothing length h of unrefined particles is taken as h = 1.2dx where dx = 50

m is the distance between particles; finally the mass of each unrefined particle is
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m = 25 · 106 kg. The exact value of the density is ρex = 1 · 104 kg/m3. Figure 3.6

shows the comparison of ρ calculated using (3.3) and (2.4): the maximum error

in the density field calculated using equation (3.3) is equal to 0.3% whereas, using

the Equation (2.4) it increases to 5%, this is due to the fact that the optimal

mass distribution of daughter particles is calculated starting from the gather

formulation.

If scatter formulation is used then ρi depends not only to hi but also to the

h1, h2, . . . , hN whereN is the number of particles in the neighbourhood of particle

i and a new iterative implicit procedure has to be used to update the density and

the smoothing length.

If we wish to know the density ρki and the smoothing length hki at the k-th

iterative loop for every i-th particle in the domain, then the density and the

non-dimensional residual Ψk+1
i at the next iterative loop k+ 1 can be calculated

using (3.3):

ρk+1
i =

N
∑

j=1

mjWj

(

xi − xj , h
k
j

)

also the non-dimensional residual Ψk+1
i is calculated at k + 1 iterative loop as:

Ψk+1
i =

|ρk+1
i − ρki |
ρk+1
i

(3.15)

Once the densities and the non dimensional residuals are calculated for every

particle in the domain, then the smoothing lengths are updated using Equation

(5.21):

hk+1
i = h0

(

ρ0

ρk+1
i

)1/dm

Finally the L2 norm of the residual is calculated as:

L2(Ψ
k+1
i ) =

N
∑

i=1

√

(

Ψk+1
i

)2

N
(3.16)

The iterative process is stopped when L2(Ψ
k+1
i ) < εΨ. As already stated in

section 2.2.1, the coefficient ε affects the speed of the code because it modify the

number of iteration necessary in each time step: in the numerical tests presented
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in this work a value of ε = 1 · 10−3 is used.

The iteration procedure starts from the initial guess ρ0
i calculated using Equation

(2.11), this reduces the number of iterations in every time step in comparison with

using the density calculated at the previous time step.

Figure 3.5. particle position for the numerical test of density calculation in presence
of refined particles

3.4 Test Cases

3.4.1 Circular Dam Break over dry bed

In the first test case the evolution of a circular dam break over a dry bed is

analysed. A cylindrical dam with radius 1000 m is considered and the domain

is discretized using 5000 particles at the begin of the simulation; the reference

solution is obtained using a classical finite volume Eulerian code. The test is run

with and without the splitting procedure, the value Ā in this test case is taken

equal to 2 in the whole domain. In Figure 3.7 the particle position is plotted

after 30 s of simulation when the splitting is activated: the radial symmetry of

the solution is preserved. In Figure 3.8 a comparison of the water depth along

radial direction at different times 10, 30 and 50 s is made, the two numerical

solutions obtained with and without the splitting are in good agreement with

the reference solution. This means that the error introduced by the splitting

procedure in the water depth is negligible thanks to the procedure described in

section 3.2.
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(a)

(b)

Figure 3.6. Density calculation with refined particle in the central part of the square
domain (a) using scatter (Equation (3.3)) and (b) gather (Equation (2.4)) formulation
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(a)

(b)

Figure 3.7. velocity field in the Circular Dam Break test case over dry bed with
splitting at time 30s. (a) the whole domain (b) zoom close to the splitting interface
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(a)

(b)

(c)

Figure 3.8. Circular dam break with dry bed: water depth in radial direction at time
(a)-10 s, (b)-30 s and (c)-50 s
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3.4.2 1D-2D dam break over dry bed

The same 1D-2D dam break test case presented in section 3.1 has been repeated

in this section using the particle splitting. We showed before that the anisotropy

of particle distribution causes a remarkable underestimation of the water depth

close to the wet-dry front. de Leffe et al. [2008] solved this problem introducing

an anisotropic kernel together with a periodic remeshing procedure, however it is

well known that the remeshing introduces some not negligible numerical viscosity

(Fang and Parriaux [2008]), moreover the free surface should be detected before

re-assigning the particles position and therefore the capability of the SPH method

to naturally deal with interfaces (which is one of the most attractive aspect of the

method) is lost. We simulate this test case without introducing any corrections

but refining the particles in the rarefaction wave as shown in Figure 3.9, the

threshold value of area Ā (see section 3.1) is taken equal to 1.5 in this test case.

With this approach the interaction between particles in the x-direction is kept

without any remeshing. Different stabilization terms have also been considered:

the Lax-Friedrichs flux together with the MUSCL reconstruction ( Figures 3.10

and 3.11) is able to reproduces the best results, whereas (as already noticed in

section 2.7) using no MUSCL reconstruction leads to a less accurate reproduction

of the rarefaction wave (see Figures 3.12 and 3.13). Finally if the Two-Shock

Riemann solver is applied some numerical fluctuations in the velocity are present.

Regardless of the kind of stabilization term used with the splitting procedure the

1D-2D dam break over dry bed can be simulated in a satisfactory way.

Figure 3.9. 1-D Dam Break in a rectangular channel with splitting, Lax-Friedrichs
stabilization term with MUSCL reconstruction: velocity field in the 2-D dam break in
a rectangular channel over dry bed at time 30s

3.4.3 CADAM test case with a 45
◦ bend

The European Concerted Action on DAm break Modelling (CADAM) made an

experiment where a dam break flow occurs along an initially dry channel (Soares
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(a) (b)

(c) (d)

Figure 3.10. 1-D Dam Break in a rectangular channel with splitting, Lax-Friedrichs
stabilization term with MUSCL reconstruction: water depth at the section y=500 at
times (a)-10 s, (b)-20 s, (c)-30 s and (d)-40 s

Frazão et al. [1998]). That channel has a rectangular cross section of 0.495 m,

is connected upstream with a square reservoir and is 8.4 m long. A 45◦ bend is

located after 4.25 m, the bottom is flat and is 0.33 m higher than the one of the

reservoir, as plotted in Figure 3.16. The water levels are registered during the

experiment in the reservoir and along the channel using 9 gauges. At the begin

of the simulation the gate is suddenly removed and the water starts to flow from

the reservoir in the channel and it reaches the bend after roughly 3 s; then a bore

forms and starts to travel back to the reservoir, after 20s the bore reaches the

reservoir and it disappears. This case has been used extensively by other SWE

researchers (Zhou et al. [2004], Loukili and Souläımani [2007]) for benchmarking

since the case has a variety of difficult aspects.

This first simulation is performed using no splitting and 9603 particles are ini-

tially positioned in the reservoir, the manning coefficient of the friction source

term is taken as n = 0.01sm−1/3 (see section 2.4).

The step located between the bottom of the reservoir and the channel has been

discretized using the SPH interpolation method of bottom particles described in

session 2.3. The only expedient introduced here is a smoothing length for the

bottom particles which is two times the smoothing length initially assigned to

the fluid particles.

