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ABSTRACT

The subject of the present thesis is the interaction between a viscous fluid
and a solid body in the presence of a free surface. The problem is expressed
first theoretically with a particular focus on the energy conservation and the
fluid-body interaction. The problem is considered 2D and monophasic, and
some mathematical development allows for a decomposition of the energy
dissipation into terms related to the Free Surface and others related to the
enstrophy.

The numerical model used on the thesis is based on Smoothed Particle Hy-
drodynamics (SPH): a computational method that works by dividing the fluid
into particles. Analogously to what is done at continuum level, the conserva-
tion properties are studied on the discrete system of particles. Additionally
the boundary conditions for a moving body in a viscous flow are treated and
discussed using the ghost-fluid method. An explicit algorithm for handling
fluid-body coupling is also developed.

Following these theoretical developments on the numerical model, some
test cases are devised in order to test the ability of the model to correctly re-
produce the energy dissipation and the motion of the body. The attenuation
of a standing wave is used to compare what is numerically simulated to what
is theoretically predicted. Further tests are done in order to monitor the en-
ergy dissipation in case of more violent flows involving the fragmentation of
the free-surface. The amount of energy dissipated with the different terms is
assessed with the numerical model. Other numerical tests are performed in
order to test the fluid/body interaction method: forces exerted by waves on
simple shapes, and equilibrium of a floating body with a complex shape.

Once the numerical model has been validated, numerical tests are performed
in order to get a more complete understanding of the physics involved in (al-
most) realistic cases. First a study is performed on the flow passing a cylinder
under the free surface. The study is performed at moderate Reynolds num-
bers, for various cylinder submergences, and various Froude numbers. The
capacity of the numerical solver allows for an investigation of the complex pat-
terns which occur. The wake from the cylinder interacts with the free surface,
and some characteristical flow mechanisms are identified.

The second study is done on the sloshing problem, both experimentally
and numerically. The analysis is restrained to shallow water and horizontal
excitation, but a large number of conditions are studied, leading to quite a
complete understanding of the wave systems involved.
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The last part of the thesis still involves a sloshing problem but this time the
tank is rolling and there is coupling with a mechanical system. The system
is named pendulum-TLD (Tuned Liquid Damper). This kind of system is
normally used for damping of civil structures. The analysis is then performed
analytically, numerically and experimentally for using liquids with different
viscosities, focusing on non-linear features and dissipation mechanisms.
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RESUMEN

En esta tesis se investiga la interacción entre un fluido viscoso y un cuerpo
sólido en presencia de una superficie libre. El problema se expresa teóricamente
poniendo especial atención a los aspectos de conservación de energı́a y de la in-
teracción del fluido con el cuerpo. El problema se considera 2D y monofásico,
y un desarrollo matemático permite una descomposición de los términos disi-
pativos en términos relacionados con la superficie libre y términos relaciona-
dos con la enstrofı́a.

El modelo numérico utilizado en la tesis se basa en el método sin malla
Smoothed Particle Hydrodynamics (SPH). De manera análoga a lo que se hace
a nivel continuo, las propiedades de conservación se estudian en la tesis con el
sistema discreto de partı́culas. Se tratan también las condiciones de contorno
de un cuerpo que se mueve en un flujo viscoso, implementadas con el método
ghost-fluid. Se ha desarrollado un algoritmo explicito de interacción fluido /
cuerpo.

Se han documentado algunos casos de modo detallado con el objetivo de
comprobar la capacidad del modelo para reproducir correctamente la disi-
pación de energı́a y el movimiento del cuerpo. En particular se ha investigado
la atenuación de una onda estacionaria, comparando la simulación numérica
con predicciones teóricas. Se han realizado otras pruebas para monitorizar la
disipación de energı́a para flujos más violentos que implican la fragmentación
de la superficie libre. La cantidad de energı́a disipada con los diferentes
términos se ha evaluado en los casos estudiados con el modelo numérico.

Se han realizado otras pruebas numéricas para verificar la técnica de mod-
elización de la interacción fluido / cuerpo, concretamente las fuerzas ejerci-
das por las olas en cuerpos con formas simples, y el equilibrio de un cuerpo
flotante con una forma compleja.

Una vez que el modelo numérico ha sido validado, se han realizado simu-
laciones numéricas para obtener una comprensión más completa de la fı́sica
implicada en casos (casi) realistas sobre los habı́a aspectos que no se conocı́an
suficientemente. En primer lugar se ha estudiado el el flujo alrededor de un
cilindro bajo la superficie libre. El estudio se ha realizado con un número de
Reynolds moderado, para un rango de inmersiones del cilindro y números de
Froude. La solución numérica permite una investigación de los patrones com-
plejos que se producen. La estela del cilindro interactúa con la superficie libre.
Se han identificado algunos inestabilidades caracterı́sticas.

El segundo estudio se ha realizado sobre el problema de sloshing, tanto
experimentalmente como numéricamente. El análisis se restringe a aguas poco
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profundas y con oscilación horizontal, pero se ha estudiado un gran número de
condiciones, lo que lleva a una comprensión bastante completa de los sistemas
de onda involucradas.

La última parte de la tesis trata también sobre un problema de sloshing pero
esta vez el tanque está oscilando con rotacion y hay acoplamiento con un sis-
tema mecánico. El sistema se llama pendulum-TLD (Tuned Liquid Damper
- con lı́quido amortiguador). Este tipo de sistema se utiliza normalmente
para la amortiguación de las estructuras civiles. El análisis se ha realizado
analı́ticamente, numéricamente y experimentalmente utilizando lı́quidos con
viscosidades diferentes, centrándose en caracterı́sticas no lineales y mecanis-
mos de disipación.
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NOMENCLATURE

general rules

• Only the most used symbols in the following sections are listed

• Meaning of symbols is given at least when introduced in the thesis

• Sometimes the same symbol can be used to indicate different things

• Symbols for vectors and matrices are generally written in boldface

• Symbols between angle brackets (e.g. 〈f〉) represent the regularized values,
i.e. obtained through an integral interpolation

symbols

r Position vector
u Velocity vector
ρ0 Density
p Pressure
c Speed of sound
e Specific internal energy
µ Dynamic viscosity
ν Kinematic viscosity
g Vector of the external volume forces

Re Reynolds number (= UL/ν)
St Strouhal number (= fL/U, where f is a characteristic fre-

quency)
Fr Froude number (= U/

√
(gL))

Ma Mach number (= U/c)

� the stress tensor
� the rate of strain tensor
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V the viscous part of the stress tensor
EM the mechanical energy
EK the kinetic energy
EP the potential energy
EC the compressible energy
EI the internal energy

Pext External power
PNC Non-conservative force
PλB Quadratic dissipative term due to compressibility
PD Dissipative power associated to strain tensor
PDeform Dissipative power associated to viscosity and deformation of

the Free Surface (Boundary term)
Pω Enstrophy
PFS Total dissipative power associated to the free surface (Bound-

ary term)
PBody Total dissipative power associated to the solid surface (Bound-

ary term)
PF Disspative power associated to viscosity and compressibility

(Volumic term)
P
2µ
E Disspative power associated to viscosity and compressibility

(Free Surface Boundary term)

∆EYX(t) =
∫t
t0 P

Y
X dt

P SPH
X

SPH indicates that the terms derives directly from particles
SPH quantities

P MLS
X

MLS indicates a term evaluated using Moving Least Square
interpolation on the scattered data

P SPH
D+B Total dissipative power associated to viscosity in SPH

Pω∗ Dissipative term including enstrophy and viscous effect from
the ghost fluid

PsubFS Boundary surface term obtained by substraction of essentially
volumic terms

W Weight function called smoothing function or kernel
h Smoothing length
Npart Total number of particles
Ni Number of neighbours of the i-th particle
N Average number of neighbours
∆x Mean inter-particle distance

xviii



∆t Numerical integration time step
n Unit normal vector
τ Unit tangent vector
δ Numerical coefficient to control the diffusive term in the conti-

nuity equation

acronyms and abbreviations

B.C. Boundary Conditions
BEM-MEL Boundary Element Method Mixed Eulerian-Lagrangian
CFL Courant–Friedrichs–Lewy condition
MLS Moving Least Square Interpolation
SPH Smoothed Particle Hydrodynamics
VOF Volume Of Fluid
WCSPH Weakly-Compressible Smoothed Particle Hydrodynamics
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1 INTRODUCT ION

1.1 motivation and background

1.1.1 General

The present thesis investigates the interaction of energetic, mainly viscous
free-surface flows with rigid structures. The Lagrangian numerical method
Smoothed Particle Hydrodynamics (SPH) is used along the thesis. Some de-
velopment and investigations are performed on the numerical method, but the
focus of the thesis is more on the physical applications than what have been
done in the two previous thesis: “A meshless Lagrangian method for free sur-
face and interface flows with fragmentation” Colagrossi 2005; and “Enhanced
SPH modeling of free-surface flows with large deformations” Marrone 2011.

Nature is made up of fluids and bodies, that interact in a complex way.
There can be several solids, several liquids, several gases. Among all these
distincts elements, and under certain environmental conditions, a lot of inter-
actions may occur: they can mix, experience chemical reactions, change state...

In the present thesis, the interaction between elements is studied in the
framework of Mechanics. No other physics is taken into account. The scales of
the problems studied are the ones of the classical mechanics. There are no ef-
fects due to very large scales or very small scales. The subject treated involves
one fluid and one body for the most. The fluid is always considered Newto-
nian. The subjects described in the thesis are all linked to a theme of viscous
effects and energy conservation in presence of complex free surface behaviour
and moving bodies.

The introduction is general to the thesis. A more detailed state of the art is
given at the beginning of the chapters linked to a specific topic.

1.1.2 Applications

Understanding the mechanics of multifluid problems is crucial for a large num-
ber of engineering problems. The number of applications is potentially very
large: food and medical industry; engines; environmental science; oil and gas
industry , and many others. More specifically, considering the potential appli-
cations of the physical problems studied in the present research, a common liq-
uid/gas interaction is that taking place between air and water. Thinking about
these two elements, sea is the most natural example. The impredictability of

1



2 introduction

the sea has continually worried people. It has always been a huge danger and
it still is. Ships, structures, platforms, are object of wave impacts and stability
related accidents. The dynamic involved is often characterised by non-linear
interactions, violent flows and violent water impacts. Furthermore, when a vis-
cous fluid is set in motion, vortices are generated and this is source of energy
dissipation. When a structure is set in motion under a certain seastate, it is not
possible to know the motions without accurately estimating the damping asso-
ciated to the motion. This estimation is still an important challenge for future
hydrodynamic. Conservative choices are not always easy to define, because
in complex problems underdamping or overdamping may both lead to bad
results that could influence bad decisions and put people or environnement at
risk.

1.1.3 Smoothed Particle Hydrodynamics

The numerical method called Smoothed Particle Hydrodynamics (SPH) is used
along the thesis.The method has been introduced about three decades ago in
astrophysics by Lucy 1977 and Gingold and Monaghan 1977. It dealt with
simulation of interacting boundless fluid masses in vacuum. The SPH basics
were inherited from statistical theories and Monte Carlo integrations.

More than 10 years after the SPH invention, the application of the method
diversifies. For more than ten years it was solely used for astronomical prob-
lems. Then, its applications spread to in several physics and engineering prob-
lems, ranging from solid mechanics to multiphase flows. In Monaghan 1985

the method is applied for simulating free-surface inviscid flows. It was found
to be more suitable to handle breaking and fragmentation than the existing
method. The reason for this are its Lagrangian nature and the fact that the
free-surface boundary condition is automatically verified.

SPH has experienced a large growth over the years and can now be consid-
ered, even if for not all the typology of application, as a reliable alternative to
the mesh solvers. For a recent review see Monaghan 2012. A certain number
of research groups are active in the SPH context. Probably the SPH code most
used (and open source) over the world is SPHysics Gomez-Gesteira et al. 2012.

1.1.4 Theoretical aspects

For a general problem of interaction between a fluid and a body, there is the
need of motion equations for the fluid, and motion equations for the body, both
mainly issued from Newton’s 2nd law. In addition to such a set of equations,
some boundary conditions are needed to define the mathematical represen-
tation of the physical problem. A huge number of theorical and numerical



1.1 motivation and background 3

models exists for the three aspects. Some relevant elements and consequences
of the hypotheses used in the present thesis are recalled below.

Viscous Newtonian fluid

The common theory used to model the viscous stresses for liquids like water
or oil is as newtonian fluids. For these fluids the viscous stresses are then
assumed to be linearly proportional to the local strain rate. Using this mod-
elling together with Euler equation gives raise to the Navier Stokes equations,
that are widely used in fluid dynamics. About the boundary conditions, the
contact surface between a viscous fluid and a solid body is treated through an
adherence “no-slip” condition, mathematically a Dirichlet boundary condition
since it sets the value of the velocity field at the boundary. Except in most sim-
ple cases, the Navier-Stokes equations do not have an analytic solution. They
have to be solved numerically after being discretised in time and space.

This leads to two types of difficulties: the calculation of spatial and time
derivatives, that have been tackled using various techniques. The discretiza-
tion needs to be done with very small elements in order to be representative
of the real physical condition. Therefore, due to the available computational
power at the time that this thesis is written, only moderate Reynolds num-
bers can be studied with a no slip boundary condition without any numerical
“tricks”.

For some realistic applications presented in the document like the sloshing
and the TLD where a higher Reynolds number is mandatory, the problem has
been simulated with a free-slip boundary condition, since the boundary layer
dynamics is not the lead actor of the flow.

