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Abstract— For many problems in computational continuum 

mechanics an accurate treatment of non-reflecting boundaries

that allows incoming waves to propagate out of a finite domain is

important. One application is mesh-refinement; high frequency 

components of a solution on a fine mesh cannot be transmitted

into a more coarsely meshed region and will reflect back in a 

non-physical manner. A robust non-reflecting boundary 

condition (NRBC) can therefore allow high spatial resolution to 

be used only where necessary without the need for a graduated

transition region. 

We propose a simple non-reflecting boundary formulation for 

SPH, efficacy is investigated in 2d and the NRBC will be applied

to a multi-resolution simulation in 1d. 

I. INTRODUTION

There are two distinct approaches explored by researchers
thus far for increasing spatial resolution in SPH. The particle
splitting approach; where the particle distribution is refined 
adaptively by splitting particles into a set of child particles 
when some criterion is met. Or starting with an initial multi-
resolution discretisation; where different particle density is 
used in zones where it is known a priori  to be needed. 

An adaptive SPH algorithm has to address the following 
issues:

� When to re-mesh; the adaptivity criterion or error 
estimate. 

� How to re-discretise the zone where the adaptivity 
criterion is satisfied; the new particle distribution.  

� How to interpolate field variables onto the new 
particles.   

Dealing with each item in turn: [1] add particles in regions 
with high velocity gradients, removing them when the gradient 
is low. Eschewing calculation, in [2]  fluid particles are split 
whenever they enter a refinement zone. In the examples given 
in the paper the particles are refined just before they leave a 
variety of tanks. For astrophysical simulations [3], using a 
variable smoothing length, refine a particle whenever its 
smoothing length exceeds twice the average smoothing length 
and [4] adapt based on the Jeans condition. The last two 
methods are rather specific to astrophysics.  

The reproducing kernel particle method [5] is a mesh-free 
method closely related to SPH. To identify sub-domains in 
need of refinement the authors use the properties of the kernel 
function as a filter to find regions dominated by high-
frequencies and therefore it high-gradients.  

Increasing resolution is most often done by splitting a 
particle into a number of smaller child particles. As long as the 
parent particle’s mass is distributed evenly between the
children conservation of mass is guaranteed. The spatial 
distribution of the child particles affects the density distribution 
and the splitting procedure can introduce extra errors in this 
way. Generally a particle is split by having one particle in the 
same position as the parent and placing the others evenly 
around it. Assuming the particle is split into equally sized child 
particles and that the are placed symmetrically around the 
original particle’s position, it is only left to decide on the new 
particles’ smoothing lengths and separation, l , from the centre
particle. Kitsionas et al.  [4] split the particle into 13 child 
particles and decide that the new smoothing length will be 

1/313new oldh h�� . After some experimental analysis the authors 

settle for a 1.5 newl h� as the particle separation. In a similar 
way  [2] define a density error function depending on two 
parameters, the new smoothing length and the separation, the 
minimisation of this function is used to find approximately 
optimal pairs of values. Alternatively [1] simply insert an extra 
particle where needed. The difficulty with this approach is that 
the new particle’s position and the masses and smoothing 
lengths of its neighbours are calculated to approximate the 
original density distribution instead of being pre-determined by
a splitting algorithm. This procedure is more complex and 
mass conservation is no longer automatic. The benefit is that it 
avoids the difficulties associated with abrupt steps in the 
smoothing lengths that may arise when simply splitting 
particles.

The final step is interpolating the field variables on to the 
refined particle distribution. The interpolation procedures vary
from a simple weighted average; in [6]the child particle’s 
velocities are given by, 

� �
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Abstract—The aim of this work is the characterisation of
the noise in SPH simulations of gaseous viscous discs and it
is motivated by the study of the dynamics of the dust component
in protoplanetary discs where the dust is coupled to the turbulent
gas component.

We perform a statistical analysis of the properties of the gas
fluctuating velocity field, considering both its magnitude and its
structure, and compare the results to some know features of
turbulence.

We have found that the properties of SPH noise are determined
by the global effect of the numerical noise and the model of
artificial viscosity. In particular, the considered artificial viscosity
model produces effects similar to a subgrid scale turbulence
model. In fact, for several combinations of the involved param-
eters turbulence-like behaviour has been observed. However, it
turns out that the combinations that better reproduce turbulence
are associated with the less intense fluctuation fields. Therefore,
the artificial viscosity model is able to reproduce the effects of
diffusion and gas viscosity produced by turbulent eddies, but it
cannot resolve them.

I. INTRODUCTION

Protoplanetary discs (abbreviate in PPD) are discs composed

mainly by gas and dust in quasi-keplerian rotation around

young stars. They are belived to be the birth place of planets.

The theory of planet formation is complex because several

scales (from µm to hundreds of thousand km), several forces

(e.g. electrostatic, magnetic, gravitational, drag) and several

processes (e.g. turbulence, chemical and thermodynamical

transformations, instabilities) are involved.

One of the more poorly understood stages is the evolution

of µ-meter size dust grains up to km size objects, called

planetesimals.

Among the several mechanisms the dust is subject to (e.g.

radial drift and vertical settling), turbulence is expected to be

of relevant importance because it can have two competitive

effects mediated by gas drag: stir up and diffuse dust particles,

contrasting their agglomeration, or trap them inside eddies,

favoring their agglomeration. Current observations have not

reached yet the resolution necessary to directly detect turbu-

lence and study its effects. However, the measured values of

mass accretion rates onto the central star (Ṁ ≈ 10−8 M�;

Hartmann et al. 1998 [1], Andrews et al. 2009 [2]) and the

estimated life time of discs (around 107 yr) imply a kinematic

viscosity much larger than the molecular viscosity in PPD (20

m2s−1). Shakura & Sunyaev (1973) [3] noted that turbulence

can provide an effective viscosity able to justify these data.

Given the complex interplay between dust and gas, the

problem can be only addressed by numerical simulations.

Here we focus on the modeling of the gaseous disc with

particular attention to the fluctuating velocity field. We have

performed 3D Smoothed Particle Hydrodynamics (SPH) sim-

ulations of gaseous accretion discs. Our aim is to clarify if

the numerical noise intrinsically present in SPH simulations

of accretion discs can mimic the effects of turbulence and to

what extent.

II. THE METHOD

We have performed a set of SPH simulations of a gaseous

disc changing both numerical and physical parameters. For

each simulated disc we have studied both the magnitude

and the structure of the fluctuations present in the velocity

field. The resulting properties of such fluctuations have been

compared to the typical behaviour of turbulence and to results

from grid based simulations available in the literature.

A. The disc model

A typical T Tauri disc of mass Mdisc = 0.01Mstar orbiting

around a one solar mass star (Mstar = M�) is considered.

It extends from 20 to 400 AU (Astronomical Units), it is

characterised by a surface density radial profile given by

Σ(r) = Σ0(r/r0)
−p, it is locally isothermal with a sound

speed radial profile cs(r) = cs0(r/r0)
−q . The semi-thickness

H of the disc is related to the sound speed and to the

angular velocity Ω by H(r) = c(r)/Ω(r). Note that the

sound speed coefficient cs0 and the sound speed exponent q
determine respectively the semi-thickness of the disc and its

radial dependence H(r) ∝ r3/2−q .

The reference values we adopt in the following are p = 3/2
and q = 3/8 typical of the Minimum Mass Solar Nebula. The

disc is slightly flared with H(r)/r = 0.05 at r = 100 AU.

The evolution of the disc is followed for about 10 orbits (at

100 AU) after numerical thermalisation has been reached.

B. The code

We use the two-phase SPH code described in Barrière-

Fouchet et al. (2005) [4]. The two phases represent gas and

dust that interact via aerodynamic drag. The gas is described
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Abstract—The incompressible smoothed particle hydrodynamics
(ISPH) method with projection-based pressure correction has
been shown to be highly accurate and stable for internal
flows and, importantly for many problems, the pressure field is
virtually noise-free in contrast to the weakly compressible SPH
approach (Xu et al. (2009)). However for almost inviscid fluids
instabilities at the free surface occur due to errors associated
with the truncated kernels. A new algorithm is presented which
remedies this issue, giving stable and accurate solutions to both
internal and free-surface flows. Generalising the particle shifting
approach of Xu et al. (2009), the algorithm is based upon Fick’s
law of diffusion and shifts particles in a manner that prevents
highly anisotropic distributions and the onset of numerical
instability. The algorithm is validated against analytical solutions
for an internal flow for Reynolds numbers as large as 106, the flow
due to an impulsively started plate, and highly accurate solutions
for wet bed dam break problems at small times. The method is
then validated for progressive regular waves with paddle motion
defined by linear theory. The accurate predictions demonstrate
the effectiveness of the algorithm in stabilising solutions and
minimising the surface instabilities generated by the inevitable
errors associated with truncated kernels. The test cases are
thought to provide a more thorough quantitative validation than
previously undertaken.

I. INTRODUCTION

The classical SPH method is formulated as a weakly compress-

ible fluid with an artificial equation of state defining pressures.

Although this predicts some highly transient flows quite well,

notably dam break flows, pressures are extremely noisy and

the method highly dissipative [1]. An important development

was made by Vila [2] who introduced an arbitrary Lagrangian

Eulerian formulation with a Riemann solver for each particle

interaction, reducing pressure noise markedly. However the

artificial equation of state remains. Cummins and Rudman [3]

proposed a direct approach for incompressible flow in SPH

following the projection method of Chorin [4] for maintaining

zero velocity divergence. ISPH can be highly accurate and ef-

fectively noise free but instability arises if particle distributions

become highly distorted and errors amplify rapidly [1]. This

instability can be avoided in various ways [5]–[7], but the sta-

bilisation method of Xu et al. [8] in particular has been shown

to be highly accurate and cost effective. The stabilisation

method proposed in [8] involves slightly shifting the particles

across streamlines, thereby avoiding the extreme stretching and

bunching of particles. The hydrodynamic variables are then

adjusted through interpolation. The algorithm however has

weaknesses for the simulation of free-surface flows. Numerical

instabilities can develop on the free surface as a result of the

incomplete kernel support and increased kernel interpolation

error, at least partly due to errors in the precise definition of the

free-surface location. It was found that these free-surface insta-

bilities could be damped by artificially increasing the viscosity

of particles on or near the free surface [9]. While this approach

produced accurate and stable free-surface profiles, viscosity

magnification at the free surface is physically undesirable and

inconsistent with the Navier-Stokes equations. In this work a

new algorithm is presented which shifts particles according to

Fick’s law of diffusion. In a similar, but more general manner

to [8], the algorithm acts to maintain a regular distribution

and prevent the extreme stretching and bunching of particles.

Furthermore, it can be applied to both internal and free-surface

flows to produce accurate and stable results. Many problems in

engineering involve both fluid-structure interaction and violent

free-surface motion. Thus, a highly accurate and rigorously

validated, incompressible, mesh-free, noise-free method for

arbitrary free-surface flows is very attractive. The following

validation cases will be considered: a Poiseuille flow, a Taylor-

Green flow, an impulsive fluid-structure interaction, a wet-bed

dam break problem, and regular wave propagation. To the

authors’ knowledge, this is the first time ISPH simulations of

high Reynolds number free-surface flows have been validated

against highly accurate solutions for both pressure and velocity

fields. The scheme may be generalized to 3-D motion with

complex boundaries through massively parallel processing but

this is not considered here.

II. SPH METHODOLOGY

The governing equations to be solved are the incompressible

Navier-Stokes equations, comprised of the conservation of

mass,

∇ · u = 0, (1)

and the conservation of momentum,
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Abstract—Smoothed Particle Hydrodynamics model of a com-
plex multiscale processe often results in a system of ODEs with an
enormous number of unknowns. Furthermore, a time integration
of the SPH equations usually requires time steps that are smaller
than the observation time by many orders of magnitude. A direct
solution of these ODEs can be extremely expensive.

Here we propose a novel dimension reduction method that
gives an approximate solution of the SPH ODEs and provides
an accurate prediction of the average behavior of the modeled
system. The method consists of two main elements. First, effective
equationss for evolution of average variables (e.g. average veloc-
ity, concentration and mass of a mineral precipitate) are obtained
by averaging the SPH ODEs over the entire computational
domain. These effective ODEs contain non-local terms in the form
of volume integrals of functions of the SPH variables. Second, a
computational closure is used to close the system of the effective
equations. The computational closure is achieved via short bursts
of the SPH model. The dimension reduction model is used to
simulate flow and transport with mixing controlled reactions and
mineral precipitation. An SPH model is used model transport
at the porescale. Good agreement between direct solutions of
the SPH equations and solutions obtained with the dimension
reduction method for different boundary conditions confirms the
accuracy and computational efficiency of the dimension reduction
model. The method significantly accelerates SPH simulations,
while providing accurate approximation of the solution and
accurate prediction of the average behavior of the system.

I. INTRODUCTION

Smoothed Particle Hydrodynamics is a versatile tool to

model complex physical processes. For a certain type of

processes (mainly multiscale processes), SPH discretization

(as any other numerical discretization) may lead to a system of

ODEs with an enormous number of unknowns. Furthermore,

a time integration of theSPH equations usually requires time

steps that are smaller than the observation time by many

orders of magnitude. A direct solution of such SPH ODEs

can be extremely expensive. This necessitates development of

advanced algorithms for model (or dimension) reduction.

Often, we are not interested in the SPH solution itself, but

in the average behavior of the modeled system. Equations for

the averages can be obtained using a volume averaging of the

SPH [1], [2]. Usually the equations for averages contain non-

local terms. When scale separation exists, accurate empirical

or analytical closures can be developed [3]–[5]. A well known

example of a problem with scale separation is hydrodynamics

where separation exists between hydrodynamics and molecular

scales, and the Navier-Stokes equations are empirical closed-

form equations for hydrodynamics averages. In the absence

of scale separation, except for special cases, closed-form

averaged equations do not exist.

Here we focus on flow and transport in porous media.

On the pore scale, transport is described by a combination

of Navier-Stokes and advection-diffusion-reaction equations

[6]. There are a number of examples (e.g. transport with

mineral precipitation and/or microbial growth with mixing

controlled reactions [10]–[13]) of reactive transport problems

where scale separation does not exist and traditional advection-

dispersion equations do not provide an accurate approximation

of the average solution of the pore-scale advection-diffusion

equations [9]. In such cases, accurate simulation of macro-

scopic behavior may require explicit simulation of pore-scale

processes.

We propose a novel dimension reduction method for a large

system of SPH equations describing pore-scale (microscale)

flow and transport [11]. The method uses a computational

closure for non-local averaged equations, so we name it the

Computational Closure Method (CCM). CCM is especially

useful when accurate closed form equations for averages do

not exist. CCM is gives an approximate solution of the SPH

ODEs and provides an accurate prediction of the average

behavior. Effective ODEs for evolution of average variables

(e.g. average velocity, concentration and mass of a mineral

precipitate) are obtained by averaging the SPH ODEs over

the entire pore-scale domain. These effective ODEs contain

non-local terms in the form of volume integrals of the SPH

variables. The computational closure is achieved via short

bursts of the SPH model. The effective ODEs have fewer

degrees of freedom and can be interated with longer time

steps than the SPH equations. The CCM-SPH model is used to

simulate flow and transport with mixing controlled reactions

and mineral precipitation. Good agreement between direct

solutions of the SPH equations and solutions obtained with

CCM for different boundary conditions confirms the accuracy

and computational efficiency of CCM. CCM significantly

accelerates SPH simulations, while providing accurate approx-

imation of the SPH solution and accurate prediction of the

average behavior of the system.

II. SPH TRANSPORT EQUATIONS

CCM is applicable to a wide range of ODE systems

describing particle dynamics or obtained from discretization of

22



Benefits of using a Wendland kernel for free-surface

flows

F. Macià
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Abstract—The aim of this paper is to discuss the influence
of the selection of the interpolation kernel in the accuracy of
the modeling of the internal viscous dissipation in free surface
flows. Simulations corresponding to a standing wave, for which
an analytic solution is available, are presented. Wendland and
renormalized Gaussian kernels are considered. The differences
in the flow patterns and internal dissipation mechanisms are
documented for a range of Reynolds numbers. It is shown that
the simulations with Wendland kernels replicate the dissipation
mechanisms more accurately than those with a renormalized
Gaussian kernel. Although some explanations are hinted, we
have failed to clarify which the core structural reasons for such
differences are.

Symbols

WC2 Wendland 5th degree class 2 kernel

RGK Renormalized Gaussian kernel

I. Introduction

In Colagrossi et al. [1], a theoretical analysis of the two

most popular SPH formulations for Newtonian viscous terms,

i.e. Monaghan’s [2] and Morris et al.’s [3], was carried out at

the continuous level. It was shown that in the presence of a

free surface and under certain conditions, these viscous terms

become singular with the inverse of the smoothing length. It

was also demonstrated that for the Monaghan’s [2] viscous

term the singularity does not affect the integral flow quantities.

As a consequence, the exact mechanical energy dissipation rate

is recovered in the continuous approximation as the smoothing

length goes to zero.

While in practical SPH implementations for pure diffusion

processes, the viscous terms behave similarly [4], in order to

assess the practical implications of the aforementioned results,

a viscous free surface flow is simulated with SPH. Such

flow is the evolution of a standing wave. This is a classical

problem in the scientific literature and is of practical interest

since it is strictly related to the propagation of gravity waves.

Moreover, an analytic solution for the decay of the kinetic

energy is available (see Lighthill [5]). The SPH simulations

have been implemented using free-slip conditions along the

solid boundary of the tank and using a renormalized Gaussian-

Kernel [6]. and a fifth order class 2 Wendland [7] kernel. The

aim of the present work is to document the benefits of using

such a kernel when dealing with viscous free surface flows.

The paper is organized as follows: first, the physical

problem we are interested in is presented. Second, the SPH

model, emphasizing the properties of the considered kernels is

introduced. Third, the practical problem considered, which has

been the dissipation of the kinetic energy in a standing wave,

is introduced and the results of the computations carried out,

for a range of Reynolds numbers, are presented and discussed.

Finally, some conclusions are drawn and future work threads

hinted.

II. Governing equations

Free surface 2D laminar Newtonian incompressible flows

are treated in this paper. The viscous effects in these flows

are proportional to the Laplacian of the velocity field, u.

The equations that describe these flows are the Navier-Stokes

incompressible ones.

In order to close this system of equations it is necessary

to specify the boundary conditions (BC). Let the fluid

domain be noted as Ω and its boundary as ∂Ω. Such

boundary encompasses a free surface boundary ∂ΩF and solid

boundaries ∂ΩB. Along the free surface, both a kinematic and

a dynamic BC should be in principle fulfilled. They are not

explicitly included in the SPH simulation, since the weakly

compressible model is considered and such model can be

properly shaped in order to being inherently consistent with

the kinematic and pressure conditions [8] and simultaneously

providing the correct viscous dissipation [1]. Notwithstanding

that, the dynamic free surface BC is presented (equation 1 for

the normal stress and 2 for the tangent stress) both for the sake

of completeness and in order to recall that when viscosity is

relevant, pressure is not in principle zero at the interface and

is in general discontinuos.

p = 2 µ n · ∂u/∂ n (1)

τ ·� · n = 0 (2)

In these equations n is the normal vector to the fluid domain,

τ is an unitary vector lying on the free surface tangent plane

and � is the rate of strain tensor.
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Abstract—In this work we combine and further develop
the methods of [1], [2]. The resulting algorithm aims to deal
with flow problems relevant to geophysics (simultaneously high
dissipation and high viscosity gradients). In particular we cosider
the so called “falling block benchmark” [3], which provides a
challenging problem for SPH in terms of preserving the “block
edges geometry” at high (102–106) viscosity ratios.

I. INTRODUCTION

In our previous work [2] an algorithm to solve a density

discontinuity at a phase interface has been developed which

satisfies mass conservation exactly. The viscous terms in this

formulation allow to model also discontinuity in the viscosity

by ensuring at the same time continuity of velocity and shear

stress across the phase interface.

In [1] we have proposed an implicit numerical scheme for

SPH that allows to increase significantly the time-step size

thus performing simulations at significantly larger viscosity.

Gerya and Yuen [4] mention important elements for the

modeling realistic situations in lithospheric and mantle dy-

namics. Most of these challenges come from the fact that

transport properties of rocks including viscosity, conductivity

vary strongly with chemical composition or mineralogy. In

this paper we are dealing with one of such challenges namely

high viscosity ratios. We apply the combination of the multi-

phase [2] and splitting algorithm [1] to model the descent of

a stiff object into a medium with a lower viscosity (“falling

block benchmark” [3]).

II. METHOD

Let us assume to deal with an isothermal Newtonian sol-

vent described by the Navier-Stokes equations written in a

Lagrangian reference frame

dρ

dt
= −ρ∇ · v,

dv

dt
= −

1

ρ
∇p +

η

ρ
∇2

v, (1)

where ρ is the material density, v is the velocity, p is the pres-

sure and η is the dynamic viscosity. The SPH discretization

of the Navier-Stokes equations is given by

dri

dt
= vi (2)

dvi

dt
= −

1

mi

�

j

�

pi

σ2

i

+
pj

σ2

j

�

∂Wij

∂rij

eij

+
ηiηj

2(ηi + ηj)mi

�

j

�

1

σ2

i

+
1

σ2

j

�

vij

rij

∂Wij

∂rij

. (3)

Here, mi is the mass of a particle with index i, Wij is a

kernel function, σi is the inverse of the particle volume, eij

and rij are the normalized vector and distance from particle

i to particle j, respectively. In order to close these equations,

an equation of state for the pressure is given as

p = p0

�

ρ

ρ0

�γ

+ b (4)

where p0, ρ0, b and γ are parameters which may be chosen

based on a scale analysis so that the density variation is

less than a given value. When a sufficiently stiff equation of

state is used (usually γ = 7, b = 0), penetration between

particles is prevented, and an almost incompressible situation

is reproduced.

The average density of a particle is

ρi = mi/Vi (5)

in which mi is the mass of a particle. The evolution equation

for the particle density used here is

ρi = miσ(ri) = mi

�

j

Wij (6)

where

Wij = W (rij) = W (ri − rj) (7)

This form conserves mass exactly and is similar to the com-

mon SPH density approximation

ρi =
�

j

mjWij (8)

The difference is that in the current approximation neighboring

particles contribute to the particle density only by affecting the

specific volume of particle i. Since there is no mass contri-

bution from neighboring particles Eq. (6) allows for density
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Abstract—In this paper, the accuracy and stability of various
SPH formulations are compared in simulating 2D wall–bounded
decaying turbulence with no–slip boundaries. Specifically, we
compare the performance of traditional weakly compressible SPH
(WCSPH) to incompressible SPH (ISPH) and the Godunov-type
SPH schemes (GSPH). The flow evolution are shown and the
decay rates of kinetic energy for these three SPH formulations
are compared with the numerical pseudo-spectral simulations of
Clercx [1]. In order to better understand how the solution of the
SPH pressure equation affects the accuracy of SPH in simulating
turbulent flows, the 1D energy spectrum of various SPH schemes
at different times is compared. These comparisons highlight the
way in which the kinetic energy is distributed over the multiple
scales in various SPH schemes and compare the influence of
the pressure solution in reproducing the energy cascade in a 2D
wall–bounded turbulent flow.

