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SPH development at 

Cranfield University

Presentation outline

1. Introduction (CU, Motivation)

2. Normalised Corrected SPH 

3. Non-collocational SPH 

4. Contact algorithm, FE – SPH 

coupling 

5. Damage modelling 



Cranfield University: 

History

Formed in 1946 as College 

of Aeronautics (centre 

of excellence in 

aerospace) 

Postgraduate University 

1992

Centre of Applied Research

Five Major Schools

• Health

• Management 

• Engineering

• Applied Science



Cranfield University: 

• Entirely Post Graduate, 35% PhD 

• MSc Courses of 45 Week Duration

• International Industrial & Government 

Funded Research

• The UK National Flying Laboratory 

• Applied approach to teaching and research 

• Strong Industrial Links

• Worldwide Reputation

• £240 Million Turnover - 60% From 

Research



Challenging problems of computational mechanics are 

often characterised by:

• Extremely large deformations 

• Tracking of interfaces between solids and 

liquid/gas 

• Propagation of cracks with arbitrary and complex 

paths

• Change of boundaries of material that has 

undergone extensive micro cracking or phase 

change and failure.  

Motivation for our 

SPH work



Problem solving

Manufacturing: 

Extrusion, Moulding, Friction Stir Welding, 

Manufacture of composites, …

Safety and Crashworthiness: 

Hypervelocity impacts on spacecraft, Aircraft 

impacts on water/soft soil, Bird strike ... 

Defence: 

Armour penetration (metal, ceramics), Warhead 

fragmentation, Shape charges…

Motivation for the SPH 

work



People that inspired and 

influenced SPH research at 

Cranfield:

L. Libersky 

J. J. Monaghan



R. Vignjevic, J. Campbell , L. Libersky; A treatment of zero-energy modes in 

the smoothed particle hydrodynamics method, Comput. Methods Appl. 

Mech. Engrg. 184 (2000), pp. 67-85, (Received 28 October 1998)

R. Vignjevic, J. Reveles, J. Campbell; SPH in a Total Lagrangian 

Formalism, Computer Methods in Engineering and Science, vol.14, no.3, 

pp.181-198, 2006

Corrected Normalised SPH

(CNSPH)



Specifically: The invariance with respect to 

translational and rotational transformations 

Corrected Normalised SPH

CNSPH

Emmy Noether, "Invariante Variationsprobleme,
" Nachr. v. d. Ges. d. Wiss. zu Göttingen 1918, pp. 235-257



Corrected Normalised SPH

CNSPH
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Corrected Normalised SPH

CNSPH
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Interpolation should not violate the following properties 
of space:  
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Corrected Normalised SPH

CNSPH
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CNSPH Form of 

Governing Equations



CNSPH Conservation of

Momentum and 

A-momentum

Materials X -Velocity



• First order consistency    

• Conservation of linear and angular momentum 

• Homogeneity and isotropy of space 

maintained in the SPH discretisation 

Corrected Normalised SPH

Summary



SPH in a Total 

Lagrangian Formalism

R. Vignjevic, J. Reveles, J. Campbell; SPH in a Total Lagrangian Formalism, 

Computer Methods in Engineering and Science, Vol.14, No.3, pp.181-198, 

2006



  

Taylor test for 

OFHPC copper 

180 m/s

SPH in a Total 

Lagrangian Formalism



SPH in a Total 

Lagrangian Formalism

The mapping from material into spatial coordinates is  

( )t,Xx φ= . 

The displacement of a material point is given by the difference 

between its current position and its original position.   