The complete problem studied in this document involves a viscous fluid but
also a free surface. A method has to be found in order to define a multifluid
interface and its dynamics.

Free Surface

In order to keep the scope of the document within reasonable limits, the cases
of liquid-liquid interfaces will not be treated in this thesis.

In most situations there isn’t just one or several liquids, but also gases, and
the interface between liquids and gases is also a very complex phenomenon
and has been the subject of many studies over the past centuries. This interac-
tion itself is very complicated: there can be instabilities on the interface, and
there can be mixing. The simple notion of interface between a fluid and a gas
is not straightforward.

A first assumption that can be done to simplify the study of gas-liquid prob-
lems is to consider that the gas specific weight is smaller than the one of the
liquid phase and therefore the interface could be treated as a free surface. In
this way, no mixing is permitted, but the dynamics of the interface is then
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easier to treat from a physical point of view. This assumption allows for the
propagation of gravity waves, and large deformations of the free surface can
be studied.

This thesis deals essentially with problems in which the presence of gas
is simplified with one liquid phase and a free surface. The numerical method
SPH used for this research is particularly adapted in order to work considering
this hypothesis.

From a mathematical and a numerical point of view, modelling the dynam-
ics of a patch of fluid with free surface is an arduous task, incorporating the
difficulties of having a free-boundary problem and a viscous fluid.

Fluid/body coupling

In the present study even if the deformations of the solid bodies are not treated
and therefore the full motion of the body may be treated using Newton’s 2nd
law to represent the rigid body dynamics, some coupling with the fluid has
to be thoroughly taken into consideration. The fluid is affecting the body, and
the body is affecting the fluid, and when the problem is discretised in time this
coupling has to be accounted for. The effect of the body on the fluid is given
by a boundary condition on the fluid patch. The effect of the fluid on the body
is given by the forces and moment resulting from the stress integration over
the boundaries.

Energy conservation and dissipation

The importance of modelling the fluid with its viscosity is related to the energy
dissipation. Without viscosity, the flow can be usally modelled as irrotational
and therefore the velocity field can be derived from a potential. As a conse-
quence, no energy is lost in a fluid domain except for wave radiation out of
the fluid domain.

Other typical effects involving fluid and body, as for example vortex induced
vibrations, can not exist without viscosity. If the dissipation is well modelled,
the result will likely be more accurate, and therefore more applications could
be found. In order to be correctly modelled, it is important that the dissipation
comes from the equations and the physical modelling and not from a bad
discretization in time or in space. For this reason, the convergence properties
of a model can be tested also looking at the conservation of energy. When the
discretization is sufficient, the viscous dissipation will correspond to the one
of the viscous stress tensor. This is a key point, since the lower the viscosity is,
the more difficult the modelling, due to the very fine discretization that will
be needed to correctly model the physics.

As a matter of fact, it may be important to stress that a correct modelling
of viscosity effects is not guaranteed by the stability of a computation. Gen-
erally, the more dissipation we have in a computation, the more stable it will
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be. However, for example using a finite volume discretization of a mesh, sta-
bility is commonly achieved for a mesh that is coarser than the one needed
to obtain a full convergence on the dissipation term. This is due to the fact
that numerical (and therefore unphysical viscosity) will help in improving the
scheme stability.

With other methods, like the SPH widely used in the present thesis, the
problem is slightly different. SPH method is conservative, and therefore the
energy balance can be in principle always verified. If the resolution is not
sufficient, spurious flow behaviour can happen. Therefore, similarly as what
can be done with a mesh method, the convergence on the various terms of the
energy balance will be a great indicator of the correct modelling of the flow.
This theme is reccurent in this thesis. The focus is more on the study of the
potential accuracy of the method than on the capability to provide solutions
to complex problems with direct application. Consequently, the problems are
often simplified.

In addition to the dissipation due to vortex generation, the presence of a free
surface on a viscous fluid is linked itself to dissipation. This is also a point of
study on the present thesis. The convergence properties of the dissipation in
case of free-surface fragmentation are studied in some simplified cases. An
interesting review of the studies of the breaking surface waves in deep and
intermediate water depths is found in Perlin et al. 2013. A certain amount of
work has been dedicated to the role of air in the dissipation mechanism, ( see
also the reviews Melville 1996 and Kiger and Duncan 2012). It is worth to
note the following works: Iafrati 2009 and Iafrati 2011, focusing on the energy
dissipation, and the recent paper Marrone et al. 2015.

Sloshing

A typical application where free-surface fragmentation matters is Sloshing.
Sloshing flows are those occurring when free-surface waves are generated

inside tanks. Slosh refers to the movement of liquid inside another object
(which is, typically, also undergoing motion) usually creating significant global
and local loads on the tank due to the impact of travelling waves.

The highly non-linear features of this problem make difficult to model cor-
rectly the slosh dynamics using analytical or empirical models. The capability
to properly predict the dynamic local and global loads acting on tanks for any
filling condition is a challenge for any numerical algorithm.

An abundant literature on sloshing can be found, reviewed in the book of
Prof. Ibrahim (Ibrahim 2005), and in the more recent book of Prof. Faltinsen
and Prof. Timokha (Faltinsen and Timokha 2009).

This phenomenon is of interest for several branches of engineering including
marine, aerospace and civil engineering. Important examples include propel-
lant slosh in spacecraft tanks and rockets (especially upper stages). Nowadays,
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the sloshing phenomenon is particularly important for Liquefied Natural Gas
(LNG hereinafter) carriers. During LNG carriers operative life, sloshing may
impede the operation in some particular filling conditions.

Specifically, when the frequency spectrum of the ship motion is focused on
the region close to the lowest natural tank mode, violent free-surface flows may
appear, inducing large local loads (see Faltinsen et al. 2004) and increasing the
risk for the integrity of the structure.

Among the sloshing flows, low filling depth conditions are attractive due to
the wave systems that are generated under these depth conditions, as example
travelling waves and bores (i.e. hydraulic jump), see Olsen and Johnsen 1975.

Motion and vibration control - Anti Roll tank, TLD

The large loads induced by the motion of a fluid into a container may have
a large effect on the motion of the container itself. Various systems use this
property in order to control motions using antiresonance. Two examples are
anti-roll tanks in ships and Tuned liquid dampers used to damp the motion of
civil structures.

Passive anti-roll tanks are successfully used in fishing and cable-laying ves-
sels to dampen their rolling movement. Since all ships are inherently stable,
any device fitted to a ship to reduce its roll should be called a roll damper. The
rolling movement of ships can be modeled as a one degree harmonic move-
ment. These tanks contain water that follows the ship’s rolling and acquires
a phase lag with respect to the ship movement. If correctly designed, this lag
is approximately 90 degrees for the most dangerous sea wave frequency, the
natural frequency of the ship itself. In this condition, the generated moment is
at its maximum and so we speak of resonance condition and natural frequency
of the fluid mass. Therefore, the moment generated partially counteracts the
sea wave moment.

In 1911, Frahm introduced a roll-damping tank that consisted essentially
of a U-tube in which a moment counteracting the rolling motion was created
by the oscillating water Van Den Bosch and Vugts 1966. Although a number
of ships were provided with this type of tank, it never succeeded in becoming
popular. This could partly be due to the difficulty to tune the tank for different
conditions but there also appeared to exist, as in the days of Watts, a lack of
confidence in a device incorporating large quantities of free-moving water.

In the last 40 years, in many countries, these devices have been installed,
mainly in fishing vessels. Theoretical Goodrich 1968 and experimental work
has been done (Bass 1998) but not many studies have been carried out on
trying to perform numerical simulations of these devices. A specific numerical
study using a 2D finite element method for U-tube passive anti-rolling tanks
was done by Zhong et al. 1998 and Popov et al. 1993 who reported numerical
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analysis of sloshing in a road container with a MAC type method for tracing
the free-surface evolution.

It has long been appreciated that a ship rolling in waves can be represented
by an equivalent mechanical vibratory system (Goodrich 1968). The mechani-
cal equivalent to an anti-rolling tank is a damped vibration absorber.

In other types of structures, these damped vibration absorbers are being
substituted by other types of liquid tuned absorbers (Anderson et al. 2000 and
Ikeda and Nakagawa 1997) that are usually called as tuned sloshing dampers
(TSD) or tuned liquid dampers (TLD). A tuned liquid damper, also known as a
harmonic absorber, is a device mounted in structures to reduce the amplitude
of mechanical vibrations. Their application can prevent discomfort, damage,
or outright structural failure. They are frequently used in power transmission,
automobiles, and buildings.

Additionally, many papers have reported on the sloshing phenomenon in
a rigid rectangular tank and theoretical and experimental research has been
carried out by means of the shallow-water wave theory (Verhagen and Van
Wijngaarden 1965, Sun and Fujino 1994, Armenio and Rocca 1996, Modi and
Seto 1997,and Ikeda and Nakagawa 1997), VOF method (Celebi and Akyildiz
2002), etc. Extensive comparative study on sloshing loads has been made
(Cariou and Casella 1999 and Sames et al. 2002). Most of the methods reported
were based upon finite difference, finite volume approaches or even shallow
water equation solvers.

1.1.5 Numerical models for fluid/body interaction

As previously expressed, one main aim of the present study is to model the
behaviour of a moving body in a certain fluid domain bounded in some parts
by a free surface. Using a body with a fixed position in a mesh is therefore not
an option.

Historically, the Numerical Wave Tanks (NWTs) used for modelling the inter-
action between fluid and rigid bodies have been developed in the framework
of potential flow theory by using the Mixed Eulerian-Lagrangian Boundary El-
ement Method (BEM-MEL) introduced by Longuet-Higgins and Cokelet 1976

and followed by Faltinsen 1977 and Vinje and Brevig 1981. Non-linear po-
tential flow solvers allow long-time simulations with moderate computational
effort and, consequently, are very useful for engineering applications related
to safety of ships and offshore platforms in severe sea-state conditions (see e.g.
Ferrant 2000 and Greco 2001). The main drawback of these numerical models
is the inability to describe viscous flows, wave breaking and fragmentation of
the air-water surface.

The need to go beyond such limitations encouraged the development of
mesh-based Navier-Stokes models for solving free-surface flows. The most
popular techniques used to treat the free surface are the Level Set function
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(LS), the Volume Of Fluid (VOF) and the Constrained Interpolation Profile
(CIP) (see respectively e.g. Sethian 1999, Hirt and Nichols 1981, Yabe et al.
2001). However, the simulation of a fully non-linear interaction between waves
and floating bodies presents a number of difficult numerical issues, and is still
considered a challenging problem. The full coupling between the fluid and
rigid body requires some specific considerations. The floating body dynamics
involves a relatively large time scale and acts around the equilibrium state, that
is a very critical condition for the stability of any fluid solid interaction (FSI)
code. Other difficulties are related to the motion of floating bodies inside the
fluid domain. This is generally modelled by using sliding/deforming meshes
(see e.g. Hadžić et al. 2005), dynamic overlapping grids (see e.g. Di Mascio et al.
2008 and Broglia et al. 2009) or by representing the body through an immersed
boundary technique (first defined in Peskin 1977 and further developed in Hu
and Kashiwagi 2009 and Yang and Stern 2012).

Indeed, the mainstream paradigm used for solving Navier-Stokes equations
in the context of Hydrodynamics has been to use a Eulerian representation for
the fluid. This allows to have great accuracy for the calculation of the spatial
derivatives. But even if a large number of attempts have been done, some
of them resulting quite successful, the interface treatment results tricky, and
energy conservation is not easy to achieve.

In this thesis the Navier-Stokes equations are solved using a Lagrangian rep-
resentation for the fluids. The computational nodes are not fixed but move
with the flow. Recently particle methods, such as the Smoothed Particle Hy-
drodynamics (hereinafter SPH) or the Moving Particles Semi-implicit methods
(hereinafter MPS) - see comparison between the methods in Souto-Iglesias et
al. 2013 and Souto-Iglesias et al. 2014, have shown promising results in this
context. In particular, in the present work the δ-SPH variation, defined in An-
tuono et al. 2010 and validated for NWT application in Antuono et al. 2011, is
used. In principle, the meshless character of the SPH/MPS methods permits
to treat the free motions of a body inside the fluid domain in an easier way
compared to mesh-based solvers. Koshizuka et al. 1998 were the first to sim-
ulate a small body interacting with a breaking wave using the MPS particle
method (see also Naito and Sueyoshi 2002). Concerning the SPH method, the
first simulation of a solid body interacting with fluid was done by Monaghan
and Kos 2000. Fluid body coupling with SPH was also performed in May and
Monhagan 2003, Monaghan et al. 2003, Shao and Gotoh 2004, Oger et al. 2006

and Delorme et al. 2006. In Oger et al. 2006, an extensive validation was per-
formed on a test involving the water entry of a wedge. Recently, in Ulrich and
Rung 2012 the case of a water entry of a cube is discussed and the numerical
evolution is qualitatively validated through comparison with snapshots from
experiments. In Kajtar and Monaghan 2008 and Hashemi et al. 2012, some
novel algorithms for the coupling between fluid and rigid/flexible bodies are
proposed.
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The Lagrangian representation of the fluid has some drawbacks for what
concerns the spatial derivatives, but results in advantages in order to calculate
the dynamic of the interface. In this thesis, much effort is dedicated in order
to check convergence and energy conservation over a relative large time frame.
Since the timeframe is wide, all cases are chosen so that they can be described
with 2D modelling. The computations are done verifying as much as possible
the conservation properties, and also avoiding as much as possible numerical
errors associated to the method that could create unphysical dissipation. In
order to assert in this two aims, that are central in this research, the choice
has been not to use any turbulence model and nor any methods to adapt the
particles’ size.

