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Framework and Aims Framework and Aims 
of the Lectureof the Lecture

•Research Activity (1999-2014): 

Development of SPH schemes aimed at simulating 

3D Free-surface and Interface Flows with large 

deformations, including Breaking and Fragmentation deformations, including Breaking and Fragmentation 

of the Interface.

Theoretical analysis of the SPH schemes.

Collect some useful practical information for 

simulating violent free-surface flows.
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Surface Ship 
Hydrodynamics

Program of the 

October 1999 October 1999 

“Simulation of ship breaking waves”

Program of the 
Office of Naval 

Research

Prof.  M.P. Tulin, Director of 
Ocean Engineering 
Laboratory, UCSB, 
S. Barbara, CA



Wave Breaking phenomenaWave Breaking phenomena
Eulerian Mesh based solver 

Volume Of Fluid (VOF)

C.W. Hirt & B.D. Nichols (1981) 
Level Set Method

J.A. Sethian (1999)



ParticlesParticles + + MeshMesh (P(P--FEM) FEM) 
Damaged ship simulation (2001)

Conservation of mass, linear momentum and 

Idelsohn SR, Storti MA, Oñate E. Lagrangian formulations to solve free surface incompressible 
inviscid fluid flows. Computer Methods in Applied Mechanics and Engineering 2001; 
191:583–593.

Conservation of mass, linear momentum and 
angular momentum ??



SPH SPH forfor FreeFree--SurfaceSurface flowflow
J.J. Monaghan 1994

1328 citations (one of the most cited SPH-article)



DamagedDamaged shipship simulationsimulation
MPS (MPS (NaitoNaito, S., , S., SueyoshiSueyoshi, M., 2002), M., 2002)

Simulations of free-surface flows using SPH/MPS methods exhibit a higher
realism, for these reasons they were also largley applied in the context of
computer-graphics. Further the algorithms are generally simpler than Mesh-based
methods. 

VICTOR GONZÁLEZ, (C.E.O. OF THE “NEXT 
LIMIT” Ltd.) TECHINCAL OSCAR IN 2008 FOR 

THEIR WORK IN 

LORD OF THE RINGS.



Classification of Numerical Methods able Classification of Numerical Methods able 
to deal with Violent Freeto deal with Violent Free--Surface problems.Surface problems.

Eulerian
(Interface 

Capturing/tracking) 

(Level Set, VOF, MAC, CIP)

Lagrangian

(Level Set, VOF, MAC, CIP)

Grid Based
FD Method, FEM, FVM Deformable Mesh,

P-FEM

Meshless FEM based on

Integral Interpolation 

Particle Methods

( SPH, MPS …)

SPH – Smoothed Particle Hydrodynamics



Smoothed Particle Hydrodynamics MethodSmoothed Particle Hydrodynamics Method
Violent water-impact flows (2006)

SPH

First Benchmark test-case
Le Touzé et al. 1st SPHERIC Workshop, 
Rome (2006)



Breaking wave pattern generated by shipsBreaking wave pattern generated by ships
3D SPH model

S. Marrone, B. Bouscasse , A. Colagrossi, M. Antuono, Study of ship wave breaking 
patterns using 3D parallel SPH simulations, Computers & Fluids,  69, 54–66, (2012) 

Parallel SPH simulations on Cluster machine up to 1 08 particles



Breaking wave pattern generated by shipsBreaking wave pattern generated by ships
3D SPH model



Breaking wave pattern generated by shipsBreaking wave pattern generated by ships
3D SPH model



Breaking wave pattern generated by shipsBreaking wave pattern generated by ships
DTMB model of DDG51, Fr = 0.41)



Breaking wave pattern generated by shipsBreaking wave pattern generated by ships
3D SPH model



Smoothed Particle Hydrodynamics MethodSmoothed Particle Hydrodynamics Method
Theoretical Analysis for free-surface 

and interfacial flows

1. Colagrossi,  M. Landrini,   Numerical Simulation of Interfacial Flows by Smoothed Particle 
Hydrodynamics, Journal of Computational Physics, 191, N.2,  p. 448-475,  2003. 

2. N. Grenier, M. Antuono, A. Colagrossi, D. Le Touzé, B. Alessandrini, An Hamiltonian interface 
SPH formulation for multi-fluid and free surface flows, Journal of Computational Physics 228, 8380–
8393,  2009. 