( ) ( ) ( ) ( ) XxXXXXu −=−=−= tttX ,0,,, φφφ   



SPH in a Total 

Lagrangian Formalism

The deformation gradient F 
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SPH in a Total 

Lagrangian Formalism

Conservation Equations in the Total Lagrangian formalism  

 

 Continuous Discretised 
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Taylor test for 

OFHPC copper 

180 m/s

SPH in a Total 

Lagrangian Formalism



SPH in a Total 

Lagrangian Formalism

3-D Taylor test, effective plastic strain



SPH in a Total 

Lagrangian Formalism

Total Lagrangian SPH vs. 

conventional SPH   



SPH in a Total 

Lagrangian Formalism

Summary

• Stable well behaved    

• Applicable to finite deformations 

• Combined with Eulerian SPH when modelling 

extremely large deformations and failure 



R. Vignjevic, J. Campbell , L. Libersky; A treatment of zero-energy modes in 

the smoothed particle hydrodynamics method, Comput. Methods Appl. 

Mech. Engrg. 184 (2000), pp. 67-85, (Received 28 October 1998)

Non-Collocational 

SPH



Non-Collocational 

SPH

Two types of particles:

Velocity 

Stress 

Easy to apply essential boundary conditions 

(similar  to FE)



Non-Collocational 

SPH

Collision of elastic hoops



Non-Collocational 

SPH

Taylor test for 

OFHPC copper 

180 m/s



Non-Collocational 

SPH Summary

• Easy to apply to 1D and 2D structural elements, 
especially advantageous when modelling failure 
(ongoing work)

• Increased difficulties to extend to 3D continuum 
(update of stress particle locations)   



Contact Algorithm

R. Vignjevic; T. De Vuyst; and J. Campbell; A Frictionless Contact Algorithm for 

Meshless Methods , CMES, Vol. 13, No. 1, pp. 35-48, 2006

T. De Vuyst, R. Vignjevic and J. C. Campbell; Modelling of Fluid-Structure 

Impact Problems using a Coupled SPH-FE solver, Journal of Impact 

Engineering, Vol. 31, No. 8, pp. 1054-1064, 2005

J. Campbell, R. Vignjevic, L. Libersky;  A Contact Algorithm for Smoothed 

Particle Hydrodynamics, Computer Methods in Applied Mechanics and 

Engineering, Vol. 184, No. 1, pp. 49-65, 2000
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Traction on the  
contact surface 
 

ˆ
CBnt Γ= ⋅n σ  

 
The Hertz – Signorini – Moreau  
(Kuhn-Tucker) Conditions  
for frictionless contact:   
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n
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In the variational rate form the contact constraint imposed by: 
 

( ) 0=⋅= gtδGδG n
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For a body in contact     0=g&    

( )ˆ
CB B Ag Γ= ⋅ −n x x

Contact Initial Boundary 
Value Problem



Contact Initial Boundary 
Value Problem
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A weak form of the initial boundary value problem with contact.   
 
This equation discretised in space:   
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Where:  Nd=w   and  N is a shape functions matrix  
 

Discretised Contact Initial 
Boundary Value Problem



In the SPH method N has the following form:   
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Where: 
I   - particle at which shape function is evaluated, 
J   - particle at which the shape function is centered, 
Np   - number of neighbors for the i particle, 
d   - nodal displacement vector, 
W   - SPH kernel function (B-spline)   
 

Discretised Contact Initial 
Boundary Value Problem



Due to the diffused nature of boundary in the conventional SPH the 
contact force is defined as:   
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Where specific contact force is defined as gradient of contact 
potential:   
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Contact Force



ΩA

ΩB

ΓCA
ΓCB
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Normal Contact - SPH
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Example,
Plate Impact (2D)

The symmetrical block impact 
Each block was discretised with 50 by 20 particles 
Steel blocs modelled with an elastic-plastic material model



Example,
Plate Impact (2D)



Example,
Hypervelocity Impact 
(3D)

7km/s impact of aluminium projectile 

on aluminium bumper plate



Contact Algorithm 
Summary

• Well suited for meshless methods  

• Numerically effective, approximately 

additional 10% CPU time in 3D 

simulations 

• Easy to add friction (ongoing work) 



R. Vignjevic, J. Campbell , J. Jaric, S. Powell; Derivation of SPH equations 

in a moving referential coordinate system, Comput. Methods Appl. Mech. 