The interface between the fluid and bodies is mainly treated in this thesis
with a no-slip boundary condition. Consequently, the Reynolds numbers have
been chosen relatively low since otherwise the computational effort would be
out of our capabilities. This does not imply that the computations shown in
the document are performed with a coarse representation of the geometry or
the fluid domain, indeed some of them are relatively high demanding in terms
of computational power.

1.1.6 Open problems

When looking at the accuracy in regards to the modelling of the viscous dis-
sipation and complex free surface behaviour, the highly nonlinear interaction
between gravity waves and floating bodies for NWT applications has still not
been sufficiently addressed in the particle method literature. To this purpose,
in the present work an extensive study of the interaction between fluid and
floating bodies is proposed, providing accurate formulae for the evaluation
of forces and torques and comparisons with experiments available in the lit-
erature. The correct simulation of this kind of problems requires an accurate
development of some specific features of the SPH. A crucial point is the at-
tainment of the correct stable equilibrium for a floating body which is not sub-
jected to external excitations. In this regard, the definition of accurate formulae
for the evaluation of the forces and torques on the body is of fundamental im-
portance. In the present work, the theoretical derivation of these expressions
and subsequent checking of the momenta and energy exchanges between fluid
and moving bodies are paid much attention. A further fundamental aspect for
a sound and reliable numerical description of floating bodies is the modeling
of the intersection between the bodies and the free surface.
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1.2 structure of the thesis

This thesis is divided in several parts: first, the general problem of a solid
interacting with a viscous fluid in the presence of a free surface is formulated.
The equations are written focusing on energy conservation. This part aims
also at clarifying how the energy is dissipated.

Secondly, the corresponding numerical SPH model is written. The way to
impose the boundary conditions is detailed for the case of a 2D moving body
and a viscous fluid. Analogously to what is done in the theoretical part, energy
conservation for the discrete particle system equations is also investigated, in
order to be able to later monitor the sources of dissipation.

Thirdly, the numerical model is therefore tested and discussed on various
validation cases. This dynamics includes different aspects but focused on: en-
ergy dissipation, and motion of a body in a fluid. Some simple test cases
without body motion are also considered in order to analyse the energy dissi-
pated by the numerical model. The computed values are then compared with
the theoretical ones. Floating bodies are simulated checking that the correct
equilibrium condition is obtained, and that the motions in waves reproduce
the experimental values available in literature.

After these preliminary chapters stating different aspects of the problem and
the numerical method used to solve it, three different topics are investigated
in order to increase the knowledge about them. The flow around a cylinder
interesecting or under the free surface is treated first. The investigation focuses
on varying the cylinder submergence and the non-dimensional flow velocity.
A limited number of studies is present in literature for this specific topic. The
use of SPH allows for increasing the flow velocity and larger deformations of
the free surface than previously described can be computed.

As a second topic to be thoroughly investigated, sloshing with horizontal
excitation in shallow water condition has been chosen. The study is quite
extensive on the subject in the sense that a lot of different conditions of Ampli-
tude/Water height are investigated, both numerically and experimentally, and
for a large range of frequencies. A certain number of typical wave systems are
identified, and a map of occurrence is drawn. A particular case, in which no
steady state condition is achieved, is identified possibly for the first time.

A final investigation is performed on a TLD problem. This topic involves
almost all the aspects mentioned in the thesis. The interaction between the
fluid and the solid makes the system move and the dissipation of energy by the
fluid is also extremely important in the phenomenon. The study is performed
in order to understand how non-linear aspects could influence the efficiency of
this kind of system and what kind of misleading conclusions may result from
linearizations.
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THEORET ICAL MODEL





2 PHYS ICAL PROBLEM AND
GOVERN ING EQUAT IONS

2.1 physical problem

In engineering applications the fluid domain can be limited by several kinds of
boundaries (see figure 2.1): solid boundaries, free surface, inflow and outflow.

If an interface between a liquid and a gaseous phase occurs, such that the
latter does not influence the evolution of the former, this interface can be con-
sidered as a free surface. Free-surface flows can be solved by modelling only
the liquid phase, provided that suitable boundary conditions are enforced on
it. Denoting by ∂ΩF the free-surface boundary (see Figure 2.1), a kinematic
and a dynamic condition have to be imposed on ∂ΩF. The dynamic boundary
condition requires the continuity of stress across the free surface. If there is a
single phase, this implies stresses have to be null at the free surface.

About the body, the boundary condition can be Dirichlet, as it is imposing
the adherence of the liquid to the solid, or Neumann, as it is imposing a non-
penetration condition of the body.

∂ΩB

∂ΩB

∂ΩF ∂ΩF

∂ΩI ∂ΩO

Ω

Figure 2.1.: Sketch of the fluid domain with solid boundaries, free surface, inflow and
outflow.
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2.2 navier stokes equations

A two-dimensional fluid domain Ω is considered whose boundary, ∂Ω, con-
sists of a free surface, ∂ΩF, and of a solid boundary ∂ΩB. For the fluid the
following set of compressible Navier Stokes equations is considered:

Dρ

Dt
= − ρdiv(u) ,

Du

Dt
= f +

div(�)
ρ

,

Dx

Dt
= u ,

(2.1)

where D/Dt represents the Lagrangian derivative, u the flow velocity, ρ is
the fluid density, � the stress tensor, and f is a generic specific body force,
usually the gravity g. Thermal conductivity effects are here neglected. The
pressure p is linked to density and internal energy through a state equation
which changes depending on the nature of the fluid (gaseous or liquid). For
example, in the weakly-compressible regime, for a liquid, a simple linear state
equation can be used to match the pressure and density field:

p = p0 + c20 (ρ− ρ0) (2.2)

where, c0 is the speed of sound assumed constant, and ρ0 and p0 are respec-
tively the density and the pressure of the fluid at rest. The weakly-compressible
regime (density variation smaller than 0.01ρ0) is guaranteed if the Mach num-
ber of the flow remains small enough during the time evolution (see e.g. Mad-
sen and Schaffer 2006).

The fluid is assumed to be Newtonian, whose stress tensor is:

� = (−p + λ tr� ) 1 + 2µ� , (2.3)

where � is the rate of strain tensor, i.e. � = (∇u+∇uT )/2. Finally, µ and λ
are the viscosity coefficients.

The divergence div(�) can be expressed as:

div(�) = −∇p+ µ∇2u+ (λ+ µ)∇(∇ ·u) (2.4)

which reduces to

div(�) = −∇p + µ∇2u . (2.5)

for incompressible flow.
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2.3 boundary conditions (bcs)

2.3.1 Velocity

A no-slip boundary condition (BC) is imposed along the bottom, ∂ΩB. Such a
condition is expressed as:

u = V∂ΩB , ∀x ∈ ∂ΩB , (2.6)

where V∂ΩB is the solid boundary velocity.

Along the free surface, both kinematic and dynamic BCs should be fulfilled.
As discussed, the kinematic free-surface BC implies that while evolving with
the fluid flow, the material points initially on ∂ΩF remain on ∂ΩF. Denoting
by n the unit vector normal to the free surface and pointing out of the fluid,
the kinematic free-surface condition is formalised by projecting the particle
speed u and the boundary speed V∂ΩF in the direction of n:

u ·n = V∂ΩF ·n , ∀x ∈ ∂ΩF . (2.7)

In other words, the kinematic free-surface BC implies that while evolving
with the fluid flow, the material points initially on ∂ΩF remain on it (in case of
singular event like fluid-fluid and/or fluid-solid impacts this condition needs
to be generalised).

2.3.2 Stress

The stress on the fluid domain boundaries ∂Ω is:

�n = [−p + λdiv(u)]n+ µ (n×ω) + 2µ∇un . (2.8)

On ∂ΩB the term ∇unB can be substituted with ∂u/∂nB due to the imper-
meability of the solid boundary, leading to :

�nB = [−p+ λdiv(u)]nB + µ (nB ×ω) + 2µ
∂u

∂nB
(2.9)

Therefore the stress on the body is composed by three terms, the first one is
the normal pressure term (with a compressible component), the second one is
a friction stress term on the body surface, the third one is different from zero
only if the body surface is deforming or rotating (however for a rigid body the
integral of this term on ∂ΩB is null).
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In this work, the surface tension is considered negligible, therefore, null
stresses on free surface are enforced. This means that on ∂ΩF the stress is zero
and therefore the following equality holds:

2µ
∂u

∂nF
= [p− λdiv(u)]nF + µ (ω×nF) , (2.10)

where the pressure and the friction stress components balance the stress term
due to the deformation of the free surface.

Eq. (2.10) can be split in the normal and tangential components and rear-
ranged as: 

p = λdiv(u) + 2µ
∂u

∂nF
·nF ,

∀r ∈ ∂ΩF .

ω · (nF × τF) = 2
∂u

∂nF
· τF ,

(2.11)

These are the two dynamic free-surface boundary conditions and imply that
the pressure and the vorticity on the free surface are linked by its geometrical
configuration and its normal fluid velocity gradients (Lundgren and Koumout-
sakos 1999).

Considering that the stress on the free surface is zero, together with eq. (2.3)
we get that τ · �n = 0, which implies:

∂u

∂τ
· nF +

∂u

∂n
· τF = 0 , (2.12)

which allows to change the normal derivatives in the second eq. of (2.11) in
tangential derivatives.

The second equation of (2.11) becomes then in 2D:

ω
2D
= 2

∂u

∂τ
· nF = 2

∂un

∂τ
− 2u · ∂nF

∂τ
(2.13)

In (Lundgren and Koumoutsakos 1999):

∂nF
∂τ

= κ τ

being κ the curvature of the free surface in the considered point. Using this
relation the BC becomes:

ω
2D
= 2

∂u

∂τ
· nF = 2

∂un

∂τ
− 2uτκ (2.14)

where [uτ ,un] are the tangential and normal components of the velocity field.



3 ENERGY EQUAT IONS

3.1 introduction

This chapter aims at obtaining a detailed decomposition of the terms present in
the equation of the energy conservation in the case of a Newtonian and weakly-
compressible fluid applied to a finite control volume. The decomposition is
used in chapter 5 where the terms are adapted to the SPH formalism. The
definitions are used later in the thesis (chapter 6 and 7) in order to monitor the
behaviour of the numerical method used during the research.

3.2 energy conservation

A fluid domain is considered with a free surface and a solid body. The power
that the fluid exerts on the solid boundary ∂ΩB is given by integrating the
elementary power acting on each point of ∂ΩB by the stress forces, denoting
by n the unit vector normal pointing out of the fluid domain.

Pfluid/body = −

∫
∂ΩB

Tn ·uB dS (3.1)

The power −Pfluid/body = Pbody/fluid := Pext has to be converted into
the total energy of the fluid. The integral can be extended to the whole bound-
ary ∂Ω since no power is exerted on the fluid by the free surface. An equivalent
way to define the power using the divergence theorem gives therefore:

Pext =

∫
Ω

div (Tu)dV (3.2)

Using the divergence theorem eq. 3.2 becomes:∫
Ω

(div T) ·udV = −

∫
Ω

T : DdV +Pext (3.3)

The external power is therefore split in two different parts. The first (in
the left hand side of equation 3.3) represents the mechanical power, and the
second (right hand side of the same equation) represents the dissipation and
the compressibility. The two integrals are treated in the next two subsections.
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3.2.1 Mechanical power

Using momentum conservation (second equation of 2.1):

ρ
Du

Dt
= div �+ ρf (3.4)

∫
Ω

div (�) · udV =

∫
Ω

(
ρ
Du

Dt
− ρf

)
· udV (3.5)

The body force can be seen as the sum of conservative and non-conservative
body forces:

f = g+ fNC . (3.6)

The conservative body force admits a potential field G so that ∇G = g.
In the case of the usual gravity force field G = −gz, where z is the vertical
coordinate. The previous equation becomes:

∫
Ω

div (�) · udV =
D

Dt

∫
Ω

ρ

(
u2

2
−G

)
dV −

∫
Ω

ρfNC · udV (3.7)

The following definitions can be introduced:

EK :=

∫
Ω

u2

2
ρdV , EP :=

∫
Ω

−GρdV , (3.8)

where Ek is the kinetic energy and Ep the potential energy and their sum gives
the mechanical energy:

EM := EP + EK . (3.9)

The power due to the non-conservative force is defined with:

PNC :=

∫
Ω

ρ fNC · udV (3.10)

therefore ∫
Ω

div (�) · udV = PM − PNC . (3.11)

The non conservative power PNC is omitted for the rest of the thesis.

3.2.2 Compressibility and energy dissipation

The second term of the rhs of (3.3) is the internal energy time derivative ĖI. It
can be expressed as:

ĖI =

∫
Ω

T : DdV = PC − PD − PλB, (3.12)
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where the three terms in the rhs are:

PD := −2µ

∫
Ω

D : DdV

PC := −

∫
Ω

pdiv(u)dV

PλB := −λ

∫
Ω

[div(u)]2 dV

(3.13)

PD is the classical viscous dissipation term for a Newtonian fluid. PλB is
the dissipative power caused by the fluid compressibility (usally negligible
with the weakly compressible approach). The time variations of these two
components are always negative.