I. INTRODUCTION

While several turbulence models have recently been pro-

posed for the SPH method [2]–[4], few studies have been per-

formed to assess how accurate the SPH method is in simulating

turbulence. Recently, Robinson et al. [5] has performed a DNS

simulation of 2D wall–bounded decaying turbulence using

the standard weakly compressible SPH (WCSPH) method [6]

and compared his results with published results of Clercx

et al. [1]. The study concluded that while the results are

qualitatively similar to Clercx’s, the standard SPH method

leads to significantly higher dissipation of the kinetic energy.

The study also concluded that a major source of this energy

dissipation is the noisy motion of particles at the kernel length

scale [5].

In a study on sloshing flows, Rafiee et. al [7] showed that the

incompressible SPH formulation [8] and a Godunov–type SPH

scheme [9], [10] results in a smoother flow field than WCSPH

[7] and hence less noisy motion of particles. Therefore, the

purpose of this study is to compare the accuracy of traditional

weakly compressible SPH with incompressible and Godunov–

type SPH in simulating 2D wall–bounded decaying turbulence.

The outcome of this research will provide information on how

well various SPH schemes can model turbulent flow without

the implementation of a turbulence model and in particular will

demostrate how the solution of the pressure (which results in

a noisy or smooth flow field) influences the accuracy of the

SPH method in modelling turbulence.

II. WEAKLY COMPRESSIBLE SPH

In weakly compressible SPH (WCSPH) the pressure is

calculated through an equation of state. The most common

form of equation of state used in SPH has the form [11], [12]

Pi =
ρ0ici

2

γ

��

ρi

ρ0i

�γ

−1

�

(1)

where ρ0 is the reference density and γ is the polytropic

constant and is usually set to γ = 7. In order for density

fluctuations to be approximately 1%, the Mach number should

be M ≈ 0.1. To ensure this condition, the speed of sound is

set to c= 10V , where V is the maximum anticipated velocity

inside the flow. The density ρi is evolved at each time–step

using the continuity equation

dρi

dt
= Di = ρi∑

j

m j

ρ j
(ui−u j) ·∇Wi j (2)

and the velocity is evolved using the momentum equation,

dui

dt
= Fi =−∑

j

m j

�

Pi

ρi
2
+
Pj

ρ j
2
+Πi j

�

∇iWi j (3)
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Abstract—In this paper, the use of Smoothed Particle Hydro-
dynamics (SPH) as a potential tool for turbulent flows modeling
will be discussed. Explicit Sub-Particle-Scale (SPS) turbulence
models based on generalization of Smagorinsky, k-� [1,2], alpha
models [3] or stochastic models [4] were recently applied to
SPH with some success. Following the philosophy of Implicit
Large Eddy Simulation (ILES) in grid-based methods [5], in
this paper we focus on the possible use of numerical dissipative
mechanisms implicitly contained in the SPH scheme to simulate
turbulent flows. The presence of atomistic implicit viscosities in a
standard SPH formulation was recently observed [6], which are
related to the particulate nature of the method. The magnitude of
these implicit contributions becomes usually dominant over the
input viscosity in the limit of large Reynolds number and could
in principle interfere with an ad-hoc introduced explicit SPH-
SPS model. In the context of ILES it has been shown that the
numerical dissipation can be beneficial in some cases and can act
as an implicit sub grid scale model under a proper choice of the
discretization parameters. The goal of this paper is to analyze
the performance of a standard version of SPH in a turbulent
framework without any explicit SPS model. In particular, an
energy spectrum analysis will be presented and the relation with
the classical Kolmogorov -5/3 law will be discussed. Finally, third
order structure function and vorticity field will be investigated.

I. INTRODUCTION

Smoothed Particle Hydrodynamics (SPH) is a meshless, La-

grangian method. Due to the random nature of the Lagrangian

particle trajectories, the method might be able to capture some

properties of hydrodynamic turbulence. It is therefore interest-

ing to investigate its performance under standard turbulent flow

conditions.

The idea to use an implicit form of Sub-Grid Scale (SGS)

modeling in the context of the ’vortex method’ was pioneered

by Cottet [7] who in 1996 showed that it is possible to correct

the governing equations with additional terms in order to

produce a desired artificial dissipation. Preliminary studies of

the truncation error indicate that such a theoretical analysis

can be performed also in the framework of SPH even if the

subject has not been considered yet. Numerical indication that

SPH can implicitly realize a SGS model was proven by the

existence of an artificial viscosity inherently present in the

numerical formalism. This anomalous behaviour of SPH was

first identified by Hoover and his collaborators by studying the

microscopic intrinsic shear viscosity of an Euler fluid in the

middle 90s [8]. By invoking the isomorphism linking the SPH

equations describing an inviscid fluid with the ones governing

the motion of an atomistic Lucy fluid, they performed Non-

Equilibrium Molecular Dynamics (NEMD) simulations of the

latter to deduce the spurious transport coefficients of SPH.

The presence of two viscosities in a thermostated Lucy fluid,

analogous to the microscopic kinetic and potential ones, was

reported. Recently, Ellero et. al. made a systematic study of

the two spurious viscosities [6]. The results suggest that the

the mechanism of the kinetic dissipation, which has a similar

formulation to the Reynolds stress tensor and dominates at

high Reynolds number flow, might act in principle as an

implicit turbulence model. The goal of this work is to analyze

the performance of a standard version of SPH in simulating

decaying turbulence.

The paper is organized as follows. In section II the basic

SPH formulation used in this work is reviewed. In section

III, two kind of interpolation methods are introduced (e.g.

SPH interpolation and Remeshed interpolation) to map particle

properties on a grid. Errors introduced by the two interpolation

schemes are compared by performing a spectral analysis of a

prescribed velocity field. Results of our simulation in the case

of decaying turbulence are presented in section IV where the

energy spectrum, third-order structure function and vorticity

field are studied in detail. Finally, conclusions are given in

Sec. V.

II. SPH METHOD

A. Equations of motion

The basic Navier-Stokes equations on a Lagrangian frame-

work can be formulated as follows:

dv

dt
= −

∇p

ρ
+ ν∇2v + F (1)

where v and ρ are respectively, the fluid velocity and density,

p is the pressure, ν = η/ρ is the kinematic viscosity and F

is an external body force. A simple equation of state relating

pressure to density is for example

p =
c2ρ0
γ

��

ρ

ρ0

�γ

− 1

�

(2)

where ρ0 is the reference density, c the numerical speed of

sound and γ the ratio of specific heats, γ = 7 for liquid.

B. Density equation

In SPH, the mass density of particle i is evaluated as

ρi =

N
�

j=1

mjWij (3)
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Abstract—In this paper we study turbulence in two dimen-
sional boxes with no-slip boundaries using the particle method
SPH. A set of gaussian vortices is used as the initial turbulence
and the boundaries are specified by boundary force particles.
In the case of fixed boxes we recover the results of Clercx
and his colleagues, including the change in the fluid’s angular
momentum. When the box is allowed to rotate freely so that the
total angular momentum of box and fluid is constant, the change
in the angular momentum of the fluid is very much smaller than
is the case for the fixed box. We also simulate the behaviour of
the turbulence when the box is forced to rotate with small and
large Rossby number.

I. INTRODUCTION

Smoothed particle hydrodynamics is now widely used in

computational fluid dynamics especially in problems involving

breaking waves, and free surfaces disrupted by the impact of

rigid bodies. In many of these systems the flows are initially

laminar but develop turbulence as they evolve. In order to have

confidence in the predicted evolution of the flow it is necessary

to determine how accurately SPH simulates turbulence. The

simplest test case is that of two dimensional turbulence in a

bounded domain with no-slip boundaries. Not only does this

mimic aspects of confined flows, but it has been the subject of

comprehensive laboratory and numerical study by Clercx and

van Heijst and their colleagues. They have studied the spectra

[1], the energy and enstrophy decay [5], and the vorticity

distribution [4]. A remarkable phenomenon that has emerged

from these calculations is the spontaneous spin-up, with either

positive or negative angular momentum, and the sensitivity of

the vorticity to the no-slip boundary [21].

The application of SPH to the simulation of decaying and

driven turbulence is in its infancy. However, turbulence in

a fixed square box in two dimensions, has been simulated

[18], [19] finding satisfactory agreement with the results of

[2], and establishing some features of the convergence. In the

present paper the study of SPH simulation of turbulence will

be extended. First, we simulate turbulence within boundaries

defined by boundary force particles unlike the layers of fluid

particles used by [18], and [19]. The reason for this is that

boundary force particles are often used in SPH simulations

[14] and the results indicate the sensitivity of the turbulence

simulation is to the precise modeling of the boundaries.

Second, we make a detailed study of the convergence of the

energy decay with time. Third we study decaying turbulence

when the box containing the fluid is allowed rotate under

the surface stresses produced by the fluid. In this case the

total angular momentum of the system of box and fluid is

conserved. Fourth we study how the turbulence evolves when

the fluid and box are first in rigid rotation, then the turbulence

is initiated, after which the combined system is allowed to

rotate freely. This problem is related to turbulence in the

earth’s atmosphere, but a more complete discussion along the

lines of the β-plane study of [9], will not be attempted.

II. THE EQUATIONS OF MOTION IN TWO DIMENSIONS

We assume an incompressible fluid is moving in two

dimensions within a square boundary with no-slip boundary

conditions. It is convenient, especially when we give the

boundary a mass and allow it to rotate, to refer to the boundary

as a box. The acceleration equation for the fluid is

dv

dt
=

∂v

∂t
+ (v · ∇)v = −

∇P

ρ
+

µ

ρ
∇2v, (1)

where µ is the dynamic viscosity, P, ρ, and V are pressure,

density and velocity of fluid, respectively.

In this paper we also consider turbulence in a two di-

mensional fluid contained within a no-slip, square boundary

rigidly rotating with angular velocity Ωẑ, and ẑ is a unit

vector perpendicular to the plane of the fluid. In this case

it is useful to consider the equations of motion in a frame

rotating with angular velocity Ω. For this purpose, we let v

denote the velocity in this rotating frame, and ωẑ its vorticity.

The acceleration equation is then

dv

dt
= −2Ωẑ× v +Ω2r−

∇P

ρ
+

µ

ρ
∇2v. (2)

where d/dt denotes the derivative following the motion in

the rotating frame. From this equation the rate of change

with time of the energy and the enstrophy is the same as in

the non rotating frame. Since these equations form the basis

of Batchelor’s argument for two dimensional turbulence we

believe that the argument also applies to turbulence in the

rotating frame.

We also study the case where the boundary is given a

mass and a moment of inertia (we then call it a box) and
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Abstract — For several processes dealing with complex fluids

neither particulate nor fluidic influence is negligible. Thus, for

analyzing such problems purely solving the fluid flow

equations is not sufficient. In this study we demonstrate the

coupling of Smoothed Particle Hydrodynamics (SPH) used to

describe fluid motion and the Discrete Element Method

(DEM) representing solid particles suspended in the fluid

phase. Our method is compared with various results from

literature and its application on a real problem is

demonstrated.

I. INTRODUCTION

The production and processing of granular materials in 
fluid flows is common in many industrial applications of
powder production and processing. With a suitable 
simulation scheme in-depth knowledge of the underlying 
flow conditions can be obtained. However, as these
processes often deal with complex fluids where neither
particulate nor fluidic influence is negligible coupling of the 
two mechanisms is a prerequisite. 

In literature many reports about the simulation of
particles suspended in gas or fluid may be found. Besides
neglecting the solid phase, which may be a reasonable
approach for very small solid volume fractions, the most
common technique is coupling classic mesh based 
computational fluid dynamics solvers (CFD) with various
kinds of treatment of the solid particles.  

Benyahia et al. [1] investigate a circulating fluidized bed 
by using CFD to solve for the gas flow and the kinetic gas 
theory for treatment of the disperse phase. Xu and Yu [2]
also analyze fluidized beds however they combine locally
averaged CFD with the discrete element method (DEM)
which keeps track of the individual granules by solving 
Newton’s second law of motion. To reduce the
computational costs emerging from the treatment of every
single particle, Kloss et al. [3] combined CFD with a 
discrete phase model (DPM) to solve for the granular flow
which was complemented to the DEM describing the single 
particles motions on a smaller scale. Using spatial domain
decomposition, all three models were computed
simultaneously.

Being a fully lagrangian approach for solving Navier-
Stokes equations, smoothed particle hydrodynamics (SPH) 
[4], [5] promises several advantages for the treatment of
particulate suspensions. It offers the capability of dealing
with complex geometry and allows an intrinsic
straightforward coupling with other lagrangian methods
describing the disperse phase.

Monaghan proposed [5] and improved [7] a SPH model
for treatment of interpenetrating fluids by using an
improved drag technique and used the model to study dusty
gas dynamics. The first implementation coupling SPH with 
DEM known to the authors was reported by Gao and Herbst
[8], who modified the multiphase model proposed by
Monaghan and added coupling terms to account for the
interaction of fluid and solid phase.

In this work we improved the coupled SPH-DEM
scheme to work on different spatial length scales by
including additional force laws [9], [10]. For macroscopic
simulation of pneumatic conveying of granular media we
add forces to account for Saffman and Magnus effects [11]. 
On the microscopic scale we introduce intermolecular
forces dominating the behaviour of dense suspensions. 
Details of our model together with a description of the
added forces will be given in the next section. In the final
part of the paper some applications of the model are
presented 

II. THE MODEL

A. Fluid phase 

The motion of a fluid phase influenced by solid particles
can be modelled by the following set of equations
describing the conservation of mass (1) and momentum (2)
[8]:

v
t

�
⋅∇−=

∂

∂
ρ

ρ
ˆ

ˆ
 (1) 

cfg
TP

t

v ��
�

++
⋅∇

+
∇

−=
∂

∂

ρρ ˆ
, (2) 
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Abstract—We present a meshless simulation method for mul-
tiphase fluid-particle systems using Smoothed Particle Hydrody-
namics (SPH) and the Discrete Element Method (DEM). Rather
than fully resolving the interstitial fluid, which is often infeasible,
we use a unresolved fluid model based on the locally averaged
Navier Stokes equations. A variable-h SPH formulation is used
to calculate the fluid phase, where the density of each particle
is proportional to the local porosity. The SPH-DEM method
is validated using simulations of single and multiple particle
sedimentation in a 3D water column. The velocity and terminal
velocity for the single particle compares well with the analytical
solution, provided that the minimum resolution of the fluid
phase is much larger than the solid particle diameter. For fluid
resolutions close to the particle diameter there is no longer a
clear separation between the resolved and unresolved fluid scales,
leading to an artificial increase in the particles’ terminal velocity.
In the multiple particle sedimentation simulation, the two-way
coupling between the phases permits the growth of a Rayleigh-
Taylor instability. The growth rate of the instability in the linear
regime is calculated and compares well with theory.

I. INTRODUCTION

Fluid-particle systems are ubiquitous in nature and industry.
Sediment transport and erosion are important in many envi-
ronmental studies and the interaction between particles and
interstitial fluid affects the rheology of avalanches, slurry flows
and soils. In industry, the efficiency of a fluidised bed process
(e.g. Fluidized Catalytic Cracking) is completely determined
by the complex two-way interaction between the injected gas
flow and the solid granular material. The dispersion of solid
particles in a fluid is also of broad industrial relevance in the
food, chemical and painting industries.

The length-scale of interest determines the method of simu-
lation for fluid-particle systems. For very small scale processes
it is feasible to fully resolve the interstitial fluid between the
particles (see [1]–[3] for a few examples of particle or pore-
scale SPH simulations). However, for many applications the
dynamics of interest occur over length scales much greater
than the particle diameter and it becomes necessary to use
unresolved, or mesoscale, fluid simulations.

Fixed pore flow simulations using SPH for the (unresolved)
fluid phase have been described by Li et al. [4] and Jiang et al.
[5], but these do not allow for the motion and collision of solid
grains. Cleary et al. [6] and Fernandez et al. [7] simulate slurry

flow at the mesoscale using SPH and DEM in SAG mills and
through industrial banana screens, but only perform a one-way
coupling between the solid and fluid phases.

The SPH-DEM model presented in this paper can be used
for both one and two-way coupling and is suitable for both
dilute and dense particle systems. It is based on the locally
averaged Navier-Stokes (AVNS) equations that were first de-
rived by Anderson and Jackson in the sixties [8], and have
been used with great success to model the complex fluid-
particle interactions occurring in industrial fluidized beds [9].
Anderson and Jackson defined a smoothing operator identical
to that used in SPH and used it to reformulate the NS equations
in terms of smoothed variables and a local porosity field
(porosity refers to the fraction of fluid in a given volume).
Given its theoretical basis in kernel interpolation, it is natural
to consider the use of the SPH method to solve the AVNS
equations, coupled with a DEM model for the solid phase. This
results in a purely particle-based solution method and therefore
enjoys the flexibility that is inherent in these methods. In
particular, the SPH-DEM model described in this paper is well
suited for applications involving a free surface, including (but
not limited to) debris flows, avalanches, landslides, sediment
transport or erosion in rivers and beaches, slurry transport
in industrial processes (e.g. SAG mills) and liquid-powder
mixing in the food processing industry.

The next section describes the AVNS equations and the SPH
and DEM models for the fluid and solid phases. The remainder
of the paper then describes SPH-DEM simulations of single
and multiple particle sedimentation in a 3D water column.
These results are compared against analytical solutions in
order to validate the proposed model.

II. THE LOCALLY AVERAGED NAVIER-STOKES

EQUATIONS

Most models of the unresolved fluid phase are based on the
locally averaged Navier-Stokes equations derived by Ander-
son and Jackson [8]. Anderson and Jackson defined a local
averaging based on a smoothing function g(r) with identical
properties to the normal SPH kernel. The local average of any
fluid variable a�(x) can be obtained by convolution with the
smoothing function
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Abstract—We presented at the fifth SPHERIC Workshop
a two-dimensional Fluid-Structure Interaction (FSI) coupling
between the Smoothed Particle Hydrodynamics (SPH) method
for the fluid, and the Finite Element Method (FEM) for the solid
[1]. First validations were shown. With this coupling we take
advantage of both methods, the SPH method capability to handle
large deformations of fluid domains, and the established FEM
to predict solid behaviors that undergo time-variable pressure
loads. In addition, no specific contact algorithm is needed to
avoid material interpenetration. This leads to a relatively easy
implementation of the whole coupling. In the present paper we
present further validation of the coupling and its extension to
three-dimensional situations. In particular the global conserva-
tion of energy throughout the coupling is carefully monitored and
analysed. To this purpose the different energies (kinetic, potential
and internal) are expressed and monitored in time, both in the
SPH method for the fluid, and in the FEM for the solid. The
sum of these different energies shall keep constant in time in
absence of dissipation. Three-dimensional validations of the SPH-
FEM coupling developed are then presented, in comparison to
experimental data. The validation strategy is first to compare to
already performed 2D validations, as in the case of a dam-break
through an elastic gate [3]. Then the 3D model is applied to
realistic complex cases where 3D effects can not be neglected.

I. INTRODUCTION

In [1] an explicit parallel SPH-FEM coupling method was

presented and first validation was performed by studying

the impact at high velocity of an elastic solid on the free

surface. Despite the use of a weak coupling strategy, the results

obtained were in good agreement with analytical solution

provided in [2]. One advantage of the coupling developed here

is that no specific treatment such as sub-iterations is done to

verify physical conditions at the fluid-structure interface. Even

if good agreements between simulations and experimental or

analytical data are found, it remained necessary to assess the

coupling consistency. One way to do so is to monitor time

conservation of the total energy of the whole system. In the

present paper the evolution of the different flow energies are

first analysed on simple fluid simulations without the presence

of a structure. This permits to discuss of energy preservation

in the SPH scheme stabilized with a Riemann solver. Then this

monitoring is applied to FSI situations. In particular, another

two-dimensional test case is presented in detail with evaluation

of fluid and solid energies. It concerns the escape of a water

column through an elastic gate [3]. Finally, first 3D validation

of the coupling is performed, and the FSI model applicability

to realistic complex situations is performed on an industrial

test case.

II. SPH SOLVER

In this section, the system of equations and the numerical

scheme used in the SPH-Flow solver are briefly described. We

then focus on the evaluation of kinetic, potential and internal

energies.

A. Governing Equations

Locally, we have the following conservation equations of

mass and momentum.

∂ρ

∂t
= −
∇.(ρ
v) (1)

∂ρ
v

∂t
= −
∇.(ρ
v ⊗ 
v + pId) + ρ
g (2)

The Tait’s equation of state relating pressure to density of

the barotropic fluid closes the system above.

p =
ρ0a

2
0

7

��

ρ

ρ0

�γ

− 1

�

(3)

B. Discrete scheme

In concrete terms, the field is described by a set of par-

ticles. The discrete scheme is written using the Lagrangian

symmetrized form of equations, leading to, for the space

discretization part:

d
xi

dt
= 
vi (4)

dωi

dt
= −ωi

�

j

ωj (
vi − 
vj) .
∇Wij (5)

and for Euler equations:

dωiρi
dt

= −ωi

�

j

ωj2ρe(
ve − 
v(xij)).
∇Wij (6)

dωiρi
vi
dt

= ωiρi
g−ωi

�

j

ωj2[ρe 
ve⊗(
ve−
v(xij))+peId].
∇Wij

(7)

where ρe and 
ve are the solutions of the Riemann problem

solved for each interaction at the interface xij . Velocity of

this interface is given by (8).


v(xij) =
1

2
(
vi + 
vj) (8)

79



MNOPQNRPSTUSVUNUWSTXYZ[NRP[YU[NZPN\OY]ZYXSO^RPSTU_`aU
XWbYcYUPTWO^QPTdU��URYZcXU

efUgNZXbhUifUjdYZhUkfUlYUmS^noU
pO^PQUgYWbNTPWXUlN\SZNRSZq

rWSOYUsYTRZNOYUtNTRYXUuUstv_U
tNTRYXhUpZNTWY

kfUi^P\YZRUU
pO^PQUgYWbNTPWXUNTQUeWS^XRPWXUlN\SZNRSZq

rWSOYUsYTRZNOYUlqSTUuUstv_
rW^OOqhUpZNTWYU

6789 :; <=>?=9@A:@987BCD?7EEFCD7<C:8G?GHC<>@?<:?IJK?D:8GCG<?