3. Colagrossi, M. Antuono, D. Le Touzé,  Theoretical considerations on the free-surface role in the 3. Colagrossi, M. Antuono, D. Le Touzé,  Theoretical considerations on the free-surface role in the 
smoothed-particle-hydrodynamics model, Physical Review E, 79, 1-13,  2009. 

4. M. Antuono, A. Colagrossi, S. Marrone, D. Molteni, Free-surface flows solved by means of SPH 
schemes with numerical diffusive terms, Computer Physics Communications, 181(3): 532-549, 2010. 

5. A. Colagrossi, M. Antuono, A. Souto-Iglesias, D. Le Touzé, Theoretical Analysis and numerical 
verification of the consistency of viscous SPH formulation in simulating free-surface flows, Physical 
Review E, 84, 026705, August, 2011. 

6. A. Colagrossi, A. Souto-Iglesias, M. Antuono, S. Marrone, Smoothed-particle-hydrodynamics 
modeling of dissipation mechanisms in gravity waves,   Physical Review E, 87, 023302, 2013

7. D. Le Touzé, A. Colagrossi, G. Colicchio, M. Greco, A critical investigation of Smoothed Particle 
Hydrodynamics applied to problems with free surfaces, 73, 660-691, International Journal of 
Numerical Methods in Fluids, 2013.



Smoothed Particle Hydrodynamics MethodSmoothed Particle Hydrodynamics Method
Two approaches of derivation

1)  From Continuum to Discrete Level (Discretization of PDE) 

2)  From the Discrete Level to Continuum

K. Oelschliiger, On the connection between Hamiltonian many-particle systems and   
the hydrodynamical equations, Arch. Rat. Mech. An. 115, 297 (1991).

E. Tonti, Why starting from differential equations for computational physics?, 
Journal of Computational Physics, 257, 1260–1290, (2014).



Smoothed Particle Hydrodynamics MethodSmoothed Particle Hydrodynamics Method
Two approaches of derivation



Smoothed Particle Hydrodynamics MethodSmoothed Particle Hydrodynamics Method
Two approaches of derivation

1)  From Continuum to Discrete Level,   (Discretization of PDE) 

2)  From the Discrete Level to Continuum

K. Oelschliiger, On the connection between Hamiltonian many-particle systems and the 
hydrodynamical equations, Arch. Rat. Mech. An. 115, 297 (1991).



SPH: From the Discrete Level to ContinuumSPH: From the Discrete Level to Continuum
Example: Hamiltonian System of interacting particles

Density Estimation

8th International SPHERIC Workshop in  Trondheim, June 2013. 
"Particles for fluids: SPH methods as a mean-field flow", 
Dr Daniel Price, Monash University, Australia

( ) ( ; )j j
j

r m W r r hρ = −∑

Lucy, L. (1977). A Numerical 
Approach to the Testing of 
Fission Hypothesis. The 
Astronomical Journal 82 (12), 
1013–1024.



SPH: From the Discrete Level to ContinuumSPH: From the Discrete Level to Continuum
Example: Hamiltonian System of interacting particles
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SPH: From the Discrete Level to ContinuumSPH: From the Discrete Level to Continuum
Example: Hamiltonian System of interacting particles
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SPH: From the Discrete Level to ContinuumSPH: From the Discrete Level to Continuum
Example: Hamiltonian System of interacting particles
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The Linear and Angular momenta of the particle system is 
exactly preserve ! 
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SPH: From the Discrete Level to ContinuumSPH: From the Discrete Level to Continuum
Example: Hamiltonian System of interacting particles
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SPH: From the Discrete Level to ContinuumSPH: From the Discrete Level to Continuum
Example: Hamiltonian System of interacting particles
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• Kinematic Boundary condition: 
Material points on the free surface remain on it during their 
evolution (absence of discontinuous events like fluid-fluid/ fluid-
solid impacts) 

FreeFree--surface Boundary Conditions surface Boundary Conditions 
Kinematic and Dynamic conditions

• Dynamic Boundary condition:  

=0

• Dynamic Boundary condition:  
Free surface is a free-stress surface 



SPH: From the Discrete Level to ContinuumSPH: From the Discrete Level to Continuum
Example: PDE for inviscid isentropic flow
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SPH scheme NSPH scheme N°°11
Hamiltonian System of interacting particles
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Initial conditions consistent with the density estimator:



SPH scheme NSPH scheme N°°1 1 
Particle Volumes
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SPH schemes SPH schemes 
SPH formulation through Volume Estimation:

i j ij
j

m Wρ =∑
Free-surface flows

Multi-fluids flows
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SPH scheme NSPH scheme N°°22
“Hamiltonian System” of interacting particles
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SPH schemes SPH schemes 
SPH formulation through Volume Estimation:
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Free-surface flows