The third term, the power PC is associated with the fluid compressibility.
EC obtained by integration of PC can be reshaped as a potential energy using
the equation of state and the continuity equation. In the case where a simple
linear state equation is used, this term becomes:

EC = EC(ρ0) + c20

∫
Ω

[
log
(
ρ

ρ0

)
+
ρ0
ρ

− 1

]
ρdV , (3.14)

where EC(ρ0) is the internal energy value set for the fluid at rest condition. The
contribution PC to the evolution of the flow does not introduce irreversibility.

3.2.3 Global balance

Eq. (3.3) can be written, using the previous definitions, as:

−Pext + PM + PC = PD + PλB , (3.15)

i.e., the sum of the power due to the external forces, the power associated to
the reversible compressibility and the power of the inertial force is balanced
by the power dissipated by the fluid.

3.3 detailed decomposition of the viscous dissi-
pation term

This section aims at obtaining a detailed decomposition of the viscous dissipa-
tion term PD into volume and surface integrals. Using the definition of PD
(equation 3.13) and adding and subtracting the enstrophy, PD can be written:

PD = −2µ

∫
Ω

(∇u : ∇Tu)dV − 2µ

∫
Ω

ω2/2 dV . (3.16)
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To proceed in the analysis it is useful to consider the relation:

∇u : ∇Tu = ∇ · (∇uu) −∇(divu) ·u . (3.17)

Using equation (3.17) the divergence theorem can be applied to the first term
of (3.16) getting:

PD = −2µ

∫
∂Ω

(∇uu) ·ndS − µ

∫
Ω

ω2 dV + 2µ

∫
Ω

∇(divu) ·udV . (3.18)

Using some definitions:

PD = PDeform + Pω − PF , (3.19)

where the three terms in the rhs are:

PDeform = −2µ

∫
∂Ω

(∇uu) ·ndS ,

Pω := −µ

∫
Ω

ω2 dV ,

PF := −2µ

∫
Ω

∇(divu) ·udV .

(3.20)

Decomposition of the compressible term

The previous balance 3.17 consists of one boundary integral and two volume
integrals. It can be further decomposed. The divergence theorem can be ap-
plied on the last term (defined as PF), which is null in an incompressible fluid.

Considering that:

∇(divu) · u = div[div(u)u] − div2(u) , (3.21)

PF can be decomposed in:

PF = −2µ

∫
∂Ω

div(u)(u ·n)dS+ 2µ
∫
Ω

div2(u)dV , (3.22)

where the two terms in the rhs are:

P
2µ
E := (2µ)

∫
∂Ω

div(u)u · ndS ,

P
2µ
B := −2µ

∫
Ω

[div(u)]2 dV .
(3.23)

Note the following expression which will be used for numerical purposes:

PF = −P
2µ
E −P

2µ
B . (3.24)
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3.3.1 Complete expression of the dissipation term

Considering eq. 3.24, the dissipative term PD of eq. 3.19 can be reshaped as:

PD = PDeform + P
2µ
E + Pω + P

2µ
B . (3.25)

Since PDeform and P
2µ
E are obtained through surface integrals, their sum

can be written splitting them between the wall and the free-surface:

PDeform + P
2µ
E = PFS + Pwall , (3.26)

leading to this expression for PD:

PD = PFS + Pwall + Pω + P
2µ
B , (3.27)

where the four terms in the rhs are:

PFS := 2µ

∫
∂ΩF

[−(∇uu) ·n + div(u)(u ·n)]dS

Pwall := 2µ

∫
∂ΩB

[−(∇uuB) ·n + div(u)(uB ·n)]dS

Pω := −µ

∫
Ω

ω2 dV

P
2µ
B := −2µ

∫
Ω

[div(u)]2 dV ,

(3.28)

where the physical meaning of these terms are respectively: the power dissi-
pated on the free surface PFS; on the wall Pwall; the enstrophy Pω; and finally
an additional dissipation contribution linked to compressibility.

3.3.2 Note on the free-surface term

The dissipative power acting on the free surface is defined in equation 3.28 as
PFS. It becomes:

PFS = PDeformFS +P
(2µ)E
FS ; (3.29)

being the two terms adapted from the previous definitions:

P
(2µ)E
FS := (2µ)

∫
∂ΩF

div(u)u · ndS

PDeformFS := − 2µ

∫
∂ΩF

[(∇uu) ·n ]dS
(3.30)
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Other definition of PFS could be (the demonstration is given in Appendix
C):

PFS =

∫
∂ΩF

(−pu · n+ λdiv(u)u · n+ µ(ω × n) · u) dS (3.31)

The following terms can be then defined on the free surface:

PPresFS := −

∫
∂ΩF

pu · ndS ,

P
(λ)E
FS := (λ)

∫
∂ΩF

div(u)u · ndS ,

PViscFS := µ

∫
∂ΩF

(ω × n) · udS.

(3.32)

The free surface term formulated in equation 3.31 is therefore, using these
definitions:

PFS = PPresFS +P
(λE)
FS +PViscFS . (3.33)

3.3.3 Detailed balance of the conservation of energy

Once the dissipative term PD is fully decomposed, it is possible to use it in
the expression of the conservation of energy equation (3.15), recalled below:

−Pext + PM + PC = PD + PλB , (3.34)

The equation (3.28) can be rearranged with equation (3.15). Using the fol-
lowing simplifications: P(λ+2µ)

B := PλB +P
2µ
B , and PBody := Pext + Pwall

The term PBody defined in this way can be rewritten in a similar form as
PFS (details are in Appendix C):

PBody = PPresbody + P
(λ+2µ)E
body + PViscbody , (3.35)

where the three terms in the rhs are:

PPresbody := −

∫
∂ΩB

puB · ndS

P
(λ+2µ)E
body := (λ+ 2µ)

∫
∂ΩB

div(u)uB · ndS

PViscbody := µ

∫
∂ΩB

(ω × n) · uB dS

(3.36)
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The conservation of energy can be finally expressed as:

PM + PC − P
λ+2µ
B = PBody + PFS + Pω . (3.37)

In the case when there is no moving body, the dissipation is expressed
through one volume integral connected to the enstrophy and one surface inte-
gral on the free surface. This expression will be tested numerically using the
SPH methods in chapters 6 and 7.

3.4 rigid body case

If the body can be considered as rigid body, whose center of gravity moves
with a velocity VO, the velocity uB of a point belonging to the body can be
expressed as:

uB(r) = VO + ωB × (r− rO) . (3.38)

Under this assumption, the terms defined in equation (3.36) become:

PPresbody = V0 ·
∫
∂ΩB

−pndS +

∫
∂ΩB

ωB × (r− r0) · (−pn)dS =

V0 · FPresbody/fluid + ωB · TPresbody/fluid ,

PλBbody = V0 · λ
∫
∂ΩB

div(u)ndS + λ

∫
∂ΩB

ωB × (r− r0) · [div(u)n]dS =

V0 · FBbody/fluid + ωB · TBbody/fluid ,

PViscbody = −µ

∫
∂ΩB

ω × [V0 + ωB × (r− r0)] · ndS =

V0 · µ
∫
∂ΩB

(ω × n)dS + ωB · µ
∫
∂ΩB

(r− r0)× (ω × n)dS =

V0 · Fviscousbody/fluid + ωB · Tviscousbody/fluid ,
(3.39)

where the identity (A.1 in appendix) has been used.
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4 THE SPH MODEL FOR THE
NAV IER -STOKES EQUAT IONS

4.1 delta-sph equations

The δ-SPH scheme proposed by Antuono et al. (Antuono et al. 2010, Antuono
et al. 2012a) is adopted. The fluid is assumed to be barotropic and weakly-
compressible and the reference equations are the Navier-Stokes equations.

The δ-SPH scheme reads:

Dρi
Dt

= −ρi
∑
j

(uj −ui) · ∇iWij Vj + δh c0
∑
j

ψij
(rj − ri) · ∇iWij
‖rj − ri‖2

Vj ,

Dui
Dt

= −
1

ρi

∑
j

(pj + pi)∇iWij Vj + fi + ν
ρ0
ρi

∑
j

πij∇iWij Vj ,

Dei
Dt

= −
pi
ρi

∑
j

(uj −ui) · ∇iWij Vj + ν
ρ0
ρi

∑
j

πij

2
(uj −ui) · ∇iWij Vj ,

Dri
Dt

= ui ,

pi = c
2
0 (ρi − ρ0) ,

(4.1)
where ρi, pi, ui, Vi and ei are respectively the density, the pressure, the veloc-
ity, the volume and the internal energy of the i-th particle. The speed of sound
c0 is set in order to guarantee density variation smaller than 0.01ρ0. Symbol
∇i indicates the differentiation with respect to the position of the i-th particle
while fi denotes the body force acting on it. Finally, Wij is the kernel function.
In this work, unless specified differently, a Renormalised Gaussian kernel (see
e.g. Molteni and Colagrossi 2009) has been used. W has a compact support of
radius 3h, where h is the smoothing length. For h → 0 and ∆X/h → 0 (∆X be-
ing the particle mean spacing, the system (4.1) converges to the Navier-Stokes
equations (see e.g. Colagrossi et al. 2011).

The main feature of the δ-SPH scheme relies in the use of a proper artificial
diffusive term into the continuity equation in order to remove the spurious

27
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numerical high-frequency oscillations in the pressure field. The arguments of
the diffusive and viscous terms are respectively:

ψij = 2
(
ρj − ρi

)
−
(
〈∇ρ〉Li + 〈∇ρ〉Lj

)
· (rj − ri) ,

πij = K
(uj −ui) · (rj − ri)
‖rj − ri‖2

,

where K = 2(n + 2) and n is the spatial dimension of the problem at hand.
Symbol 〈∇ρ〉Li indicates the renormalised density gradient -see (Randles and
Libersky 1996) for more details. The (dimensionless) parameter δ is set equal
to 0.1 when used in the simulations.

The viscous forces are modelled through the viscous formula of Monaghan
& Gingold (Monaghan and Gingold 1983) that preserves both linear and an-
gular momenta. In system (4.1) the energy equation is uncoupled with the
momentum one and it is just used to check the conservation of the total en-
ergy of the particles system. Indeed, in absence of solid walls and external
forces system (4.1) conserves the total energy exactly (see e.g. Benz 1989). Gen-
erally, this is no longer true in presence of solid walls because of the numerical
enforcement of the boundary conditions. Then, a check on the energy conser-
vation is made a posteriori (see chapter 8).

4.2 initial particle distribution

The fluid particles are initially positioned using a “packing” algorithm de-
scribed in Colagrossi et al. 2012. Thanks to this procedure, at the initial instant
all particles have approximately the same volume, namely V0, which is equal
to the fluid domain volume divided by the number of fluid particles. Con-
sistently, the particle mean spacing is denoted by ∆x = V

1/n
0 . The average

number of particles in the kernel support is set by choosing the ratio h/∆x.
In the present work h/∆x is set equal to 1.33 which in two dimensions corre-
sponds to about 50 interacting particles.

Along with the volume distribution, the initial pressure and the velocity
fields are prescribed as well. The initial density distribution ρi(t0) is evaluated
by means of the state equation and the particle masses are computed through
the equation mi = V0 ρi(t0). The mass of the i-th particle remains constant
during the time evolution ensuring the total mass conservation of the particles
system. The volume distribution is updated in time using the density field, i.e.
Vi(t) = mi/ρi(t).
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4.3 presence of a body and enforcement of the
solid-boundary condition through a ghost-
fluid method

At continuum, the presence of a body surrounded by a fluid is given by a
boundary condition on the fluid patch. When the fluid is discretised, several
options are possible in order to impose the boundary condition, but all of them
can be expressed as a force term F

body
i in equation (4.1). Several methods

are used to evaluate this term: repulsive forces (Monaghan 1994), boundary
integral (De Leffe et al. 2011; Ferrand et al. 2013; Macià et al. 2012), and ghost
techniques (Colagrossi and Landrini 2003; Macià et al. 2011; Marrone et al.
2011a).

The ghost-fluid technique is used to enforce proper boundary conditions
on the body surface. Specifically, the solid domain is modelled through a set
of “imaginary particles” (hereinafter denoted as “ghost particles” and labelled
with the subscript “s”) and all the fluid fields (that is, velocity, pressure and
internal energy) are extended on these fictitious particles through proper mir-
roring techniques. The latter is used as a reference in the following and the
expression of Fbodyi is given by:

F
body
i =

∑
j∈solid

[
−
(
pj + pi

)
+ ρ0 νπij

]
∇iWij Vi Vj , (4.2)

in which the first term on the right-hand side represents the pressure com-
ponent and the second acts as the viscous component of the stress tensor:

F
body
i = F

p
i + Fvi ,

F
p
i =

∑
j∈solid

−
(
pj + pi

)
∇iWij Vi Vj ,

Fvi =
∑

j∈solid
ρ0 νπij∇iWij Vi Vj .

(4.3)

Different mirroring techniques are adopted to enforce different boundary
conditions (e.g., Dirichlet or Neumann conditions). To this end, the solid sur-
face is discretised in equispaced body nodes and layers of ghost particles are
disposed in the solid region. The ghost particle positions have been obtained
by using the technique described in (Marrone et al. 2011a) (see the sketch in
the left plot of figure 4.1). The pressure, velocity and internal energy assigned
to the fixed ghost particles, namely (us,ps, es), are computed by using the val-
ues obtained at specific interpolation nodes internal to the fluid and uniquely
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associated with the fixed ghost particles. Hereinafter, the interpolated values
are indicated through (u∗,p∗, e∗).