Figure 3.17 shows the comparison between the experimental and numerical water
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(a) (b)

(c) (d)

Figure 3.11. 1-D Dam Break in a rectangular channel with splitting; Lax-Friedrichs
stabilization term with MUSCL reconstruction: velocities y=500 at time steps (a)-10
s, (b)-20 s, (c)-30 s and (d)-40 s
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(a) (b)

(c) (d)

Figure 3.12. 1-D Dam Break in a rectangular channel with splitting, Lax-Friedrichs
stabilization term without MUSCL reconstruction: water depth at the section y=500
at times (a)-10 s, (b)-20 s, (c)-30 s and (d)-40 s

levels: gauge 1 is placed inside the reservoir near the channel; the good agree-

ment of registered data with the numerical results means that the discharge that

is entering in the channel is correct. Gauges 2, 3 and 4 are placed along the

channel upstream the bend, therefore they registered the abrupt water level ele-

vation due to the reflected wave that is travelling upstream to the reservoir. The

numerical model is able to reproduce the water level at gauges 3 and 4 and at

gauge 2 after 20 s whereas there is a difference with the experimental data of

gauge 2 in the first half of the experiment, this difference is presents also in the

results obtained by other authors (Aureli et al. [2004], Vázquez-Cendón [1998])

and it can be explained by the strong gradient of the water surface that is present

close to gauge 2 during the first stages of the simulation: in this part of the do-

main the hydrostatic assumption is probably a rough approximation. Gauges 5,

6 and 7 are placed in the bend and the numerical model is able to reproduce the

registered water level in this tree gauges, in particular the surface inclination in

the bend is correctly simulated. Gauges 8 and 9 are placed downstream of the

bend and the overall comparison of the water level is satisfactory although the

numerical model slightly underpredicts the water level at the gauge 9. Figure

3.18 shows the water elevation field at different times 5, 10 and 20 s, in the first

time step the bore formation near the bend can be seen, in the second one the

bore is travelling upstream and in the last one it disappears.
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(a) (b)

(c) (d)

Figure 3.13. 1-D Dam Break in a rectangular channel with splitting, Lax-Friedrichs
stabilization term without MUSCL reconstruction: velocities y=500 at time steps (a)-10
s, (b)-20 s, (c)-30 s and (d)-40 s
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(a) (b)

(c) (d)

Figure 3.14. 1-D Dam Break in a rectangular channel with splitting, Two-Schock
Riemann solver with no MUSCL reconstruction: water depth at the section y=500 at
times (a)-10 s, (b)-20 s, (c)-30 s and (d)-40 s

In order to reduce the computational time the same test case has been simulated

using bigger particles inside the reservoir and splitting them when they approach

the channel. In this second simulation 2450 particles are initially placed in the

reservoir and the same manning coefficient is applyed. Despite of the reduced

resolution the results of this second simulation are analogous to the results ob-

tained in the first one where much more particle are used (see Figure 3.19), this

is due to the splitting procedure adopted that increase the resolution just in the

part of the domain where the strong modifications in the water depth and in the

velocity field occur. The computational time of the simulation with no splitting

is 147 minutes, whereas it is equal to 86 minutes in the simulation with bigger

particles and splitting procedure: therefore with the splitting procedure the com-

putational time is reduced of 40%.

Figures 3.20 and 3.21 show the comparison between the water levels obtained

by Zhou et al. [2004] using a Finite Volume algorithm and by the SPH-SWEs

presented in this work. At gauges 4 and 6 the SPH-SWEs results are in good

agreement with the experimental data whereas FV code overestimates them,

whereas at gauges 9 the experimental data are slightly underestimates by the

SPH method and slightly overestimates by the FV code.
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(a) (b)

(c) (d)

Figure 3.15. 1-D Dam Break in a rectangular channel with splitting, Two-Schock
Riemann solver with MUSCL reconstruction: velocities y=500 at time steps (a)-10 s,
(b)-20 s, (c)-30 s and (d)-40 s

Figure 3.16. CADAM test case: plane and profile view of the experimental setup
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Figure 3.17. CADAM test case with no splitting: water level registered at different
gauges
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Figure 3.18. CADAM test case with no splitting: comparison between FV and SPH-
SWEs models at gauges (a) 4 (b) 6 and (c) 9
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Figure 3.19. CADAM test case with splitting:water level registered at different gauges
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Figure 3.20. CADAM test case with splitting: comparison between FV and SPH-
SWEs models at gauges (a) 4, (b) 6 and (c) 9
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Figure 3.21. CADAM test case with splitting: comparison between FV and SPH-
SWEs models at gauges (a) 4, (b) 6 and (c) 9
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3.5 Concluding Remarks

The main limitation of the SPH-SWEs numerical scheme is the lack of resolution

in zones with a reduced water depth; this has been overcome in this paper by

introducing a particle splitting procedure: if one particle has an area which is

more than a fixed value it is divided into seven daughter particles. The masses,

velocities and water depth of daughter particles are assigned by conserving the

both the mass and momentum. A new procedure has been proposed that signif-

icantly reduces the error due to particle splitting when using variable smoothing

lengths.

The numerical code has been tested against the CADAM test case where a dam

break flow occurs along an initially dry channel; the step located at the inflow

and the bend positioned along the channel creates a quite complicated geometry

representative of a real test case; nevertheless the numerical model is able to sim-

ulate the phenomenon in a satisfactory way both with and without the splitting

procedure activated, nevertheless it remarkably reduces the computational time.
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Chapter 4

Development of open

boundaries for SPH-SWEs

and Application to real

problems

4.1 Characteristic boundary method

The one-dimensional SWEs written in quasi-linear form are:

∂W

∂t
+ A(W)

∂W

∂x
= S (4.1)

where:

A(W) =

[

v d

g v

]

W =

[

d

v

]

;S =

[

0

−g ∂b∂x + Sf

]

where v is the 1D velocity, d is the water depth and b is the bottom elevation

and Sf is the friction source term.

the matrix A(W) has got two distinct and real eigenvalues: v − c and v + c

where c is the wave propagation speed. These two eigenvalues are the character-

istic directions of the SWEs and along these directions the fluid information are

transported as a combination of primitive variables v and d. Therefore only vari-
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ables transported from the boundaries in the domain can be imposed as physical

boundary conditions, whereas all other variables (which are transported from the

domain to the boundary) should be calculated and not imposed. Along the char-

acteristic directions the Riemann invariants (v±2c) remain constant if no source

terms are present, therefore imposing the steadiness of these values represents

the most theoretically correct way to calculate the missing informations.

In other areas of CFD, the method of characteristics has been used extensively to

model both solid and transmissive boundaries (e.g. Giles [1990]). Nevertheless

this method is difficult to apply because the characteristic lines are not known

a priori. In Finite Volume methods many authors calculate the characteristic

directions just to define the number of variables that should be prescribed at the

boundary then the method of ghost cells is used and the primitive or conserved

variables are directly imposed in the ghost cells Toro [1997]. For example in a

supercritical flow (u > c) in 1D domain both the v and d have to be imposed at

the inflow because both the characteristic directions are entering in the domain,

whereas in a outflow supercritical boundary condition both v and d have to be

calculated. In a subcritical flow both at the inflow and at outflow just one of the

two characteristic lines points towards the domain and therefore just one of the

two variables have to be imposed and the other one should be calculated.

Herein, for the SPH-SWEs numerical code the approach of Fujihara and Borth-

wick [2000] is applied. In this approach at the open boundaries the Riemann

invariants are imposed according to the local Froude number as follow:

1. subcritical outflow condition (the water depth d is imposed):

vb,n = vi,n + 2
√
g
(√
di −

√
db
)

vb,t = vi,t

(4.2)

where vb,n, vb,t and db are the velocities and the water depth calculated at

the boundary, whereas the subscript i indicates the inner Riemann state

value.

2. subcritical inflow condition (velocity vb is imposed):

db =

[

1

2
√
g

(vi,n − vb,n) +
√

di

]2

(4.3)
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3. supercritical outflow condition:

vb,n = vi,n; vb,t = vi,t; db = di (4.4)

4. supercritical inflow condition: both the velocity vb and db have to be im-

posed.

In this way characteristic Riemann invariants are imposed at the boundaries

using a simplified 1D approach and no bicharacteristics lines are used. Moreover

the Riemann invariants are not imposed along the characteristic lines but an SPH

interpolation is used in order to transfer the information from the fluid to the

boundaries. These represent two approximations of the rigorous characteristic

boundary method, but in this way the characteristic boundary method can be

applied in a meshless Lagrangian code without overcomplicating the algorithm.

The only limitation that this approach has is that the fluid near the boundaries

should be unidirectional, so that one-dimensional approximation can be still con-

sidered valid.

In the next session the procedure to calculate the inner Riemann state of veloci-

ties and water depth is explained.