:;? F7AL>? ;FHC@? M:FHB>GN? A>OHCAC8L? 7? =CL=? F>M>F? :;? @><7CF? <:? P>?

D7E<HA>@? C8? GE>DC;CD? F:D7F? 7A>7G :;? C8<>A>G<Q? R8? :A@>A? <:?

>;;CDC>8<F9 7D=C>M>?<=CGN?7?M7AC7PF>?A>G:FH<C:8?GD=>B>?G=:HF@?P>

HG>@? <:? BC8CBCG>? <=>? <:<7F? 8HBP>A? :;? E7A<CDF>G? 8>>@>@? <:?

A>EA>G>8<? <=>? ;FHC@ M:FHB>Q? S=>? IJK? B><=:@? 7FF:TG? ;:A? <=>

GCBEF>? CBEF>B>8<7<C:8?:;?GHD=?7?GD=>B>N?7F<=:HL=?7@@C<C:87F

<>ABG? <7UC8L? <=>? LA7@C>8< :;? GB::<=C8L? F>8L<=? C8<:?

D:8GC@>A7<C:8?V�� <>ABGW?BHG<?P>?C8DFH@>@?C8?<=>?>OH7<C:8G?:;?

B:<C:8?<:?A>B7C8?D:8G>AM7<CM>Q??

S=>? 7;;>D< :;? <=>? 7@@C<C:8? :;? <=>? �� <>ABG? TC<=C8? 78? XYZ

;:ABHFCGB? CG? 787F9G>@? C8? <=CG E7E>A? C8? <T:? @CB>8GC:8GQ? S=CG?

8>T ;:ABHF7<C:8? CG? <=>8? M7FC@7<>@? P9 GCBEF>? =9@A:G<7<CD?

787F9GCGN? 78@? <=>? P>8D=B7AU? <>G<? D7G>? :;? 7? ACLC@? T>@L>?

CBE7D<C8L?7?;A>>?GHA;7D>Q?�� <>ABG?7A>?;:H8@?<:?P>?D:AA>D<CM>?

C8? 87<HA>N? CBEA:MC8L? <=>? GD=>B>G? EA:E>A<C>G :;? D:8G>AM7<C:8?

78@?G<7PCFC<9Q?

wf wtmvjkxsmwjt

wTUSZQYZURSURNyYUV^OOUNQ[NTRNdYUSVURbYUlNdZNTdPNTUTNR^ZY
SVU _`ahU RbY N\POPRqU RSU NWW^ZNRYOqU RZYNRU [NZPNRPSTXU PT
XcSSRbPTdU OYTdRbU PXU TYYQYQfU mSU NWbPY[YU RbPXhU NQQPRPSTNOU
RYZcX NZYU ZYz^PZYQU PTU RbYU {NZRPWOYU Yz^NRPSTXU SVU cSRPSTU RSU
ZYcNPTU WSTXYZ[NRP[YhU RNyPTdU RbYU dZNQPYTRU SVU �U PTRS
WSTXPQYZNRPSTU |�� RYZcX}U ~�]��fU wRU bNXU \YYTU ZY{SZRYQU RbNRU
RbYXYU RYZcX WNTU \YU TYdOYWRYQU PTU {ZNWRPWYhU {ZS[PQPTdU XRYY{U
QYTXPRqUdZNQPYTRXUNZYUTSRU{ZYXYTRUPTURbYUVOS�U~�h��fUaS�Y[YZh
PRU �POOU \YU XbS�TU PTU RbPXU �SZyU RbNRU PXX^YXU WNTU NZPXYU PTU
cNPTRNPTPTdU RbYU {ZYXWZP\YQU {NZRPWOYU {SXPRPSTXU ^TQYZU XPc{OYU
bqQZSXRNRPWUWSTQPRPSTXfUU

wTURbPXU{N{YZhUN TY�UcYRbSQUSVUPTRZSQ^WPTdURbYU�� RYZcX
PTRSURbYUYz^NRPSTXUSVUcSRPSTUPXU{ZYXYTRYQfUmbYUS\�YWRP[YUPXURSU
RZYNRUN XqXRYc SVU{NZRPWOYXU�PRbU{ZYXWZP\YQUXcSSRbPTdUOYTdRbX
RbNRUZYcNPTU^TWbNTdYQUS[YZURPcY� ��� �� � � hUNXUS{{SXYQURS

XcSSRbPTdU OYTdRbXU RbNRU Y[SO[YU RSU cNPTRNPTU NU WSTXRNTRU
T^c\YZUSVUTYPdb\S^ZXU�PRbPTURbYUOSWNOUX^{{SZRU~�h��fUU

mbYU TY�U VSZc^ONRPSTU PXU X^\�YWR RSU XPc{OYU bqQZSXRNRPWU
NTNOqXPXhU NTQU RbYTU RbYU \YTWbcNZyU RYXRU SVU NU ZPdPQU �YQdYU
Pc{NWRPTdUNUVZYYUX^ZVNWYfUmbYU�� RYZcXUNZYUVS^TQURSU{ZS[PQYU
NU WSTXYZ[NRP[YU QYXWZP{RPSThU NOOS�PTdU RbYU {bqXPWNOU
{ZS{NdNRPSTUSV NWS^XRPWU\YbN[PS^Z S[YZU[NZPNRPSTXUPTU�hUPTUNU
VOS�U�PRbUXRYY{U{ZYXX^ZYUdZNQPYTRXfU

wwf _`a _sargr

mbYUelrUVSZc^ONRPSTUPc{OYcYTRYQUPTU_`a]pOS�UPXU^XYQU
PTURbPXU�SZyfUmbYUVSZc^ONRPSTUPXUXbS�TU\YOS��U


 �


 �

 �

�
� �

�
�

�

f

f

�

�

�

� � � �

�

� � � �
� �

� � �

� � � � �

�

��

��
� � �

��

���
� � � �

�� �

� ��

� �

�
�

��
�
�

� � ��
�
� � ��� � �� � �� � �� �� ��

�

�

[
M

M M

M

M

�� 
��

�bYZYU[PhUMPhU�P NZYU ZYX{YWRP[YOqhU RbYU{SXPRPSThU[YOSWPRqhUNTQU
[SO^cYUSVURbYUWSTXPQYZYQU{NZRPWOYfU �

�� PXURbYURZNTX{SZRUVPYOQUSVU
RbYU elrU N{{ZSNWbfU � PXU RbYU [YWRSZU SVU WSTXYZ[NRP[YU

[NZPN\OYX 
 �h
�

� � ��� � fU | }� �� � PXU RbYU VO^�U SVU WSTXYZ[NRP[YU

[NZPN\OYXU 
 �h
�

� � � � � � �� � � � �� � � � hU Y[NO^NRYQU \qU RbYU ^XYU SVU N

vPYcNTTU XSO[YZfU
�

�� PXU RbYU dZNQPYTRU SVU RbYU XcSSRbPTdU

V^TWRPSTh bN[PTdU RbYU dNRbYZU VSZc^ONRPSTU SVU 
 �h� � �� �� A PTU

WNXYXU�bYTU�UQSYXUTSRU[NZqfUU

wTU WNXYXU �bYZY � QSYXU [NZqhU X^WbU NU VSZc^ONRPSTU SVU RbYU
XcSSRbPTdUV^TWRPSTU{ZSQ^WYXU^TXqccYRZPWNOUVSZWYXU\YR�YYTU
PTRYZNWRPTdU{NZRPWOYXU~��fUwTUY�RZYcY WNXYXhUPRUPXU{SXXP\OYURbNRU
{NZRPWOYU� ZYWSdTPXYXU{NZRPWOYU� NXUNUTYPdb\S^Zh \^RU� QSYXUTSR
ZYWSdTPXYU�fUeTUY�Nc{OYUSVURbPXUPXUXbS�TUPTUpPd^ZYU�fU

pPd^ZYU�fU r�Nc{OYUSVUTST]ZYWP{ZSWNOUPTRYZNWRPSTfU

86



A dynamic particle coalescing and splitting scheme

for SPH

R. Vacondio

Department of Civil Engineering,

Parma University

Viale G.P. Usberti 181/A,

43100, Parma, Italy

renato.vacondio@unipr.it

B.D. Rogers1, P.K. Stansby1, P. Mignosa2 & J. Feldman
1School of Mech., Aero. & Civil Engineering

University of Manchester

Manchester, United Kingdom
2Department of Civil Engineering,

Parma University

Viale G.P. Usberti 181/A,

43100, Parma, Italy

Abstract—In this paper a dynamic refinement algorithm for
Smoothed Particle Hydrodynamics (SPH) is presented. The
variable resolution in SPH is achieved using both the particle
splitting and a novel conservative particle coalescing procedure.
The particle splitting procedure is able to increase the resolution
by increasing the number of particles in the domain, and
conversely, the resolution is reduced by coalescing particles (to
improve the efficiency). This is accomplished while conserving
both mass and momentum, and calculating the smoothing length
of the new particles by minimizing the density error. The general
applicability of the new dynamic particle refinement procedure
is assessed by applying it to shallow water equations (SWEs) and
testing the numerical scheme against different reference solutions.
In the real-life test case the particle coalescing procedure leads
to a reduction of the computational time by a factor of 15.

I. INTRODUCTION

In order to get robust and reliable results in computational

fluid dynamics, it is important to simulate accurately relatively

small-scale features such as recirculation zones, shock waves

etc. In classical Eulerian models this is usually achieved using

adaptive structured [5], [9], [15] or unstructured grids [8].

In meshfree numerical schemes there have been some early

attempts to introduce variable resolution by either remeshing,

particle splitting and particle insertion/removal techniques [3],

[7], [17], or through variable smoothing lengths with dynamic

particle splitting according to pre-defined criteria [4], [18].

However, particle splitting leads to an ever increasing number

of particles in the numerical domain without the ability to

coarsen resolution when desirable to improve efficiency during

a simulation. In this work, we will present a 2-D particle re-

finement scheme that includes particle splitting and coalescing.

We will be using the shallow water equations (SWEs) which

are used to model different natural phenomena such as tidal

flow, river flooding, tsunami, dam break etc. The technique

presented herein is equally applicable to the Navier-Stokes

equations.

This paper is organized as follows: in section II the main

features of the SPH-SWEs numerical solver based on the

variational approach are briefly recalled, In section III the

particle splitting procedure for variable smoothing length

schemes is outlined. In Section IV the novel methodology

for particle coalescing is presented, and finally in Section

V the particle refinement is tested against different reference

solutions including a real life test case.

II. SPH SHALLOW WATER EQUATIONS SOLVER

The shallow water equations can be written in Lagrangian

form as

∂d
∂t = ∇ · (dv)

∂(vd)
∂t +∇ · (dv) = −gd (d+ b) + gdSf

(1)

where d is depth, v is depth-averaged velocity, t is time, b is
the bottom elevation, g is the acceleration due to gravity and

Sf is the bed friction source term. The SWEs are formally

identical to the Euler equations if we re-define the density

ρ as the mass of fluid per unit of area in a 2-D domain;

with this definition of ρ we have ρ = ρwd , where ρw is the

constant (conventional) density. The density ρi of a particle i
can vary considerably during a simulation; therefore an SPH

scheme with variable smoothing length h in time and space

is used to keep the number of neighbour particles roughly

constant during the processes of water inundation and retreat.

Using these definitions the SWEs in Lagrangian form can be

rewritten as:

dρ
dt = −ρ∇ · v

dv
dt = − ρ

ρw

∇ρ+ g (∇b+ Sf )
(2)

The particle positions and velocities are integrated in time

by means of a leap-frog scheme with a Lax-Friedrichs term

keeping the solution stable even in the presence of shock waves

where a MUSCL reconstruction is applied to increase the

accuracy of the SPH interpolation [18]. The closed boundaries

(walls) are simulated using the Modified Virtual Boundary Par-

ticle method [19], whereas the open boundaries are introduced

using the same formulation described in [20].
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Abstract—The paper reports on SPH simulations of water/soil-
flows using a variable resolution scheme. The research aims at
harbour-flow problems. Emphasis is given to sediment scouring
induced by an unberthing ship. The related multi-physics sim-
ulations usually involve complex geometries embedded in large
computational domains. Important aspects are often concerned
with the analysis of subtle details in a confined region along the
dynamic fluid/soil-interface. In such cases, the use of traditional
homogeneous particle-resolution techniques is afflicted with pro-
hibitive computational costs. The paper aims to outline a viable
route for a variable-resolution approach. The strategy is based on
dynamic particle properties (mass, kernel length, initial spacing)
within a fixed amount of particles framework. The variation
of properties solely depends on the current particle position.
Related non-solenoidal field effects and the influence of spatial
variations of the kernel length on the kernel-function gradient
are considered in the computational procedure. Reported results
refer to illustrative hydrostatic tests and travelling waves, water-
impact studies as well as transverse-thruster induced sediment-
scouring simulations for unberthing ships. The study reveals that
the strategy supports a significant reduction of particles without
compromising the predictive accuracy and features a striking
algorithmic simplicity. Moreover, results display the inadequacy
of 2D simulation models and thus highlight the importance of
variable-resolution techniques for 3D simulations.

I. INTRODUCTION

Sediment scours represent undesirable phenomena in ocean

and harbour engineering. They can be of several meters in

depth and significantly weaken the structural support of e.g.

subsea pipelines, platform legs or wharves. Cost-intensive

counter measures have to be carried out to guarantee a safe

operation of such facilities. These measures are usually based

upon a rather weak background knowledge. Since laboratory

experiments suffer from significant scale-effects, multi-physics

SPH simulations can help to analyse the scour-formation

process and to understand the interaction between water, soil,

structures and scour protection. Such simulations need to be

performed in large, three-dimensional domains, in which small

areas of interest often demand fine resolution. Container ship

lengths of about 300 m, docking in approx. 300 m wide basins,

are very common in harbours like Hamburg or Rotterdam.

Assuming a water depth of 16.5 m and a typical ship draught

of approx. 13.5 m, the distance between ship bottom and

harbour bed is rather small compared to the overall size of

the domain.

Since scours can be induced by the ship’s transverse

thruster, propellers and hull shoulders, a simulation of the

whole configuration is necessary. A typical diameter of the

thruster for such container ships is around 3 m. Assuming that

at least 10 particles per diameter are needed to discretize the

thruster, the whole domain would easily come up to 100 Mio.

particles with an uniform resolution. Such particle numbers are

clearly unfeasible, even when massively-parallel procedures

are employed.

The present research aims to advance the modelling capabil-

ities of the massively-parallel SPH-code GADGET-H2O [13] to

compute engineering problems which involve the interaction

of fluid, soil and suspension layers with nonuniform particle

resolutions. The GADGET-H2O-procedure is a modification of

Springel’s [12] cosmological TreeSPH-Code GADGET-2. The

approach offers a linear speed-up for several hundred CPU-

cores when applied to hydrodynamic flow simulations [13] and

has successfully been applied to complex maritime applica-

tions [14]–[16]. The suggested zonal resolution dynamically

modifies the particle’s mass and kernel length according to

the current particle location and is thus labelled ”Eulerian

variable-resolution approach”. Non-solenoidal effects are cap-

tured by supplementary source terms to ensure the momentum

and density conservation. The strategy allows a significant

reduction of particles towards the far field. Moreover, the

local inhomogeneity of particle properties, often displayed by

Lagrangian variable-resolution strategies, remains small and

can be controlled.

The remainder of the paper is structured as follows: In sec-

tion II, the employed governing equations and their respective

finite approximations are described, followed by section III

where the performance of the variable-resolution approach is

validated. Section IV is devoted to a full-scale 3D application.

Final conclusions are summarised in the last section.

II. COMPUTATIONAL MODEL

The section outlines the governing equations and their

respective SPH-based approximations. Vectors and tensors are

defined by reference to cartesian coordinates. The notation

uses latin subscripts to identify particle locations and greek

superscripts to mark cartesian tensor coordinates. The latin

subscript i denotes to the focal particle whereas the subscript
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Abstract—A novel particle packing algorithm has been derived
basing on a simplified standard SPH scheme and is used
to initialize the particle distribution for generic SPH solvers.
Using some intrinsic features of the SPH schemes, the proposed
algorithm leads to a final particle distribution that is very
stable and is not affected by a further resettlement during the
early stages of the evolution. Moreover, the computational costs
maintain very low since the final configuration is attained very
quickly. Finally, a strong point of the packing algorithm is that
it can be easily derived using whatever SPH scheme.

I. Introduction

The matter of how initialize the particle positions in the
SPH schemes plays a relevant role. Indeed, particles which are
not initially set in “equilibrium” positions may resettle giving
rise to spurious motions which can strongly affect the fluid
evolution. Hereinafter we refer to an equilibrium configuration
as the set of particle positions which, under static conditions,
does not lead to particle resettlement.

Unfortunately, apart from few cases characterized by simple
geometries, the equilibrium configuration is not known “a
priori”. This is a major issue since the generation of spurious
currents/vorticity is particularly strong in presence of complex
solid boundary profiles (i.e. corners, bended bodies, etc.).

In the SPH literature some ad-hoc procedures have been
proposed to reduce particle resettlement. The simplest one
consists in starting the SPH simulation using a high numerical
viscosity and leaving a long enough time to make particle self-
resettle in equilibrium positions (see, for example, Monaghan
[1]). The actual SPH simulation (that is, the simulation with
the correct viscosity and the desired initial conditions) starts
after particles have reached an equilibrium configuration.
Unfortunately, the attainment of a stable configuration can
require a very long evolution, this leading to a large increase
of computational costs. Moreover, the high viscosity used
for particle initialization does not exclude that a further
resettlement occurs when the actual simulation is started with
smaller values of the viscosity.

In the SPH framework, the first attempt to define a proper
algorithm for particle initialization is due to Oger et al. [2] who
adapted the Bubble method described in Shimada [3] to SPH
solvers. This algorithm is based on the use of Van der Waals-
like forces to place particles throughout the fluid domain. This
method proves to be quite fast, applies to general geometries

and provides a regular particle distribution. One of the weak
points is that the particle positions obtained through the Bubble
algorithm may be not perfectly compatible with the SPH static
solution leading to a further resettlement.

Then, the key point to build a robust packing algorithm
relies on the capability of providing a regular particle
distribution which is compatible with the SPH scheme, that
is, that satisfies the static conditions when the SPH scheme
is used. To this purpose a novel packing algorithm has been
derived taking advantage of some intrinsic features of the
SPH schemes. Thanks to this, the proposed method allows the
attainment of a regular particle distribution compatible with the
static solution. Further, it can be easily derived starting from
whatever SPH solvers and applies to weakly-compressible or
incompressible SPH schemes as well.

The paper is organized as follows: Section §II gives an
insight of the constitutive features which are used to build
the packing algorithm. Section §III describes the proposed
algorithm and highlights some interesting aspects about its
Lagrangian structure. Finally, Section IV provides a broad
range of numerical test cases which prove the packing
algorithm to be fast, robust and reliable also for complex
geometrical configurations.

II. Some intrinsic features of the SPH

In the present paper we adopt the standard SPH scheme:
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Dρi

Dt
= − ρi

�

j

(u j − ui) · ∇iWi j V j

Dui

Dt
= g −

1
ρi

�

j

(p j + pi)∇iWi j V j + T
(v)
i
,

pi = F(ρi) ,

Dri

Dt
= ui ,

(II.1)

As usual, the subscripts indicate the quantities associated with
the i-th and j-th fluid particle. In the specific, Vi is the particle
volume, ρi = mi/Vi and mi is the particle mass. The term T

(v)
i

indicates an artificial viscous force per unit of mass. This term
is generally implemented in the SPH schemes for stability
reasons (see, for example, [4]). In the present work, we use
the artificial viscous term proposed by Monaghan and Gingold
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Abstract— In order to obtain realistic results with SPH it is

pertinent that the initial geometry is as close to the real-

engineering problem as possible. A new pre-processing tool 

has been developed to deal with complex geometries. The new 

code named GenCase is able to create particles starting from 

predefined geometrical shapes or by importing external files 

with geometries generated by dedicated design software. 

Thus, real-life engineering problems can be easily simulated 

with SPH independently of how complicated the initial 

configuration is. GenCase will allow researchers and 

engineers to carry out more viable simulations to study real-

world problems. 

I. INTRODUCTION

SPH is too expensive in terms of computation time. 
Therefore, simulations that are carried out at reasonable 
runtimes may not involve large number of particles and 
consequently the geometry of the case is also limited. 

During the last years, performing simulations with 
millions of particle at affordable computation time is
possible thanks to development and progress of 
computational technology and the use of high performance 
computing, such as clusters of Central Processing Units 
(CPUs) or parallel programming in Graphics Processor 
Units (GPUs). Due to this capability there is a need to 
develop tools that generate experiments with geometries that 
represent real-world scenarios. 

However, the process of generating the geometry of an 
experiment based on particles is not trivial and can give rise 
to a significant computational cost. Generating the initial 
configuration of particles for a SPH simulation requires
filling volumes of irregular shapes using particles that must 
be spaced equidistant. Depending on the treatment of the 
boundary conditions, computation of the normal vectors of 
the boundary points might be required.

The SPHysics code (www.sphysics.org) uses a pre-
processing code named SPHysicsGen that creates the initial 

configuration of the case. This software, implemented in 
Fortran, is based on a simple algorithm that allows users to
create very simple predefined shapes such as 
parallelepipedons. However, complex geometries cannot be 
created using the available code capabilities of 
SPHysicsGen. To expand the possibilities of SPHysicsGen, 
an add-on was presented in [1] that centres around the open-
source software Blender. Meshes that can either be created 
or imported in Blender are converted via a custom Python 
script. The output is then read by SPHysicsGen where
specific properties of the simulation can be defined. 

Working in the same direction, a code named GenCase 
was developed. GenCase is a tool implemented in C++ that 
works independently without the need for other design 
software. This code combines the simplicity of defining the 
case using basic geometrical shapes with the capacity of
including 3D models. Thus, starting from the case 
description and the 3D external objects, the code is able to 
generate very complex geometries using millions of
particles not only in an easy way but also almost
instantaneously. 

GenCase is a pre-processing tool that can be found 
included in the DualSPHysics project (can be downloaded 
for free from www.dual.sphysics.org). This new SPH solver 
was designed to study real engineering problems and can be 
executed either on CPUs or GPUs. Speedups of up to two 
orders of magnitude can be achieved by only one single
GPU card compared to a single-core CPU. The reader can 
find more information in [2]. Since DualSPHysics has the
capacity to simulate large number of particles at reasonable 
runtimes, new pre-processing and post-processing tools are 
needed to deal with the large data set. GenCase was
developed specifically for this task of creating the initial 
configuration for simulations with DualSPHysics. However, 
the data can also be exported and used in any other SPH 
solver.  