The internal energy is mirrored on the fixed ghost particles to enforce the
Neumann condition ∂e/∂n = 0, where n is the normal unit vector to the solid
profile. This means that no heat flux is allowed across the solid boundary. Sim-
ilarly, the pressure field ps is mirrored on the fixed ghost particles to enforce
the following Neumann condition:

∂p

∂n
= ρ

[
f ·n −

Dub

Dt
·n + ν∇2u ·n

]
, (4.4)

where f is a generic body force and ub is the velocity of the solid boundary
(for details see (Marrone et al. 2011a)). This leads to:

ps = p∗ +
∂p

∂n
· (r∗ − rs) (4.5)

The velocity field is subject of a specific treatment. As sketched in the right
plot of figure 4.1, the ghost velocity us depends on both u∗ and ub, the latter
being the velocity of the nearest body node. De Leffe et al. (De Leffe et
al. 2011) found that, in order to avoid inconsistencies and loss of accuracy,
different mirroring techniques have to be used to evaluate 〈∇ ·u〉 and 〈∇2u〉 .
The specific mirroring techniques treat differently the components of u∗ in the
normal and tangential direction to the solid surface (right plot of figure 4.1).

Figure 4.1.: Sketch of the ghost-fluid approach. Left: Discretization of the ghost-fluid
through ghost particles. Right: Mirroring of the velocity.

De Leffe et al. (De Leffe et al. 2011) proved that the velocity-divergence op-
erator is convergent and consistent if the normal component of u∗ is mirrored
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in the frame of reference of the solid profile, leaving the tangential component
unaltered:

〈∇ ·u〉

{
us · n = 2ub ·n − u∗ ·n ,

us · τ = u∗ · τ .
(4.6)

Conversely, to evaluate 〈∇2u〉, the velocity field has to be mirrored to approx-
imate no-slip conditions along the solid bodies. A common way (adopted
in this work) is to reverse the tangential component, leaving the normal one
unaltered:

〈∇2u〉

{
us · n = u∗ ·n ,

us · τ = 2ub · τ − u∗ · τ .
(4.7)

4.3.1 Numerical treatment of the intersection between the free surface and
the body

In order to correctly treat the intersection between the free surface and solid
boundaries, it is necessary to implement an algorithm able to determine when
a portion of the ghost-fluid region is immersed or not. To this purpose, the
condition immersed/not immersed of a ghost particle is defined by the state of
the associated interpolation node. The position of the interpolation node with
respect to the free surface is evaluated through a Level-Set function φ. The
absolute value of φ represents the distance of the interpolation node from the
free surface, namely d = |φ| (see the left plot of figure 4.2). When φ 6 0, the
node is immersed in the fluid domain and the physical quantities on the ghost
particle are obtained by using equations (4.4), (4.6) and (4.7). When φ > 0, the
interpolation node is out of the fluid domain and it is necessary to switch off
the interpolation node and the associated ghost particle.

In the case φ > 3h, the distance of the interpolation node from the free
surface is greater than the (adopted) kernel support and, consequently, all
the interpolated values are naturally zero since there are no neighbour fluid
particles. In the case 0 < φ < 3h, part of the kernel support is covered by
the fluid domain and non-physical values of p,u and e are interpolated on the
node. To identify the nodes falling within the latter case, the function ξ(x) is
introduced:

ξ(x) =
h

2

∑
i

∇Wi(x)Vi∑
j

Wj(x)Vj
. (4.8)

This function is evaluated at the node position and its value is used to decide
when an interpolation node has to be switched off. When the node is inside
the fluid and φ 6 −3h, ξ(x) is close to zero, since in equation (4.8) the nu-
merator is approximately null and the denominator is close to 1. Now, let us
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Figure 4.2.: Sketch of the procedure to identify nodes inside/outside the fluid domain.
Left: sketch of an interpolation node outside the fluid domain at distance
d from the free surface. Right: behaviour of the function ξ(x) (see eq.
(4.8)) by varying φ.

consider the case of a node on the free surface, i.e. d = 0. If the free surface
is regular and h is small enough, the free surface in the neighbourhood of
the node can be approximated with a straight line and the function ξ(x) is al-
most equal to 1/

√
π (using a renormalised Gaussian kernel). Note that, in the

neighbourhood of the free surface, ξ(x) increases almost linearly with φ (see
the right plot of figure 4.2). Then, the simplest choice would be to switch off
the nodes where ξ(x) > 1/

√
π. Unfortunately, the free surface is generally not

very regular and cannot be approximated through a straight line. Then, a con-
servative threshold for ξ has been chosen. Specifically, a node at the position
xN for which ξ(xN) = 0.8 is still considered inside the fluid. This threshold
is in agreement with the values given by Marrone et al. (Marrone et al. 2010)
who proposed a definition of the free surface in the SPH context.

Figure 4.3 displays a sketch of the whole procedure described above. The
ghost particles that have the corresponding interpolation node inside the fluid
domain are active (coloured in red in the sketch) and their physical quantities
are obtained according to equations (4.4), (4.6) and (4.7). The ghost particles
associated to nodes which are outside the fluid domain are inactive, that is,
they are not visible to the fluid particles.

4.3.2 In/outflow conditions

In free-surface continuous flows, such as open channel flows can occur, a gen-
eral boundary treatment has to be used to impose suitable in/out-flow bound-
ary conditions. In the present work the algorithm proposed by Federico et al.
2012 is adopted. The modelling permits to investigate a wide range of flow
phenomena in water streams through the initial imposition of flow characteris-
tics such as surface elevation, velocity and pressure at in/out-flow boundaries.
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Figure 4.3.: Sketch of the activated ghost particles at the intersection between the free
surface and the body surface.

It allows also the enforcement of different conditions between upstream and
downstream.

In order to assign different upstream and downstream flow conditions, two
new sets of boundary particles are defined. In all, four sets of particles are
used: fluid (f), fixed ghost (s), inflow (i) and outflow (o) particles. Similarly to
the fixed ghost particles, the in/out-flow particles affect the fluid particles but
not vice versa. The region covered by these particles is at least as wide as the
kernel radius.

Fig. 4.4 shows the initial sketch of the computational domain: different
colours are associated to different sets of particles. The flow extends along
the x-axis and is limited by an inlet and an outlet boundary. An inflow and an
outflow threshold are defined, the particles that cross these thresholds change
the set they belong to.

The use of in/out-flow particles allows the imposition of different veloc-
ity and pressure fields both upstream and downstream in the computational
domain. A constant or time variation of the water level can be assigned at up-
stream boundary, while the downstream condition is determined by the flow
evolution. Note that the use of in/out-flow particles avoids the generation
of unphysical weakly-compressibility related pressure shock waves due to the
direct creation/removal of fluid particles.

4.3.3 Evaluation of Forces and Torques using the ghost-fluid technique

To find out the formulation for global loads exerted by the fluid on solid struc-
tures, it is convenient to develop the analysis at the continuum level. The fluid
and solid domains are denoted by Ωf and Ωs respectively. The forces on solid
bodies can be evaluated by using two main approaches: the evaluation of the
forces integrating the stresses along the body surface and the technique here
proposed where, similarly to Doring et al. 2004, a volume integral over the
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3h

3h

Figure 4.4.: Initial sketch of the computational domain: different colours are associ-
ated to different sets of particles.

ghost particle domain is used. In the following the equivalence of these two
approaches is given.

Denoting by 〈T〉 the smoothed stress tensor, the global force on the body is:

Ffluid-solid =

∫
∂Ωs

〈T〉 ·ndS , (4.9)

where n is the unit outward normal to the solid profile. Assuming the flow
field to be mirrored on the solid body through a proper ghost-fluid technique,
the stress tensor can be decomposed in:

〈T〉(r) =

∫
Ωf

T ′W(r′ − r)dV ′ +

∫
Ωs

T∗W(r∗ − r)dV∗ , (4.10)

where the starred variables indicate quantities mirrored over the solid domain
Ωs. Substituting (4.10) into (4.9) and using the divergence theorem and the
symmetry properties of the kernel function, we obtain the following equality:

Ffluid-solid =

∫
Ωf

dV

∫
Ωs

(T∗ +T) · ∇W(r∗ − r)dV∗ + O(h) , (4.11)

where ∇ indicates the differentiation with respect to the position r. The terms
of order O(h) indicate the contributions due to the presence of the free surface.
These terms are small since, by definition, the tension along the free surface is
zero.
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When equation (4.11) is discretised, we get:

Ffluid-solid =
∑

i∈ fluid

∑
j∈solid

(
Tj +Ti

)
· ∇iWij Vi Vj , (4.12)

where i and j denote quantities associated with the fluid particles and the
ghost particles respectively. One of the advantages of equation (4.12) is that
it does not require interpolation on body nodes. For this reason, it is simpler
and faster to use in practical applications. Since the inner summation of (4.12)
approximates the divergence of the stress tensor, in practical simulations it is
sufficient to substitute the corresponding operator of the SPH scheme at hand.
In the present case, this leads to:

Ffluid-solid =
∑

i∈ fluid

∑
j∈solid

[
−
(
pj + pi

)
+ ρ0 νπij

]
∇iWij Vi Vj , (4.13)

in which the first term on the right-hand side represents the pressure compo-
nent and the second acts as the viscous component of the stress tensor.

The evaluation of the torque Tfluid-solid acting on the solid body can be de-
rived by using the same approach shown above. Let us consider a fixed point
r0. Then, the torque with respect to it is:

Tfluid-solid =

∫
∂Ωs

(r− r0)× 〈T〉 ·ndS , (4.14)

and, following the procedure used for the evaluation of the force, it is possible
to rearrange the above expression as follows:

Tfluid-solid =

∫
Ωf

dV

∫
Ωs

{
(r∗ − r0)×

[
T · ∇W(r∗ − r)

]
+

+ (r− r0)×
[
T∗ · ∇W(r∗ − r)

]}
dV∗ + O(h) .

(4.15)
By analogy with formula (4.2), the above equation is discretised as follows:

Tfluid-solid =
∑

i∈ fluid

∑
j∈solid

{
(rj − r0)×

[
(−pi + ρ0 νπij/2)∇iWij

]
+

+ (ri − r0)×
[
(−pj + ρ0 νπij/2)∇iWij

]}
Vi Vj .

(4.16)
The expressions derived above for the force and torque remind somehow the
technique proposed in (Monaghan et al. 2003) and (Kajtar and Monaghan
2008). However, it is important to underline that, apart from the different
enforcement of solid boundary conditions, in those cases the formulation is di-
rectly obtained from a momentum balance between the fluid and the repulsive
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body particles. Conversely, in the present case, the global loads are derived
from the evaluation of the stress tensor on the body surface by means of a
proper ghost-fluid extension in the solid region.

4.4 algorithm for handling fluid-body coupling

The solid dynamics is modelled by the Newton’s law of motion. Linear and
Angular momentum equation are given in a simple 2D framework by:

M
dVG
dt

=Mg+ Ffluid-solid ,

IG
dΩG
dt

= Tfluid-solid ,

(4.17)

where VG and ΩG are the velocity of the centre of gravity and the angu-
lar velocity of the body, M and IG are the mass and the moment of inertia
of the body around the centre of gravity and, finally, Ffluid−solid is the hy-
drodynamic force acting on the body. Here, Tfluid−solid is the projection of
the hydrodynamic torque along the unit vector k normal to the plane, that is
Tfluid−solid = Tfluid-solid · k.

The dynamical state of the fluid particles, ghost particles and body nodes
can be expressed through the vectors yf, ys and yb respectively:

yf = (. . . , ρi,ui, ri, . . .) i ∈ Fluid
ys = (. . . , ρj,uj, rj, . . .) j ∈ Solid
yb = (. . . , rk,uk,ak,nk, . . .) k ∈ Body Surface

(4.18)

Further, the dynamical state of the rigid body is expressed by:

yg = (rG,VG, θG,ΩG) (4.19)

where rG and θG are respectively the position vector of the centre of gravity
and the related angle of rotation.

The coupling between the two systems from equations (4.1) and (4.17) can
be represented by:

ẏf = Ff(yf,ys, t) , yf(t0) = yf0 ,
ẏg = Fg(yg,yf,ys, t) , yg(t0) = yg0 ,
ys = Fs(yb,yf, t) ,
yb = Fb(yg, ẏg,yb0) , yb0 = yb(t0) ,

(4.20)

where the last two equations represent, respectively, the dependence of the
ghost state (equations 4.5, 4.6 and 4.7) and of the body nodes state from the
rigid motion equations.



4.4 algorithm for handling fluid-body coupling 37

The weakly-compressible SPH equations march in time using an explicit
scheme. Then, for the sake of simplicity, the whole system (4.20) follows the
same time integration scheme. The 4th order Runge Kutta algorithm offers a
good balance between velocity and stability and has been used for integrating
the system of equations (4.20). In the latter, the acceleration of the body ap-
pears on both sides of the equations. This is common in explicit schemes for
fluid-body coupling. In potential flow solvers the body acceleration is gener-
ally taken into account through the added mass term (see e.g. Vinje and Brevig
1981), enabling to move the body acceleration term from the right-hand side
to the left-hand side. The added mass approach is also applied in other nu-
merical solvers as an under-relaxation correction in the body motion (see e.g.
Hadžić et al. 2005). Differently, in the present scheme the acceleration of the
body on the right-hand side is taken from the previous Runge-Kutta substep.
This procedure is justified by the use of a very small time-step required by the
weakly-compressible assumption, as briefly recalled below.

