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Framework and Aims
of the Lecture

*Research Activity (1999-2014):

€ Development of SPH schemes aimed at simulating
3D Free-surface and Interface Flows with large
deformations, including Breaking and Fragmentation
of the Interface.

€ Theoretical analysis of the SPH schemes.

€ Collect some useful practical information for
simulating violent free-surface flows.
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Wave Breaking phenomena
Eulerian Mesh based solver
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Volume Of Fluid (VOF) Level Set Method
C.W. Hirt & B.D. Nichols (1981 J.A. Sethian (1999)



Particles + Mesh (P-FEM)
Damaged ship simulation (2001)

time[sec]: 0.150000

Conservation of mass, linear momentum and
angular momentum ??

Idelsohn SR, Storti MA, Onate E. Lagrangian formulations to solve free surface incompressible
inviscid fluid flows. Computer Methods in Applied Mechanics and Engineering 2001;
191:583-593.



SPH for Free-Surface flow
J.J. Monaghan 1994

FOURNAL OF COMPUTATIONAL PHYs(CS F10, 399406 {1994)

Simulating Free Surface Flows with SPH
NO ONE ToLD ME
J. J. MONAGHAN THAT | WAS COING
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The 5PH {smoothed particle hydrodynamics) method is extended to
deal with free surface incompressible flows. The method is easy to use,
and examples will be given of its application to a breaking dam, a bore,
the simulation of a wave maker, and the propagation of waves towards
a beach. Arbitrary moving boundaries can be included by madelling the
boundaries by particles which repel the fluid particles. The methed is
explicit, and the time steps are therefore much shorter than required by
other less fiexible methods, but it is robust and easy to program.
7 1994 Academic Press. Inc.

1. INTRODUCTION

1328 citations (one of the most cited SPH-article)

these is to work directly with the constraint of constant den-
sity. It is possible to include these constraints easily in the
SPH formalism by using the Gibbs-Appell equations [15]
which are generalized versions of Gauss’ principle of least
constraint. Unfortunately, the resulting equations are
cumbersome, and it has not been possible to sojve them
efficiently without lurther approximations.

The second approach, and the one we use here, is based
on the observation that real fluids such as water are
compressible, but with a speed of sound which is very
much greater than the speed of bulk flow. The momentum
equation shows that the variation in density dp is given by
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Damaged ship simulation
MPS (Naito, S., Sueyoshi, M., 2002)

Simulations of free-surface flows using SPH/MPS methods exhibit a higher
realism, for these reasons they were also largley applied in the context of
computer-graphics. Further the algorithms are generally simpler than Mesh-based
methods.

VICTOR GONZALEZ, (C.E.O. OF THE “NEXT
LIMIT” Ltd.) TECHINCAL OSCAR IN 2008 FOR
THEIR WORK IN

LORD OF THE RINGS.




Classification of Numerical Methods able
to deal with Violent Free-Surface problems.

Capturing/tracking)
(Level Set, VOF, MAC, CIP)
FD Method, FEM, FVM Deformable Mesh,
P-FEM
FEM based on Particle Methods
Integral Interpolation MPS )

SPH — Smoothed Particle Hydrodynamics



Smoothed Particle Hydrodynamics Method
Violent water-impact flows (2006)
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First Benchmark test-case
Le Touzé et al. 15t SPHERIC Workshop,

Rome (2006)
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Breaking wave pattern generated by ships
3D SPH model

Parallel SPH simulations on Cluster machineuptol 08 particles

S. Marrone, B. Bouscasse , A. Colagrossi, M. Antuono, Study of ship wave breaking
patterns using 3D parallel SPH simulations, Computers & Fluids, 69, 54-66, (2012)



Breaking wave pattern generated by ships
3D SPH model




Breaking wave pattern generated by ships
3D SPH model
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Breaking wave pattern generated by ships
DTMB model of DDG51, Fr = 0.41)
-




Breaking wave pattern generated by ships
3D SPH model

Exterior
surface

Interior
surface
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Smoothed Particle Hydrodynamics Method

Theoretical Analysis for free-surface
and interfacial flows

Colagrossi, M. Landrini, Numerical Simulation of Interfacial Flows by Smoothed Particle
Hydrodynamics, Journal of Computational Physics, 191, N.2, p. 448-475, 2003.