In this work, the main features of the GenCase code are
described such as how particles are created starting from the 
nodes of a 3D mesh or how to import external objects 
created with any 3D design software. Additionally we show 
how it is possible to compute normal vectors for boundaries 
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ETH Zürich Switzerland

peikert@inf.ethz.ch

Abstract—This paper presents the first method for isosurface
extraction from smoothed particle hydrodynamics (SPH) data
that is exact with respect to the functional representation
provided by SPH. The Marching Correctors algorithm is an
extension of the Marching Cubes algorithm which is adapted to
the SPH representation and avoids resampling to a full grid. The
algorithm operates on a virtual grid of sufficiently high resolution
to faithfully reconstruct the fields represented by the SPH data.
The virtual grid is efficient in terms of both memory usage and
computing time, because cells are only materialized and processed
if they are either seed cells or intersected by the isosurface.
Besides the virtual grid, a key idea of our algorithm is to add
a correction step to the isosurface vertices. An evaluation of the
algorithm in terms of accuracy and performance is given based
on three SPH datasets. By comparing with [1] on similarly sized
data a performance gain of almost two orders of magnitude was
achieved. Moreover, it is demonstrated how the correction step
effectively reduces the typical artifacts produced by the Marching
Cubes method.

I. INTRODUCTION

The extraction and rendering of isosurfaces is one of the

basic visualization methods for scalar fields. There exists a

huge body of literature on isosurface extraction with special-

izations for the different types of data discretization. Most

of the existing methods deal with data organized in either

hexahedral or tetrahedral cells, and only a small fraction

addresses meshless data, that is data given on a set of points. In

contrast to this, point-based representation on the output side

has been treated more extensively, because many isosurface

extraction methods generate points more immediately or more

naturally than their connectivity. But even for meshless data,

polygonal isosurfaces have a number of advantages, since

for visualization purposes it is often required to compute

additional properties such as volume, curvature or surface area

of the extracted surfaces [2]. An example of four isosurfaces

from SPH data can bee seen in Fig. 1.

SPH data sets are functionally represented scalar and vector

fields which are given on a set of particles. Each particle

is represented by the field values and a radially symmetric

kernel. As opposed to other functional representations, SPH

has kernels with relatively large support radii which means

that in order to reconstruct the field at a given location, in the

order of a hundred neighbors have to be evaluated.

While reconstruction of the field is comparably expensive,

the SPH representation offers the advantage of high-quality

gradients which can be computed at relatively little extra cost.

We make use of these gradients for optimizing the intersection

points generated by the standard Marching Cubes algorithm.

Our contributions are as follows:

• We present the first method for isosurface extraction from

SPH datasets where all extracted vertices are guaranteed

to be placed at positions where the field assumes the

selected iso-value.

• We suggest a virtual grid to structure the processing and

guarantee that the resulting mesh is water-tight without

requiring resampling on all positions of a full grid. The

virtual grid is never stored in memory in its entirety.

• We describe a trimming method at the free surface to get

a consistent isosurface boundary.

• The selection of seed cells is the most expensive part of

the Marching Correctors algorithm and it is computed on

the GPU.

• Vertex normals are computed directly from the SPH rep-

resentation instead of using a gradient estimation scheme.

In the next section we give some background on isosurface

extraction with a focus on SPH data and point-sampled data.

In Section III we give an overview of the Marching Correctors

algorithm. An evaluation of performance and accuracy is given

in Section IV followed by conclusion and future directions in

Section V.

II. RELATED WORK

a) Visualization of SPH data: There exist a few visual-

ization packages for SPH data. SPLASH [3] is capable of

producing 2D plots of data by projecting particles onto a

plane, and 3D plots by integrating the kernel contributions

of all particles intersecting a ray through the view pixel. In

addition to these image-space methods, there are a few object-

space methods available such as streamline plots. ParaView [4]

supports SPH data through its meshless extension described in

[5]. It has functionality for resampling SPH data onto planes,

grids and arbitrary geometric meshes. This resampled data

can then be used with grid-based visualization algorithms to

generate isosurfaces, integral lines and surfaces, etc. However,
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Abstract—The present paper reports the development and

application of Finite Particle Method for viscous fluid simulation.

The main effort in present study is focused on increase of

accuracy. To improve accuracy two approaches are studied. First

of all, consistency of standard SPH restored using FPM.

Secondly, automatic adaptivity and clustering of particles is

remedied by applying shifting algorithm. Moreover new shifting

appropriate for free surface flows introduced. Finally new

algorithm validated and verified with 2D and 3D benchmarks.

I. INTRODUTION

The Smoothed Particle Hydrodynamics (SPH) method is
well suited for simulating complex fluid dynamics. Although,
recent studies [l] [2] [3] [4] results in great improvement of
viscous particle-based simulations, comparing to grid-based
approaches, particle methods are still suffering from 
insufficient accuracy. Existing approaches mainly suggests two
ways to increase the accuracy. 

First of all, accuracy improvement is achieved by restoring
consistency of standard SPH. To improve consistency of SPH 
substantial works has been done. For example symmetrisation
formulations[12], corrective smoothed particle method
(CSPM) [13], moving least square particle hydrodynamics
(MLSPH) [14], the integration kernel correction [15], the
reproducing kernel particle method (RKPM) [16] and finally 
finite particle method (FPM)[1] [17] [8].

Secondly, automatic adaptivity and clustering of particles is
remedied by using re-meshing algorithms [5] or by shifting 
particles [4]. In re-meshing technique particles are reinitialised
at regular intervals by interpolation onto a regular grid. For 
moving particle computations in this work we propose and 
demonstrate a formulation for multidimensional non-
Lagrangian motion, henceforth referred to as particle motion
correction

Shifting idea arose up from finite volume particle method
(FVPM) where Schick [18] introduced non-Lagrangian particle 
motion to maintain adequate particle spacing for a 1-D 
problem. Furthermore Nestor et al. [3] and recently Xu et al.
[4] used similar idea for more complicated problems. 

In present study we try to get the benefit of both approaches
simultaneously. To do this, FPM as a powerful model to 
restore consistency, combined with particle shifting approach.

In next section we briefly denote governing equation for 
fluid simulation. In Section III lack of consistency in particle 
approximation is addressed and FPM technique is explained by
detail. Section IV mentioned a totally conservative SPH 
discretization adopted for FPM. We next speak about shifting 
technique in Section V and solution algorithm in section VI. In 
section VII some simulations are presented for verification and 
validation of proposed algorithm and .finally we have 
conclusion in last section.

II. GOVERNING EQUATION

To simulate viscous fluid behaviour, Navier-Stokes
equations are often used as governing equations. Lagrangian
description of these equations is:

D
C

Dt

�
�� � �  
��

� �!�

DC
f

Dt
� "� �  #

�

��

� �$�

Where (1) and (2) are mass and momentum equations 
respectively. Moreover, position of infinitesimal fluid elements 
is governed by: 

DX
C

Dt
�

�

�

� �%�

In (1), (2) and (3), D Dt denotes substantial derivative; �
is density; C

�

 is velocity vector; "  is stress tensor; f
�

is
external body force and X

�

is position vector. 

For weakly compressible Newtonian fluid, "  is defined as:
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Abstract—The finite volume particle method (FVPM) is a
particle-based computational tool. The FVPM particles are tradi-
tionally represented by test functions that are defined on circular
support domains. This study is focused on the accuracy and speed
of the calculations involving particles with rectangular support
domains. Error analysis as well as overall performance of such
simulations is examined and a comparison to a previously pub-
lished study on the method’s convergence for circular supports
is provided.

I. INTRODUCTION

The finite volume particle method (FVPM) is a mesh-free
particle method that inherits some of the properties of the
smoothed particle hydrodynamics (SPH) as well as of the finite
volume method (FVM). As in SPH, the FVPM computational
domain is discretised with a finite number of computational
points (particles) which are represented by smooth overlapping
test functions [4]. As long as every arbitrary point in the
computational domain is covered by at least one particle,
FVPM maintains exact conservation.

The interaction between a pair of FVPM particles depends
on the distribution of all neighbouring particles, rather than on
the relative position of the two particles as in SPH. The FVPM
particle interaction is realised through inter-particle fluxes
which are weighted by particle interaction vectors reflecting an
overlap of the particle pair and their neighbours. Computation
of the particle interaction vectors requires numerical integra-
tion over complex-shaped domains and represents the most
computationally demanding part of the FVPM simulation.

In order to reduce the computational costs, Quinlan and
Nestor [10] suggested a fast procedure for analytic evaluation
of particle interaction vectors using top-hat kernel functions.
This method was proven to be an efficient and accurate
alternative for two-dimensional simulations while a significant
reduction of computational costs has been reported [7].

The particle test functions are traditionally defined on
finite circular or spherical supports for two-dimensional, three-
dimensional cases, respectively. While the top-hat kernel
functions defined on circular domains are efficient for two-
dimensional simulations, an application of the top-hat kernel
functions for three-dimensional simulations requires an iden-
tification of complex-shaped spherical surfaces.

In order to simplify the algorithm for evaluation of particle
interaction vectors in general, and especially in order to
simplify the geometric complexity of this procedure when
top-hat kernel functions are applied, test functions defined on
rectangular supports are considered. Such an approach follows
the work of Keck [5].

In the following, a comparison of the FVPM solution using
particles defined on rectangular supports is compared to the
results gained using traditional circular particles. Three test
cases are designed in order to explore the FVPM performance
for two-dimensional simualtions. Those address an FVPM
capability of treating the shock wave propagation and a viscous
flow in an unbounded and bounded domain. The particles with
rectangular supports are tested for the real world application
involving interaction of fluid with moving bodies.

II. FINITE VOLUME PARTICLE METHOD

A. Governing Equations

Within this section, a brief outline of the method is provided.
The FVPM formulation for viscous fluid flow [4], [8] is
derived from Navier-Stokes equations in a conservative form

∂U

∂t
+ ∇ (F − G) = 0, (1)

where U is the vector of conserved variables, F is the inviscid
flux, G is the viscous flux and t is time. For a weakly
compressible fluid, the system of Navier-Stokes equations
is accompanied by an equation of state, in which the fluid
pressure p is an explicit function of density ρ,

p =
ρ0c

2

0

γ

��

ρ

ρ0

�γ

− 1

�

, (2)

where ρ0 is the reference density, c0 is the reference value of
speed of sound and γ = 7 [1].

The Navier-Stokes equations and the equation of state are
discretised for a finite set of particles which fill in the compu-
tational domain. Each particle is associated with a compactly
supported overlapping test function

ψi(x, t) =
W (x − xi(t), h)

�N

j=1
W (x − xj(t), h)

, (3)

where x is the position vector, N is the number of particles
and Wi = W (x − xi(t), h) is a kernel function for a particle
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Abstract—Simulation of unsaturated free-surface flow in frac-
tured geological media represents a challenge due to the highly
heterogeneous flow field induced by extensive faults, joints and
fissures. Free-surface flow in unsaturated media leads to highly
intermittent flow regimes and flow velocities well above those
assumed for the bulk volume. However, common modeling
approaches relying on volume-averaged effective equations fail
to capture this flow feature. In this work we present micro-scale
flow simulations using a three-dimensional multiphase SPH code.
Pairwise fluid-fluid and solid-fluid interaction forces are used to
simulate a wide range of wetting conditions encountered on rock
surfaces. It is shown that static contact angles for sessiles droplets
are independent of the model discretization, i.e. the total amount
of particles. Thus, computation times can be reduced without
sacrificing qualitative or quantitative information. Furthermore
we show that our model is in accordance with general scaling
laws for droplet flow.

I. INTRODUCTION

Facing a global climate change and a rapidly growing world

population the management of limited water resources be-

comes increasingly difficult. Aquifers (i.e. porous and/or frac-

tured rocks from which economically profitable quantities of

water can be extracted) provide the main storage for fresh

water within the hydrogeological cycle between atmosphere

and surface waters. The subsurface can be divided into (1)

an unsaturated and (2) a saturated zone. The saturated zone

is delineated by the water table, i.e. all available voids are

filled with water, whereas the unsaturated zone comprises

the part of the subsurface between water table and surface

where pores and fractures are only partially filled with water.

The unsaturated zone therefor provides the main pathway for

precipitation and surface waters to the saturated zone.

Compared to unconsolidated porous media tectonically

stressed aquifers provide additional highly conductive frac-

tures, joints and faults embedded in a low conductive matrix.

Even though their total fraction of the aquifers porosity may be

as low as 1% [1] the importance of fractures for the transport

of water and contaminants has been proven by a variety of au-

thors using integral fieldtests as well as laboratory experiments

([2],[3],[4],[5],[6]) and analytical solutions ([7],[8],[9]). As

about 50% of the earth’s surface [10] is covered by hard rocks

integrated management of these resources largely depends on

a thorough understanding of the aquifer’s dynamical response

to recharge and contamination.

Transport of water through the unsaturated zone is partially

poorly unterstood due to the highly non-linear and intermittent

flow processes involved ([11],[12],[13]). In unconsolidated

media unsaturated flow is often simulated by volume-averaged

effective modeling approaches such as the Richard’s equation

[14]. However, the behavior of water in unsaturated fractures

is affected by a multitude of hydrodynamic effects that cannot

be captured by classical continuum models and may give rise

to highly nonlinear flow modes. Depending on the fracture

properties (aperture, inclination, roughness) fluid flow within

fracture elements is controlled by the interaction of body

and surface forces. Thus gravity driven or capillary driven

flow may prevail. Microscale modeling approaches should

therefor be able to deal with the resulting highly dynamical

interfaces and provide a flexible numerical tool for validation

and prediction of transient flow. Furthermore transport relevant

properties such as velocity and surface contact area are of

interest for the characterization of matrix-fracture interaction

and require adequate numerical techniques.

This paper demonstrates how Smoothed Particle Hydrody-

namics (SPH) can be used to simulate small scale free-surface

fluid flow in wide aperture fractures. Particular attention is

paid to general approaches for calibration and verification of

the SPH model for droplet flow.

II. METHOD

In the following we give a brief description of our model

and the governing equations. More detailed derivations and

approximations involved in the SPH method can be found for

example in ( [15],[16],[17]).

We use an SPH momentum conservation equation proposed

in [15]:

dvi

dt
=−

N
�

j=1

mj

�

Pj

ρ2j
+

Pi

ρ2i
+ ηij

�

∇Wi(|ri − rj |, h)

+ g +mi

N
�

j=1

Fij,

(1)
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Abstract— This paper shows an early application of an SPH-

based numerical model toward the simulating of underwater

explosion inside a non-cohesive sediment deposit. The analytical

formulation of the phenomenon is briefly recalled and then the

both discretized equations and numerical features are illustrated.

Finally some results concerning relatively simple test cases are

discussed in comparison with theoretical predictions and the
main conclusions are given.

I. INTRODUCTION

Several artificial reservoirs are affected by the siltation
process owing to the sediment load of the inflowing river: this
may cause a significant reduction of the initial storage capacity
within a relatively short time compared with their life span. 
Such a phenomenon, besides limiting the operating capacity of
a hydropower plant, contributes to wear out the turbines and
decreases their efficiency. An economical and effective method
for siltation control, referred to as flushing, consists of a
periodical opening of the bottom outlet carried out for safety
purposes: this causes the removal of part of the nearest bed
sediments owing to the action of the bottom shear stress
exerted by the rapid water outflow under the dam heel.

In order to improve the removal efficiency of this method a
possible solution consists in adopting explosive charges, of
suitable size, power and allocation, which are embedded below
the sediment surface, whose goal is the re-suspension of the
sediment in the water column and increase of the bottom 
roughness. Since the use of explosive charges near the dam is
rather dangerous owing to its possible damage or failure, it
deserves particular care and should be carefully investigated.

This work reports the preliminary phase of a wider research
program aiming at the evaluation of the feasibility of the
proposed method through experimental and numerical
investigations.

II. ANALYTICAL AND NUNERICAL ASPECTS

A.  Physics and Governing Equations of Explosion

The explosion process of high explosive (HE) materials is
characterized by a violent oxidation, involving a chemical
compound and an oxidizer, releasing a great amount of heat

(say reaction heat) since the internal energy of the products is
lower then the one of the reactants [1], [2].  

Even if such a phenomenon develops at a very high speed
of reaction, in the early phase it is characterized by two distinct
inhomogeneous zones [3]: a detonation-produced explosive gas
and a non-oxidized explosive; they are separated by a very thin
layer which represents the front of a reacting shock wave
(detonation wave) advancing with a characteristic velocity U. 

The detonation wave triggers the chemical reaction in the
non-oxidized explosive and the release of the chemical energy,
in turn, sustains such a shock wave.  

This early phase is called detonation and is very fast if
compared to the subsequent one since U is supersonic. After 
the detonation, a gaseous mass at a very high pressure, density 
and temperature expands in the space: this is referred to as
expansion phase and its timescale is lower than that one of the
detonation phase; this is the reason why in the following will
be assumed that the HE charge is fully detonated.  

The discretized governing equations describing the
expansion of the detonated gas can be written by considering
an inviscid fluid [4] and assuming the equation of state for an
ideal (polytrophic) gas undergoing an adiabatic process [5]:  
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In (1) �, p, e, v, are respectively the density, pressure, 
specific internal energy and velocity of the fluid; � and � denote
the constant in the equation of state and the fluid
compressibility modulus. The kernel function Wij is a cubic
spline; the standard formulation of the Monaghan’s artificial
viscosity �ij is adopted, with �M=0.
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Abstract—In this paper an SPH algorithm for multi-fluid flow
is described. The algorithm is efficient, simple and robust. The
inviscid equations of motion are derived from a Lagrangian
together with the constraint provided by the continuity equation.
The viscous flow equations then follow by adding a viscous term.
Rigid boundaries are simulated using boundary force particles.
Each fluid is approximated as weakly compressible. When the
SPH force interaction is between two particles of different fluids
we increase the pressure terms in a similar way to Grenier et
al. (2009). This simple procedure stabilizes the interface between
the fluids. The equations of motion were integrated using a time
stepping rule based on a second order Symplectic integrator.
When linear and angular momentum should be conserved exactly
they are conserved to within roundoff errors. The algorithm was
tested by applying it to three problems. The first is a free surface
problem involving fluids with a density ratio in the range 1
to 1000 The simulations converge and the results are in good
agreement with the exact inviscid, incompressible theory. The
second is a Rayleigh Taylor instability where convergence and
agreement with level-set calculations is established. The third is
a gravity current with density ratios in the range 2 to 30. The
results of these simulations are in good agreement with those of
other authors, and in satisfactory agreement with experimental
results.

I. INTRODUCTION

Many fluid dynamical problems involve more than one fluid.

In some cases, for example most liquids at normal temperature

and pressure, the density ratio of the fluids is < 1.3, but in
the case of gases, the density ratios can be much larger. For

example the density ratio of air and helium is ∼ 7, and in

the experiments of Gröbelbauer et al. (1993) the ratio was

as high as 20.6. Two fluids with a very high density ratio

which are often present in fluid dynamical problems are air

and water. Although the density ratio in this case is ∼ 800 the

air cannot be neglected because its thermodynamic pressure

has a significant effect on the dynamics.

In problems involving more than one fluid there is a

discontinuity in the density and other material properties at

the interface between any two fluids. Colagrossi and Landrini

(2003) showed that a standard form of weakly compressible

SPH gave very poor results when the density ratios were

large. They found that for stable SPH weakly compressible

simulations of two fluids with large density ratios, it was

necessary to introduce the following changes to their standard

SPH algorithm: density renormalization, a large surface ten-

sion in the low density phase, a smoothing of the velocity field,

and a very large difference in the speed of sound in the two

fluids. The first of these increases the computing time, though

whether or not it is significant depended on the number of

time steps between renormalization. The second is unphysical

because surface tension in a liquid is larger than in a gas. The

velocity smoothing has a stablising effect, but it also increases

the computing time. The ratio of the speed of sound in the low

density fluid (subscript g) to that in the high density liquid

(subscript �), was approximately
	

ρ�γg/(ρgγ�). For a density
ratio 1000:1, and taking the values of γ used by Colagrossi

(2005), this factor is ∼ 14, so the speed of sound in the gas is

much greater than in the liquid. Although this is unphysical,

because the speed of sound in water is greater than that in air at

room temperature and pressure, in these quasi-incompressible

calculations the speed of sound of the liquid is artificial, and

chosen to ensure the density fluctuations are sufficiently low.

The speed of sound required for this is, for typical simulations,

a factor ∼ 50 less than the true speed of sound in the liquid.

In any case, the higher speed of sound in the gas was found

by Colagrossi and Landrini (2003) to be necessary to stablise

their algorithm. A consequence of this high speed of sound

is that the CFL time step condition requires very small time

steps.

Because of the discontinuity in the density Hu and Adams

(2006) re-wrote the SPH equations in terms of particle number

density which can easily be made continuous across a density

discontinuity. They applied the resulting algorithm to problems

involving surface tension. They obtained good results but

their method was not applicable to free surface problems. In

later papers Hu and Adams (2007, 2009) applied a projection

method to handle a system with one or more incompressible

fluids. This method was successful for incompressible fluids

without free surfaces, but it is not applicable to problems such

as an expanding bouyant bubble interacting with a free surface.

In a recent paper (Grenier et al. 2009) proposed a new SPH

based method for multi-phase problems. In this method, the

density is calculated from a standard SPH summation using

a Shepard kernel which in turn requires a particle volume

distribution which is calculated from a version of the SPH

continuity equation. In addition they added a repulsion term
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Abstract- This paper presents a Smoothed Particle 

Hydrodynamics (SPH) solution to a Rayleigh-Taylor Instability

(RTI) problem in an incompressible viscous two-phase 

immiscible fluid with an interfacial tension. The evolution of

the fluid-fluid interface is numerically investigated for four

different density ratios. The simulation outcomes are 

compared with existing results in literature. Three stages of

instability, namely the exponential growth rate, the formation

of circular form at the crest of spike and the appearance of the 

final shape of instability, are discussed for different density 

ratios. It is shown that the numerical algorithm used in this 

work is capable of capturing the complete physics behind the

RTI, such as interface evolution, growth rate and secondary 

instability accurately, and successfully. 