Engrg. 198 (2009), pp. 2403-2411, (Received 8 September 2008)

Alternative Form of the 

SPH Equations
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Conservation of Momentum
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Conservation of Momentum
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Continuity equation 

Conv. SPH 
[1, 2] 
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Comparison  

1.- Larry D. Libersky at. al. High Strain Lagrangian Hydrodynamics a 3-DSPH code 

for dynamic material response,. Journal of Computational Physics, 1993

2.- Morris, J.P., An Overview of the Method of Smoothed Particle Hydrodynamics, 

November 1995, Universitat Kaiserlautern, Arbeitsgruppe Technomathematik.



Numerical Example

Shock tube problem

Initial conditions

0<x<0.5 0.5<x<1

Left Right

Density 1.0 0.8

Pressure 1.0 0.8

Velocity 0.0 0.0

0<x<0.5 0.5<x<1



Numerical Example

Shock tube problem

Velocity at time 0.2
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Numerical Example

Shock tube problem

Pressure at time 0.2
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Numerical Example

Density at time 0.2
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Alternative Form of the 

SPH Equations

Summary

• Part of the ongoing work

• Framework for a more rigorous treatment 

of variable h interpolation

• In the shock tube problem performance 

similar to the conventional SPH with 

constant h



Damage Modelling

The fracture model capable of simulating:

• Initiation and growth of damage  

• Crack formation and propagation in an arbitrary 

direction  

• Crack branching and crack joining, leading to 

fragmentation



How to represent a 

Crack 

‘Cracked/failed’ particle concept:  A failed particle is split 

into two particles, this approach has been demonstrated 

by Rabczuk and Belytschko  (2007)  



• Compatible with the concept of effective stress 
introduced by Kachanov in 1958 

• The effective stress tensor is defined as:

• The concept of the interaction area relatively 

simple to apply within SPH  

Continuum Damage 

Mechanics
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How to represent a 

Crack (Damage)

Inter-particle failure 

Damage is evaluated for pairs of neighbour particles.  

Following fracture the particles cease being neighbours.

The concept of particle-particle interaction area (Swegle, 

2000),

- damage affects interaction effective area

- at failure the effective area is at a critical value



The force acting on a surface due 

to a stress is given by

The SPH momentum equation could be 

rewritten in term of an interaction area:

Swegle Interaction 
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Inter-particle failure

• Damage is evolved as an inter-particle value, Dij

,which reduces the inter-particle interaction area:

• When damage reaches a critical value the material is 

assumed to have failed and the particles cease to be 

neighbours.
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• Normal stress between pairs of particles is 

compared to a spall criterion. Damage initiated 

once this criterion is exceeded.

• 1D strain state

• Spall plane opens in middle of target plate

Spall demonstration 

problem

V = 450 m/s

Copper plate

5mm thick

Copper flyer

2.5mm thick

PMMA



Representing fracture 

within a meshless 

method



Copper Plate Impact Test
(with contact / artificial viscosity Q=2.0, L=0.2) 

Information displayed for Particle 195 (in PMMA) 
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The Mock-Holt problem

Mock and Holt (1983), experimental results 

from a number of tests on explosive driven 

Fragmentation of metallic cylinders.



The Mock-Holt problem



• Well suited for meshless methods  

• Numerically effective 

• Can deal with crack closure  

• Ongoing work 

Damage Modelling 
Summary



• All developments discussed were 

implemented into our 3D SPH code 

• The SPH code coupled with DYNA3D  

• The codes are routinely used to 

analyse real world problems  

• Further development of the SPH 

method is of high priority to us  

(stabilisation of the Eulerian SPH, 

development of SPH structural 

elements, modelling damage,…)

Overall Summary



The End