2. N. Grenier, M. Antuono, A. Colagrossi, D. Le Touzé, B. Alessandrini, An Hamiltonian interface
SPH formulation for multi-fluid and free surface flows, Journal of Computational Physics 228, 8380~
8393, 2009.

3. Colagrossi, M. Antuono, D. Le Touzé, Theoretical considerations on the free-surface role in the
smoothed-particle-hydrodynamics model, Physical Review E, 79, 1-13, 20009.

4. M. Antuono, A. Colagrossi, S. Marrone, D. Molteni, Free-surface flows solved by means of SPH
schemes with numerical diffusive terms, Computer Physics Communications, 181(3): 532-549, 2010.

5. A. Colagrossi, M. Antuono, A. Souto-Iglesias, D. Le Touzé, Theoretical Analysis and numerical
verification of the consistency of viscous SPH formulation in simulating free-surface flows, Physical
Review E, 84, 026705, August, 2011.

6. A. Colagrossi, A. Souto-Iglesias, M. Antuono, S. Marrone, Smoothed-particle-hydrodynamics
modeling of dissipation mechanisms in gravity waves, Physical Review E, 87, 023302, 2013

7. D.LeTouzé, A. Colagrossi, G. Colicchio, M. Greco, A critical investigation of Smoothed Particle
Hydrodynamics applied to problems with free surfaces, 73, 660-691, International Journal of
Numerical Methods in Fluids, 2013.



Smoothed Particle Hydrodynamics Method

Two approaches of derivation

1) From Continuum to Discrete Level (Discretization of PDE)

2) From the Discrete Level to Continuum

K. Oelschliiger, On the connection between Hamiltonian many-particle systems and
the hydrodynamical equations, Arch. Rat. Mech. An. 115,297 (1991).

E. Tonti, Why starting from differential equations for computational physics?,
Journal of Computational Physics, 257, 1260-1290, (2014).



Smoothed Particle Hydrodynamics Method

Two approaches of derivation

E. Tonti / Journal of Compurational Physics 257 (2014) 1260-1290
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Fig. 1. (left) The tortuous path to obtain a numerical solution tw a physical problem; (right) the direct procedure.



Smoothed Particle Hydrodynamics Method

Two approaches of derivation

1) From Continuum to Discrete Level, (Discretization of PDE)

2) From the Discrete Level to Continuum

K. Oelschliiger, On the connection between Hamiltonian many-particle systems and the
hydrodynamical equations, Arch. Rat. Mech. An. 115, 297 (1991).



SPH: From the Discrete Level to Continuum
Example: Hamiltonian System of interacting particles

8th International SPHERIC Workshop in Trondheim, June 2013,
"Particles for fluids: SPH methods as a mean-field flow",
Dr Daniel Price, Monash University, Australia

) ¢ .'. Density Estimation
o . . p(r)=> mW(r, —r;h)
e J
4 * Lucy, L. (1977). A Numerical

~ Approach to the Testing of
Fission Hypothesis. The
Astronomical Journal 82 (12),
1013-1024.




SPH: From the Discrete Level to Continuum
Example: Hamiltonian System of interacting particles

Density Estimation (with constant h)
p(r)=> mW(r-r,) M :Z@
J

J
oW(r, —r) /

[ ] ,o(r) = Z mj Particle masses do
j or not change in

time

% = —Z m. (U- - U, )+ W Galilean invariance is
Dt J J

_ ) respected
J



SPH: From the Discrete Level to Continuum
Example: Hamiltonian System of interacting particles

_ u’
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SPH: From the Discrete Level to Continuum
Example: Hamiltonian System of interacting particles

L:Zm[uiz/Z‘e(Pi)} ccllt[gl:) grL °
|

(g (- nem -

l LW =W

du
m_l_ mzm( jljlvvlj
J | IO]

The Linear and Angular momenta of the particle system is
exactly preserve !



SPH: From the Discrete Level to Continuum
Example: Hamiltonian System of interacting particles

_1 2 .
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SPH: From the Discrete Level to Continuum
Example: Hamiltonian System of interacting particles

ry __pizmj[ & szDiWij ' Dp

NI —Z =|- pDiv(u
or | P (u)
N - o Du
p——=-0p
=> mW W - ot
A= 2T p=1(p)

Dt

Dt

Boundary Conditions ????