4.2 Open Boundaries in SPH

Open boundaries in meshless Lagrangian numerical method for Computational

Fluids Dynamics have received only small attention so far; nevertheless the im-

position of Open Boundaries represents a crucial element in any Shallow Water

numerical model because it allows the computational domain to be limited to

the area of interest: phenomena like flood waves in rivers and tides in estuar-

ies can be described only if reliable open boundaries are available. In Eulerian

models the imposition of inflow and outflow Boundary Conditions is relatively

straightforward because each cell of the mesh describes a part of the domain with

inflow and outflow fluids and ghost cells can be used to apply open BC. In SPH

methods the particles move during the simulation therefore they have to be con-

veniently inserted in and removed from the domain and this, together with the

approximate nature of the SPH interpolation makes the implementation of this

kind of boundary rather difficult. Lastiwka and Quinland [2008] introduced the

permeable non reflecting boundary condition in a gas dynamic SPH numerical

model; Ramos-Becerra et al. [2009] built an Incompressible SPH numerical model

and they showed some application with an inlet and outlet boundary condition.
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de Leffe et al. [2009] developed a Finite Volume with Characteristic Flux Scheme

for open boundaries in the framework of SPH method proposed by Vila [2000]

for integration of Navier-Stokes equations.

In this chapter a method to handle both subcritical and supercritical Open

Boundary Conditions in an SPH numerical code for Shallow Water Equations

is presented.

4.2.1 SPH interpolation at Open Boundary particles

Figure 4.1. boundary at the inflow zone: boundary and fluid particle management

Figure 4.2. boundary at the inflow zone: boundary and fluid particle management

In order to define an open boundary a buffer zone has to be defined and filled

with Open Boundary Particles; as shown in Figure 4.1 this buffer zone is located
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just outside the fluid domain. These Open Boundary Particles are added in the

SPH summation to update the acceleration and the water depth of the fluid par-

ticles as shown in Figure 4.2.

In an inflow subcritical BC the particle velocity of the OBP normal to the bound-

ary vb is imposed and the water depth db is calculated by means of Equation 4.3;

whereas in an inflow supercritical BC both vb and db are imposed. In an outflow

BC if the flow is subcritical the velocities are calculated using Equation 4.2 and

db is imposed. Finally for outflow supercritical BC both the particle velocities

and water depth are calculated using Equation 4.4.

The Open Boundary Particles interact with the fluid particles, the water depths

and the velocities of these particles are updated accordingly to the character-

istic boundary method as explained in section (4.1). The inner Riemann state

values of velocity vi,o and water depth di,o are calculated for each Open Bound-

ary Particle by means of an SPH interpolation conducted using just the fluid

particles:

voi =
∑

j v
f
j W̄i(x

o
i − xfj , ho)

mf
j

ρf
j

doi =
∑

j d
f
j W̄i(x

o
i − xfj , ho)

mf
j

ρf
j

(4.5)

where the superscript o indicates the open boundary particles and the fluid par-

ticles are referred with the superscript f for the sake of clarity, W̄i is the kernel

corrected using the Shepard filter (Randles and Libersky [1996]). This filter is

used because the kernel of the open boundary particles is not completely filled

and therefore the classical SPH interpolation would generate too big interpola-

tion errors.

Since the fluid particles are entering in the buffer zone of the open boundaries,

and the Open Boundaries Particles are entering in the fluid domain a particle

management algorithm has to be used: each time an Open Boundary Particle

enters in the fluid domain it is transformed in a fluid particles and a new Open

Boundary Particle is inserted in the upstream part of the buffer zone (Lastiwka

and Quinland [2008]) as shown in Figure 4.1. This procedure keeps the buffer

zone always filled with OBP and avoids any kernel truncation error for the fluid

particle. When a fluid particle is entering in the buffer zone the procedure is

more simple: it is transformed into a new Open Boundary Particle. Finally

Open Boundary Particles that are leaving the buffer zone are deleted and no

longer used in calculations.
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4.3 1-D Steady flow over a bump

These set of benchmark tests concern steady flow along a 10 m long one-dimensional,

frictionless channel with a bottom characterized by the presence of a bump:

b (x) =

{

b0

[

1 − (x−5)2

4

]

if 3m < x < 7m

0 elsewhere
(4.6)

where x is the distance along the channel, b0=0.2 m. At the beginning of the

simulation the domain is dicretized using a particle spacing equal to 0.05 m,

the Courant number CCFL =0.4. The Boundary Conditions determine the flow

conditions which can be subcritical, transcritical with or without a shock, or

supercritical (Aureli et al. [2008]), an analytical solution is available for this test

(Goutal and Maurel [1997]). In order to test the capability of the numerical

model to reproduce different kind of open BCs all the different possibilities have

been simulated: In test (i) subcritical inflow and outflow are imposed and a

transcritical flow with a shock over the hump is present. The transition from

subcritical to supercritical flow is present also in test (ii) but without any shock

because a supercritical outflow is imposed. Finally in test (iii) the supercritical

inflow and outflow are imposed and the Froude number is greater than 1 all over

the domain. Table 4.1 shows the details of the BCs of each test. Figures 4.3-4.5

Table 4.1. Boundary conditions for a 1D steady flow over a bump

test inflow upstream BC outflow downstream BC
i 0.435 m/s 0.33 m
ii 0.435 m/s 0.10 m
iii 4.000 m/s 0.10 m

show the converged steady-state numerical water depth, velocity and discharge

along the channel. The agreement between the numerical and the analytical

solutions is satisfactory. In order to verify the attainment of a steady condition

in time a global relative error Ls is calculated at each time step using the Equation

1.12; when the norm has reached a value of 1 x 10−3 then the steady condition

is said to be achieved and the simulation is stopped, in Figure 4.6 the norm L1

calculated for the test (ii) is plotted.

Many authors simulated these test cases using Finite Volume schemes in order

to validate the discretization method of the slope source term: Vázquez-Cendón

[1999] and other prosed an upwinding of the bed source term, Zhou et al. [2001a]

introduced an Surface Gradient Method where the water depth is reconstructed
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starting from the water surface level, Aureli et al. [2008] combined the SGM and

the Depth Gradient Method reconstruction, finally Rogers et al. [2003] proposed

a different approach where a mathematical balancing of the flux gradient and

source terms is introduced.

The simulation of test case (i) is the most severe and some small oscillations

are present in the region near the shock (particularly in the discharge), but this

is a well known problem reported also by the authors previously cited, despite

of this small deviation the agreement between the numerical and the analytical

solution is very close. For test cases (ii) and (iii) Aureli et al. [2008] showed that

in the results obtained by the DGM reconstruction some spurious oscillations are

present in the discharge. Conversely the solution obtained by the SPH-SWEs for

these two test cases presents no oscillations and they are in good agreement with

the analytical solution.

(a) (b)

(c)

Figure 4.3. Steady transcritical flow over a bump with a shock (test i): velocity (a),
water surface elevation (b) and discharge (c)

4.4 2-D Uniform flow in a sloping rectangular

channel

The simulation of a steady flow in a rectangular straight open channel 1000 m

long and 400 m wide, with a constant slope of s0 = 0.001 is performed in this
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(a) (b)

(c)

Figure 4.4. Steady transcritical flow over a bump without a shock (test ii): velocity
(a), water surface elevation (b) and discharge (c)

(a) (b)

(c)

Figure 4.5. Steady supercritical flow over a bump (test iii): velocity (a), water surface
elevation (b) and discharge (c)

100



4.4. 2-D Uniform flow in a sloping rectangular channel

Figure 4.6. Steady supercritical flow over a bump (test ii): Ls water depth norm

section. The purpose of this test is to verify the capability of the 2-D SPH-SWEs

code to simulate the inflow and outflow boundary conditions, moreover both the

friction and the slope source terms have to be correctly simulated in order to

obtain agreement between the numerical and the analytical solutions.