I. INTRODUTION

Instability at the interface between two horizontal
parallel fluids of different viscosities and densities with the
heavier fluid at the top and the lighter at the bottom is
known as the Rayleigh–Taylor Instability (RTI) to honour 
the pioneering works of Lord Rayleigh [1] and G. I. Taylor
[2]. This phenomenon can be observed in a wide range of
natural and astrophysical events. The instability initiates
when a multiphase fluid system with different densities
experiences gravitational force. As a result, an unstable
disturbance tends to grow in the direction of the 
gravitational field, thereby releasing the potential energy of
the system and reducing the combined potential energy of
the fluids. Due to being an important phenomenon in many
fields of engineering and sciences, the RTI has been widely
investigated by using experimental [3, 4], analytical [5, 6] as
well as numerical approaches [7, 8]. 

The Smoothed Particle Hydrodynamics (SPH) is a
relatively new numerical approach that has attracted
significant attention in the last 15 years. Compared with the
conventional mesh-dependent computational fluid dynamics
(CFD), the SPH method exhibits unique advantages in 
modelling fluid flows and associated transport phenomena 
due to its capabilities of handling complex material surface
behaviour as well as modelling complicated physics in a 
relatively simple manner. 

There are a few works which have used the SPH method
to model the RTI problem [12-15]. Cummins and Rudman 
[9] solved the RTI phenomenon using a projection method-

based Incompressible SPH (ISPH) approach. Tartakovsky et
al. [10] modelled the Rayleigh-Taylor instability in a 
multiphase and multi-component mixture with the Weakly
Compressible SPH (WCSPH) method through solving 
momentum balance and species mass balance equations 
concurrently. Hu and Adams [11] solved the RTI problem 
as a benchmarking problem through combining projection
methods used in [9] and [12]. More recently Grenier et al.
[13] presented a WCSPH formulation for simulating
interface flows, and model the RTI to validate their
numerical scheme. It should be emphasized here that none
of these cited works has included the effect of the surface 
tension in their simulations. These works handled the RTI as
a validation test case for their algorithm and did not focus 
on the physics of the problem in detail.

The aim of this work is to simulate the RTI by using the
ISPH method, thereby showing the ability of the SPH
technique to capture this hydrodynamic instability and 
relevant physics for a wide range of density ratios. The 
current presentation differs from earlier works in the 
following aspects: Even though multiphase grid-based
methods considered the RTI problem in detail, it has been 
barely considered within the context of the SPH method,
and if so, mainly for the density ratio of 2 1/ 1.8ρ ρ = . 

II. SMOOTHED PARTICLE HYDRODYNAMICS

A.  Introduction

Initially developed to solve the astrophysics problems in
1977 by Gingold and Monaghan, and Lucy in separate
works [14, 15], and later extended to solve a wide variety of
fluid dynamics problems [16-18], SPH is a member of
Lagrangian methods. The SPH method is based on the
smoothing of the hydrodynamics properties of fluid 
elements, which are represented by movable points (also
referred to as particles), over the solution domain using a 

weighting function, ( )ij
W r ,h , or in short

ij
W . The

weighting function
ij

W (also known as the kernel function in

the SPH literature) is an arbitrary function (e.g. exponential,
spline, and etc.) with some special properties as listed [19]. 
Here, 

ij
r  is the magnitude of the distance vector

(
ij i j

r r r= −
� � �

) between the particle of interest i and its
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Abstract—In this paper we present a fully generalized trans-
port model for multiple species in complex two and three-
dimensional geometries. Based on previous work [1] we have
extended our interfacial reaction-diffusion model to handle arbi-
trary numbers of species allowing for coupled reaction models.
Each species is tracked independently and we consider different
physics of a species with respect to the bulk phases in contact. We
use our SPH model to simulate the reaction-diffusion problem
on a pore-scale level of a solid oxide fuel cell (SOFC) with special
emphasize on the effect of surface diffusion.

I. INTRODUCTION

In the context of global warming a lot of effort has been fo-
cused on developing renewable and alternative energy sources
that reduce the production of greenhouse gases. A promising
alternative energy technology, which converts chemical energy
to electrical energy is the cold combustion in fuel cells.
Amongst various realizations of this technology, solid oxide
fuel cells (SOFC) are of special interest as their working
conditions at high temperatures enable the usage of a wide
variety of fuels [2]. Degradation is a central issue in SOFCs,
such as chromium poisoning, which arises from the chromium
contained in the stainless steel which is typically used for
the current collectors. This chromium reacts with air to form
volatile chromium species that [3] migrate into the porous
cathode and react with its surface. This so-called chromium

poisoning has been shown to decrease the efficiency of the
fuel cell dramatically and has to be controlled [4].

Ryan et al. [5] have developed a pore-scaled SPH model of a
SOFC to investigate the reactive transport of chromium species
in the cathode. Based on a multi-scale approach including a
cell level model of the cathode, air channel and the current
collector they determined the boundary conditions for the pore
scale simulations. In their two-dimensional work they varied
the reaction rates of oxygen and chromium and the working
conditions of the fuel cell to study the deposition of chromium.
They could reproduce qualitatively the species distributions in
the cathode as compared to experimental findings [4] and show
that their nonlinear competitive adsorption-desorption model is
adequate to study the complex chromium poisoning.

In our current work we want to use the competitive
adsorption-desorption model to simulate the chromium deposi-
tion in a realistic three-dimensional cathode. Different from the

two-dimensional study of Ryan et al., here we cannot neglect
surface diffusion in the porous material as this structure allows
an interfacial connection throughout the entire domain and
diffusion along the interface can alter the species dynamics
strongly.

To simulate a multi-component reactive transport problem
we have extended our SPH method for surfactant dynamics [1]
to account for multiple species and coupled transport models.
We have validated this method with analytical solutions for
coupled transport-diffusion systems with different boundary
conditions (Neumann, Dirichlet and Robin) and demonstrate
the significance of surface diffusion for the species transport
in a real porous cathode structure.

II. GOVERNING EQUATIONS

Briefly we recall the governing equations of the fluid and
species dynamics in a porous structure in a very general
form. From mass conservation we can formulate the continuity
equation in the form

dρ

dt
= −ρ∇ · �u , (1)

where ρ, �u and t denote the density, the velocity vector and
the time, respectively. The momentum equation in Lagrangian
form with the pressure p, a bodyforce �g and the dynamic
viscosity η is given by

ρ
d�u

dt
= −∇p+ ρ�g +∇η∇ .�u (2)

An advection-diffusion equation is used to describe the
dynamics of a species α in a bulk phase l according to

dmα
C

dt
=

�

∇Dα
∞
∇Cα dV −

�

ṠΣ
α
δΣ dV . (3)

Here, mα
C and Cα denote the mass and mass concentration of

the species α in the bulk. Assuming isotropic bulk diffusion
the diffusion tensor D∞

α reduces to the scalar diffusion
coefficient Dα

∞
. Note that the bulk diffusion can vary for each

species in different bulk phases, i.e. the diffusion coefficient
Dα

∞
is a function of the species type α and the bulk phase

where it is dissolved. The last term in (3) represents the
transport of species α from/to the bulk phase to/from an
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Abstract—The explicit nature of the smoothed particle hy-
drodynamics technique restricts its applications to dynamical
phenomenae such as collisions or explosions. Nevertheless a
large field of applications in astrophysics are related to quasi-
hydrostatic evolution as for instance the pre-explosive stage
leading to novae or Type Ia supernovae or advanced stellar evo-
lutionary phases. If we want to apply the SPH technique to these
systems an implicit scheme has to be built. Nevertheless devising
an implicit SPH presents a number of numerical difficulties which
have prevented its development until recent times, Knapp [4]. In
this paper we explain the main features of an parallelized implicit
SPH called ISFAA (Implicit SPH for Astrophysical Applications)
which extends the work of Knapp by including a more powerful
numerical scheme, and incorporates artificial viscosity, gravity,
conductive transport and nuclear reactions. We have checked
the scheme through several tests such as simulating a the wall
heating shock test, Sedov like explosion or stability of a massive
white dwarf. These tests were calculated using a low number of
particles (∼ 10, 000). Our conclusion is that although the scheme
is promising it would be necessary to make use of supercomputers
to carry out realistic calculations with ISFAA. Another important
improvement would be to enhance the stability of the numerical
scheme in order to increase the time step to overpass the Courant
time-step in a larger factor which until now is around 50.

I. INTRODUCTION

Implicit quasi-hydrostatic schemes written in spherical sym-

metry were one of the pillars of computational astrophysics

during the second part of the last century. The generalized

use of the so called Henyey-like codes, Henyey et al. [3],

were crucial to understand stellar evolution during the long

quiescent stages associated to hydrogen and helium burning.

On the other hand explicit hydrocodes were used to reproduce

very dynamical events such as novae or supernovae explo-

sions. Nowadays the computer performance is large enough

to allow detailed hydrodynamic simulations in 3D. In this

respect a widely used hydrodynamic code is the Smoothed

Particle Hydrodynamics (SPH) which is a gridless method of

Lagrangian nature with negligible numerical diffusion. Until

now SPH has been applied to treat dynamical phenomena

and therefore explicit integration schemes were preferred as

a framework to implement the method. However it should be

recognized the potential relevance of an implicit scheme of

integration to simulate multi-D astrophysical problems which

requires the use of long time-steps (as compared to the Courant

time-step). For example very few is known concerning the

long quasi-hydrostatic stage leading to the explosion of a

white dwarf, a phenomenon known as a Type Ia supernovae

explosion Hillebrandt & Niemeyer [2]. Such stage may last

hundred or thousands years making explicit hydrodynamics

useless because typical Courant time is lesser than a second.

Therefore implicit hydrodynamics could be the solution to

handle these kind of problems. Nevertheless, because of its

inherent algebraic complexity and demanding computer re-

sources very few effort, Knapp [4], has been invested until

know to build an implicit SPH which can be used to study

quasi-hydrostatic multi-D phenomena.

In this paper we explain the main features and the prospects

for the development of an implicit SPH code characterized by:

1) It uses the modern conservative SPH formalism based in the

variational principle, 2) the use of efficient PARDISO paral-

lelized routines to handle sparse matrix, 3) it incorporates the

necessary physics to handle common astrophysical problems

in three dimensions, i.e. artificial viscosity, gravity, conductive

transport, nuclear reactions and complex equation of state

(EOS). Preliminary tests calculations using the developed

scheme and N=(1−8) 104 particles running in a small 16 core

desktop computer are promising. In Section II we explain the

main technical features of the developed scheme. Section IV is

devoted to describe and discuss the results of three tests: wall

heating shock problems and the Sedov test and the stability of

a 1.15M� white dwarf. Finally we summarize the conclusions

of our work in the last section V.
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Abstract— Fluid-Structure Interaction (FSI) simulator has

been developed by using a stabilized Incompressible SPH

method and the largely deformed FEM. A small modification

of ISPH is given in the source term of pressure Poisson 

equation to evaluate smooth pressure distribution. In addition,

large eddy simulation (LES) with the Smagorinsky sub-grid 

scale model is introduced to include the eddy viscosity effect.

After these modifications in the ISPH, the moving

boundary ghost particles have been introduced to

communicate ISPH and FEM results. During the FSI 

simulation, the FEM structural boundary has been changing

especially in the large deformed analysis. The moving

boundary particles are located at the same position of the 

nodes of FEM. Therefore, the movement of boundary

particles is automatically captured from the result of FEM.

Then, the position and velocity of the ghost particle can be

easily evaluated from the information at the boundary particle

as the nodal result of FEM.

I. INTRODUTION

For the FSI simulation, accurate pressure representation 
and robust boundary treatment are strongly desired.

The source term in pressure Poisson equation (PPE) for
ISPH is not unique, it have several formulations in the
literature as Lee et al. [1] and Khayyer et al. [2-3]. The 
source term is derived as a function of density variation and
velocity divergence condition. The former formulation with 
density variation can keep an uniform particle distribution,
although evaluated pressure include high unrealistic
fluctuation. On the other hand, the formulation of the
divergence-free condition evaluates much smoother
pressure distribution, but density errors may occur due to 
particle clustering. Then, modified schemes have been 
proposed to satisfy the above two conditions; density
invariant and divergence free condition and the relaxation 
coefficient is multiply in term of density invariant for 
smoothing the resultant pressure.  Recently, in the 
framework of MPS, there is a trend to introduce a higher 
order source term in the PPE. Kondo and Koshizuka [4] 
proposed a new formulation with a source term composed
by three parts; one is main part and another two terms
related to error-compensating parts. Tanaka and Masunaga
[5] introduced a similar high order source term with two
components incorporated with quasi-compressibility.  Note 
that the number of PPEs per time step in their higher order 
source term formulations is just one and its numerical cost
is almost same as the original scheme. In this study, we re-

formulate a source term of the PPE which contains both 
contributions from velocity-divergence free and density
invariance conditions. The suitable relaxation coefficient
will be obtained from the hydrostatic pressure calculations
as pre-analysis calculations.

In order to communicate boundary information between 
ISPH and structural FEM, the ghost boundary technique is
utilized in this paper. Precious pressure value should be
sent from the ISPH and FEM, and reasonable displacement
and velocity filed of structure surface should be referred in 
the ISPH boundary. The conventional ghost boundary
works well for the above purpose. The proposed FSI 
simulator was demonstrated with a simple example.

II. STABILIZED ISPH 

In this section, a stabilized ISPH is developed by
modifying the source term in the pressure Poisson equation.
In addition, a conventional turbulence model ‘Smagorinsky
model’ is introduced into ISPH. 

A. Governing equations  

The mass and momentum equations of the flows are
given as

                     . 0
D

Dt
u�

�� � �                                  (1)

                   21 1
.

D
p F

Dt

u u� �
� �

� � � � � � �� F              (2)

where � and � are density and kinematic viscosity of fluid, 

u  and p are the velocity and pressure vectors of fluid 

respectively, F is external force, and t indicates time. In
the most general incompressible flow approach, the density
is assumed by a constant value with its initial value 0� . 

B. Modification in the source terom of pressure Poisson 

equation 

The main concept in an incompressible SPH method is 
solving a descritized pressure Poisson equation at every 
time step to get the pressure value. 

In the sense of physical observation, physical density 
should keep its initial value for incompressible flow.
However, during numerical simulation, the ‘particle’
density may change slightly from the initial value because
the particle density is strongly dependent on particle
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Abstract—This paper outlines a framework that will 
allow SPH to be used to simulate the motion of a Wigley 
hull.  A number of modifications and novel additions to 
the open source SPH code SPHysics are proposed to 
enable this simulation to be carried out.  These are a 
modified wavemaker, a novel non-reflecting open 
boundary condition and the inclusion of the Wigley hull
geometry.  The results from two validation test cases are 
used to verify the capability of these new methods.
Firstly a plunger dropped into a wave tank to test the
non-reflecting open boundary.  Secondly a Wigley hull
in regular waves to demonstrate the combination of new
techniques applicable to ship motion simulation.

I. INTRODUCTION

Historically ship motion computer simulations have
been carried using mature methodologies such as the Strip 
Theory and Reynolds Averaged Navier-Stokes (RANS)
methods.  However, the ever increasing power of new 
computers has made it possible to investigate using 
alternative numerical approaches to model ship 
simulations.  In this paper we develop the SPH method to 
extend its capability to model ship motion in open water.
For a methodology to be accepted it must be validated
against a set of empirical or experimental data.  A generic 
ship hull is often used in these validation studies to allow
fair comparisons to be made with other methodologies.

The experiments used in this paper to validate the 
method are for the well-known Wigley Hull wave tank tests
as described in [1,2].  The hull is subjected to regular head
waves at different Froude numbers (Fn) and wave
frequencies.  A number of experimental situations are 
carried out including modelling the ship motion (in pitch 
and heave only) and also calculating the forces on a 
restrained hull.  These experimental results are valuable for
validating computational simulations, such as RANS
solvers [3].

To conduct these validation simulations the SPHysics 
open source SPH code has been used ([4]). However, some
modifications were required to enable the simulations to be
conducted accurately.  In addition 2D simulations were 
carried out to test the new features, requiring a further
validation case.  The case selected was that generated by a 
plunger dropped into a wave tank, described in [5].  This
paper compares sets of RANS and SPH simulations to
experimental data of the resulting waves.  This paper has the

additional benefit of allowing the comparison of SPH
simulations to RANS simulations. 

II. FORMULATIONS AND METHODOLOGY

To simulate a wave tank and Wigley hull a number of 
changes and additions have been made to the original
SPHysics version 2.  To enable the required wave height,
wave frequency and flow speed to be controlled a new 
wavemaker method has been created.  The rigid floating 
body scheme, which in SPHysics version 2 is designed for 
simple geometries, has been modified to allow the Wigley
hull form to be correctly modelled.  Finally a new non-
reflecting boundary condition based on the formulations
proposed in [6] has been added.

A. SPHysics

A full account of the features available in SPHysics
version 2 can be found in [7], in this section only the
original formulations that have been altered for this project 
will be discussed. 

There are two solid wall boundary conditions that are
available in SPHysics, dynamic and repulsive, a modified
version of the repulsive boundary condition is used in this 
paper.  The repulsive boundary condition uses a sheet of
particles to define the boundaries of a solid object, these 
particles impart a repulsive force when a fluid particle
approaches the boundary.  The force is defined by a delta
function.  This force is further modified by a fluid depth
and a particle velocity correction.

The two types of wavemaker in SPHysics both involve
a moving wall which is defined by a line of boundary
particles.  The first type is a piston that translates laterally
to describe an oscillatory motion, the second is a paddle
that is fixed at one end and oscillates.  The motion of the 
wavemaker is defined by setting the period and amplitude. 
These variables allow the frequency and height of the
generated waves to be prescribed.  However, in order to
simulate the test cases in [1] and [2] the flow speed also
needs to be defined; this means that a new wavemaker is
required that can include a non-zero free stream velocity.

B. Altered and Novel Methodologies

In this section the alterations and additions made to the
original code will be discussed.

The first alteration was to the repulsive boundary
condition. It was found, by moving a single particle 
towards a solid boundary (as in [7]), that with sufficient
closing speed a fluid particle could penetrate the boundary.
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Abstract—The high computational cost of SPH remains prob-
lematic in dealing with wave propagation, especially when the
domains considered are large. In order to overcome this difficulty,
we propose to couple 2-D SPH with a 1-D Finite Difference
Boussinesq-type model. The latter deals with wave propagations
for most of the spatial domain, whereas SPH computations focus
on the shoreline or close to off-shore structures, where a complex
description of the free-surface is required.

The re-use of existing codes is achieved using a generic imple-
mentation based on Component Technology. The communication
between software is ensured by the middleware Component
Template Library (CTL) [1], [2]. In order to deal with open
domains, open-boundaries have to be implemented for SPH,
with water height and velocity varying in space and time.
These velocity and water height values are then driven by the
Boussinesq-type model.

As an illustration of the one way coupling, we present herein
two simple examples of water waves, the first one with a flat
bottom, the other one representing a schematic coastal protection.

I. INTRODUCTION

The recent events in Japan have dramatically underlined the

necessity of accurate predictions for coastal protections. For

this kind of civil engineering coastal devices, it is required to

compute the flow near the shoreline, where the waves break.

But even if the recent trends in the development of GPU-based

SPH software seem promising for the computing of large 3D

domains, to compute wave propagation on the scale of oceans

with SPH is still beyond current computational capabilities.

Furthermore, it is often useless, as simplified models are able

to represent accurately the wave propagation on most of the

domain.

Indeed, the complexity of flows, and especially those at

large scales such as wave propagation across ocean make the

introduction of simplified models a natural development [3]–

[5]. Since the XIXth century, and through the XXth, models

such as Saint-Venant [6], Boussinesq [7], [8] and fully Non-

Linear Shallow Water equations (NLSW) [9], [10] provide

satisfying results in their respective ranges of application (from

deep to shallow water).

They are however, by definition, unable to represent accu-

rately the complexity of the flow near the coast, when waves

are breaking. The violent hydrodynamics of the wave is often

handled by energy dissipation models in the nearshore region

(e.g. roller models or sponge layers), often with coefficients

that need to be tuned for specific cases. One such example

is a study that compares the results from analytical,NLSWE

software and two-phase slightly compressible flows solved

by VOF strategy for the classical dam break problem [11],

and shows the necessity of advanced models for this kind of

application.

The development and implementation of appropriate models

however is to represent the complex free-surface, evolving

in time, with a possible multi-connected domain. Among all

the options now available, Smoothed Particle Hydrodynamics

(SPH) is offers one of the most attractive approaches. How-

ever, 3-D SPH models still often suffer from damping with the

waves being dissipated before reaching the coast if no proper

treatment is applied.

For these reasons the coupling between any of the wave

propagation models and complex free-surface flow strategies

seems appropriate to tackle this problem [12], [13]. One of the

motivations for this work is to re-use existing codes in order

to avoid the long development and validation phase.

The outline of this paper is as follows: in the next section,

we present the chosen formulation of the SPH numerical

model. In particular, a semi-implicit wall boundary condition is

used, as presented in this conference in [14]. In Section III, we

detail the Finite Difference Boussinesq-type model used here-

after. The coupling algorithm, the open-boundary conditions

required for SPH and the communication between software are

detailled in Section IV. In Section V, we present the results

of preliminary computations and in Section VI, we finish with

some conclusions.

II. SPH NUMERICAL MODEL

A. Continuous equations

We consider a turbulent weakly compressible free-surface

flow. The velocity vector, pressure, turbulent kinetic energy
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1 Abstract—Tsunamis need to be studied more carefully and
quantitatively to fully understand their destructive impact on
coastal areas. Numerical modeling provides an accurate and
useful method to model tsunami inundations on a coastline.
However, models must undergo a detailed verification and vali-
dation process to be used as an accurate hazard assessment tool.
Using standards and procedures given by NOAA, a new code
in hydrodynamic modeling called GPUSPH can be verified and
validated for use as a tsunami inundation model. GPUSPH is a
meshless, Lagrangian code that utilizes the computing power of
the Graphics Processing Unit (GPU) to calculate high resolution
hydrodynamic simulations using the equations given by Smooth
Particle Hydrodynamics (SPH). GPUSPH has proven to be an
accurate tool in modeling complex tsunami inundations, such as
the inundation on a conical island, when tested against extensive
laboratory data.

I. BACKGROUND

A. Motivation

Since the 2004 Sumatra event, tsunamis have received in-

creased attention at all levels of government. Not surprisingly,

assessments of the tsunami hazard for coastal communities

have been initiated and tsunami-warning systems have been

extended or newly developed. For USA coastlines, Dunbar

and Weaver in [1] compiled a report on tsunami hazard

assessment. From a scientific point of view, this report high-

lights two major items. First, that numerical modeling of

tsunami generation, propagation, and inundation needs to be

included in hazard assessments to predict the environmental

and social impact of future events more robustly. Second, that

geological information needs to be included for a reliable

assessment because large earthquakes may have recurrence

periods that are larger than the recorded history in different

regions, given the heterogeneous settling history of the North

1This manuscript broadly is a reproduction of Weiss et al. Three-
Dimensional Modeling of Long-Wave Runup: Simulation of Tsunami Inunda-

tion with GPUSPH, Proceedings Of The International Conference On Coastal
Engineering, No. 32(2010), Shanghai, China. Paper 1432: currents.8, retrieved
from http://journals.tdl.org/ICCE/ .