Boundary Conditions

Kernel Truncation




Free-surface Boundary Conditions
Kinematic and Dynamic conditions

* Kinematic Boundary condition:
Material points on the free surface remain on it during their

evolution (absence of discontinuous events like fluid-fluid/ fluid-
solid impacts)

e Dynamic Boundary condition:
Free surface is a free-stress surface

Tn =[-p + Adiviw)|n+ p(nXw) + 2uVun =0

( , ou
p = Adiv(u) +2u — - ng
an
% Yr e ﬁQF
ou
W - (TgpXnp) =-2—- 7T

"~ On



SPH: From the Discrete Level to Continuum
Example: PDE for inviscid isentropic flow

% = —pDiv(u) Continuity equation
Dt
Du _ Momentum conservation
p—-=-0p
) Dt
P = f (,0) Equation of state
% | _P Dp Energy equation
Dt p° ) Dt

Lagrangian for compressible, non

2
u
dissipative flow (Eckart 1960): L = j P (7 - e(p ) jdv
Q



SPH scheme N°1

Hamiltonian System of interacting particles

-

s Z’”’ h=16) p, =@ (r)
N Du.
Dy _ > I+p’)DI W <D—t':_lﬂ(r)
Dt j=1 ,0. pj
E—u %:ui
Dt . Dt

Initial conditions consistent with the density estimator:

(|O’ |O) ml = B P
Pio =T (Po) ‘ " [/\‘N] { 5 f/ . X
Z mjvvij = Po %

“Volume Matrix” S~ o _.I//



SPH scheme N°1

Particle Volumes

In Scheme N°1 it is not necessary to introduce the concept of
particle volumes. Anyway one can define:

_m_

'piZm

V.= m = m
i0 Z m SPH does not
Pio - ] \. # ZV guarantee that
: I 0 i 0 the particles
m occupy the right
Vi(t) =—— ]
o (t) ) geometrica

volume.



SPH schemes

SPH formulation through Volume Estimation:

Free-surface flows 2
p =) MW, © / .
j Multi-fluids flows . X.
N Ve
// : h
| e
1\\ xi
A ’
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SPH scheme N°2

“Hamiltonian System” of interacting particles

rDIO N (Dp
—H = u —u )W m ; I:f | —L =F(r,
fSuminnsi [Fere
Du. N P P Dui —
— == |+ LIW. m. Y T~ G(r’p)
Dt ,Z:;‘(p.z p,-z) B bt
Dl’I -1 E:ui
L=y | Dt
= 0.V
pio _ f_l(pio) m IO|O 10
(riO’ uiO’IOiO) ‘(t):%



SPH schemes

SPH formulation through Volume Estimation:

_ g Free-surface flows R
P = Z mW, 2 L
J Multi-fluids flows %
Do _ Seo-2”
Dt _Zj: m, (ui ~U )*EW; Free-surface flows
<Op>=-p Z m, [% +%JDN\/” Multi-fluids flows
/, - h
I ®
\\\ ‘x‘I



SPH: From the Discrete Level to Continuum
Isentropic flow: Equation of state

p(p) =Kp’ Politropiclaw  P(0) = COJ’/OO ( % j

0

Liquid: weakly compressible regime [pﬁ —1] =£<10°

R

Nl
Lo
!

p(p) = P (1+¢)" = Ao +c2p,e +0(¢) C20.E 'x.\\,"
y y 0o/0 o/70 \\_/,'

The adiabatic index y, which is an important parameter for gaseous phases, has a negligible

role for liquid phases.
( CZ y
: ( £ ] -1 y#1
yr=D |\ o

cZIn (ﬁj y=1
Po

&(p) —&(0,) =f p/()f)dp e(p) —e(,) =

y#1 P= (/— 1LO| 1deal gaslaw




SPH: From the Discrete Level to Continuum
Equation of state for free-surface flow

— CZIOO IO )4
— K y F) —_0 _1
p(0)=Kp'~R|  |po)=%~ Kp]

For water this EoS is called Stiffned EoS (y=6.1-7 and co =1497 m/s)

weakly compressible regime (ﬁ —1) =£<10”