The analytical solution for this problem is given the Chezy formula:

vexx = 1
nR

1/6
√
Rs0 = 2.929 m/s

vexy = 0

dex = 5.

where R is the hydraulic radius (which is equal to the water depth d), s0 is the

constant slope of the channel, and n is the Manning coefficient taken equal to

0.0316 sm−1/3.

At the begin of the simulation 4,141 motionless particles where placed in the

domain over an uniform Cartesian grid, an inflow boundary condition with a

constant velocity equal to the analytical solution is imposed upstream whereas

an outflow boundary condition (d = 5 m) is assigned downstream. The bottom

and friction source terms are discretize using 13,832 bottom particles.

The simulation was run for 2000 s when the steady state condition is reached. In

Figure 4.7 the particles position and velocity vectors are plotted and Figure 4.8

shows the water depth and velocity magnitude maps. Finally in figure 4.9 the

water depth and the velocities are plotted at three different sections along the

channel: y=100, y=200 and y=300 m.

The maximum nondimensional deviations of vx vy and dw are:

max
[

vx−vex
x√

gdex

]

= 0.26

max
[

vy√
gdex

]

= 0.66

max
[

d−dex

dex

]

= 1.09
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and therefore the numerical model is able to reproduce the analytical solution in

a satisfactory way. This is obtained because the numerical approximation of the

slope and the friction source terms introduced in sections 2.3-2.4 are adequate.

Moreover the treatment of the inflow and outflow boundary condition presented

in this chapter is validated also for the 2-D SPH-SWEs model.

Figure 4.7. 2-D Uniform flow in a sloping rectangular channel: particle position and
velocity vectors

(a)

(b)

Figure 4.8. 2-D Uniform flow in a sloping rectangular channel: (a) water depth map,
(b) velocity magnitude map
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(a)

(b)

(c)

Figure 4.9. 2-D Uniform flow in a sloping rectangular channel: water depth (a),
velocity vx (b) and velocity vy (c) evaluated at sections y=100, y=200 and y=300
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4.5 1993 Okushiri tsunami

This test case concerns the numerical simulation of a laboratory experiment. In

1993 the Okushiri tsunami produced the flooding of the coast near Monai in

Japan, and this phenomena was later reproduced by a physical model built in

1:400 scale with dimensions 5.448 x 3.402 m. In the real event the tsunami gen-

erated a very high run-up of 31.7 m (equal to 0.079 m in the scale model) which

was recorded by debris and caused numerous fatalities. The incoming wave was

induced in the wave tank by a mechanical paddle placed at x=0 and the water

elevation was measured by three gauges at locations: (4.521,1.196) (4.521,1.696)

and (4.521,2.196). The bathymetry and the gauges position are plotted in Figure

4.10, and the water surface elevation boundary condition is plotted in Figure

4.11. The registered datasets are available at the Third International Workshop

on Long Wave Run-up Models (2004) website.

This test case has a number of difficult aspects: open and closed boundaries, ir-

Figure 4.10. 1993 Okushiri tsunami: bathymetry of the domain and three gauges
position

regular bathymetry, wetting and drying fronts and complex shape of the reflected

waves due to the shape of the coast line and to the presence of the island close

to the beach; due to these features many authors simulated this case by SWEs

Eulerian numerical code (Nikolos and Delis [2009], Delis et al. [2008], LeVeque

and George [2007]).

In this section a comparison between the experimental data and the numerical

results is done in order to show the capability of the SPH-SWEs model to re-

produce real flooding events. As suggested by Delis et al. [2008] the Manning

coefficient was set equal to 0.025sm−1/3. Two different simulations have been

conducted: (i) in the first simulation 47,673 fluid particles are initially placed
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Figure 4.11. 1993 Okushiri tsunami: water level elevation imposed at x=0

in the domain over a Cartesian grid whereas, (ii) in the second simulation the

same resolution is used but particle splitting procedure has been activated and

close to the shoreline (x > 2.50m) the threshold area Ā is taken equal to 0.9A0

where A0 is the area the particles at the beginning of the simulation. In this

way the particles in this part of the domain are split in the first time step of the

simulation according to the procedure described in chapter 3 and the number of

fluid particles after the first time step becomes 186,081; in the remaining part of

the domain Ā is taken equal to 5.0 in order to prevent any splitting. Therefore

in this test case the particle splitting procedure is not used to avoid the lack

of resolution as in the 1D-2D dam break (see section 3.4.2) but to increase the

resolution in the part of the domain where the flow presents more complex be-

haviour.

In Figures 4.12 and 4.13 the maps and the 3-D views of the water depth are

plotted at different time steps for the first simulation (with no splitting). In

Figure 4.14 is plotted the comparison between numerical and experimental water

elevation at the three gauges for the same simulation. Figures 4.15 - 4.16 show

the water depth maps at different time steps for the second simulation (with

splitting) whereas the comparison with the registered water level is plotted in

Figures 4.14 and 4.17.

The arrival of the tsunami is anticipated by a draw-down that can be seen in the

water depth maps of time steps 12 and 14 s and this causes a partial drying of

the ridge behind the island. When the main tsunami wave is approaching the

beach the diffracted waves meet together behind the island (at time steps 15 and
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16 s). At time 17 the tsunami reaches the beach and the wetting - drying front

moves forward over the initially dry land. At time steps 18 - 20 the shape of the

reflected waves from the coast can be observed. Both the simulations without

and with splitting are able to reproduce these characteristics of the phenomenon.

In the simulation made by Nikolos and Delis [2009] the ridge behind the island

is dry in the first time steps and the same area is wet in Figures 4.12, 4.13, 4.15,

4.16. This seems an important discrepancy between the two results but the wa-

ter depth calculated by the SPH-SWEs numerical model is very shallow in that

region and probably it is less than the threshold value that Nikolos and Delis

[2009] used to localise the wet-dry front, another reason for this difference can

be due to the postprocessing procedure (see 2.6) used in the SPH-SWEs code to

generate the water depth maps.

Figure 4.18 shows the zoom of the particles position at the maximum run-up

locations when the maximum run-up occurs (time 17s) with and without particle

splitting. In the simulation with no splitting procedure the maximum run-up

simulated is 0.07 m, whereas the registered value of 31.7 m in the real events

corresponds to 0.08 m in the scale model. This underestimation is caused by the

lack of resolution in the maximum run-up area. Conversely in the simulation

with refinement activated the number of particles is clearly larger in the area

where the maximum run-up occurs and the maximum run-up registered in the

numerical models is very close to the registered value of 0.08 m.

4.6 Flood inundation in Thamesmead

In this section a real flood risk analysis problem is performed with the aim to

show the capability of the SPH-SWEs to reproduce real scale events. The simu-

lation is carried out for the 9 x 4 km Thamesmead site which is a low-lying area

located in the estuary of the River Thames in United Kingdom protected from

tidal flooding by a system of levees that separate it from the Thames riverbed.

The area is densely populated therefore an hydraulic modelling is required to

assess the nature of the flooding if a breaching of the flood defences occurs. A

reference numerical simulations have been carried out by using the commercial

software TUFLOW. Liang et al. [2008] compared the results of their Finite Vol-

ume code against this reference solution, in this section the same test case is

simulated by the SPH-SWEs code and a comparison against the TUFLOW re-

sults is shown.

Figure 4.19 shows the bathymetry of the site: it is characterized by some low

106



4.6. Flood inundation in Thamesmead

Figure 4.12. 1993 Okushiri tsunami simulation without splitting: 3D view (left) and
contour (right) of water depth at times 10, 12, 14 and 15 s
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Figure 4.13. 1993 Okushiri tsunami simulation without splitting: 3D view (left) and
contour (right) of water depth at times 16, 17, 18 and 20 s
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Figure 4.14. 1993 Okushiri tsunami simulation without splitting: surface elevation at
three gauges
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Figure 4.15. 1993 Okushiri tsunami simulation with splitting: 3D view (left) and
contour (right) of water depth at times 10, 12, 14 and 15 s
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Figure 4.16. 1993 Okushiri tsunami simulation with splitting: 3D view (left) and
contour (right) of water depth at times 16, 17, 18 and 19 s
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Figure 4.17. 1993 Okushiri tsunami simulation with splitting: surface elevation at
three gauges

(a) (b)

Figure 4.18. 1993 Okushiri tsunami simulation: zoom in the area with maximum
water elevation at time 17 s without (a) and with particles splitting simulation (b)
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areas and by the presence of an railway embankment running from the south

west to the centre of the domain.