American continent. In most areas, tsunamis leave sedimentary

deposits that serve as forensic evidence of events; meaning

that such sedimentary layers serve as records of past events.

The relevance of tsunami hazard assessments, especially in a

probabilistic sense, is described in [2]. However, the sedimen-

tary layers not only record the incidence of a tsunami event,

they also contain information on the causative tsunami. As

not all tsunami deposits are alike, the complex interactions of

the tsunami wave with the movable bed and geometry of the

bathymetry cause a generation of specific features of deposits

that are a function of the number and characteristics of the

incident waves as well as their withdrawal. If deciphered, the

information on the tsunami characteristics can be inferred from

deposits if –most importantly– the mechanics of the transport,

erosion and deposition processes are understood. Our motiva-

tion is to tackle the complex physics of the sediment transport

processes due to tsunamis and contribute in this way to a more

meaningful numerical modeling of past events that will make

tsunami hazard assessments more robust and more reliable.

B. Classical Tsunami Modeling

As every problem in fluid mechanics, the dynamics of

tsunamis obeys Newtons Second Law of Motion, and can

hence be described with the Navier-Stokes equations. Depend-

ing on the processes and the scale these processes operate,

the Navier-Stokes and Euler equations can be simplified. For

example, for tsunami wave propagation without nonlinear

effects, such as dispersion and breaking, the Euler equations

can be integrated over depth to arrive at nonlinear and linear

versions of the Shallow Water equations. With these equations,

non-breaking or weakly breaking waves can be modeled, as

demonstrated by Titov and Synolakis in [3] and [4], with the

MOST code. The Weather Service of the National Oceanic and

Atmospheric Administration (NOAA) uses the MOST code

for the early tsunami warning system for Pacific Ocean and

US coastlines. However, if processes that operate on a smaller

physical scale are considered, such as dispersion or breaking,
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Abstract—We present SPH simulations of fluids with density
stratification interacting with rigid bodies. The stratification in
these simulations is in a stable configuration, with the less dense
fluid above the denser fluid. The lower fluid is typically 5-20%
more dense than the upper fluid, which is similar to the density
ratio of fresh and salty water. The SPH algorithm is simple,
accurate and robust. It easily handles different boundaries: free
surfaces, periodic cells, and rigid walls (with arbitrary shape).
These small density ratios are modelled with a straightforward
and novel approach, but a technique for modelling higher ratios is
also discussed. The rigid boundaries are modelled using boundary
force particles [1]. We present a series of applications: a) surface
waves in a tank of fluid; b) waves generated at the interface by a
moving cylinder, and c) the effect of stratification on the motion
of a fish-like swimmer [2], [3] near the interface.

I. INTRODUCTION

This study continues the series of work on modelling fish-

like swimmers using SPH [2]–[4]. We present the preliminary

results for a swimmer moving in a stratified fluid. The aim

of this work is to determine whether there are any speed or

energy advantages when moving at or near a stratified layer.

The typical stratification fish encounter in nature is bodies of

water where a fresh water layer sits upon a saline layer. The

density variation can be of the order of 5-20%.

The mechanism that can have a possible effect on swimming

motion is the so-called ‘dead-water’ phenomenon. The effect

is occasionally experienced as an abnormal resistance on the

motion of ships near the Arctic circle. It was carefully studied

and described over one hundred years ago by Ekman [5]. The

phenomenon manifests typically when a fresh water layer sits

on top of a saline layer. It is understood that as ship moves

along the surface, a wave is generated at the interface between

the two layers, which then creates a drag force. The effect was

shown experimentally by Vasseur et al. [6].

In order to test the accuracy of the SPH algorithm, we

ran preliminary tests for waves and stratified fluids. In the

first test, a standing wave on a free surface is considered.

The results are compared to the theory of Lamb [7]. In the

second test, a cylinder is moved through the upper layer of a

two-layer stratified fluid. The lengths of the waves generated

at the interface are compared to the experimental study of

Carpenter and Keulegan [8]. Finally, we model a fish-like

swimmer moving at a range of distances from the interface

of a two-layer fluid. Our aim is to determine whether the

waves generated at the interface by the swimmer impact on

the swimming speed or energy expenditure.

II. GOVERNING EQUATIONS

The continuum equations we solve are the Navier-Stokes

equations, with boundaries formed by parts of rigid bodies

and sections of skin. Apart from the introduction of the skin,

the continuum equations are the same as those given by Kajtar

and Monaghan [2].

A. SPH equations

In the following, the labels a and b are used to denote SPH

fluid particles, label j is used for the boundary force particles

on the rigid bodies, and label s is used for the skin particles.

The equation of motion for fluid particle a is given by

dva

dt
= Fa(fluid) + Fa(body) + Fa(skin) + ga, (1)

where

Fa(fluid) = −
�

b

mb σab∇aWab, (2)

Fa(body) =
�

j

mj (rajf(raj)− σaj∇aWaj) , (3)

Fa(skin) =
�

s

ms (rasf(ras)− σas∇aWas) , (4)

and

σab =
Pa

ρ2a
+

Pb

ρ2b
+Πab. (5)

In these equations the mass, position, velocity, density and

pressure of particle a are denoted ma, ra, va, ρa, and Pa

respectively. The gradient ∇a is taken with respect to the

coordinates of particle a. Fa(fluid) is the pressure and viscous

force per unit mass due to the other fluid particles. Fa(body) is
the force per unit mass due to the rigid bodies, which consists

of two parts. The first term, involving f(raj), is a repulsive

boundary force. The second is a direct pressure interaction

which is a result of deriving the equations of motion from

a variational principle using the continuity equation as a

constraint. The force per unit mass due to the skin particles

Fa(skin) is identical to Fa(body), except the summations are

over skin particles. The final term on the right hand side of

(1) denotes the gravitational acceleration.
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Abstract—The simulation of crowds in emergency situations,
e.g. evacuation of passenger ships or underground stations, has
recently gained increasing scientific interest. Such simulations are
used to analyse and optimise the design of escape-route elements
in order to ensure a successful evacuation process. The paper
reports the development of an SPH-based crowd-simulation
model and its application to normal and evacuation situations.
The employed rationale refers to a generalised behavioural-
force model to describe the interactive pedestrian dynamics. The
distinct features of the approach refer to the inherent three-
dimensionality in combination with the microscopic computa-
tional model. The latter supports a detailed design analysis and
can also be coupled to fluid-dynamic properties (water, stack-
gas) obtained from the same simulation tool. Validations and
applications refer to phenomena which are difficult to capture
with non-microscopic or planar crowd-simulation techniques.
Benchmark examples involve lane-pattern formation (aka. self-
organization) studies at variable pedestrian density, escape from

a single room, as well as simulations of the attainable walking
speed on stairs which are a critical path in multi-floor facilities.
Finally, a more complex application to an escape-route section
is presented. Examples included reveal that the model is able to
simulate evacuation scenarios of practical interest with reason-
able accuracy.

I. INTRODUCTION

The behaviour of individuals inside pedestrian crowds is of

interest for their safety in emergency situations. Shopping-

malls, sport arenas, office-buildings, cruise-liners etc. are

designed for an ever increasing amount of people at high

pedestrian density. The dynamics of large groups at high

density is thus present in many peoples normal cruise of life.

Moreover, the public safety-awareness with respect to evacu-

ations has continuously been reinforced by recent tragedies,

e.g. the capsizing Baltic Sea ferry MV ESTONIA (1994, 852

casualties) or the Hillsbrorough Stadium disaster in Sheffield

(1989, 96 casualties).

Fortunately, first-hand disaster experience is rare and evac-

uation simulations are perhaps the only option to analyse and

secure the compliant evacuation performance of a new, non-

prescriptive assembly space with respect to its capacity and

design/layout. Simulations are nowadays used to scrutinise

the access of rescue zones and optimise the design of escape

routes.

The dynamics of pedestrian crowds and its simulation is

nontrivial. It involves social & physical interaction between

humans as well as their response to external factors (e.g. fire,

visibility) and layout aspects. Similarities to fluid dynamics

exist, e.g. between contact avoidance and pressure-driven fluid

displacement, but some fundamental aspects of Newtonian

mechanics, e.g. the adherence to the reaction principle, are

also missed. In general, the pedestrian dynamic distinguishes

between normal and panic situations. Different modelling

strategies exist to simulate the behaviour of individuals (aka.

agents) in normal or panic situations. They involve less elab-

orate empirical & observation-based methods [15], more de-

tailed macroscopic gas-kinetic or fluid-dynamic approaches [9]

and complex many-particle continuous-space [7] or cellular-

automata discrete-space techniques [11].

The present paper is concerned with particle-based simu-

lations of pedestrian crowds. The computational approach is

based upon detailed microscopic models for the behaviour

of each agent in continuous space. It utilises social forces

to determine the agent movement in a particle framework

along a route outlined by Helbing et al. [6], [7]. As opposed

to macroscopic (fluid-type) models, the microscopic model

inheres non-conservative interaction terms, e.g. in conjunction

with avoidance/territorial effects, and simulates the individual

pedestrian motion using a momentum equation. Transition

between normal and panic situations is managed using a

nervousness parameter, which primarily feeds back to the

desired speed [8].

Distinct from other many-particle simulations, the present

approach aims to set-up an SPH-model for the agent inter-

action. The kernel-based SPH-representation reveals benefits

with respect to the computational efficiency. Due to the inher-

ent smoothing procedure, it features an enhanced macroscopic

nature. The model is thus less prone to subtle parameter

details and related tendencies towards an unrealistic behaviour

prognosis for isolated agents displayed by many-particle sim-

ulations. In view of an integrated evacuation simulation, the

approach can easily be coupled to fluid-dynamic particle

simulations (e.g. for the evolution of stack gas). The employed

SPH-model uses a dynamic kernel width and inheres features

of a modified social-force formulation recently suggested by

Lakoba et al. [14].

The implementation is based upon the GADGET-H2O proce-

dure [4], [5] which is a modification of the massively-parallel

astrophysics GADGET-2 SPH code of Springel [12] dedicated

to engineering multi-phase flows. Due to the large kernel

widths associated to the interaction of agents, a specific SPH

wall-model outlined by Lehnart et al. [1] has been utilised.

This wall model avoids interaction across walls, while main-

taining the software’s existing wall-particle representation.
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Abstract—Meshless methods, such as Smoothed Particle Hy-
drodynamics (SPH), are of particular interest for the accurate
prediction of fragmentation and fracture at high strain rate in
metals. This paper describes research on the prediction of necking
and failure of electromagnetically driven rings using the SPH
method. The experimental data by Zhang and Ravi-Chandar [1]
is used to evaluate the accuracy of the model predictions. The
model developed in this paper evaluates the Eulerian and Total
Lagrangian SPH formulation. A Johnson-Cook plasticity model
is used in combination with a Lemaitre damage model to describe
the plastic deformation and fracture of the rings. The effect of
Joule heating due to the current induced in the ring is taken into
account in the constitutive model. The acceleration due to the
ring currents has been implemented in Cranfield’s SPH code as
a body force.

I. INTRODUCTION

Meshless methods, such as Smoothed Particle Hydrodynam-

ics (SPH), are of particular interest for the accurate prediction

of fragmentation and fracture at high strain rate in metals.

This paper describes research on the prediction of necking

and failure of electromagnetically driven rings using the SPH

method.

In an electromagnetically driven ring experiment a metal

ring is radially accelerated by electromagnetic force acting

on the ring. These electromagnetic forces are generated by

inducing a current in the ring by discharging a capacitor into

a coil which sits inside the ring. A schematic overview of this

setup is shown in Figure 1.

Several publications are available which present experimen-

tal results as well as numerical models of expanding ring

experiments. In the following paragraphs a brief overview will

provided of some of the relevant papers.

A. Electromagnetically Driven Ring Experiments

A widely cited paper on electromatically driven expanding

ring experiments is by Grady [13]. This paper describes

an electromagnetical expanding ring test method in detail

and presents results for copper and aluminium rings. They

show the influence of ring velocity on fracture strain and the

dependence of fragment number on kinetic energy. The data

in this paper is frequently used to validate numericla models

of ring fragmentation. Satapathy and Landen [9] describe an

electromagnetically driven expanding ring experiment. They

study the effect of adiabatic heating, due to the current induced

in the rings, on the mechanical properties during expansion,

and compare this with equivalent isothermal properties. The

paper does not discuss fragmentation of the rings. In a second

paper [14] they extend their experiments to discuss the effect

of (rapid) preheating on the mechanical properties and their ef-

fect on expansion of the rings. A good review of fragmentation

models and experiments can be found in the paper by Zhang

and Ravi-Chandar [11]. It is concluded in this paper that for

fragmentation statistics to be captured appropriately models

must account both for localization and for statistical variations

in this localization. A series of experiments performed by these

authors will be described in more detail in Section I-C since

the simulation results presented in this paper are based the

experiments performed by these authors.

B. Electromagnetically Driven Ring Models

Several models of the electromagnetically driven ring ex-

periment have been published. Most models use Lagrangian

FE code, although sometimes Eulerian hydrocodes or finite

difference models are also used. The models range from

simple 1D models to 3D models. The fragmentation stage

is not always modelled with models restricting themselves to

predicting the expansion speed and strain rate. Johnson J.N.

[1] proposed a 1D model for expanding ring fragmentation.

The fragmentation model is based on void growth and uses

a intial random distribution of porosity. This 1D model is

solved for a known strain rate history using the finite difference

method. Hu and Daehn [8] also present a 1D finite difference

model for dynamic tensile and expanding ring tests. They

use a Holomon-type material law with power law starin-rate

sensitivity. They analyse the effect of velocity, and parameters

of the constitutive law (strain hardening exponent and strain

rate sensitivity exponent) on ductility in tensile and expanding

ring tests. The results compare well with experiment data from

the literature. The analyses enable them to identify the Von

Karman velocity as well as other critical velocities which

determine the velocity at which inertial effects significantly

affect ductility. Becker [10] presents 3D finite element mod-

elling results of electromagnetically driven expanding ring

experiments. The radial velocity of the ring is imposed during

the acceleration phase. The model uses the Gurson constitutive
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Abstract — A consistent wall boundary treatment for SPH has
been developed in [1] based on a renormalizing factor for writing
boundary pressure forces. This factor depends on the local shape
of a wall and on the position of a particle relative to the wall, 
which is described by segments (in 2-D), instead of the
cumbersome fictitious or ghost particles used previously. By
solving a dynamic equation for the renormalizing factor, the
authors have significantly improved traditional wall pressure
treatment in SPH. The present paper aims to extend this method to
wall friction and turbulent variables’ boundary conditions, on the
basis of the standard k–ε model. By using Gauss’ theorem in a
continuous SPH form of the fluid equations, all diffusive terms 
are re-written with boundary contributions. The latter are then
discretized using particles (for the fluid) and segments (for the
wall), leading to corrections for the strain rate and flux conditions
of the dissipation of turbulent kinetic energy. This method yields
consistent Von Neumann wall conditions for momentum,
turbulent energy and energy dissipation. Two validations are
presented: (i) a steady laminar flow in a closed channel and (ii) a 
turbulent steady flow in a periodic fish-pass, with comparison to a 
validated open-source Finite-Volume code. Both give very
satisfactory results.

I. INTRODUCTION

The issue of boundary treatment in SPH has been widely
addressed in the literature during the past decade, especially
regarding wall treatment. The work presented in [2] provides
an interesting framework to ensure solid wall 
impermeability from a variational principle. More recently,
[3] and [4] proposed simpler approaches based on similar
concepts, i.e. wall renormalization. There is, however, no 
clear model capable to handle arbitrary boundary conditions
for all differential operators in SPH.

We extend here the concept of renormalization to derive 
a consistent boundary treatment for gradient, divergence and 
Laplacian discrete operators, based on our previous work
[1]. We then apply this method to solve the Reynolds-
Averaged Navier–Stokes (RANS) equations together with a 
standard k–ε model for turbulence closure. After stating the
mathematical basics of our model, we present the
discretized RANS and k–ε equations, before showing two

applications including validation against theory and 
comparison to a Finite-Volume technique. 

II. MATHEMATICAL MODEL

A.  Consistent wall boundary conditions in SPH 

We first consider the following renormalized SPH
interpolant: 

[ ] ( )
( )

( ) ( ) rrrr
r

r ndwtAtA ′−′
γ

= �Ω

γ ,
1

,  (1) 

where A is an arbitrary field, n the spatial dimension, w the
kernel and γ the integral of the latter: 

( ) ( )�Ω

′−=γ rrrr
ndw  (2) 

This integral extends over the entire physical domain Ω. 
Due to the compactness of the kernel support, however, it is
restricted to the coloured area on Fig. 1.

Figure 1. The discretization used in this work is based on usual particles
(a or b), vertex particles (v) and wall segments (s) (in two dimensions).

The truncation of the kernel is considered through the integral γ (coloured
arear).

The gradient of the normalizing function is 

( ) ( )� Ω∂

− Γ′′′−=γ∇ 1ndw nrrr  (3) 
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Abstract—The implementation of boundary conditions is one
of the points where the SPH methodology still has some work
to do. The aim of the present work is to provide an in-depth
analysis of the most representative mirroring techniques used in
SPH to enforce boundary conditions (BC) along solid profiles.
We specifically refer to dummy particles, ghost particles, and
Takeda et al. [1] boundary integrals. A Pouseuille flow has been
used as a example to gradually evaluate the accuracy of the
different implementations. Our goal is to test the behavior of the
second-order differential operator with the proposed boundary
extensions when the smoothing length h and other dicretization
parameters as dx/h tend simultaneously to zero. First, using
a smoothed continuous approximation of the unidirectional
Pouseuille problem, the evolution of the velocity profile has been
studied focusing on the values of the velocity and the viscous
shear at the boundaries, where the exact solution should be
approximated as h decreases. Second, to evaluate the impact
of the discretization of the problem, an Eulerian SPH discrete
version of the former problem has been implemented and similar
results have been monitored. Finally, for the sake of completeness,
a 2D Lagrangian SPH implementation of the problem has
been also studied to compare the consequences of the particle
movement.

I. INTRODUCTION

The SPH simulations in Engineering involve usually solid

boundary conditions (BC) for the velocity field and Dirichlet

and Neumann type BC for other fields as, for instance, the

temperature. In the SPH framework, these conditions are

tackled in a number of ways: by using boundary forces-type

models [2], [3] ; by modifying the structure of the kernel in

the neighborhood of the boundaries [4]; by creating virtual

particles inside the solid boundary domain through mirroring

techniques. This latter approach is the main focus of the

present work. An interesting study for the linear Couette

and Pouseuille flows have been already performed in [5], but

unfortunately the evolution of the kinetic energy was the only

variable monitored in time.

In our case a well know problem as the Pouseuille flow will

be used as a benchmark. The evolution of the velocity profile

and the forces involved in the dynamics of the flow will be

carefully studied.

II. THEORETICAL SETUP.

Before proceeding to the analysis, we briefly recall the

principal results about the consistency of the continuous SPH

formulation without boundaries. The fluid domain is Ω = R
d

and, therefore, its boundary is ∂Ω = ∅.
Let W (x;h) be a function depending on h > 0 defined by

W (x;h) :=
1

hd
W̃

�
�

�

�

x

h

�

�

�

�

, (1)

We also define the function F (r) as

F (r) := −
1

r
W̃ � (r) , (2)

In the following we denote by u(x) a smooth scalar field

on R
d.

For the approximation for the Laplacian of a function, the

following formula due to Morris et al. [6] and Español et al.

[7] is used:

�Δu�M (x) = 2

�

Rd

(x� − x) · ∇xW (x� − x;h)

|x� − x|2
�

u
�

x
�
�

− u (x)
�

dx�.

(3)

As proved in [7], it follows:

�Δu�M (x) = Δu (x) + O(h2). (4)
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A unified view of SPH wall boundary conditions and 
particle motion correction methods 

Paul H.L. Goenenboom  
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Abstract—In this contribution a unified representation of

various approaches to SPH wall boundary conditions will be

given and relations with approaches to maintain a more

regular particle distribution will be made. A frequently used

method to model a wall boundary for SPH is by definition of

special boundary particles which provide repulsive forces

similar to the Lennard-Jones force or according to the

smoothing kernel [1]. Such an approach has also been

extended to model fluid-structure interaction by defining

finite element nodes as ‘boundary’ particles. A comparison 

between these approaches mutually and with the penalty

contact method used in PAM-CRASH [2] will be made and 

some consequences will be discussed. The resemblance of one

of the boundary particle approaches with the tensile

instability correction will also be discussed.

To improve the particle distribution for SPH fluid flow

simulations, the XSPH method is well-known. More recently

an alternative approach, for which the correction is based on

the mutual distance between pairs of particles, rather than the

difference in velocity, has been suggested [3]. The relation of

this approach to the boundary algorithms will be discussed.

For a test case of two boxes floating in water the particle

distribution remains quite uniform using this new particle

motion correction. It should be noted that the mutual distance

of all particles along the boundaries remains highly regular,

whereas with the original XSPH coalescence of particles was 

difficult to avoid. This approach is proposed as an alternative

to XSPH. 

I. INTRODUTION

There exist various methods to model wall boundary
conditions required to contain SPH particles. Some of the
methods allow for fluid-structure interaction in which the fluid 
is usually modeled by SPH, whereas others are only available
for fixed boundaries. It is, however, not clear what the relation 
is between these methods, what value should be assigned to
various strength parameters and which method would be best
for which type of simulation study. In the following section a 
comparison is made between selected SPH boundary
algorithms with the penalty contact used in PAM-CRASH for 
contact with SPH particles from which a few relations and
parameter estimates are made. It will be argued that for cases in
which the particles are not much larger than the elements, the 
penalty algorithm should provide the most accurate direction in
which the contact force acts.

One of the well-known drawbacks of the standard SPH
method is that the distribution of particles in space may become
irregular over time which may lead to particle clustering.  This
problem may be counteracted by the XSPH method.
Nevertheless, particle clustering may still occur i.e. along
‘wetted’ surfaces. In some cases this was found to influence the
results. Hence, it is desirable to develop a correction in SPH 
that is better in preventing particles from getting too close to
each other. In section 3 we have modified and extended a
method based on the repulsive force of the Lennard-Jones (L-J)
type [3] to overcome particle clustering. A relation will be
defined between these repulsive effects with the penalty forces
from the PAM-CRASH contact definitions that will enable to
relate the parameters of both algorithms. An example will be
discussed to demonstrate that this option is superior to the
XPSH for maintaining a regular particle distribution in a fluid.