Po
2

c’p

p(p) = °y°€y~c PoE

&) ~e(py) = c{ (p] p"} co[1+‘9—2j
p) P 2

e(p)——cc“




Smoothed Particle Hydrodynamics Method

Inviscid Free-surface flows

/H
YHE ] max=s0 piog I N
- h/Ax =1.33 0 0.1 02 03 04 05 06 0.7 0.8 09 1
25 :_ Standard SPH formulation for inviscid fluid ” en
T Pressure Field Instabilities during a Dam-Break Flow W(g/l) "= 6.25268
7
1.5 F .
L
0.5 F
0F




Smoothed Particle Hydrodynamics Method

Inviscid Free-surface flows

YH ' wax = 400 PpgH HEN RS | WE
Standard SPH formulation for inviscid flows 0 01 0203 040506070809 1

2F @'.-‘-.'55:‘:; t(g/H)" = 5.95015

Standard SPH
High Spatial oL
Resolution

PogH T | | E
0 0.1 02 03 0.4 0.5 0.6 0.7 08 09 1

YH || Hiax = 400
Standard SPH formulation for inviscid flows

Marne Technology Research rulitde "
Cl==—==== t(g/H)" = 8.50017




Smoothed Particle Hydrodynamics Method

Inviscid Free-surface flows

0.15
Eint/ng
ol H/Ax
o 25
............. 400
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0 M
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Smoothed Particle Hydrodynamics Method

Inviscid Free-surface flows

M. Antuono et al. , Energy conservation in the -SPH scheme, 9th
SPHERIC Workshop, Paris, (2014)
13:15 Wednesday, Session 8 - Turbulence, Structures, Energy

S. Marrone et al., On the model inconsistencies in simulating breaking
wave with mesh-based and particle methods, 9th SPHERIC Workshop,
Paris, (2014)

09:00 Thursady, Session 11 - Water Waves

A.Souto-Iglesias et al., Energy decomposition analysis in free-surface
flows: road-map for the direct computation of wave breaking dissipation,
9th SPHERIC Workshop, Paris, (2014)

13:55 Thursady, Session 14 - Free-Surface Flow



SPH scheme N°3

Volume estimator - derivation

V= p-”‘ 0 =1(a) :

2 v, =o(r)
DU- N DUI —
1Mo =D (AN + pVIOW 1o - T0

t =
E—u E:ui
(ri(); uiO) ° [ . i :‘



SPH schemes

SPH formulation through Volume Estimation:

_ Free-surface flows K -
P = Z mW, .
J Multi-fluids flows %
Do _ Seo-2”
Dt _Zj: m, (ui ~U )*EW; Free-surface flows
<Op>=-p Z m, [% +%JD W, Multi-fluids flows
V, = 1 Free-surface flows S
W. . P ~
- ! Multi-fluids flows ’
j : .
\\ ‘x‘I

Vo ¢ZVio o
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SPH scheme N°4

Time-Volume estimation - derivation

DV, oom. DV, _
Y-y —u. YIOW. =L -p=f —=F(r,u
t v,;(u, u )mwW, ;o v P @) o (r,u)
Du N Du.
— = V2 +pVAOW =
Ui ,le(n' p,V )OW, X o G(r,V)
b Dr, _
o o
(or Uios (Vo)
Po = T7(P)
m =0, Vi

Multi-fluids flows



SPH schemes

SPH formulation through Volume Estimation:

Free-surface flows . N
P = Z mjVVij |/ " :
j Multi-fluids flows \\\ X.
Do _ AT
Dt _Z,-“ m (ui —U )miwi Free-surface flows
Jp=-pym L% +%JDNV” Multi-fluids flows
Vo= Z ];N Free-surface flows P
j y Multi-fluids flows : ’ .
\\\ xi
DV _ _sz (uj —u ) mw . Free-surface flows T

Multi-fluids flows



SPH scheme N°4 bis

Evaluation of density through Shepard Formula

—L =y (U, —u ) mw,
Dt ,.
WS (X) = Wj (X) Shepard Kernel
| > W (X)V,
kO y
— S
2 WV, =1 P = Z MW,

J jiOx

Grenier, N, Antuono, M, Colagrossi, A, Le Touzé, D, Alessandrini, B, An Hamiltonian
interface SPH formulation for multi-fluid and free surface flows, JOURNAL OF COMPUTATIONAL
PHYSICS Volume: 228 Issue: 22, Pages: 8380-8393 Published: 2009