In order to reproduce the results obtained by TUFLOW a breach 150 m long is

Figure 4.19. Thamesmead test case: bathymetry of the site and position of the 6
gauges, the color axis is expressed in meter

considered; it starts at point (545785,181045) and ends at point with coordinates

(545935,181045); along this breach the inflow discharge plotted in Figure 4.20 is

imposed. This discharge is uniformly distributed along the breach using open

boundary particles 15 m distant from each other. The flow never reaches the

other boundaries because they are much higher than the floodplain, hence, no

other boundary condition are imposed.

The Manning coefficient is taken equal to 0.035 sm1/3 and the floodplain is

Figure 4.20. Thamesmead test case: discharge boundary condition imposed through
the breach

considered dry at the begin of the simulation so no fluid particles are placed in

the domain at the begin of the simulation. The bathymetry is discretized using

359,976 bottom particle placed over an uniform Cartesian grid with 10 m side
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length.

The results of the SPH simulation are compared with the one obtained by TU-

FLOW using a 10 m uniform grid. Figures 4.21 - 4.24 show the comparison of

the water depth maps obtained by the two models at different times. Results

of the SPH-SWEs numerical model agree with the TUFLOW simulations and

the leading characteristics of the inundation phenomena caused by the complex

bathymetry are properly described by the meshless Lagrangian model. The dis-

crepancies in the position of the flood fronts in the last time steps (5 and 6 hours)

are due to the fact that the water is very shallow in the region closed to the front

therefore the particles density is low and this causes some problems in the post-

processing algorithm used to plot the water depth maps (see section 2.6). Figure

4.25 shows the comparison of the water depth time history at locations plotted

in Figure 4.19. The maximum differences of the water depth obtained by the two

models are less than 0.5 m and the arrival time of the flooding obtained by the

two models presents no substantial differences.

To the best author knowledge this is the first flooding simulation of a real scale

events over a real initially dry bathymetry. Therefore the major purpose of this

test case is to show that the SPH-SWEs model can be successfully applied to

this kind of phenomena. Nevertheless some future analysis will concern the in-

troduction of a dynamic particle splitting/coalescing in order to avoid the lack

of resolution when the flooding of the floodplains occurs.

4.7 Concluding Remarks

In this chapter a method to insert Open Boundary condition in the SPH-SWEs

numerical model has been presented. Boundary condition has been imposed us-

ing Open Boundary Particles placed in a buffer zone in order to prevent any

kernel truncation in the fluid particles. The method has been tested against the

analytical solutions available for the 1-D steady flow over a bump and accurate

results were obtained for both supercritical and subcritical inflow/outflow bound-

ary conditions. Moreover The 2-D Uniform flow in a sloping rectangular channel

has been simulated in order to verify the effectiveness of the method when ap-

plied to a 2-D test case and reasonably accurate results were obtained. To the

author’s knowledge these are the firsts simulations where open boundaries are

applied in a SPH-SWEs numerical model.

Finally the simulation of two real test cases has been made. The first one is

the Okushiri tsunami where the results with and without particle splitting pro-
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Figure 4.21. Thamesmead test case: contour plot of TUFLOW simulation at times
1, 2 and 3 hours
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Figure 4.22. Thamesmead test case: contour plot of SPH simulation at times 1, 2
and 3 hours
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Figure 4.23. Thamesmead test case: contour plot of TUFLOW simulation at times
4,5 and 6 hours
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Figure 4.24. Thamesmead test case: contour plot of SPH simulation at times 4, 5
and 6 hours
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Figure 4.25. Thamesmead test case: water depth registered at different gauges

cedure has been adopted. A reasonable agreement with the registered levels is

obtained, moreover the maximum run-up is well reproduced and the effective-

ness of the splitting procedure in increasing the resolution in the portion of the

domain closer to the beach is shown.

The model was later applied applied for a flood risk analysis, and the simulation

of the breaching in a flood defence at Thamesmead location (United Kindom)

has been made. The comparison of the results obtained against the TUFLOW

simulation show that the SPH-SWEs numerical model can be able successfully

applied in flood inundation simulations also in real scale studies.
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Chapter 5

Finite Pointset Method for

free-surface Flow

5.1 Finite pointset method and SPH

This final analysis chapter introduce a more recent meshless method, the Finite

Pointset Method (FPM), that could well represent the future of particle methods

and SPH. FPM is a Lagrangian meshless method for numerical integration of

pure incompressible Navier-Stokes equations originally introduced by Tiwari and

Kuhnert [2003]. This method is similar to incompressible SPH (Lee et al. [2008],

Shao and Lo [2003], Hu and Adams [2007]) because each particle carries a vector

of field. Information and physical quantities are approximated using particles in

a circular neighbourhood.

There are also some fundamental differences between the two methods: FPM is

based on a moving least squares approach, where particles are just interpolation

points without any associated mass. Due to these key features, boundary con-

ditions can be enforced analytically using boundary particles, and particles can

be added and removed in order to preserve the stability of the solution. To date

the FPM has been confined to single or two phase internal flow, in this chapter a

free surface version of FPM is introduced: a novel, pure geometrical algorithm to

detect the free surface boundary condition is proposed. The second major modifi-

cation introduced is about the capability to reproduce the hydrostatic condition

in time. This capability is one of the fundamental features of free-surface nu-

merical models, however classical FPM is not able to reproduce that condition;
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to overcome this problem a modification of the Incremental Pressure Projection

Method is used to solve the Navier Stokes equations.

5.2 Incremental Pressure Projection Method

We consider the incompressible Navier-Stokes equations, written using the La-

grangian derivative

∇ ·v = 0 (5.1)

Dv

Dt
= −1

ρ
∇p+ fe + Θ (5.2)

where v is the velocity, p is the pressure, ρ is the density of the fluid, fe is the

vector of external forces and Θ is the viscous term equal to ν∇2v for a Newtonian

fluid, where ν is the kinematic viscosity of the fluid.

Spatially discrete versions of the coupled Navier-Stokes equations are cumber-

some to solve directly. Observing that the right-hand side of equation (5.2) is a

Hodge decomposition, Chorin [1968] proposed the Projection Method (PM) in

order to solve this system of partial differential equations. The key idea of the

PM is to introduce a fractional step procedure: an intermediate velocity v∗ is

computed neglecting the gradient pressure in equation 5.2, then, projecting the

final velocity onto a divergence free space, the pressure p is calculated solving a

Laplace equation.

If the classical Projection Method is applied in a bounded domain Ω, then an

issue arises: boundary conditions applied calculating v∗ should be consistent with

the final velocity although the final pressure pn+1 is not known, this problem is

analysed for Eulerian models by many authors (see for example Bell et al. [1989]

or Kim and Moin [1985]). The Incremental Pressure Projection Method (IPPM)

was introduced by Brown et al. [2001]; the version presented herein is an adaption

for Lagrangian projection methods.

The following discrete implicit formulation of (5.2) is initially considered

vn+1 − vn

∆t
+

1

ρ
∇pn+1 = 0.5

(

Θn + Θn+1
)

+ fe; (5.3)

with boundary condition v = vb on ∂Ω.