At the generic time instant tn, the state vector yb is determined through ẏg
(predicted at the previous Runge-Kutta substep) and yg. Then, the ghost fluid
state ys is obtained through the interpolation on the fluid particles, yf, and
the mirroring procedure (which requires yb, as discussed in 4.3). The global
loads (F, T)fluid-solid are evaluated though equations (4.12) and (4.16) and ẏg is
obtained by (4.17). Finally, the interaction between fluid and ghost particles
gives ẏf through equation (4.1). The iteration substep ends with the integration
of ẏg and ẏf to obtain respectively yg and yf at the time instant tn+1.

As far as the time integration of system (4.20) is concerned, the time step
has to account for the maximum acceleration (both body nodes and fluid par-
ticles) |a| = max(‖af‖∞, ‖ab‖∞), the viscous diffusion and the sound speed.
The time-step bounds deriving from the first two terms have been obtained
following (Morris et al. 1997):

∆t1 6 0.25

√
h

|a|
(4.21)

∆t2 6 0.125
h2

ν
(4.22)

while the third limit is derived following Monaghan and Kos 1999:

∆t 6 CFL3 min
i

[
h

c0 + ε maxj πij

]
(4.23)

For a fourth-order Runge-Kutta scheme and for the renormalised gaussian
kernel, CFL3 6 2.0 is found heuristically to ensure the stability of system
(4.20).





5 ENERGY CONSERVAT ION IN THE
SPH MODEL

5.1 introduction

In this chapter, the equations of chapter 3 are written in the discrete SPH for-
malism. This aims at evaluating numerically some relevant terms present in
the energy conservation equation and particularly those relative to the dissi-
pation. The differences between the form of the conservation of energy at con-
tinuum level and at discrete level can be understood from this chapter. The
analysis presented in this section is used in chapters 6 and 7. Some important
power balances of chapter 3 are recalled below.

The conservation of energy at the continuum level, for the fluid/body prob-
lem was defined in equation 3.15 as:

−Pext + PM + PC = PD + PλB , (5.1)

i.e., the sum of the power due to the external forces, the power associated to
the reversible compressibility and the mechanical power are balanced by the
power dissipated by the fluid.

The dissipation term PD was also decomposed at the continuum level in
equation 3.28:

PD = Pwall +PFS + Pω +P
2µ
B , (5.2)

such as PD is the sum respectively of the power dissipated on the wall, on the
free surface, the enstrophy, and finally some small dissipation linked to the
compressibility.

The first definition of the term linked to the dissipation on the free surface
was written in equation 3.29:

PFS = 2µ

∫
∂ΩF

[−(∇uu) ·n + div(u)(u ·n)]dS (5.3)

equivalent to equation 3.29 recalled below:

PFS = PDeformFS +P
(2µ)E
FS . (5.4)

In this chapter, and in the applications where the decomposition of the var-
ious power terms is attempted numerically, the delta-SPH scheme is not con-
sidered. Further details about the implications of the delta scheme in the
energy balance can be found in Antuono et al. 2015.
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5.2 sph discretization of the energy equation

Considering the particle system on the SPH model, the related mechanical and
internal energies are given as:

E SPH
M =

∑
i

(
mi
u2i
2 + mi g zi

)
,

E SPH
I =

∑
i mi ei ,

(5.5)

where the time derivative of the specific internal energy of the i-th particle is
given in equation (4.1). Therefore:

dE SPH
I

dt
= −

∑
i

∑
j

mimj

ρi ρj
pi(uj − ui) · ∇iWij+

+ µ
∑
i

∑
j

mimj

ρi ρj

πij

2
(uj − ui) · ∇iWij .

(5.6)

Following the definition given in chapter 3 at continuum and recalled in the
introduction, it is possible to define from equation 5.6 the two power compo-
nents: 

P SPH
C = −

∑
i

∑
j

mimj

ρi ρj
pi (uj − ui) · ∇iWij ,

P SPH
D+B = −µ

∑
i

∑
j

mimj

ρi ρj

πij

2
(uj − ui) · ∇iWij .

(5.7)

The first term in the right-hand side of equation 5.6 is linked to the power
component PC, due to the compressibility, and the second is connected to
viscous components PD and PB.

As shown in Colagrossi et al. 2011, it is not possible to separate the two
components PD and PλB in the SPH viscous operator and for this reason
the notation P SPH

D+B is kept in the following. Furthermore, in Colagrossi et al.
2011 it is demonstrated that the SPH viscous operator adopted in the present
scheme forces the constrain λ = µ. Therefore, the limit for the convergency of
P SPH
D+B is

lim
h→0;N→∞ P SPH

D+B = PD + P
µ
B . (5.8)

Substituting the linearised equation of state used in this work and the SPH
continuity equation in P SPH

C , after some maths it is possible to recover the the
following expression:

E SPH
C = E SPH

C (ρ0) + c20

∑
i

mi

[
log
(
ρi
ρ0

)
+
ρ0
ρi

− 1

]
. (5.9)
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Equation (5.6) can be rewritten in a compact way as:

dE SPH
I

dt
=
dE SPH
C

dt
− P SPH

D+B . (5.10)

Thanks to the symmetry property of the kernel function it is possible to
demonstrate that the system of equations (4.1) conserves exactly the energy of
the particle system (see e.g. Colagrossi et al. 2014):

dE SPH
M

dt
+
dE SPH
I

dt
= 0 (5.11)

Considering that the viscous operator used in the present SPH model is a
pure dissipative term (see e.g Violeau 2009 ) , it follows that:

dE SPH
M

dt
+
dE SPH
C

dt
= P SPH

D+B 6 0 (5.12)

therefore, the second law of thermodynamic is respected at discrete level.

Definition

With the exception of kinetic energy, potential energy and compressible energy,
the terms are defined as a power in this sections. The power terms are directly
derived from the numerical equations or from interpolations on the data (see
section 5.3). In order to quantify the dissipation of energy connected to the
different effects along a simulation, it is useful to integrate the power terms in
time. In the following ∆EYX is a notation referred to the definition:

∆EYX(t) =

∫t
t0

PYX dt . (5.13)

In the next chapters, some simulations are performed to illustrate these
terms, the energy dissipated by the particle system is made non dimensional
using the mechanical energy corresponding to the initial condition, EM0. At
the end of each simulation, the ratio ∆E SPH

D+B(tf)/EM0 provides in this way a
clear indication of the dissipation taking place during such simulation, when
no external power is given to the system.

5.2.1 Ghost fluid treatment in the conservation of energy

In the sums in previous equations, the j index runs on all particles, fluid and
ghost.
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PsolidC := −
∑

i∈fluid

∑
j∈solid

mimj

ρi ρj
pi (uj − ui) · ∇iWij,

PfluidC := −
∑

i∈fluid

∑
j∈ fluid

mimj

ρi ρj
pi (uj − ui) · ∇iWij,

PsolidV := −µ
∑

i∈fluid

∑
j∈solid

mimj

ρi ρj

πij

2
(uj − ui) · ∇iWij,

PfluidV := −µ
∑

i∈fluid

∑
j∈ fluid

mimj

ρi ρj

πij

2
(uj − ui) · ∇iWij.

(5.14)

With these definitions, the following relations are verified:

P SPH
C = PfluidC +PsolidC , (5.15)

P SPH
D+B = PfluidV +PsolidV . (5.16)

5.3 energy components through moving least square
interpolation on scattered data

In the previous section it has been shown that the main energy components
appear naturally when the continuum equations are written in the SPH for-
malism. A further decomposition can be attempted using using the Moving
Least Square (MLS) interpolation formula on the scattered particle data at each
time step. In the following, first order MLS formulae are used (see e.g. Fries
and Matthies 2004,Colagrossi 2005) in order to attempt to set similar balances
to the ones set, in chapter 3 observed at the continuum level. Through these
MLS formulae the velocity gradient, 〈∇u〉 MLS, divergence and vorticity fields,
〈divu〉 MLS, 〈ω〉 MLS can be retrieved form the SPH outputs (i.e. from the particle
positions, velocities and volumes):



〈∇u〉 MLS(ri) =
∑

j∈Fluid
uj ⊗ ∇W MLS

ij Vj ,

〈ω〉 MLS(ri) =
∑

j∈Fluid
uj ×∇W MLS

ij Vj ,

〈divu〉 MLS(ri) =
∑

j∈Fluid
uj · ∇W MLS

ij Vj ,

(5.17)
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where the Moving Least-Squares gradient ∇W MLS = [∂xW
MLS ,∂yW MLS] is

given by:
∂xW

MLS
ij = M−1

i e2 · bijWij , ∂yW
MLS
ij = M−1

i e3 · bijWij ,

bTij := [1 , (xj − xi) , (yj − yi)] , eT2 := [0, 1, 0] , eT3 := [0, 0, 1] ,

Mi :=
∑
j

[
bij ⊗ bij

]
Wij Vj .

(5.18)
In equation (5.18) the indices i and j refer to the particle indices and not to the
spatial components.

From eq. (5.17), it is possible to evaluate the power component due to the
enstrophy, P MLS

ω and the dissipation components P MLS
D , P MLS

µB . The MLS formulae
are also used for the calculation of other components, like P MLS

F , defined in
equation 3.22.

The power terms are evaluated with MLS using only the fluid particles. In-
deed, it is not straightforward to use the ghost particles since different “ghost-
velocity” fields need to be defined for different differential operators (see chap-
ter 4). Therefore the sum of the components P MLS

D and P MLS
µB is much closer to

PfluidV than to the total viscous term P SPH
D+B:

P MLS
D +P MLS

µB ≈ PfluidV . (5.19)

Indeed, the limit of these components gives:
lim

h→0;N→∞ (P MLS
D + P MLS

µB ) = lim
h→0;N→∞ PfluidV = (PD + PµB) ,

lim
h→0;N→∞ PsolidV = 0 .

(5.20)

In practice, in the next section, it is shown that the convergence of PsolidV to
zero is very slow and therefore it is convenient to take PsolidV into account in
the following decomposition (see eq. (5.16) ):

P SPH
D+B ≈ P MLS

D +P MLS
µB +PsolidV . (5.21)

Integrating in time the following relation up to final time of the simulation, tf,
holds:

∆E SPH
D+B(tf) ≈ ∆E MLS

D (tf) +∆E
MLS
µB (tf) +∆E

solid
V (tf) . (5.22)

If the spatial resolutions adopted in the SPH simulations are not fine enough,
the relation (5.22) cannot be satisfied mainly due to the numerical errors on the
MLS interpolation. Conversely when the error:
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E1 :=

[
∆E SPH
D+B −∆E MLS

D −∆E MLS
µB −∆EsolidV

]
(tf)

EM0
(5.23)

is small, this is an indication that the numerical solution starts to be good
enough and close to a convergent limit.

It is important to underline that not all the terms converge with the same
rate, for example the sum:

Pω∗ := P MLS
ω +PsolidV . (5.24)

converges much faster than P MLS
ω and PsolidV . The same holds for P SPH

D+B with
respect to (P MLS

D +P MLS
µB ) and PsolidV .

5.3.1 Free-surface terms

In section (3.3.2), it was shown how the viscous dissipation can be decomposed
in components which are volume integrals P MLS

ω , P MLS
µB and boundary integrals

like PFS on the free surface.
Considering the case where the body does not move, the dissipation PD

expressed in equation 3.28 simplifies in:

PD = PFS + Pω +P
2µ
B , (5.25)

PD, Pω and P
2µ
B can be evaluated using the MLS interpolation. For PFS,

the discrete and Lagrangian nature of SPH makes unclear the definition of a
discrete free-surface integral and its evaluation is not straightforward for the
following reasons:

1. particles belonging to the free-surface need to be detected and, as shown
in Marrone et al. 2010, this identification is not unique but depends on
the specific algorithm and from the parameters connected with it.

2. once the particles on the free surface have been collected it is necessary
to calculate the normal vector to this surface

3. if the free surface is highly fragmented, it can be difficult to perform geo-
metrical connections needed for the surface integration (see e.g. Antuono
et al. 2013)

Using the algorithm proposed in Marrone et al. 2010, a subset of particles FS
belonging to the free surface can be defined. The algorithm gives also the
evaluation of the normal vector field, and the surface integral PFS defined by
eq. 3.29 expressed at continuum level:

PFS = PDeformFS +P
(2µ)E
FS ; (5.26)
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can be approximated as:

P MLS
FS := 2µ

∑
k∈FS

[〈div(u)〉 MLS
k uk − 〈∇u〉 MLS

k uk] ·nk∆Sk (5.27)

where the length of the surface elements is simply approximated as ∆Sk =

(Vk)
1/nDim .

In this expression, the MLS interpolation is still needed to evaluate the ve-
locity gradient in Eq. (5.27). Then, the free-surface terms defined in (5.27) can
be inaccurate when the free surface is highly fragmented. In such condition,
the the surface integral PFS can be evaluated by subtraction using the energy
balance (3.30) and the relations (5.21), (5.24) :

PsubFS := P SPH
D+B − P MLS

ω∗ − 3P MLS
µB , (5.28)

where the superscript sub is used to differentiate this term to the one calculated
through (5.27). The accuracy of (5.28) is directly connected to the one of the
MLS interpolation and monitored through the relation:

E2 :=

[
∆EsubFS − ∆E MLS

FS

]
(tf)

EM0
=

[
∆E SPH
D+B −∆E MLS

ω∗ − 3∆E MLS
µB −∆E MLS

FS

]
(tf)

EM0
.