Multi-fluids flows
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SPH: From the Discrete Level to ContinuumSPH: From the Discrete Level to Continuum
Isentropic flow: Equation of state  
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SPH: From the Discrete Level to ContinuumSPH: From the Discrete Level to Continuum
Equation of state for free-surface flow
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Smoothed Particle Hydrodynamics MethodSmoothed Particle Hydrodynamics Method
Inviscid Free-surface flows



Smoothed Particle Hydrodynamics MethodSmoothed Particle Hydrodynamics Method
Inviscid Free-surface flows

Standard SPH
High Spatial High Spatial 
Resolution



Smoothed Particle Hydrodynamics MethodSmoothed Particle Hydrodynamics Method
Inviscid Free-surface flows

Measure of particle disorder



Smoothed Particle Hydrodynamics MethodSmoothed Particle Hydrodynamics Method
Inviscid Free-surface flows

M. Antuono et al. , Energy conservation in the -SPH scheme, 9th 
SPHERIC Workshop, Paris, (2014)  
13:15  Wednesday,  Session 8 – Turbulence, Structures, Energy

S. Marrone et al., On the model inconsistencies in simulating breaking 
, 9th SPHERIC Workshop, 

S. Marrone et al., On the model inconsistencies in simulating breaking 
wave with mesh-based and particle methods, 9th SPHERIC Workshop, 
Paris, (2014) 
09:00  Thursady,   Session 11 – Water Waves

A.Souto-Iglesias et al., Energy decomposition analysis in free-surface 
flows: road-map for the direct computation of wave breaking dissipation, 
9th SPHERIC Workshop, Paris, (2014)
13:55  Thursady,  Session 14 – Free-Surface Flow



SPH scheme NSPH scheme N°°3 3 
Volume estimator – derivation 
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SPH schemes SPH schemes 
SPH formulation through Volume Estimation:

i j ij
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m Wρ =∑
Free-surface flows

Multi-fluids flows
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SPH scheme NSPH scheme N°°4 4 
Time-Volume estimation – derivation 
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Free-surface flows

Multi-fluids flows



SPH schemes SPH schemes 
SPH formulation through Volume Estimation:
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SPH scheme NSPH scheme N°°4 4 bisbis
Evaluation of density through Shepard Formula
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Grenier, N, Antuono, M, Colagrossi, A, Le Touzé, D, Alessandrini, B, An Hamiltonian 
interface SPH formulation for multi-fluid and free surface flows,  JOURNAL OF COMPUTATIONAL 

PHYSICS Volume: 228   Issue: 22, Pages: 8380-8393   Published: 2009

( )
( )

( )
jS

j
k k

k

W x
W x

W x V
χ∈

=
∑

Shepard Kernel



SPH scheme NSPH scheme N°°4 4 bisbis
Evaluation of density through Shepard Formula



Smoothed Particle Hydrodynamics MethodSmoothed Particle Hydrodynamics Method
Two approaches of derivation

1)  From Continuum to Discrete Level,   (Discretization of PDE) 

2)  From the Discrete Level to Continuum



2
0 0; ( )

D
p c

Dt
D

p V

ρ ρ ρ ρ

ρ ρ

 = − < ∇ ⋅ > = −

 = − < ∇ > + < ∇ ⋅ > +

u

u
g

Mollified Mollified NavierNavier--Stokes equationsStokes equations
Integral Interpolation 

D
p V

Dt
ρ ρ = − < ∇ > + < ∇ ⋅ > +


u
g

* * *

2 * 2 * * '

( ) ( ) ( ; )    

( ) ( ) ( ; ) 

f x f x W x x h dV I

f x f x W x x h dV I

∂Ω
Ω

∂Ω
Ω

< ∇ >= ∇ − +

< ∇ >= ∇ − +

∫

∫



S∂Ω
B∂Ω

Kernel truncation Kernel truncation 
Solid boundaries & Ghost fluid approach

0I∂Ω ≠

S∂Ω

Ω

Kinematic and Dynamic 

Boundary Conditions 

on g
�

Ghost Fluid Region

F∂Ω
0I∂Ω =



Smoothed differential operators Smoothed differential operators 
Galilean Invariance