In IPPM Equations (5.1) and (5.3) are solved by means of Hodge decomposition

122



5.2. Incremental Pressure Projection Method

as in Chorin’s original method. In the first step a predicted velocity is computed:

v
∗−v

n

∆t + 1
ρ∇q = 0.5

(

Θn + Θn+1
)

+ fe

B(v∗) = 0 ∂Ω
(5.4)

This equation differs from the one used in classical PM because the viscous term

is now discretized implicitly, and an approximation q of the pressure is added. A

boundary condition B(v∗) = 0 for v∗ is also introduced.

The second step is the projection of v∗ in divergence free space:

v∗ = vn+1 + ∆t
1

ρ
∇φn+1 (5.5)

where φ is not the pressure, as in PM, but a correction to the approximation q.

Equation (5.5) is solved using boundary conditions consistent with B(v∗) = 0

and vn+1 = vn+1
b on ∂Ω.

Substituting (5.5) into (5.1) leads to the following Laplace equation:

∇ · 1

ρ

(

∇φn+1
)

=
∇ ·v∗

∆t
(5.6)

The third and last step of IPPM is the pressure update:

pn+1 = q + L(φn+1) (5.7)

where the function L represents the dependence of pn+1 on φn+1. Once the time

step is completed, the predicted velocity v∗ is not used again at that time or any

later time.

In order to define the IPPM, the pressure approximation q, the boundary con-

dition B(v∗) = 0 and the function L(φn+1) have to be defined. An obvious

choice for the pressure approximation q into (5.4) is the pressure at the previous

time step, so: q = pn. Assuming that q is a good approximation for pn+1, then

the field of predicted velocity will not differ too much from the final one and

v∗ = vn+1 on ∂Ω is the boundary condition for v∗.

Substituting (5.5) into (5.4) and comparing to (5.3) for a Newtonian fluid we

obtain the following formulation for L

L(φn+1) = φn+1 − ν∆t

2
∇2φn+1 (5.8)
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5.3 FPM implementation

5.3.1 Moving Least Squares approximation

Let a scalar function be defined as f : Ω → R and i = 1, · · · , N a set of discrete

points in the domain Ω where the function f is known. Moving Least Squares

is a numerical method to approximate the value of the function f(x) and its

derivatives in a generic point x using the point clouds around x (see Dilts [1999]).

The point cloud of x is defined as a set of points {x1, x2, · · ·xn} that satisfy the

following property: ‖x−xi‖ ≤ h(x) where h(x) is similar to the smoothing length

in SPH method (Monaghan [1992]).

In order to compute the approximation of f(x) and its derivatives n Taylor

expansion of f(xi) around x are written:

f (xi) = f (x) +

3
∑

k=1

(

∂f

∂xk

)

xi

(xk,i − xk)

+
3
∑

k,l=1

(

∂2f

∂xkxl

)

xi

(xk,i − xk) (xl,i − xl) + ei;

∀ i = 1, 2, · · · , n

(5.9)

where ei is the error in the Taylor series at the points xi and the unknowns

are f (x) and their derivatives. These unknowns are computed by minimizing

the error ei for i = 1, 2, ..., n. The system of equations can be written in two

dimensions and in matrix form as:

e = Ma − b (5.10)

where:

M =













1 dx1 dy1 1/2dx2
1 dx1dy1 1/2dy2

1

1 dx2 dy2 1/2dx2
2 dx2dy2 1/2dy2

2

...
...

...
...

...
...

1 dxn dyn 1/2dx2
n dxndyn 1/2dy2

n













a =

[

f,

(

∂f

∂x

)

xi

,

(

∂f

∂y

)

xi

,

(

∂2f

∂x2

)

xi

,

(

∂2f

∂xy

)

xi

,

(

∂2f

∂y2

)

xi

]T
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b = [f1, f2, · · · , fn]T

e = [e1, e2, · · · , en]T

The unknown vector a is then obtained by minimizing the quadratic form J

defined as follows:

J =

n
∑

i=1

ωie
2
i (5.11)

where ωi is the weight of the ith error, and can be expressed using any bell-shaped

function. In this work we used a Gaussian function:

ωi =

{

exp
(

−α ‖xi−x‖2

h2

)

if R2 ≤ 1

0 if R2 > 1
(5.12)

where R =‖ xi − x ‖ /h and α is a coefficient taken equal to 6.25 (Tiwari and

Kuhnert [2007]).

The value of h is not fixed (see paragraph 5.3.4), but the initial value h0 is taken

as h0 = 3.2 dx where dx is the initial particle spacing.

The minimization of J leads to the following 6 × 6 linear system of equations in

2D (and 10 × 10 in 3D)

(

MTWM
)

a =
(

MTW
)

b (5.13)

where W = diag (ω1, ω2, · · · , ωn). By solving this system of equations is possible

to obtain the unknown vector a and its derivatives anywhere in the domain.

In contrast to the SPH intepolation method used in the first part of this work,

this technique requires the inversion of relatively large matrices for each particles

and thus it is more time consuming.

5.3.2 Elliptic equations

The Moving Least Squares method outlined in the previous paragraph can also

be used for solving an elliptical equation written in generic form as:

Aψ + B · ∇ψ + C∆ψ = f (5.14)

Where A, B, C and f = f(x) are given (for A = 0 and B = 0 we recover the

classical Poisson equations) and ψ is the unknown. We solve this equation with
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Dirichlet ψ = g or Neumann boundary condition:

∂ψ

∂n
= g on ∂Ω (5.15)

where n is the versor normal to the boundary.

Adding eqs (5.14) and (5.15) to the Taylor series of the neighbouring points (see

eqs 5.9) leads to the following linear system:

e∗ = M∗a − b∗ (5.16)

where:

M∗ =























1 dx1 dy1 1/2dx2
1 dx1dy1 1/2dy2

1
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a =

[

ψ,

(

∂ψ

∂x

)

xi

,

(

∂ψ

∂y

)

xi

,

(

∂2ψ

∂x2

)

xi

,

(

∂2ψ

∂xy

)

xi

,

(

∂2ψ

∂y2

)

xi

]T

b∗ = [ψ1, ψ2, · · · , ψn, φ, g]T

e∗ = [e1, e2, · · · , en, en+1, en+2]
T

The unknowns a are computed by minimizing the quadratic form J as shown in

paragraph (5.3.1). This leads to the following equations:

a∗ =
(

M∗TW ∗M∗)−1 (
M∗TW ∗)b∗ (5.17)

where W = diag (ω1, ω2, · · · , ωn, 1, 1) because we assign weight 1 to Equations

(5.14) and (5.15).
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The first line of Equation(5.17) is:

ψ = β1

(

n
∑

i=1

ωiψi +Aφ

)

+β2

(

n
∑

i=1

ωidxiψi +B1φ+ n1g

)

+β3

(

n
∑

i=1

ωidyiψi +B2φ+ n2g

)

+β4

(

0.5

n
∑

i=1

ωidx
2
iψi + Cφ

)

+β5

(

n
∑

i=1

ωiψidxidyi

)

+β6

(

0.5

n
∑

i=1

ωiψidy
2
i ψi + Cφ

)

(5.18)

where (β1, β2, · · · , β6) is the first raw of matrix (M∗TW ∗)b.

If (5.9), (5.14) and (5.15) are written for each one of the j = 1, · · · , N discrete

points used for the discretization of the domain, the summation in (5.18) can be

arranged as follow

ψj −
n(j)
∑

i=1

ωji
(

β1 + β2dxij + β3dyij + 0.5β4dx
2
ij+

β5dxijdyij + 0.5β6dy
2
ij

)

ψi = (β1A+ β2B1+

β3B2 + β4C + +β6C)φ+ (β2nx + β3ny+) g

(5.19)

where n(j) is the number of neighbours of particle j. Equation (5.19) can be

written for every particle of the domain, finally the discrete form of (5.14) is

obtained and it is a sparse N ×N linear system.

This linear system is solved using the iterative method BiCGStab (van der Vorst

[1992]).