SPH scheme N°4 bis

Evaluation of density through Shepard Formula




Smoothed Particle Hydrodynamics Method

Two approaches of derivation

1) From Continuum to Discrete Level, (Discretization of PDE)

2) From the Discrete Level to Continuum



Mollified Navier-Stokes equations
Integral Interpolation

D
F’f:‘ﬂ< > p:CS(P‘Po)
< Du
=< >+ <[]V >+
\,0 Dt P 198

< Of (X) >:j fOO)OW(x=X:h)dV' 1,

<DPF () >= [ £OO)TW(x=X3h) dV' [+1

Q




Kernel truncation
Solid boundaries & Ghost fluid approach
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Smoothed differential operators
Galilean Invariance

< Ou(r) >:ju(r*) OOW(r —r ;h) dvV %

<Ou(r) >=0(1/h)

—

W > u+[c+Q(r - ro)] close to the free-surfa
,=[OW(r=r;h)ydv' =0 _ <Ow(r) >=<0u(r) >+ O
Q
l,=1=[r" O0OW(r-r’;h)dv' =0
) _

Close to the free surface I, and I, are not zero and the Galilean
Invariance is not respected anymore.




Smoothed differential operators
Galilean Invariance

<0u(r) >= j u(r)=u(r) |[OOW(r =r";h) dV

Q

The so-called antisymmetric form is ok for translation but still
presents errors when considering rotation (I4 is not zero), however :

< Div(u)(r) >= j u(r’)-u(r) |[mMW(r =" ;h) dvV’

Q

<0O0u(r) >=<00Mr) > itis always guarantee

<OMu(r) >=0(h)| Close to the free-surface (in a weak sense)

Colagrossi, M. Antuono, D. Le Touzé, Theoretical considerations on the free-surface
role in the smoothed-particle-hydrodynamics model, Physical Review E, 79, 1-13, 2009.



Smoothed differential operators
Consistency of the velocity divergence operator

0.3

—— divu

— < _ - <divu> : Local inconsistency

R } M —-- <divu>® (h = 0.05)
o2t - L <divu>® (h=0.02) |

i v Div(u) =0 at the free surfac
0.15} - '- T (1)

Dp _ l

| Ft_0 = p=0,= p=0 at the free surfa

-0.05 ' ' l
0 0.05 0.1 0.15

Only true for inviscid flows

Colagrossi, M. Antuono, D. Le Touzé, Theoretical considerations on the free-surface
role in the smoothed-particle-hydrodynamics model, Physical Review E, 79, 1-13, 2009.



Smoothed differential operators
Energy conservation with smoothed operator

P = I Dp [l dV Mechanical Power due to the pressure forces
Q

ijﬁu dv :—jp Div(u) dV+j pu [h dS
Q Q 0Q

———————————————————————

—

[<Op>mav == pDiv(u)> v + [ puln ds
Q Q -7 5

T Mechanical Power due to
the pressure forces on the
free surface

unknown



Smoothed differential operators
Energy conservation with smoothed operator

<Op(r) >= [ p(r') + p(r) |OW(r =r'; h) &V

Q

< Div(u)(r) >= j Lu(r’) =u(r) POW(r =r'; h) dV'

Q

j<Dp>mdv_ jp<D|v(u)> dV+.j pumds

Q 100 |\‘

Using these smoothed operators the dynamic B.C. at the free surface,
(for inviscid fluid) is satisfied in a weak sense.

Colagrossi, M. Antuono, D. Le Touzé, Theoretical considerations on the free-surface
role in the smoothed-particle-hydrodynamics model, Physical Review E, 79, 1-13, 2009.