* * *( ) ( ) ( ; ) u r u r W r r h dV I∂Ω
Ω

< ∇ >= ⊗∇ − +∫

0[ ( )]w u c r r→ + + Ω −
( ) (1/ )

close to the free-surface

u r O h< ∇ >=

0[ ( )]w u c r r→ + + Ω −
* *

2 ( ; ) 0I W r r h dV
Ω

= ∇ − =∫
* * *

4 ( ; ) 0I r W r r h dV
Ω

= − ⊗∇ − =∫I

( ) ( )   w r u r< ∇ >=< ∇ > + Ω

Close to the free surface I2 and I4 are not zero and the Galilean 
Invariance is not respected anymore.

close to the free-surface



Smoothed differential operators Smoothed differential operators 
Galilean Invariance

* * *( ) ( ) ( ) ( ; ) u r u r u r W r r h dV
Ω

 < ∇ >= − ⊗∇ − ∫

The so-called antisymmetric form is ok for translation but still 
presents errors when considering rotation (I4 is not zero), however : 

Colagrossi, M. Antuono, D. Le Touzé, Theoretical considerations on the free-surface 
role in the smoothed-particle-hydrodynamics model, Physical Review E, 79, 1-13, 2009.

( ) ( )   it is always guaranteed u r w r< ∇ ⋅ >=< ∇ ⋅ >

* * *( )( ) ( ) ( ) ( ; ) Div u r u r u r W r r h dV
Ω

 < >= − ⋅∇ − ∫

( ) ( )u r O h< ∇⋅ >= Close to the free-surface (in a weak sense) 



Smoothed differential operators Smoothed differential operators 
Consistency of the velocity divergence operator

Local inconsistency

( ) 0  at the free surfaceDiv u =

Colagrossi, M. Antuono, D. Le Touzé, Theoretical considerations on the free-surface 
role in the smoothed-particle-hydrodynamics model, Physical Review E, 79, 1-13, 2009.

00   = 0  at the free surface
D

p
Dt

ρ ρ ρ= ⇒ ⇒ =

Only true for inviscid flows



Smoothed differential operators Smoothed differential operators 
Energy conservation with smoothed operator

 P p u dV
Ω

= ∇ ⋅∫ Mechanical Power due to the pressure forces

  Div( )  p u dV p u dV pu n dS
Ω Ω ∂Ω

∇ ⋅ = − + ⋅∫ ∫ ∫

  <Div( )   p u dV p u dV pu n dS
Ω Ω ∂Ω

< ∇ > ⋅ = − > + ⋅∫ ∫ ∫

Mechanical Power due to 

the pressure forces on the 

free surface

Ω Ω ∂Ω

unknown



* * *( ) ( ) ( ) ( ; )  p r p r p r W r r h dV
Ω

 < ∇ >= + ∇ − ∫

* * *Div( )( ) ( ) ( ) ( ; ) u r u r u r W r r h dV
Ω

 < >= − ∇ − ∫ i

Smoothed differential operators Smoothed differential operators 
Energy conservation with smoothed operator

  <Div( )   p u dV p u dV pu n dS
Ω Ω ∂Ω

< ∇ > ⋅ = − > + ⋅∫ ∫ ∫
=0

Ω
∫

Colagrossi, M. Antuono, D. Le Touzé, Theoretical considerations on the free-surface 
role in the smoothed-particle-hydrodynamics model, Physical Review E, 79, 1-13, 2009.

Using these smoothed operators the dynamic B.C. at the free surface, 
(for inviscid fluid) is satisfied in a weak sense. 



* * *( ) ( ) ( ) ( ; ) p x p x p x W x x h dV
Ω

 < ∇ >= + ∇ − ∫ i

y

Smoothed differential operators Smoothed differential operators 
Smoothed pressure gradient consistency

Local inconsistency

p

y



Smoothed differential operators Smoothed differential operators 
Smoothed viscous terms

* *

* *
2*

( ) ( )
( ) 2( 2) ( ; ) 

                        

MG
u r u r r r

V r d W r r h dV
r r

µ
Ω

   − −   < ∇ > = + ∇ −
−

∫
i

i

Monaghan & Gingold:

Morris:

Galilean Invariance  
                        

* *

* *
2*

( ; )
( ) 2 ( ) ( )  

                        

Mo
r r W r r h

V r u r u r dV
r r

µ
Ω

 − ∇ −   < ∇ > = − −
∫

i
i

Morris:

Galilean Invariance



Smoothed viscous terms Smoothed viscous terms 
Consistency inside the fluid domain

Taylor series inside the kernel support:

rr*

*

3* * * *

u(r )-u(r)  =   

1
u (r -r)+ (r -r)H  (r -r)+ O( r -r )      

  

∇

2

0
lim 2  ( )                     MG

h
V u div uµ µ

→
< ∇ > = ∇ + ∇i

2

0
lim                     Mo

h
V uµ

→
< ∇ > = ∇i

r*3* * * *

r r

1
u (r -r)+ (r -r)H  (r -r)+ O( r -r )      

2
∇

Far from the free surface !!