(5.29)
To give an idea, for complex cases the two monitor parameters E1, eq. 5.23,

and E2, eq. 5.29 are less than 0.10 when the numerical solutions obtained can
be considered accurate enough. In the next chapters, simple viscous cases are
used to study the behaviour of different terms. In particular, the study aims
at separating the dissipation in enstrophy from the dissipation linked with the
free surface.
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6 ATTENUAT ION OF A V ISCOUS
STAND ING WAVE

6.1 definition of the problem

The problem investigated in this section is the viscous attenuation of a stand-
ing wave in deep water condition. Periodic conditions are used for the vertical
boundaries while the sea bottom is modelled through a solid flat surface where
no-slip condition is enforced (see Fig. 6.1). The formalism used in this chapter
has been established mainly in chapters 3 and 5. Because of the deep water
condition, the bottom solid boundary has a negligible role and therefore the
vorticity field is mainly concentrated near the free surface.

Figure 6.1.: Sketch of the problem of the viscous standing wave.

The damping of viscous gravity waves has been recently studied in Antuono
and Colagrossi 2012 where an analytical solution of the linearised Navier-
Stokes equation was derived for a wide range of Reynolds numbers and water
depths. In Colagrossi et al. 2013 the same problem was considered in the
framework of the SPH model where it is shown that, using proper spatial res-
olutions and a proper number of interacting neighbours, a good agreement
between SPH and the analytical solution can be obtained. In the present work
this previous analysis is extended varying the Reynolds number and the wave
amplitude. In particular the maximum wave steepness considered in this work
is larger than the breaking limit kA = 0.68 (see e.g. Dean and Dalrymple 1991),
being A the wave amplitude and k the wave number. In this way, the effect
of breaking waves on the viscous dissipation can be also discussed for this
scenario.
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The analysis conducted in this chapter focuses mainly on quantifying the
terms PFS (associated with the free-surface deformation) and Pω (associated
with enstrophy) during the time evolution. Various combinations of the vis-
cosity Re ∈ [125− 2000] and the amplitude A of the standing wave are tested.
The amplitude of the standing wave is set through the parameter ε = 2A/L,
ε ∈ [0.1 − 0.4]. The Reynolds number for this problem is defined as Re =

H
√
gH/ν to avoid dependencies of ε on this parameter. When increasing the

amplitude and the Reynolds number, the free surface starts to break inducing
large effects on the components PFS and Pω. For this first test-case, and for all
the investigated combinations (A,Re), the term PFS remains always dominant
with respect to Pω.

In this chapter, an analysis is conducted to evaluate the importance of the
compressibility: on the global balance, and the contribution to the free surface
term PFS.

Figure 6.2.: Vorticity field for the standing wave problem for two time instants t = 0
and t = T/4, T being the linear theory period of oscillation Dean and
Dalrymple 1991.

Figure 6.2 describes the initial configuration of the problem. Here, L is the
wave length andH = L is the still water depth, the dimensionless wave number
kH is therefore equal to 2π. Note that the latter value means that the analysis
is performed in a deep water regime ( i.e. kH > π). The boundary layer of the
free surface is well visible from the vorticity fields plotted in Fig. 6.2 while the
bottom boundary layer is not visible in the range of values used because of the
deep water regime. As a consequence, the effect of the bottom boundary layer
can be neglected, hence simplifying the analysis.

The free surface is initially flat in order to simplify particle positioning. The
initial pressure and velocity fields were evaluated using the analytical solution
of Antuono and Colagrossi 2012. The initial value of the mechanical energy is
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computed and denoted as EM0. The potential energy is set equal to zero at
the initial time (i.e. EM0 = EK0).

Five Reynolds numbers and four wave amplitudes are investigated to de-
scribe different dissipation laminar regimes. The period of oscillation, T , de-
pends on the two parameters Re and ε. For high Re and small ε, T is close to
the one predicted by linear theory (Dean and Dalrymple 1991), Tlin = 2π/

√
gk.

Since kH = 2π in present example, Tlin =
√
2π
√
H/g. Taking advantage of

this,
√
H/g will be used to make time non-dimensional in some graphs.

For the SPH simulations presented in this subsection the maximum spatial
resolution adopted isH/∆x = 800 (corresponding to a total number of particles
equal to 640000) and the smoothing length is h/∆x = 2.8 (Wendland C2 kernel
is used for all the simulations in this chapter). Indeed, using these parameters
the results presented in Colagrossi et al. 2013 are close to a convergence limit.

The final time of the simulations, hereinafter tf, has been chosen (see Table
6.1) large enough so that mechanical energy is dissipated until its value is
approximately 1% of its initial value, EM0.

tf/Tlin ε = 0.1 0.2 0.3 0.4
Re = 125 2.4 1E-04 1.2E-03 3.2E-03 6.4E-03

Re = 250 4.0 1.9E-03 3.0E-03 5.2E-03 8.1E-03

Re = 500 6.4 7.2E-03 7.8E-03 1.1E-02 1.7E-02

Re = 1000 12 5.6E-03 6.3E-03 7.6E-03 1.1E-02

Re = 2000 20 6.4E-03 1.1E-02 1.1E-02 7.1E-03

Table 6.1.: Energy dissipated at the end of the simulation with respect to the initial
value EM0 : i.e. [EM0 −∆E SPH

D+B(tf)]/EM0.

When a low viscosity liquid like water is considered, the velocity field as-
sociated with a gravity wave can be considered practically irrotational and
divergence free. Therefore, such velocity field can be expressed through a po-
tential velocity, i.e., u = ∇Φ. Under these conditions, Pω is negligible and
the viscous dissipation can be expressed using only the component PFS which
becomes:

PD ' PFS ' − 2µ

∫
∂ΩF

∇∇Φ∇Φ ·ndS ' − 2µ

∫L
0
(ΦxyΦx + ΦyyΦy ) dx (6.1)

where the right hand side, is a linearised approximation valid for small ε.
This is the relation used in Lighthill 2001 (see page 234) to estimate the vis-
cous damping of water waves. This consideration highlights that, for gravity
wave dynamics, PFS is generally dominant with respect to Pω. In the next
subsections we show how those two contributions change with the viscosity
of the flow and the intensity of the velocity field given in the initial condition.
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6.2 effects of the weakly compressibility on time
evolution of the energy components

Following Colagrossi et al. 2013 the speed of sound, c0, adopted in the SPH
scheme has been set large enough to ensure the weakly compressible regime.
In particular, for the standing wave test case, c0 is set 10 times larger than
the velocity

√
gH. Figure 6.3 shows the kinetic energy decay for Re=500 and

ε = 0.1. The spatial resolution adopted is H/∆x = 800 and the speed of
sound is c01 = 10

√
gH. With these parameters the SPH solution is practically

superimposed with the analytical solution from Antuono and Colagrossi 2012

which was derived assuming the fluid as incompressible. The increase of the
speed of sound to a value c02 = 100

√
gH has therefore negligible influence on

Ek. However, the CPU cost increases of a factor 10.

Figure 6.3.: SPH kinetic energy, E SPH
K , as a function of time, for Re=500 and ε=0.1. The

SPH solution is compared with the analytical one (dashed line).

Differently from the kinetic energy EK, the potential energy, EP, is a quantity
more sensitive to the fluid compressibility. In the left plot of figure 6.4, the time
evolution of the SPH potential energy is depicted using the speed of sound c01;
E SPH
P clearly shows fluctuations due to the acoustic waves propagation. This

induces a non negligible change in the particle positions and therefore the grav-
itational potential. When increasing the speed of sound to c02, these effects
are drastically reduced (see the right plot of figure 6.4). The time evolutions of
the sum of the gravitational and compressible potential, (E SPH

P + E SPH
C ), present

a behaviour very similar to the behaviour of the kinetic energy E SPH
K . This indi-

cates that, in the weakly compressible regime, gravitational and compressible
potentials can exchange energy among each other without affecting the global
inertial evolution of the flow.
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Figure 6.4.: Left: SPH potential energy, E SPH
P , as a function of time for Re=500 and

ε=0.1 using two different speed of sounds c01 = 10
√
gH and c02 =

100
√
gH. Right: time evolutions of the sum (E SPH

P + E SPH
C ) for c01 and

c02.

6.3 high viscosity & small amplitude: re=125,
ε = 0 .1

For this case, the initial energy EM0 is almost dissipated (about 80%), by the
viscous effects, in just one oscillation cycle.

Figure 6.5 displays the evolution in time of the kinetic energy EK and the
dissipation caused by enstrophy ∆Eω. From the analytic solution of Antuono
and Colagrossi 2012, in addtion to EK(t), the enstrophy term ∆Eω(t) value
is also given. The SPH predictions are in good agreement with the analytical
ones. For this case, at the end of the simulation, the dissipation associated
with enstrophy amounts to 40% of the total dissipation. It is remarkable that,
with a so high viscosity fluid, the free-surface term is still the dominant one.

Figure 6.5.: Left: Kinetic energy, EK(t) as a function of time for Re=125 ε=0.1. Right:
Dissipation linked to enstrophy ∆Eω(t) as a function of time.
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6.4 high viscosity & large amplitude: re=125,
ε = 0 .4

Snapshots of the vorticity field are pictured in Figure 6.6. Because of the high
viscosity, the breaking of the free surface is however inhibited.

The vorticity is generated at the free surface. Indeed, the boundary con-
dition (2.13) requires ω = 2 ∂un/∂τ, which remains confined on the free-
surface boundary layer and is partially diffused in the interior of the fluid
domain during the wave oscillations. During each period, the vorticity inten-
sity decreases due to the mechanical energy dissipation.

Figure 6.6.: Vorticity field, Re=125, ε=0.4.

Compared to the previous low amplitude case, the kinetic energy ratio
∆Ek/EM0 presents a slightly less sudden decrease as well as a larger increase
in the period of oscillation (left plot of Figure 6.7). Nevertheless, also in this
case the initial energy is, to a high extent, dissipated in the first wave oscilla-
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tion. The component due to the enstrophy ∆Eω/EM0 behaves similarly, being
slightly larger just during the first cycle (right plot of figure 6.7). These results
show that the change in the amplitude, ε, has a limited effect on the behaviour
of the energy decay. The final value of ∆Eω is close to 40% of the initial en-
ergy EM0 for both amplitude ratios, ε, analysed. In next section, it is shown
that this is not the case when increasing the Reynolds number because of the
breaking wave events.

Figure 6.7.: Kinetic energy ∆Ek (top) and dissipation term ∆Eω as a function of time,
Re=125, ε= 0.4.

The energy term ∆EFS, evaluated through ∆E MLS
FS , eq. (5.27), and through

∆EsubFS , eq. (5.28) , is plotted in time in Figure 6.8. The difference between the
two plots is around 0.2% in relative terms, which means that the parameters
used for the numerical simulations allow to solve in a good way the present
test-case.

Figure 6.8.: Dissipation through the free surface term, ∆EFS as a function of time,
Re=125, ε=0.4. Direct computation, eq. (5.27), and subtraction, eq. (5.28).
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6.5 low viscosity & large amplitude: re=2000,
ε = 0 .4

For this case, large deformations of the free surface occur. They induce in the
first cycle the formation of an overturning wave and a subsequent plunging
breaking event. Some snapshots during the time evolution are reported in
figure 6.10.

The dissipative enstrophy Pω∗ and free-surface power terms PFS∗ are plot-
ted in time on figure 6.9. The time istances of each frame of the figure 6.10 are
marked by a vertical dashed line on the lower plot. During the first part of the
evolution, the dissipation is maximum at t(g/H)1/2 =1.83 and 2.89 when the
velocity of the flow is higher, and minimum at t(g/H)1/2 =2.22 and 3.72 when
the velocity of the flow is the lower. When the plunging jet of the overturn-
ing wave reaches the free surface, the free-surface power term PFS∗ suddenly
increases and shows a peak when the cavity collapses (t(g/H)1/2 =4.3). This
phenomenon of cavity creation and collapsing is linked with an enstrophy
creation and therefore the value of Pω∗ increases.

As a consequence of the change of the dynamic behaviour, the kinetic energy
and the enstrophy are not following the solution of Antuono and Colagrossi
2012 any longer as it can be observed in figure 6.11. The dissipation though
the free-surface term is not exactly the same following the two methods of
calculation, but the time histories are still comparable.

Figure 6.9.: Power relative to dissipation in enstrophy and in the free surface,
Re=2000, ε=0.4. Vertical dashed lines indicate the time instants of each
evolution picture in figure 6.10
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Figure 6.10.: Vorticity field, Re=2000, ε=0.4, H/∆x = 800
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Figure 6.11.: Kinetic energy as a function of time, Re=2000, ε=0.4.

Figure 6.12.: Dissipation through the free-surface term as a function of time, Re=2000,
ε=0.4.
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6.6 summary of the influence of the reynolds
number and the wave amplitude on the vis-
cous dissipation

In previous sections, four cases of the test matrix shown in table 6.1 have been
discussed in detail, showing how the viscous dissipation distributes between
the components ∆Eω and ∆EFS. The results of all 20 cases of that matrix
are summarised in Figure 6.13, in which ∆Eω , measured at the end of the
simulations, is plotted as a function of Reynolds number and wave amplitude.
As the wave amplitude is set larger, the enstrophy component of dissipation,
in modulus, tends to grow for all Reynolds numbers. However, this increase
sees a drastic change for the highest Reynolds, for which large breaking takes
place in the first period of oscillation. In this case, the vorticity generated by
the cavities collapse induces a large increase of |∆Eω |.

Figure 6.13.: Energy dissipation through enstrophy component ∆Eω at the end of
simulations, varying Re and ε. Dashed lines are analytical results from
Antuono and Colagrossi 2012.