5.3.3 Particle management

One of the features of any meshless Lagrangian method is the irregular distri-

bution of the particles in the domain. This occurs because particles are moving

during the simulation; in some regions particles could be too close to each other
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and in some other part of the domain the number of particles could be too scarce

and it is well known that this can cause numerical instabilities (Fang and Parri-

aux [2008]).

In the FPM particles do not carry any mass, so particle management can be

done more easily than in SPH, but this requires an efficient detection procedures

for nearby particles and holes, and correct interpolation of the field data when

particles are deleted and inserted.

Two particles i and j are too close if:

‖ xi − xj ‖< kch0 (5.20)

where h0 is the initial smoothing length of the kernel function and kc is a co-

efficient significantly less than 1 (in our simulations kc = 0.2). If the condition

reported in Equation(5.20) holds, then the two particles are removed and a new

one is inserted in a position xnew = 0.5(xi + xj).

Finding holes in the domain is a more difficult task because no information is

provided where no particles exist. In order to find regions where the particles

are too sparse a Delaunay triangulation is performed using all the points of the

domain. If the area of a triangle is bigger than a prefixed value Amax then a

point is inserted in the centre of mass of the triangle. Pressure, velocity, and

any other physical quantities of the new particle are then obtained by means of

MLS spatial interpolation. In our simulation we take Amax = 0.76dx2 where

dx = 3.2/h0 is the intial particle spacing.

5.3.4 Variable smoothing length

In order to maintain approximately constant the number of neighbours ni of

each particle i, the smoothing length hi is considered variable in space and time.

According to Benz [1990] the following relation holds:

hi = h0

(

n0

ni

)1/dm

(5.21)

where dm is the number of spatial dimensions (2 in 2-D and 3 in 3-D), h0 and n0

are the initial smoothing length and initial number of neighbours for a particle

i. Equation (5.21) is implicit because the number of neighbours ni depends on

hi. A Newton-Raphson iterative procedure is used for updating the smoothing

length similar to the one presented in chapter 2:

Defining the residual as R(hi) = n0 − ni(hi) the Newton-Raphson formula for
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updating hi is:

hk+1
i = hki −

R(hki )
[

dR
dh

]k

i

(5.22)

where the superscript k indicates the iteration number.

Using Equation(5.21) for computing dR/dh we can obtain the following formula

for updating the smoothing length:

hk+1
i = hki

(

1 − nki − n0

2nki

)

; (5.23)

This iteration is stopped when ‖nk+1
i − nki ‖ < ng where ng is an integer number

much smaller then n0.

5.3.5 Free-surface boundary condition

In order to impose a Dirichlet boundary condition on the free surface when the

Poisson Equation (5.6) is solved, we have to detect particles that are on the free

surface.

In the incompressible SPH formulation the free surface is detected by checking

either the density (Shao and Lo [2003]) or the divergence of particles’ position.

These techniques are based on a kernel interpolation and they are not able to

detect all the free surface particles (see Lee et al. [2008]). In FPM these ap-

proaches cannot be used because the kernel truncation near the surface is no

longer present, therefore a pure geometrical approach similar to the one used in

the Particle Finite Element Method (Oñate et al. [2006]) is adopted.

As shown in the example plotted in Figure 5.1 each couple of neighbouring

points in the domain is considered and the equation of the two circles of radius

h0 from two neighbouring points is calculated; if at least one of them is empty

then the two points are on the free surface.

5.3.6 Time step

Since the numerical scheme is essentially explicit, some restrictions are necessary

for the stability, in particular the time step dt should satisfy a Courant-Friedrichs-
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Figure 5.1. example of free surface detection

Lewy condition:

dt ≤ min
∀i

[

0.15
hi

‖vi‖

]

(5.24)

a constraint due to viscous diffusion:

dt ≤ min
∀i

0.125
h2
i

ν
(5.25)

and an additional constraint due to body force:

dt ≤ min
∀i

0.04

√

hi
g

(5.26)

5.4 Test Cases

5.4.1 Stationary fluid in a box

One of the key features of free-surface flow numerical models is the capability to

reproduce hydrostatic pressure distribution and to maintain it in time. Because

of the difficulties in enforcing boundary conditions in meshless SPH-like models

this is a challenging test case.

The test case consists of a box with 3 sides 1 m long filled with still water and

immersed in the gravity field, the kinematic viscosity ν is set equal to 0.001 m2/s.

The test case is performed using both the Projection Method and the Incremental

Pressure Projection Method. Figure 5.2 shows the particles position obtained
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after 1 s of simulation, and Figure 5.3 shows the pressure obtained at the same

time step at x = 0.5 compared with the analytical solution. Only the IPPM is

able to reproduce the hydrostatic pressure with a satisfactory approximation and

to keep the particles at rest during the simulation.

Figure 5.2. Stationary fluid in a box: particle displacement with PM (left) and IPPM
(right) after 1 s of simulation

Figure 5.3. Stationary fluid in a box: comparison of adimensional pressure obtained
with PM and IPPM method after 1s of simulation at the vertical section x=0.5 m

5.4.2 Taylor-Green flow

In order to assess the convergence rate of the numerical model a Taylor-Green

flow with a Reynold number Re = 1000 is simulated considering three differents

particle resolutions: 20 × 20, 40 × 40 and 80 × 80. The flow is defined by the

following analytical solution (Chorin [1968]):

vx(x, y, t) = −u0cos (ωx) sin (ωy) e−
8π2ν

L2
t

131



Chapter 5. Finite Pointset Method for free-surface Flow

vy(x, y, t) = u0sin (ωx) cos (ωy) e−
8π2ν

L2
t

p(x, y, t) = −1

4
[cos (ωx) + cos (ωy)] e−

8π2ν

L2
t

where ω = 2π
L , u0 is the initial reference velocity and L is the dimension of the

periodic domain considered.

In classical Lagrangian meshless method such as SPH, satisfactory results for

Taylor-Green test case are difficult to obtain because the particles are compressed

at one direction, and stretched at the other an this causes instability (Xu et al.

[2009]). In FPM this problem is overcome thanks to the particles management

procedure: the number of particles is almost constant in every part of the domain

(see for example figure 5.4). Figures (5.5) and (5.6) show that numerical results

of the velocities vx, vy are almost identical to the analytical solutions.

In order to assess the convergence rate of the method a non-dimensional L2 norm

is calculated for every particle resolutions:

L2(f) =

√

√

√

√

1

N

N
∑

i=1

[

f in − f ia
f0

]

where fa and fn are the analytical and numerical solutions, f0 is a reference value

equal to u0 for the velocities and to 1 Pa for the pressure. In Figure (5.7) the

non-dimensional L2 norm of velocities and pressure is plotted at time 2 s; the

algorithm has a convergence rate which is more than first order and less than

second one.

Figure 5.4. Taylor-Green flow with Re=1000: particles position and velocity field for
a particle resolution of 80 × 80 at time 2 s
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Figure 5.5. Taylor-Green flow with Re=1000: comparison of analytical (red lines) and
numerical (dots) vx at y = 0 for a particle resolution of 80 × 80 at times 0.5,2,5,10 s

Figure 5.6. Taylor-Green flow with Re=1000: comparison of analytical (red lines) and
numerical (dots) vy at x = 0 for a particle resolution of 80 × 80 at times 0.5,2,5,10 s

5.4.3 Evolution of intially circular water bubble

In order to test the capability to reproduce free-surface flow the FPM is tested

against the reference solution of the evolution of an initially circular water bubble

(Monaghan [1994], Bonet and Lok [1999], and Ferrari et al. [2009]). At the initial

time particles are disposed in a circle of radius R with the following velocity and
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Figure 5.7. Taylor-Green flow with Re=1000: variation of L2 error with particle
spacing at time 2s

pressure field

vx(x, y) = −A0x vy(x, y) = A0y

p(x, y) = 0.5ρA2
0

[

R2 − (x2 + y2)
]

(5.27)

where ρ is the fluid density, A−1
0 is a reference time, and the origin of the ref-

erence system is in the centre of the circle. No gravity force and no viscosity is

considered.