Smoothed viscous terms Smoothed viscous terms 
Global consistency 

The viscous terms are 
singular at the free 
surface when normal 
velocity gradients exist.

O(1/h)

J. Bonet and T. Lok, Comput. Methods Appl. Mech. Eng. 180,   97 (1999).



Smoothed viscous termsSmoothed viscous terms
Energy conservation for free-surface flow

( )  P V u dV
Ω

= ∇ ⋅ ⋅∫ Mechanical Power due to the viscous forces

( )  :   V u dV V D dV Vn u dS
Ω Ω ∂Ω

∇ ⋅ ⋅ = − + ⋅∫ ∫ ∫
Ω Ω ∂Ω

 :  ( )MGV u dV V D dV O hµ
Ω Ω

< ∇ ⋅ > ⋅ = − +∫ ∫

2
 u  ( )MoV u dV dV O hµ µ

Ω Ω

< ∇ ⋅ > ⋅ = − ∇ +∫ ∫
In the proximity of the 
Free surface



* * *( ) ( ) ( ) ( ; )  p r p r p r W r r h dV < ∇ >= + ∇ −∫

Smoothed differential operators Smoothed differential operators 
Global Consistency for the Mollified N.S. equation

in the presence of free-surface

* * *Div( )( ) ( ) ( ) ( ; ) u r u r u r W r r h dV
Ω

 < >= − ⋅∇ − ∫

* * *( ) ( ) ( ) ( ; )  p r p r p r W r r h dV
Ω

 < ∇ >= + ∇ − ∫

A. Colagrossi, M. Antuono, A. Souto-Iglesias, D. Le Touzé, Theoretical Analysis and 
numerical verification of the consistency of viscous SPH formulation in simulating 
free-surface flows, PHYSICAL REVIEW E 84, 026705 (2011).

* *

* *
2*

( ) ( )
( ) 2( 2) ( ; ) 

                        

MG
u r u r r r

V r d W r r h dV
r r

µ
Ω

   − ⋅ −   < ∇⋅ > = + ∇ −
−

∫
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SPH scheme NSPH scheme N°°5 5 
Derivation through discretization of the Mollified N.S. eq.
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
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

=


∑
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( )
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i
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m
V t

tρ
=1

0 0( )i i im V f p−=
Free-surface flows

Multi-fluids flows



•Nowadays  SPH is still a very powerful method for 
simulating violent free-surface flow.

•Five different SPH schemes have been derived 

Conclusions Conclusions 

•Five different SPH schemes have been derived 
following different theoretical approaches.

• When dealing with multi-fluids and free-surface 
flows only schemes 4 and 5 works.

•Global consistency and local inconsistency of Navier-
Stokes SPH equations have been discussed.



MultiMulti--purpose interfaces for coupling SPH purpose interfaces for coupling SPH 

with other solverswith other solvers
Spheric 2013, (Trondheim, Norway) 

� SPH used only in regions close to the free surface

�FV incompressible solver, implicit scheme with 

B. Bouscasse, S. Marrone, A. Colagrossi, A. Di Mascio., Multi-purpose 
interfaces for coupling SPH with other solvers,  8th SPHERIC conference, 
Trondheim Norway  (2013)

�FV incompressible solver, implicit scheme with 
level-set approach

�Dynamic overlapping grids (CHIMERA) to force the 
solution coming from SPH



MultiMulti--purpose interfaces for coupling SPH purpose interfaces for coupling SPH 

with other solverswith other solvers



UsefulUseful LinksLinks

�CNR-INSEAN website     http://www.insean.cnr.it/

� SPH INSEAN Youtube Channel 
https://www.youtube.com/channel/UCgxrxWzZi61095v
2Zj73KTw

� http://www.insean.cnr.it/content/COLAGROSSI-
ANDREAANDREA

�http://scholar.google.it/citations?user=itNJWkEAAAAJ
&hl=it

� SPHERIC website (SPHERIC - SPH European Research Interest 
Community)
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