II. SPH WALL BOUNDARY CONDITIONS

A.  Overview

In this section we will compare various approaches to
model SPH wall boundary conditions by means of boundary
particles located at the surface, with methods modeling
contact between a finite element (FE) mesh with the 
(interior) fluid particles. For the first type of contact no 
direct account is taken of the surface normal direction. The
interaction is based on particle-to-particle forces acting in 
the direction of the segment connecting the particle centers.
In case there are sufficient boundary particles contributing
to the interaction with a selected fluid particle and the
magnitude decreases sufficiently fast with the distance, the
direction in which the interaction acts may be expected to
converge to the surface normal. 

B. Penalty Algorithm of PAM-CRASH 

For the SPH/FE coupling in PAM-CRASH the well-
established penalty contact algorithm is used. This
algorithm determines the nearest (triangular) surface 
segment for a given slave node representing a fluid particle. 
Any particle approaching the surface (slave) within a user-
defined contact thickness will be repelled by a force in the
direction of the surface normal. The same force in opposite
direction is distributed to the nodes of the element with
which the slave particle interacts. The strength of this
penalty force is chosen such that the relative velocity in the 
normal direction reduces to zero within a limited number of
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Generalized Ghost Particle method for handling
reflecting boundaries

Steinar Børve
Norwegian Defence Research Establishment
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Abstract—This work represents an attempt to develop a
generalized ghost particle method which can handle reflecting
boundaries of arbitrary shapes, both convex and concave. The
method generalizes the idea of ghost particles by splitting a
connected boundary into corners and lines (corners, edges, and
planes in 3D) where each corner is connected to 2 lines. Ghost
particles are generated either as simple mirror images across
a line or as generalized mirror images across a corner. In the
latter case, both the number of ghost particles generated from
a given interior particle and the masses assigned to each of
these ghost particles can vary. The generalized ghost particle
method will be described in some detail. Test results on relevant
weakly-compressible applications will be presented, and where
this is possible, we compare with results from the literature made
with other boundary techniques. The paper concentrates on 2D
applications but a discussion on the possible extension to 3D will
be given.

I. INTRODUCTION

Achieving accurate descriptions of reflecting boundaries has
long been an important topic in the development of improved
SPH formulations. Numerous techniques have been proposed
as solutions to the problem, ranging from classic ghost particle
techniques [8], normalizing conditions [6], and boundary force
techniques [10]. Many of the proposed methods work well in
a range of situations, but all seem to have drawbacks when it
comes to simplicity, accuracy, or flexibility. A fully satisfactory
approach to handling reflecting boundaries in SPH is therefore
yet to be found.

In this work, we revisit the first of the above mentioned
approaches, the ghost particle method. Ghost particles are
generated by making mirror images of the interior particles
across the boundary. It is easily implemented, robust and
accurate when the boundary in question is a plane. It has also
been generalized to problems where right-angle boundaries
are present [1], [3]. However, it is not clear how the method
can be generalized to arbitrarily-shaped boundaries in 2 and
3 dimensions. The general opinion is therefore that the ghost
particle technique can only handle the simplest of geometries.
This work represents an attempt to develop a generalized ghost
particle methodology which can handle boundaries of arbitrary
shapes, both convex and concave. It is to be considered work in
progress and the methods described have yet to be generalized
to three dimensions. To the authors knowledge, however,
this is the first publication to formulate a comprehensive
generalization of the ghost particle method. The long-term

aim is to arrive at a ghost-particle method which can handle
reflecting boundaries of arbitrary shapes in three dimensions
with a reasonable accuracy.

This paper is organized as follows: Section II outlines the
overall principles behind the current generalization. These
principles mark the starting point for any algorithm, whether it
is in 2D or in 3D, which constitutes a part of the generalized
ghost particle method. Section III describes in some detail
how ghost particles are generated when faced with reflecting
boundaries which form: (a) A Convex corner. (b) A concave
corner. (c) A curved boundary. It will be shown how the
generalized ghost particle method, hereafter referred to as the
GGP method, reduces to the standard ghost particle method in
the trivial cases of a plane and a convex, right-angle boundary.
This section also discusses how the ghost particle method can
be expanded to also include a short-range boundary force.
In section IV we report on results obtained with the GGP
method on 4 different tests involving reflecting boundaries.
A brief description is given on the approach chosen for
arriving at relaxed particle distributions. The tests themselves
are two-dimensional and describe a weakly-compressible fluid
placed inside containers of varying shapes. Finally, section
V discusses to what extent the two-dimensional methods in
section III can be generalized to three dimensions.

II. MAIN PRINCIPLES OF THE GENERALIZED GHOST

PARTICLE (GGP) METHOD

In the trivial case of a plane boundary, the ghost particle
method represents a very simple approach to achieving re-
flecting boundary conditions. Ghost particles are generated as
mirror images of interior particles found within interaction
range of the boundary. An interior particle can only result in
maximum one ghost particle, and the mass of the ghost particle
should equal that of its parent particle. (If external forces such
as gravity is present, then, the ghost particle attributes must
be adjusted to fit with the local equilibrium. Since the effect
of any external forces can be added as a separate step, we will
in the following assume that no external forces are present.)
The generalization of this concept to handle corners as well
as curved boundaries is based on 3 main principles: (1) In the
continuous limit, the mass density outside a boundary should
be a transformed image of the mass density in the interior. (2)
Although different algorithms will be used for different types
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Abstract— This paper shows an application of the improved

SPHERA code for the numerical simulation of non-cohesive

sediment flushing induced by a rapidly varied water flow

discharged from the bottom outlet of a tank. After showing the 

improvements in tracking fluid-sediment moving interface and in

computing the bottom shear stress, some numerical results are

shown concerning the simulation of a laboratory flushing test

carried out with both 2D and 3D geometries. The main
conclusions are finally given.

I. INTRODUCTION

One of the main concerns in the management of artificial 
reservoirs is the siltation process which is caused by the
sediment load of the inflowing river; beside contributing to
wear out the turbines and decreasing their efficiency, siltation
may cause a significant reduction of the initial storage capacity
within a relative short time compared with the reservoir’s life
span.  

An economical and effective method for siltation control, 
referred to as flushing [1], consists of a periodical opening of
the bottom outlet carried out for safety purposes: this causes
the removal of part of the nearest bed sediments through the
bottom shear stress exerted by the rapid water outflow from the
dam heel.

There are several factors influencing the effectiveness of
the above mentioned method [2] (e.g. basin morphology,
sediment characteristics, river hydraulic regime, features of the
bottom outlet etc.) therefore, reliable quantitative assessment of
the volume of flushed sediment and of its distribution on a
specific artificial basin usually requires the adoption of
sophisticated and expensive physical models.

The attempt to simulate the sediment flushing through
numerical models poses some critical issues connected with the
adopted approach: for example the assumption of rigid-lid for
water surface in three-dimensional finite volume models [3] or
the absence of 3D effects (e.g. secondary currents) in a depth-
averaged two-dimensional approach [4].

The SPH method allows overcoming some of the above
difficulties and seems to be promising for simulating rapid 
sediment scouring [5], even in complex 3D problems [6].

The aim of this work is to set up an SPH-based 3D
numerical model supporting the strategies for siltation control
in the management of the artificial reservoirs through proper
simulation of the relevant physical aspects influencing water-
sediment coupled dynamics.  

In the following are illustrated first the features of an
enhanced version of the Shields erosion criterion described in
[5] for evaluating the trigger of sediment motion; then a
technique for detecting the local water-sediment interface is
shown; finally some numerical results are provided for testing
the effectiveness of the numerical improvements in 2D and 3D
flushing problems.

II. IMPROVEMENTS OF THE NUMERICAL MODEL

A.  Shields Failure Criterion 

The typical situation which characterizes the status of the
bed sediment in a flushing problem induced by a rapid water 
flow is schematized in Fig. 1.  
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Figure 1. General treatment of bottom solid particles.
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1Dipartimento di Difesa del Suolo, Università della Calabria, Italy (federico@dds.unical.it)
2 CNR-INSEAN, The Italian Ship Model Basin, Italy

3 Dipartimento di Meccanica e Aeronautica, Università di Roma ”Sapienza”, Italy

Abstract—Flow phenomena induced by jet intake in a water
body occur in natural environments such as pollutant discharge
in rivers and engineering applications such as marine waster
water outfalls. A study of buoyant and non-buoyant jets propa-
gating into open-channel flows has been performed through a 2D
SPH modelling.

Two-phase flows in open channels are treated through an
appropriate algorithm to model inlet/outlet boundary conditions.
SPH equations of fluid mechanics are coupled with a SPH form of
advective diffusion equation to treat different ranges of pollutant-
water density ratios. Attention is paid to determine the induced
flow and concentration field due to the interaction between the
jet and the ambient flow.

SPH simulations of coflow and crossflow jets in buoyant and
non-buoyant conditions have been carried. The model has been
validated near the jet nozzle and far from it, comparing the
numerical jet trajectories, velocities and concentration fields with
the analytical ones.

I. INTRODUCTION

Jets have been investigated intensively for many years

by the fluid mechanics community (see e.g. [1], [2]). The

interest comes from the importance of these phenomena in

several environmental and industrial flows. Jet discharges from

industrial and domestic sources often enter rivers and marine

areas. This flow configuration is of theoretical significance

in environmental hydraulics and fluid mechanics due to the

complex interaction between a jet and an ambient flow. This

interaction leads to large-scale vortical structures which play

a fundamental role in the entrainment of the ambient fluid

into the discharge jet. In addition the transport process gives

rise to mixing and dilution processes of the jet [3]. The present

analyses are addressed to investigate buoyant and non-buoyant

jets in shallow water streams.

SPH modelling of continuous jet discharges in open-channel

flows needs appropriate inlet/outlet boundary conditions. As

is common knowledge, the enforcement of these conditions is

not trivial for Lagrangian particle models. Some researches

have developed SPH models to treat upstream/downstream

conditions in order to simulate uniform flows [4], [5]. Federico

et al. [6] have proposed a suitable SPH-based algorithm to

model these boundary conditions in handling different flow

regimes in water streams. In this work, initial velocities,

pressures and water depths both upstream and downstream

in the computational domain are defined. Here, the basis of

the computational method given by Federico et al. [6] is

extended to model continuous two-phase fluids through the

intake of tracer with the same or a different density as the

surrounding open-channel flow. In order to determine the main

flow phenomena induced by jet-water interaction, appropriate

inflow-jet particles are introduced at different locations to

simulate crossflow and coflow jets. SPH equations of fluid

mechanics [7] are coupled with an advective diffusion SPH

model [8] to simulate the flow field and the consequent mass

transport for different range of jet-water density ratios. SPH

simulations are performed in near field and far one.

In the following section the adopted SPH governing equa-

tions are recalled. Afterwards the algorithm to model jets

in a finite open-channel flow through appropriate boundary

conditions is illustrated. Comparisons of the proposed SPH

model with analytical solutions are reported, showing the

evolution of jet trajectories, velocities and concentrations given

by the two-phase fluid interaction.

II. NUMERICAL SCHEME

A. Governing equations

The reference equations for the flow evolution assuming a

weakly-compressible fluid are:



































Dv

Dt
= −∇p + ρ f + ∇ · V + Fs

Dρ

Dt
= −ρ∇ · v

p = c2
0
(ρ− ρ0)

(1)

where v, p and ρ are, respectively, the velocity, pressure and

density of a generic material point, f represents the mass force

acting on the fluid, ρ0 the initial density at the free surface,

c0 the initial sound speed, V the viscous stress tensor and Fs

the surface tension forces. The continuum equations proposed

by Grenier et al [7] are here used to model two-phase flows.

The SPH scheme is:
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Abstract—The effect of bed friction and turbulent wall bound-

ary conditions on the behaviour of a free-surface turbulent flow
can be important in many cases. We investigate here a steady
hydraulic jump and a steady flow over a Creager weir in 2-D,
after developing inlet/outlet conditions. A comparison is made
between two formulations of SPH for wall boundary conditions:
the traditional method based on fictitious (or ghost) particles
and the new approach developed in [1]. It is proved that the
later provides much better results in both cases, due to a better
prediction of bed friction. The discharge coefficient of the Creager
weir is plotted against the upstream head, with excellent results.

I. INTRODUCTION

The computation of flows over river waterworks is important
in the framework of river basin management. It addresses the
questions of people safety, energy production and many others.
For this purpose, existing commercial codes based on the
Volume of Fluid technique are relatively efficient, but suffer
from problems when considering complex flows with moving
free-surfaces, for example.

SPH is obviously one of the most relevant alternatives for
such numerical studies, but still the question of wall boundary
treatment remain. In the case of a flow over a weir, for
example, the motion of the thin turbulent water layer running
along the weir needs to be accurately predicted to calculate
the distribution of pressure, which finally determines the force
experienced by the structure.

We compare here two different SPH approaches for wall
treatment in this context: the first one is the traditional SPH
method with fictitious particles behind walls; the second one is
based on our work [1], considering dynamic renormalization
and wall segments, thus allowing the prescription of consis-
tent wall boundary conditions. Then, we present inlet/outlet
steady boundary conditions, developed in both models for our
purposes.

Two cases are first tested in 2-D and steady regime: a
hydraulic jump and a flow over a Creager-type weir, in order
to compare the two approaches. Finally, a first 3-D attempt is
proposed.

II. NUMERICAL MODEL

A. Continuous equations

We consider a turbulent weakly compressible free-surface
flow. The velocity vector, pressure, turbulent kinetic energy
and energy dissipation rate are denoted by u, p, k and �,
respectively. Velocities and pressures are Reynolds-averaged,
and the effects of turbulent fluctuations are modelled through
the concept of eddy viscosity (see [2]), estimated from the
k − � model [3].

The Lagrangian forms of the Reynolds-averaged Navier-
Stokes (RANS) and k − � equations read

dρ

dt
= −ρ divu

du

dt
= −

1

ρ
grad p̃+

1

ρ
div (2µmgradu) + g

dr

dt
= u (1)

dk

dt
= P − � +

1

ρ
div (µkgrad k)

d�

dt
=

�

k
(C�1P − C�2�) +

1

ρ
div (µ�grad �)

where g is the gravity acceleration and ρ the fluid density. The
modified pressure p̃ and production of turbulent energy P are
given by

p̃ = p+
2

3
ρk

p =
ρ0c

2
0

ξ

�

�

ρ

ρ0

�ξ

− 1

�

P =
µT

ρ
S : S (2)

S =
1

2

�

gradu+ (gradu)T
�

with c0 the speed of sound, ξ = 7, and S the rate-of-strain
tensor field. Lastly, the dynamic viscosities are given by
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Abstract—We report progress towards the development of a
three-dimensional, massively parallel SPH scheme using multiple
Graphics Processing Units (GPUs). Starting from the single-GPU
DualSPHysics code, which has proven to be a powerful, stable and
accurate SPH software, we develop a multi-GPU program based
on a volume domain decomposition technique, whereby different
portions of a physical system are assigned to different GPUs.
Inter-GPU communications and data preparation are achieved
with the use of MPI directives and the efficient sorting algorithm
radix sort. With the resulting software we can carry out even
faster simulations than could also be done on a single GPU, but
we can also perform accelerated simulations of large systems
that, because of their size, would be impossible to carry out
on a single GPU. We present a study of both weak and strong
scaling behaviour, speedups and efficiency of our program as the
number of GPUs and the size of the system under study are
varied, and attempt to elucidate the computational bottlenecks.
Last, we explore various possibilities for reduction of the effects
of overhead on computational efficiency in future versions of our
program.

I. INTRODUCTION

The applicability of particle-based simulations is typically

limited by two different but related computational constraints:

simulation time and system size. That is, to obtain physically

meaningful information from a simulation, one must be able

to simulate a large-enough system for long-enough times. In

the particular case of the Smoothed Particle Hydrodynamics

(SPH) method, certain types of applications, for example the

study of coastal processes and flooding hydrodynamics, have

been limited until now by the maximum number of particles

in order to perform simulations within reasonable times.

To overcome these limitations, various types of computa-

tional parallelization efforts have been made, which can be

grouped in two main categories based on the type of hardware

used: On the one hand there are the traditional High Perfor-

mance Computing (HPC) techniques which involve the use of

hundreds or thousands of computing nodes, each hosting one

or more Central Processing Units (CPUs). Those nodes are

interconnected via a computer networking technology (e.g.,

Ethernet, Infiniband, etc.), and programmed with the help of

protocols like the Message Passing Interface (MPI). Examples

of this type of approach include, for example, the work of

Maruzewski et al. [1], who carried out SPH simulations with

up to 124 million particles on as many as 1024 cores on the

IBM Blue Gene/L supercomputer. Another recent example in

Fig. 1. Snapshot of a multi-GPU SPH simulation of a dam break with three
obstacles. A system of 7 million particles was simulated for a total of 1.5
seconds of physical time in two hours, when running on three GPUs, each
residing on a different host.

this field is that of Ferrari et al. [2], who reported calculations

using up to 2 million particles on a few hundred CPUs. The

drawback of this type of approach comes from the fact that,

for SPH, an enormous number of cores is needed, which

require a considerable investment derived from the purchase,

maintenance, and power supply requirements of this type of

equipment.

The second category of parallelization approaches for the

acceleration of SPH simulations involves the use of a type of

hardware different from the CPUs: the Graphics Processing

Unit (GPU). The development of GPU technology is driven by

the computer games industry but has recently been exploited

for non-graphical calculations as well. GPU programming is a

parallel approach because even a single GPU contain hundreds

of computing cores, and multiple threads of execution are

launched simultaneously. The use of GPUs for scientific

computations has come to represent an exciting alternative for

the acceleration of scientific computing software. The release

of the Compute Unified Device Architecture (CUDA) and

its development kit (SDK) by Nvidia in 2007 has facilitated

the popularization of the use of these devices for general

purposes, but efforts in this direction existed even prior to
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Abstract—The capacity of a single processor is insufficient to

run huge 3D simulations with Smoothed Particle

Hydrodynamics (SPH) methods. Here we present the 

development of a new code named DualSPHysics that can be

executed either on either Central Processing Units (CPU) or

on Graphics Processor Units (GPUs). Thus, the parallelisation 

approach using the Compute Unified Device Architecture 

(CUDA) of nVidia is described. Simulations with more than

one million particles on a single GPU card exhibit speedups of

up to two orders of magnitude over using a single-core CPU.

The DualSPHysics code is validated with the experimental

data corresponding to a dam break flow impacting on an

obstacle and the agreement between the numerical and

experimental results is analysed. This new technology makes 

possible the study of real-life engineering problems at a

reasonable computational cost such as fluid-structure

interaction.

I. INTRODUCTION

Despite being able to model complex nonlinear flows,
Smoothed Particle Hydrodynamics (SPH) possesses 
numerous drawbacks. One of its main problems is the 
expensive computational cost in comparison with other
mesh-based methods for CFD problems. Using the weakly
compressible approach for SPH, the time steps involved in
the simulation are too small giving rise to large
computational times. On the other hand, the number of
neighbours per particle is large which implies a
correspondingly large number of interactions per particle at 
each time step. Thus, the computation of real cases on a 
single central processing unit (CPU) is simply prohibitive
since the computational cost is unaffordable when the
resolution is increased and the physical information is too
coarse when the resolution decreases. The further
development of SPH and its application by industry to real
problems has therefore been limited. In order to make SPH
simulations computationally feasible and useful for
industrial purposes, the need to perform simulations with
millions of particles is imperative. Therefore, hardware
acceleration is essential.  

Nowadays, two main techniques can be employed to
accelerate SPH simulations. The first one is using 

supercomputers with thousands of CPU cores (such as the
IBM supercomputer Blue Gene/L at Ecole Polytechnique
Fédérale in Switzerland) and the second option is using the
novel architectures of the Graphics Processing Units 
(GPUs).

This new technology is imported from the computer games
industry. Thus, due to the growth and progress in the video 
game market and multimedia, the performance of GPUs
has increased much faster than that of CPUs during the last
decade. GPUs are designed to treat large data flows and to
render pixels at several tens of frames per second. From a
computational point of view they are highly efficient thanks
to their multi-threading capability. For example, with a
GTX480 card a maximum of 23,040 threads could be
executed simultaneously (15 multiprocessors and 1,536
threads per multiprocessor as a maximum).  GPUs are thus
an accessible and cheap option to accelerate SPH models. 
The graphics cards can be used as the execution devices 
taking advantage of their parallel programming power.
GPUs are not only cheaper but also easier to maintain than
large cluster multi-core machines.

The first attempt to perform an entire implementation of an 
SPH scheme on a GPU was developed by Harada et al. [1]. 
Previously, schemes only implemented selected parts of the 
code, but in this work the entire SPH computation was
executed on the GPU using a simple and classical SPH
formulation. In [1], SPH was accelerated with initially
satisfactory results obtaining speedups of over 28 times using 
a GPU (GeForce 8800GTX) compared to a CPU with tests of 
260,000 particles. The proposed method was implemented 
before the appearance of the Compute Unified Device
Architecture (CUDA), which is both a programming 
environment and a language for parallel computing
specifically for nVidia GPUs. Thus, Harada’s work was a
significant advance even when most of its limitations could
now be fixed using the advanced GPU programming
features introduced by CUDA. For SPH, CUDA-enabled 
GPU technology was first introduced during the SPHERIC 
workshop in Nantes (2009) by [2]. The same authors 
published a work [3] describing the GPU model and 
applying SPH to study free-surface flows where they
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Abstract— Application of SPH methods in an industrial 

context is closely linked to the capacity of exploiting the very 

last and best computational resources available. Indeed SPH 

involves a computational load that can be significant 

compared to others and well established numerical methods. 

Two years ago appeared in the SPHERIC community the first

full GPU implementation of a SPH flow solver [1], based on 

the high level API CUDA from Nvidia. This pioneering work 

revealed the high potential of the GPU technology and further 

works [2] confirmed that hybrid implementations can 

challenge the classical MPI- or OpenMP-based approaches. 

However the SPH-ALE method [3] exhibits important

peculiarities that require a dedicated approach. The paper 

thus reports the implementation strategy that has been 

applied for the different parts of the algorithm, leading to the

full GPU implementation of a second order SPH-ALE flow 

solver, including the management of all types of boundary 

conditions (solid walls, periodic, symmetry). The impact of

numerical models on performance is analyzed. The respective

assigned roles to CPU and GPU are also discussed, together 

with the choice of floating point accuracy. A detailed 

validation of the GPU implementation versus its CPU 

counterpart is also shown. The resulting flow solver can 

achieve speed-ups up to 40 on industrial applications. 