Because of the incompressibility constraint in this test case the fluid domain re-

main elliptical during the motion (Colagrossi and Landrini [2003]). It is possible

to demonstrate that, under this assumption and considering the initial conditions

of (5.27), solving Navier-Stokes equation for a inviscid fluid (ν = 0) is equivalent

to solving the following Ordinary Differential Equation:

d2A

dt2
− 4

dA

dt
+ 2A4 = 0 (5.28)

with initial condition A(0) = A0 and dA/dt = 0. Defining a and b as the two

semi-axes of the ellipse, A is

A = −1

a

da

dt
=

1

b

db

dt

Equation (5.28) is solved by means of a fourth order Runge-Kutta method. Once

known A(t), a(t) and b(t) the reference solutions for the pressure and velocity
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fields are

vx(x, y, t) = −A(t)x vy(x, y, t) = A(t)y

p(x, y, t) = 0.5ρ

[

dA

dt
(x2 + y2) −A2(x2 + y2)

−a2(
dA

dt
−A2)

]

(5.29)

The drop evolution has been simulated by FPM up to non-dimensional time

t = 2/A0 in order to test the capability of the numerical model to reproduce

free-surface flow with a large deformation. The domain is discretized using 2907

particles at the beginning of the simulation. Figure 5.8 shows the comparison be-

tween the numerical and reference solutions of ellipse evolution at different times,

in the same figure the pressure field is also plotted. In Figures 5.9 and 5.10 the

pressure and the velocity along the axis of the ellipse is plotted against the refer-

ence solution. The pressure field and the free surface positions at different times

are in agreement with the reference solution. Contrary to what was reported in

Colagrossi and Landrini [2003] no spurious pressure oscillation is observed: this

is due to the pure incompressible approach used in FPM.

Figure 5.8. Evolution of an initially circular fluid patch: FPM solution at times
tA0 = 0.2, 0.4, 0.6, 2.0 s. The colour contours represent the non dimensional pressure
field p/ρA2

0R
2, the dashed red line is the ellipse calculated by the reference solution
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Figure 5.9. Non-dimensional pressure p/(ρA2

0R
2) of evolution of an initially circular

fluid: patch: comparison between reference solution (dashed line) and FPM (dots) at
x=0 (above) and y=0 (below)

Figure 5.10. Non-dimensional velocities of evolution of an initially circular fluid patch:
comparison between reference solution (dashed line) and FPM (dots); vy/(A0R) at x=0
(above) and vx/(A0R) at y=0 (below)

5.4.4 Initial stages of a dam break flow

The numerical results of the initial stages of a 2D dam break flow are compared

with a reference solution. We consider a rectangular box 0.40 m long, where a gate

is positioned at x=0.25 m separating water at different level is instantly removed

at the initial time. Depth ratios of 0.1 and 0.45 are investigated for a larger depth

of 0.10 m in the left part of the box. The reference solution is obtained by means

of an highly accurate, non-linear, potential-flow model (Stansby et al. [1998]).

Figures 5.11 and 5.12 show the comparison of the free surface between the FPM

and the reference solutions at different times for the two depth ratios considered.

The FPM is able to reproduce the mushroom-like jet and the free surface is in

good agreement with the reference solution.
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Figure 5.11. Initial stages of a dam break flow with initial water depth ratio of 0.1:
profiles of free surface elevation obtained at successive times of 0.024, 0.04, 0.066 and
0.08 s. The FPM (dots) and the reference solution (continuous line) are plotted

Figure 5.12. Initial stages of a dam break flow with initial water depth ratio of 0.45:
profiles of free surface elevation obtained at successive times of 0.02, 0.03, 0.052 and
0.076 and 0.08 s. The FPM (dots) and the reference solution (continuous line) are
plotted

5.5 Concluding Remarks

In this chapter a Finite PointSet Method for the numerical simulation of viscous

incompressible flow in presence of a free surface has been developed. The analyt-
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ical enforcement of boundary conditions and the particle management procedure

are the most attractive features of FPM. In order to insert a free-surface bound-

ary condition some modifications to the classical form of FPM are proposed: a

new technique for free surface detection based on a pure geometrical approach is

introduced, and a modified form of Chorin’s projection method called Incremen-

tal Pressure Projection Method is used with the aim of preserving the hydrostatic

condition in time. The algorithm to insert and remove particles together with

variable smoothing length have led to good agreement of numerical results with

analytical or reference solutions of flow with large distortions, as the evolution of

initially circular water bubble and the Taylor-Green. Finally the initial stages of

a 2D dam break flows have been simulated.
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Conclusions

This dissertation involved the numerical simulations of rapidly varying open chan-

nel flows by Lagrangian meshless numerical methods.

In the first part of this work a Smoothed Particle Hydrodynamics numerical

scheme for the discretization of the Shallow Water equation has been developed.

This method presents some attractive features in comparison with classical Eule-

rian methods because no mesh and no special treatment of wet/dry interface are

needed. Conversely, one of the main limitations of the numerical scheme is the

lack of resolution in zones with a reduced water depth; this has been overcome

in this work by introducing a particle splitting procedure: if one particle has an

area which is more than a fixed value it is divided into seven daughter particles.

The masses, velocities and water depth of daughter particles are assigned by

conserving both the mass and momentum. A new procedure has been proposed

that significantly reduces the error due to particle splitting when using variable

smoothing lengths.

The capability of the method to deal with shock waves has been improved by

removing artificial viscosity and considering particle interactions as a Riemann

problem. Moreover non-upwind MUSCL reconstruction procedures have been

introduced with the aim of obtaining a good representation of rarefaction waves.

In order to extend the method to real case problems, other improvements have

been made: closed boundary conditions have been simulated by the Virtual

Boundary Particle method, modified to restore almost zero consistency, even

in presence of highly variable smoothing length and the slope source term is cal-

culated by means of a SPH interpolation method which can be applied for any

bathymetry; finally the possibility to use open boundary conditions have been
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inserted.

The code has been tested against different 1-D and 2-D dam break problems

showing satisfactory results. Thacker’s 2-D analytical solution has been also

simulated showing the capability of the method to reproduce accurate results

with moving 2-D wetting and drying boundaries on non-flat topographies. With

the aim of validating the open boundaries algorithm, the 1-D flow over a bump

has been reproduced, imposing both subcritical and supercritical inflow/outflow

conditions. The last test case simulated is the CADAM where a dam break flow

occurs along an initially dry channel; the step located at the inflow and the bend

positioned along the channel create a quite complicated geometry representative

of a real bathymetry; nevertheless, the numerical model is able to simulate the

phenomenon in a satisfactory way, both with and without the refinement proce-

dure activated.

Finally, the simulation of two real cases has been made: the first one is the

Okushiri tsunami and the second one is the flooding due to a levee breaching at

Thamesmead location (United Kindom). To the author’s knowledge these are

the first simulations of two real events made by an SPH-SWEs models. The re-

sults show that this kind of scheme can be successfully adopted in flooding events

simulations.

In the last part of this work the hypothesis of Shallow Water is removed and a

meshless, Lagrangian model for the integration of Navier-Stokes equations has

been developed. The numerical scheme adopted is the Finite Pointset Method

(FPM): its most attractive features are the analytical enforcement of boundary

conditions and the particle managment procedure. In order to insert a free-

surface boundary condition, some modifications to the classical form of FPM are

proposed: a new technique for free surface detection, based on a pure geometri-

cal approach is introduced, and a modified form of Chorin’s projection method

called Incremental Pressure Projection Method is used with the aim of preserving

the hydrostatic condition in time. The algorithm to insert and remove particles

together with variable smoothing length have led to good agreement of numerical

results with analytical or reference solutions of flow with large distortions, as the

evolution of initially circular water bubble and the Taylor-Green. Finally the

initial stages of a 2D dam break flows have been simulated.
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