Smoothed differential operators
Smoothed pressure gradient consistency

<Op(x) >= [[ p(x') + p(x) OW(x=X ;h) dV/

Local inconsistency

Y\

05 —
0.6 —
07 —
03 —
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11
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_ P,1~r Analytic ( i

——— <P =
P’}r




Smoothed differential operators
Smoothed viscous terms

Monaghan & Gingold:

u(r)=u(r) [ r =r]

<OV (r) >"°=2(d + 2);1][

Morris:

r—r [sOW(r =r";h)

OW( —r :h)dv

Galilean Invariance

2

‘r*—r

<OV (r) >M°:2,uj[

u(r’)-u(r)] dv’
Galilean Invariance

* 2
r —r‘



Smoothed viscous terms
Consistency inside the fluid domain

Taylor series inside the kernel support:

u(r)-u(n)] =

Oyl (F -r)+% (F -OH, (¢ -n+o(r -1 )

lim <OV >"°= 1 0°u+2x Odiv(u)

h-0

im <[V >Mo — /JDZU Far from the free surface !!
h-0



Smoothed viscous terms
Global consistency

e <VeV>"E L/ A, L )
ol - 4 The viscous terms are
S —— 60 /’; O(1/h) singular at the free
2001 —— 120 ] surface when normal
oo = A / _‘ velocity gradients exist.
0 ——— o
—
0TS T T T 0e 047 048 049y 05
V =itrD1 4+ 2 D.
400 _ _PVW 1 ;
i <VeV=> 5 L/ U AO L/h |
300 30 .‘l =
F | i
: —s— 6D ll' L:[[(r—r}@?Wﬂ'V’]
200 —e— 120 s Q2
r [/
g  ——— 240
100 | : /.i.'j
r 7 :'I__“ 2
! . i (V. V)PVW — f (L'V'+LV).VWdV'.
O e N T o
i : ; i
100 e o 0 048 }',.;]'d'ofs

J. Bonet and T. Lok, Comput. Methods Appl. Mech. Eng. 180, 97 (1999).



Smoothed viscous terms
Energy conservation for free-surface flow

P = j (|:| W) [l dV Mechanical Power due to the viscous forces

_____________________

_____________________

—
f_ —~\

______ -7 In the proximity of the
Free surface



Smoothed differential operators

Global Consistency for the Mollified N.S. equation
in the presence of free-surface

< Div(u)(r) >= j u(r’) —u(r) | MW(r =r";h) dv’

Q

<Op(r) >= [[ p(r") + p(r) |OW(r =r"; h) AV’

Q

u(r’) —u(r): [Er* —~ r]

2

<DN/(r)>MG:2(d+2),uj[ OW (=1 ;h)dV’

‘r*—r

A. Colagrossi, M. Antuono, A. Souto-Iglesias, D. Le Touzé, Theoretical Analysis and
numerical verification of the consistency of viscous SPH formulation in simulating
free-surface flows, PHYSICAL REVIEW E 84, 026705 (2011).



SPH scheme N°5

Derivation through discretization of the Mollified N.S. eq.

D
Tf —pz(u—u) vv,J(vn p=f@)
Dy, _ —Z(p+p)DW}Vn+F+
bt p = |
<
N X_
+2(d+2)”2 WL, = %) w{vj,
T
Dx.
—=u
| Dt

‘ Free-surface flows

Multi-fluids flows

M =Vs f () V(t)-p 0



Conclusions

*Nowadays SPH is still a very powerful method for
simulating violent free-surface flow.

*Five different SPH schemes have been derived
following different theoretical approaches.

* When dealing with multi-fluids and free-surface
flows only schemes 4 and 5 works.

*Global consistency and local inconsistency of Navier-
Stokes SPH equations have been discussed.




Multi-purpose interfaces for coupling SPH

with other solvers
Spheric 2013, (Trondheim, Norway)

» SPH used only in regions close to the free surface

»FV incompressible solver, implicit scheme with
level-set approach

»Dynamic overlapping grids (CHIMERA) to force the
solution coming from SPH

B. Bouscasse, S. Marrone, A. Colagrossi, A. Di Mascio., Multi-purpose
interfaces for coupling SPH with other solvers, 8th SPHERIC conference,

Trondheim Norway (2013)



Multi-purpose interfaces for coupling SPH
with other solvers
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Useful Links

»(CNR-INSEAN website http://www.insean.cnr.it/

> SPH INSEAN Youtube Channel

https:/ /www.youtube.com/channel/UCgxrxWzZi61095v
27j73KTw

» http:/ /www.insean.cnr.it/content/ COLAGROSSI-
ANDREA

»http:/ /scholar.google.it/citations?user=itNJWKEAAAA]
&hl=it

» SPPHERIC website (SPHERIC - SPH European Research Interest
Community)




The End
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