I. INTRODUTION

Among the challenges that can prevent dissemination of the 
SPH method in industrial processes, the question of its 
competitiveness versus well established numerical methods has 
to be addressed. Considering a whole simulation process, from
creation of a 3D simulation domain to the post-processing, SPH
presents the main advantage of not requiring a 3D
computational mesh. The preparation of the simulation in itself 
is thus greatly simplified and accelerated. The associated costs 
can thus be reduced, but one should also keep in mind that
industrial processes often involve automatic meshing that hides 
the complexity of this phase in the daily work. The 
computational efficiency of the method consequently remains
at the heart of its global competitiveness.  

The ability of SPH to model free surface flows without
modeling the gaseous phase is undoubtly a major advantage in
most of hydrodynamic applications, as it can lead to a drastic

reduction in the number of calculation points compared to
mesh-based techniques. However some basic features of the 
SPH method are also disadvantaging: its meshless numerical
stencil involves a much higher number of neighbouring points 
(typically around 100 in 3D, to be compared to around 10 for
mesh-based techniques), fully explicit time integration and
weakly compressible formalism lead to very small time steps,
and finally the relatively low accuracy of the method requires a 
finer spatial discretization. Parallel computing is consequently a 
widely adopted implementation paradigm in order to accelerate 
the execution of numerical simulations. Classical approaches – 
multithreading with OpenMP, domain decomposition with MPI 
– have been investigated in the SPH community ([4], [5]). 
Another parallel model based on GPGPU (General Purpose 
Graphic Processor Units) appeared some years ago and is 
becoming more and more popular. In particular the 
development framework CUDA supported by the GPU
provider NVIDIA has been used in the pioneering work of 
Herault [1] and later by Crespo [2] to implement SPH-based 
flow solvers in massively parallel approaches. These works 
allowed to accelerate simulations significantly (Crespo 
obtained a speed-up of 30), at the expense of a major coding
effort. Indeed the GPGPU approach requires a complete 
rethinking of the implementation choices, from the data 
structures to the succession of operations.  

The present work aims at implementing a SPH-ALE (SPH- 
Arbitrary Lagrange Euler) flow solver on GPU architecture
using the CUDA framework. Even if SPH-ALE is a close 
parent of the standard SPH method, its increased complexity 
has to be carefully taken into account along the implementation
and optimization process. Indeed some of the conclusions 
drawn from the work of Crespo could not be extended to SPH-
ALE and different options had to be chosen. An analysis of the
SPH-ALE algorithm will first highlight some specificity, and
then the step-by-step implementation of the main parts of the 
algorithm will be reported. Implementation choices will be
discussed and validated. Applications of the resulting GPU 
flow solver on free surface flows will then be presented and 
will demonstrate the great benefit for industrial applications. 

II. ANALYSIS OF SPH-ALE ALGORITHM 

In this article only a brief overview of the SPH-ALE 
method is reported, a thorough description can be found in
[3]. 
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und Strömungsmechanik.
Technische Universität München.

Munich, Germany.
marco.ellero@aer.mw.tum.de

Pep Español
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Abstract—The Smoothed Dissipative Particle Dynamics model
for a viscoelastic fluid is used to simulate a Small Amplitude
Oscillatory Shear flow. The same model is used to simulate
a colloidal suspension in a viscoelastic solvent. Microrheology
measurements are performed where the thermal movement of the
embedded colloidal particles allows one to obtain the rheological
properties of the solvent. The rheological properties obtained
from these simulations are successfully compared with analytical
solutions.

I. INTRODUCTION

Rheology studies the mechanical response and flow prop-
erties of complex fluids/materials. Traditionally, one uses
rheometers in which a macroscopic amount of liquid is con-
fined between moving walls and the deformation and stress
response are measured. Recently, a new technique called
microrheology has been devised that shows several advantages
with respect to traditional rheology: it allows to use minus-
cule quantities of fluids, the measurements are local, and a
much broader frequency range can be investigated. The main
ingredient in this technique is the probe: a colloidal particle,
embedded in the fluid which acts like a microscopic rheometer
stressing and deforming the surrounding medium. From the
diffusion motion of the probe the viscoelastic properties of the
suspending medium fluid can be inferred through a generalized
Stokes-Einstein relation [1], [2].

Despite its current widespread use, there are still open
questions about the general applicability of microrheology.
For example, the generalized Stokes-Einstein equation is advo-
cated as a useful empiricism but its range of validity should be
fully explored []. Also, the influence of other colloidal particles
or confining walls on the diffusive motion of a single test
particle deserves some attention. A simulation model able to
address this type of problems should be very useful for the
fundamental understanding of microrheology.

A computational technique suitable for this task needs
several ingredients like modelling viscoelastic fluids, including
thermal fluctuations, and interacting with embedded rigid
inclusions. The model used here [3] is a variation of the
Smoothed Dissipative Particle Dynamics (SDPD) model [4],
where a conformation tensor is used to reproduce the elastic

behaviour of the fluid. As in the original SDPD model, the
viscoelastic model resorts to the GENERIC formalism [5]
to obtain thermodynamic consistency. The resulting equations
conserve linear momentum and energy and fulfill the Second
Law of Thermodynamics. The discrete equations thus obtained
can be understood as a discretization of the equations of the
Oldroyd-B model with thermal noise consistently incorpo-
rated.

The walls and the rigid colloidal particles moving through
the viscoelastic matrix are modeled using frozen boundary
SDPD particles filling the solid domain [6], [7]. In order
to assess the accuracy of the model in describing complex
viscoelastic fluids under standard rheometric conditions, a
simple small amplitude oscillatory flow (SAOS) is simulated
and the results are compared with theoretical predictions. Fur-
thermore, rheological properties are evaluated under simulated
microrheological conditions and the results discussed.

II. THE MODEL

We present in this section the model for a colloidal suspen-
sion in a viscoelastic solvent. A brief explanation of the SDPD
viscoelastic model is done in the subsection II-A. For further
details we refer to [3]. The way how the solid inclusions are
introduced in the solvent is described in subsection II-B.

A. Viscoelastic solvent

The SDPD model for a viscoelastic fluids [3] is obtained
within the GENERIC framework [5], [8]. The dynamic equa-
tions conserve linear momentum and energy and fulfill the
Second Law of Thermodynamics. Moreover, thermal fluctua-
tions are introduced in a natural way through the Fluctuation-
Dissipation theorem and scale automatically with the reso-
lution of the simulation [9]. In this way, the SDPD model
for viscoelastic fluids is a Smoothed Particle Hydrodynamics
(SPH) model for viscoelastic fluids with thermal fluctuations.

The fluid is represented by a set of NF SPH particles of
mass m. For the Newtonian case [4], the state of the system
is given by the position ri, velocity vi and internal energy Ei

of each fluid particle i. The elastic behavior of the viscoelastic
fluid is obtained by supposing that every fluid particle i has Np
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Abstract—In this talk a numerical study on the performance of
SPH in the case of a flow of a viscoelastic liquid around a linear
array of cylinders confined in a channel will be presented. Numer-
ical convergence in the case of a low Reynolds number Newtonian
flow was demonstrated in [9]. In this talk the viscoelastic effects
are incorporated in the SPH scheme according to the Oldroyd-
B model presented in [7]. Good agreement of the dimensionless
drag force acting on the cylinder for a wide range of Weissenberg
numbers is observed. The case of closely spaced cylinders is also
investigated and the impact of the Weissenberg number We on
the solution will be discussed. It turns out that in the Newtonian
case a stable secondary flow is observed. For increasing We these
counter-rotating vortices become eventually unstable, breaking
the plane symmetry and producing a quasi-periodic flow of mass
in and out of the wall region in the expansion zone. Purely elastic
instability arising at zero Reynolds number have been recently
observed in several flow problems and should be caused by the
presence of non-zero normal stresses along curved streamlines
which can drive the flow out of equilibrium generating complex
structures. The elastic instability found here is in remarkable
good agreement with experimental observations of dilute polymer
solutions under similar flow conditions reported in [14].

I. INTRODUCTION

The study of viscoelastic flows in complex geometries is
of crucial importance for the proper modelling and accurate
prediction of complex liquid behaviours. Flow of polymeric
suspensions through porous media, contraction/expansion
geometries are employed in a variety of engineering
applications including composite manufacturing processes,
paper coating and recently also in microfluidics devices
[1]. Generally, the rheological behaviour of complex fluids
can be very well characterized under simple viscometric
conditions, that is, under a pure shear or extensional flow.
However, modelling the flow in geometries where the two
components are simultaneously present represents a big
challenge both, from the mathematical and numerical point
of view. Recently, several complex flows have been studied
which include, for example, the flow through channels with
variable cross-section, flow around cylinder arrays both
unbounded and confined by plane walls. In particular, the
latter test case has been investigated experimentally [12]–[14]
in relation to the occurrence of purely elastic instabilities,
namely flow instabilities arising in absence of inertia. The

study of elastic instabilities in complex fluids has been
reviewed in [2], [3] and is receiving increasing attention also
due to the strict connection with the phenomenon of elastic
turbulence [4]. An empirical explanation has been attempted
by McKinley et al. in terms of the possible destabilizing
mechanism linking curved flow streamlines to the presence
of normal elastic stresses [16], however a detailed numerical
analysis is still lacking. Elastic instabilities show up generally
together with an alteration of the global flow behaviour: as a
critical Weissenberg number is achieved, global quantities (e.g
mean flow, drag coefficients, applied pressure) start to exhibit
fluctuations which increase in magnitude as the effect of liquid
elasticity becomes dominant. Moreover, this phenomenon is
accompanied by an abrupt increase in the flow resistance
which is now believed to be related to a non-linear transition
from a steady (time-independent) towards a more dissipative
flow structure (either three-dimensional or unsteady) [13],
[14]. Although many experimental evidencies of this process
can be found in the literature, few numerical computations
have been able to reproduce the elastic transitions mentioned
above. For example, the elastic transition of an Upper-
Convected-Maxwell fluid (UCM) towards a steady secondary
asymmetric flow field have been simulated in cross-channel
geometries [17] and found in agreement well with previously
reported experimental observations [18]. In the context of a
cylinder array structure, however, no numerical simulations
have been able to reproduce, at least qualitatively, the time-
dependent flow behaviour and the relative abrupt increase in
flow resistance observed in the experiments. As suggested by
[15], the main reason might be that, if a Hopf bifurcation
in the mathematical solution of the given viscoelastic model
exists, standard numerical methods can follow only its
steady branch which is physical unrealizable and which can
correspond to a lower resistance.
In this work we consider the viscoelastic flow of an Oldroyd-
B liquid around a linear array of cylinders placed at different
distances and confined in a channel. This problem allows to
combine a relatively simple domain geometry together with
a flow characterized by a complex mixing of both shear and
extensional behaviour. Furthermore, the problem has been
extensively studied numerically [11] and experimentally [14].
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Abstract—A Smoothed Particle Hydrodynamics (SPH) method
for lava flow modeling has been implemented on a graphical
processing unit (GPU) using the Compute Unified Device Ar-
chitecture (CUDA) developed by Nvidia, resulting in up to two
order of magnitude speed-ups. The 3-dimensional model is able to
simulate a lava flow on on a real topography with free-surface,
non-Newtonian fluids and with phase change. The entire SPH
code, with its three main components: neighbor list construction,
force computation, and integration of the equation of motion, is
computed on the GPU, fully exploiting its computational power.
The simulation speed achieved is one to two orders of magnitude
faster than the equivalent CPU code. GPU implementation of
SPH permits high resolution SPH modeling in hours and days
rather than weeks and months on inexpensive and readily
available hardware.

I. INTRODUCTION

Developing physical-mathematical models that can describe

the spatial and temporal evolution of natural phenomena is a

key point in many scientific areas. Predicting the potentially

affected areas of high-risk volcanic phenomena such as lava

flows is essential to support risk mitigation and land planning,

in combination with laboratory and field observations.

Physical and numerical models developed so far for the

simulation of lava flow work under simplified assumptions and

have provied sufficiently accurate results to be employable for

civil protection. These models are however inadequate for the

description of more sophisticated phenomena like crust and

lava tube formation and ephemeral vent opening, which can

strongly increase the hazard associated with lava flows.

A complete modelling of lava flows is challenging from

a modellistic, numeric and computational point of view: the

natural topography irregularities, the dynamic free boundaries

and phenomena such as solidification or friction, presence

of floating solid bodies or other obstacles and their eventual

fragmentation, make the problem difficult to solve using

traditional numerical methods such us finite volumes or finite

elements

We offer a solution to lava flow modeling based on the

Smoothed Particles Hydrodynamics (SPH) approach. To over-

come the high computational requirements of the method,

we exploit the intrisic high degree of parallelism of the

SPH method and rely on low-cost, energy-effective parallel

computing capabilities offered by the new generations of

Graphic Processing Units (GPUs), resulting in one to two

orders of magnitude in speed-up over standard CPU execution.

The work we present has been developed at the Istituto

Nazionale di Geofisica e Vulcanologia (INGV), Section of

Catania, within the course of LAVA Project. The three-

dimensional model can describe the flow of a fluid with

thermal-dependent non-Newtonian behavior, including phase

transition, on a natural topography and with a free surface,

allowing for accurate forecasting of the possible paths of a

lava flow during an eruption.

II. SPH MODELING OF A LAVA FLOW

A. Equation of the problem

Lava is considered incompressible, and the liquid phase

is modeled by Navier-Stokes equations (continuity equation,

forces balance, incompressibility condition):

Dρ

Dt
= −ρ

∂ui

∂xi

(1)

Dui

Dt
= gi +

1

ρ

∂σij

∂xj

(2)

∂ui

∂xi

= 0 (3)

coupled with the heat equation:

ρcp

DT

Dt
=

∂

∂xi

�

κ
∂T

∂xi

�

+
∂

∂xi

(σijuj) (4)

where
D

Dt
=

∂

∂t
+ui

∂

∂xi

is the total derivative operator, σij =

−Pδij+τij is the stress tensor and τij the viscous stress tensor.

We consider that the Etna lava flows are laminar with a

low Reynolds number (viscosity ≈ 104Pa · s and maximum

velocity ≈ 1m · s−1).

Rheological Model — constitutive equation: The constitu-

tive equation is a relation between the viscous stress tensor τij

and the strain tensor "ij =
1

2

�

∂ui

∂xj

+
∂uj

∂xi

�

. In the case of a
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MNOPQNRPSTUSVUXRNTQNZQUNTQUvPYcNTT]\NXYQU_`aU
XSO[YZXUVSZUXbNOOS�U�NRYZUVOS�XUPTWO^QPTdU\YQU

QPXWSTRPT^PRPYXU

¢PYU£bNS�hUgNRRbPY^UQYUlYVVY���hUkN[PQUlYUmS^no�hUlPSTYOUiYTRNn�hU`PYZZYUpYZZNTR�
�UpO^PQUgYWbNTPWXUlN\SZNRSZqhUrWSOYUsYTRZNOYUtNTRYXUuUstv_hUtNTRYXhUpZNTWY
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��

wf wtmvjkxsmwjt

wTU WSNXRNOU YTdPTYYZPTdhU VZYYU X^ZVNWYU VOS�XU X^WbU NXU
RX^TNcPXhUSWYNTU RPQYXhUQNcU\ZYNWbYXhU NTQU ZP[YZU VOSSQXUcNqU
PT^TQNRYU OS�]OqPTdU ZYdPSTXhU WN^XPTdU XPdTPVPWNTRU OSXXU SVU OPVYU
NTQU {ZS{YZRqf mbYU XbNOOS�U �NRYZU Yz^NRPSTXU {ZS[PQYU NT
YVVPWPYTRUcYNTXUSVUNWW^ZNRYOqUcSQYOPTdURbYUOSTdU�N[YUVSZcX
{ZSQ^WYQU\qUX^WbUVOS�Xh NTQURbYZYVSZYUZYcNPTUSVUPTRYZYXRURSU
RbYUZYXYNZWbUWScc^TPRqfUmbYUcYXb]VZYYUONdZNTdPNTUTNR^ZYUSVU
_`aU dP[YXU RbY cYRbSQU VOY�P\POPRqU RSU NQN{RP[YOqU RZNWyU RbYU
QY[YOS{cYTRU SVU RbYU �N[Y]VZSTRfU _^WbU N {ZS{YZRqU PXU TSRU
XbNZYQU \qU WONXXPWNOU dZPQ]\NXYQU cYRbSQXhU bPdbOPdbRPTdU RbYU
NQ[NTRNdYUSVU_`aU�bYTUcSQYOPTdUY[YTRXU�PRbUONZdYUXWNOYXh
XY[YZYUQYVSZcNRPSTXhUNTQUQZq]�YRURS{SdZN{bqf

wTU RbYU {NXRhU XPdTPVPWNTRU �SZyU PTU cSQYOPTdU RbYU XbNOOS�
�NRYZU Yz^NRPSTXU �PRbPTU NTU _`aU VZNcY�SZyU bNXU \YYTU
WSc{OYRYQfU eU [NZPN\OYU XcSSRbPTdU OYTdRbU cSQYOU �NXU
QY[YOS{YQU \qU vSQZPd^Yn]`NnU NTQU ¥STTYRU ~¤�fU eOcSXRU
XPc^ORNTYS^XOqhURbYUTY�URYWbTPz^YU\NXYQUSTUvPYcNTTUXSO[YZ
�NXUPTRZSQ^WYQURSUPc{ZS[YURbYUXRN\POPRqUSVURbYUcSQYOU\qUeRNU
NTQU_S^ONPcNTPU ~��fU¦PRbU RbYUNPc SVU XYRRPTdU^{UNUmX^TNcPU
YNZOqU�NZTPTdUXqXRYchU`NTPnnSUYR NOfU~��UQY[YOS{YQUNUXWbYcYU
RSUcSQYOUTSTOPTYNZU XbNOOS�U�NRYZU Yz^NRPSTXU PTU_`aU �_`a]
tl_¦r�fU eU cYRbSQU �NXU RbYTU Pc{OYcYTRYQU RSU VSOOS� RbYU
Y�{NTXPSTU SVU RbYU VO^PQU QScNPTU RbZS^dbS^RU VOSSQPTdU
XPc^ONRPSTXU \qU kYU lYVVYU YRU NOfU ~��fU MNWSTQPSU YRU NOfU ~��U
PTRZSQ^WYQU NU {NZRPWOYU X{OPRRPTdU {ZSWYQ^ZYU RSU S[YZWScYU RbY
{SSZU {YZVSZcNTWYU NRU XcNOOU QY{RbXU WN^XYQU \qU RbYU �PQYOqU

NQS{RYQU ON�U RbNRU RbYU XcSSRbPTdU OYTdRbU PXU PT[YZXYOqU
{ZS{SZRPSTNOURSU�NRYZUQY{Rbf aS�Y[YZhURbYU_`aUcSQYOPTdUSV
XbNOOS�U �NRYZU WSNXRNOU VOS�XU bNXU TSR qYRU \YYTU N{{OPYQU NTQU
RYXRYQU RSU WNRWbPTdU RbYU XbSZYOPTYU �N[YU PTVSZcNRPSTU NTQU
QP[YZXYU�N[YU{ZS{NdNRPSTUS[YZUQPXWSTRPT^S^XU\YQfU

wTURbYU{ZYXYTRU�SZyhURbYUcSQYOUSVU_`a]tl_¦rUbNXUVPZXR
\YYTUY�RYTQYQURSURbYUN{{OPWNRPSTURSUQZq]�YRUXbSZYOPTYUVOS�XU
STURbYU\NXPXUSVU�SZyUQY[YOS{YQUPTURbYUN^RbSZX� ON\SZNRSZqUSVU
rWSOYUsYTRZNOYUtNTRYXfUm�SU\YTWbcNZyURYXRXUVSZUOSTdU�N[YXU
bN[YU \YYTU ZY{ZSQ^WYQhU TNcYOqU RbYU XSOPRNZqU �N[Y
{ZS{NdNRPSTU STU NU WNTSTPWNOU \YNWbhU NTQU XbSZYOPTYU �N[YU
Z^T^{]Z^TQS�T cSRPSTXU�PRb RPcYU[NZPNRPSTfUmbYUS\�YWRP[YU
�NXU RbYTU RSU QY[YOS{U NU T^cYZPWNOU cSQYOU RbNRU WNTU ZYOPN\OqU
XSO[YU NU [NZPYRqU SVU XbNOOS�U �NRYZU VOS�X S[YZU [NZPN\OYU
\NRbqcYRZqU PTU QP[YZXYU WSTQPRPSTXfU mSU NWbPY[YU RbPXhU RbYU
iSQ^TS[]Rq{YU vSYU XSO[YZU bNXU \YYTU PTRZSQ^WYQU RSU _`a]
tl_¦rU RSU QYNOU �PRbU PTRZNWRN\OYU VOS�XU �PRbU XRNTQNZQU
cYRbSQXhU PT[SO[PTdU QPXWSTRPT^S^XU VZYYU X^ZVNWYU �N[YXU NTQU
XRY{]OPyYU \YQXfU mbYU S\RNPTYQU VSZc^ONRPSTU PXU ZS\^XRU NTQU
{ZS[PQYXU ZYOPN\OYU ZYX^ORXhU XbS�PTdU dSSQU NdZYYcYTRU �PRb
ZYVYZYTWYUZYX^ORXfUUUU

wwf `a§_wsel etk _metkevk _`a gjkrlU

mbYU tl_¦rU NZYU QYZP[YQU VZScU RbYU QY{Rb]PTRYdZNRPSTU SVU
RbYU tN[PYZ]_RSyYXU Yz^NRPSTX YX{YWPNOOqU VSZU RbYU WSccST
XPR^NRPSTXU PTU VO^PQU QqTNcPWXU �bYZYU RbYU bSZPnSTRNOU OYTdRbU
XWNOYU PXU c^Wb dZYNRYZU RbNTU RbYU [YZRPWNOU OYTdRbU XWNOYfU pSZU
PTXRNTWYhU RX^TNcPU PXU N Rq{PWNOU OSTdU �N[YU cSRPSThU Y[YTU RbYU
SVVXbSZYUnSTYUcNqU\YUWSTXPQYZYQURSU\YUXbNOOS�UNXUPRXUQY{RbU
PXUc^WbUXcNOOYZUWSc{NZYQU�PRbURX^TNcPU�N[YUOYTdRbfUpSZUNT
PTWSc{ZYXXP\OY VOS�hU RbYU XbNOOS�U �NRYZU Yz^NRPSTXU RNyYU RbYU
VSOOS�PTdUWSTXYZ[NRP[YUVSZc�U
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