6.7 details of the free-surface terms

It has been seen in chapter 3, that PFS is composed from two distinct terms
(see equation 3.29). The equation can be approximated in equation 5.27 of
chapter 5 using the MLS interpolation as:

P MLS
FS = PMLSDeformFS +PMLSFS2µE ; (6.2)



60 attenuation of a viscous standing wave

being the two terms an SPH formulation of their expression at the continuum
level:

PMLSFS2µE := 2µ
∑
k∈FS

〈div(u)〉 MLS
k uk ·nk∆Sk ,

PMLSDeformFS := −2µ
∑
k∈FS

〈∇u〉 MLS
k uk ·nk∆Sk .

(6.3)

The first term is null in an incompressible flow and should be retrieved also
using the relation 3.24.

PMLSF ≈ −PMLSFS2µE (6.4)

The two terms of the previous expression (one volume integral and one
boundary integral) compare well in figure 6.14, for the case Re=500 and ε=0.1.
This gives an indication that the computation of the compressible term P

(2µ)E
FS

is accurate.

Figure 6.14.: Decomposition of the free surface term relative to dissipation, Re=500,
ε=0.1. H/∆x=400.

It is interesting to note that the compressible part of the free surface term is
smaller than the other term, but its quantity is similar to the enstrophy in this
case. The next subsection aims at investigating whether this contribution is
lower when increasing the particle resolution and decreasing the Mach num-
ber.

6.7.1 Convergence and Mach effect on the compressible dissipative term in
the case without breaking

Figure 6.15 shows the differences of both P MLS
FS and Pω∗ when the spatial res-

olution is varied between H/∆x = 400 and 800 and Ma = 0.1 and 0.01. It
appears that the two varying factors induced a very limited effect on the plot-
ted values. The computation seems to be suffienctly resolved. As it can be
seen in the third plot of figure 6.15, when the mach number is lower, some
unphysical effects are noticed on the enstrophy.

It can be further noticed that the pure compressible part of PFS, plotted
on Figure 6.16 using its two equivalent definitions, is not more influenced by
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Figure 6.15.: Power relative to dissipation in enstrophy and in the Free Surface,
Re=500, ε=0.1.

decreasing the Mach number. Indeed, the free-surface compressible term P MLS
2µE

seems to have reached a convergence value. This aspect would need further
investigation.

6.7.2 Convergence and Mach effect on the compressible dissipative term in
the case with the overturning wave

Figure 6.17 shows the differences of both PFS and Pω∗ when the spatial res-
olution is varied between H/∆x = 400 and 800 and Ma = 0.1 and 0.01. The
cavity closure of the overturning wave is shifted in time when the parameters
are changed but the free-surface terms do not change its time history features,
except that the peak is larger when the Mach number is higher (see the zoom
on the right panels of figure 6.17).
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Figure 6.16.: Power relative to Free Surface terms decomposition, Re=500, ε=0.1.

Figure 6.17.: Power relative to dissipation in enstrophy and in the Free Surface,
Re=2000, ε=0.4.
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6.7.3 Check of the balance involving MLS interpolation

As mentioned in section 5.3, some power terms obtained directly from the
numerical scheme are expected to differ slightly from the ones obtained with
MLS interpolation. The balance shown in equation (5.23) is exposed in table
6.2 for the different conditions. They express how the energy conservation is
closed if looking at the terms similarly to what could be done at the contin-
uum level. The SPH method is conservative by itself, but some unphysical
behaviour could lead to a misbalance using equations like (5.23).

Re = 125 250 500 1000 2000

ε = 0.1 2.0E-02 1.9E-02 1.4E-02 3.0E-03 -1.8E-02

ε = 0.2 1.7E-02 1.2E-02 -1.8E-03 -2.6E-02 -5.4E-02

ε = 0.3 1.6E-02 5.8E-03 -1.2E-02 -3.4E-02 -6.3E-02

ε = 0.4 1.4E-02 3.9E-03 -1.2E-02 -4.3E-02 -1.3E-01

Table 6.2.: Ratio E1 obtained with the equation (5.23). (H/∆x = 400)

The same balance can be estimated for different particle resolutions for the
case with small amplitude ε=0.1. As expected the error decreases when the
number of particle increases, as it is seen in table 6.3.

H/∆x 100 200 400 800

E1 -0.098 -0.064 0.0144 0.0137

Table 6.3.: Ratio E1 obtained by with the equation (5.23) varying spatial resolution for
the case Re=500, ε=0.1

For the more energetic case ε = 0.4, Re=2000, the balance differs for more
than 10%. A higher spatial resolution is necessary (see 6.4). For this condition
the results for the spatial discretization H/∆x = 800 are shown in the next
subsections.

H/∆x 100 200 400 800

E1 X X -1.3E-01 -7.1E-02

Table 6.4.: Ratio E1 obtained by with the equation (5.23) varying spatial resolution for
the case Re=2000, ε=0.4

6.7.4 Check of the balance involving free-surface terms

Following the analysis and considerations of section 5.3, the free-surface term
PFS∗ can be retrieved by a boundary integral with equation (5.27) and by sub-
straction with equation (5.28). The objective of this section is to check the
correctness of the two techniques.
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The comparison is done using the balance expressed in equation (5.29). The
differences are exposed in table 6.5. Globally, the more energetic the flow is,
with breakings and high deformation, the less similar the two terms obtained
by the two definitions of the free-surface term are.

Re = 125 250 500 1000 2000

ε = 0.1 2.6E-02 1.9E-02 1.1E-02 -1.5E-03 -2.5E-02

ε = 0.2 1.8E-02 8.1E-03 -2.9E-03 -1.7E-02 -3.3E-02

ε = 0.3 9.8E-03 -5.5E-03 -2.3E-02 -2.9E-04 -1.0E-02

ε = 0.4 -2.0E-03 -2.3E-02 -3.0E-02 -2.5E-02 -8.8E-02

Table 6.5.: Difference E2 between the dissipation given by integration on the bound-
ary and the same value obtained by substraction of volume terms.

The influence of the spatial resolution is presented in table 6.6 and 6.7. For
the less energetic case, the accuracy improves largely until H/∆x=400, until it
seems to reach a plateau where the balance is almost achieved. In the most
energetic case, the comparaison is more difficult and also the most resoluted
case close the balance at 5%. This result is useful to understand the difficulty in
correctly evaluating the different dissipative terms in case of a breaking wave.

H/∆x 100 200 400 800

E2 -0.14 -0.07 0.011 0.013

Table 6.6.: Ratio E2 obtained by with the equation (5.29) for the case Re=500, ε=0.1.
Difference between the dissipation obtained by boundary integration in
the free-surface term and by substraction.

H/∆x 100 200 400 800

E2 X X -8.8E-02 4.9E-02

Table 6.7.: Ratio E2 obtained by with the equation (5.29) for the case Re=2000, ε=0.4.
Difference between the dissipation obtained by boundary integration in
the free-surface term and by substraction.



7 DAM BREAK FLOWS IN A CONF INED
DOMA IN

7.1 definition of the problem

In this section, a confined Dam Break flow is considered. The problem is a 2D
version of the experiment made by Buchner 2002 and recently the same prob-
lem has been experimentally studied in Lobovský et al. 2014. This test-case
has been extensively used for validations in literature (see e.g. Zhou et al. 1999,
Colagrossi and Landrini 2003, Ferrari et al. 2009, Marrone et al. 2012). The
interested readers may refer to Marrone et al. 2015 for a detailed analysis of
the same problem which focus on the physics and consider several numerical
methods.

Due to the high Reynolds number of the experiments, a simple free-slip
boundary condition - only tangential velocity at the boundary - is usually
used to avoid the direct simulation of the boundary layer. Three dimensional
effects are not negligible during the splashing stage, so the comparisons are
also limited in time when a 2D framework is used.

The sketch of the problem is depicted in Figure 7.1.

Figure 7.1.: Sketch of the dam-break flow against a vertical wall.

For this dam break case, two Reynolds numbers Re=
√
gHH
ν (100,1000) are

investigated (with H the initial water height and g the acceleration of gravity).
In this work a no-slip boundary condition - fluid with zero velocity relative

to the boundary is imposed on the solid walls to study the effects on the vis-
cous dissipation. A boundary layer is expected to develop along the walls. The
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results of a dam break simulation start to be close of the experimental evolu-
tion only when using the highest Re and a free-slip condition. It is expected
therefore that the simulations performed in this chapter are not similar to the
experiments.

7.2 high viscosity, re=100

The evolution of the case run with Re=100 is pictured in figure 7.2. The larger
part of the vorticity is generated on the thick boundary layer. After the fluid
patch impacts on the vertical wall, the liquid rises but the viscosity is suffi-
ciently large to impede the creation of an overturning wave. A travelling wave
is therefore generated. The end of the simulation is similar to a standard highly
viscous shallow water sloshing.

Figure 7.2.: Vorticity field, Re=100, H/∆x = 400

7.2.1 Re=100, Convergence properties of the conservation of energy

A series of simulation is performed increasing the spatial resolution. The con-
vergence properties are monitored for the mechanical energy E SPH

M /EM0 and
the mechanical power in figure 7.3. The differences between the results are
easier to notice looking at the results in power. The two cases with the higher
spatial resolution are very similar, therefore the convergence is achieved for
this case.
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Figure 7.3.: Evolution of the time history of the mechanical energy (left plot), mechan-
ical power (right plot). Re=100. Influence of the spatial resolution

The global balance of the SPH system is shown in figure 7.4, where the
mechanical, compressible and dissipative power terms are shown. The sum
of the three contributions is null because of the SPH properties (see balance
in equation 5.12). As expected, the reversible power term connected to the
weakly compressibility is limited.

Figure 7.4.: Evolution of the time history of the mechanical power, the compressible
power and the total dissipative power. H/∆x = 400, Re=100, Ma=0.1

The balance check is computed using SPH operators. No data MLS inter-
polation has been necessary. In the follow the dissipative term will be further
decomposed.
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7.2.2 Convergence of the total dissipation, effect of the ghost fluid, free-
surface term

From the energy decomposition of the SPH system, it appeared that the ghost-
fluid effect could be separated from the other components. This conducted to
express the hypotheses of equation 5.21, which is verified in figure 7.5. The
total dissipation of the SPH scheme can be divided in the dissipation P MLS

D

given by the kinematic properties of the solution and PsolidV that is the effect
of the viscous forces from the ghost fluid.

Figure 7.5.: Evolution of the dissipative power terms. H/∆x = 400, Re=100, Ma=0.1

The term linked to the ghost-fluid PsolidV is directly linked to the fact that
the Dirichlet boundary condition is smoothed close to the wall by the use of
the ghost-fluid technique. Its value decreases when the resolution is increased.
Figure 7.6 shows that the rate of decreasing is slow. But an interesting feature
is given by the bottom plot. The sum of the enstrophy power term and the
viscous power given by the ghost fluids Pω∗ converges faster. This means that
in a certain sense the dissipative power given by the viscous “ghost” forces is
equivalent to the enstrophy that would be originated by the boundary layer.

Relative importance between the dissipation in enstrophy and in the free surface
term

Energy balances and convergence properties have been checked, the dissipa-
tion is decomposed in enstrophy and Free surface in figure 7.7. Almost all the
initial mechanical energy is dissipated in enstrophy. The dissipation linked to
the free-surface term is limited proportionaly to the one obtained integrating
Pω∗.

7.3 low viscosity, re=1000

When the viscosity is lower, the water goes faster, the impact on the vertical
wall is stronger and the water column on the right of the tank evolves in
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Figure 7.6.: Evolution of the time history of the power from the viscous boundary
forces (top) and the viscous boundary forces plus the enstrophy (bottom),
increasing the resolution, Re=100.

Figure 7.7.: Energy dissipated in enstrophy and by the free-surface deformation,
Re=100.

breaking wave with high fragmentation of the free surface. The evolution is
plotted in figure 7.8.

The convergence properties of the SPH dissipative term P SPH
D+B are shown in

the left plot of figure 7.9. The discussion has to be separated for two phases of
the simulation. The convergence of the solution is achieved in the initial part of
the simulation and also during the impact on the wall. This property changes
when the plunging jet of the overturning wave touches the free surface and
creates a cavity (t(g/H)1/2 ≈ 6.25). After this feature the evolution changes
with the increasing resolution and it is not possible to achieve a convergence on



70 dam break flows in a confined domain

Figure 7.8.: Vorticity field, Re=1000, H/∆x = 800

the power term. The energy dissipated ∆E SPH
D+B/EM0 is shown for the various

spatial resolutions as shown in the left plot of figure 7.9. It can be observed
that the energy dissipated at the end of the breaking stage is the same for all
the spatial resolutions.

The convergence on the dissipative power from the boundary viscous forces:
PsolidV and the sum of the dissipative power from those effects and the dissi-
pative power of enstrophy: Pω∗ = Pω +PsolidV is detailed in figures 7.10.

Similar conclusions to those of the more viscous case can be drawn as for the
initial part of the simulation. In this timeframe, the full contribution converges
to the same solution. In the second phase, during the breaking events the
the differences in the flow evolution induces differences between the various
spatial resolutions.

The convergence of the energy dissipated in enstrophy, ∆Eω∗/EM0 is shown
in figure 7.11. At end of the breaking phase the energy dissipated in enstrophy
is very similar for the two highest spatial resolutions.
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Figure 7.9.: Convergence on the SPH dissipation term, Re=1000.
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Figure 7.10.: Evolution of the time history of the power from the viscous boundary
forces (top) and the viscous boundary forces plus the enstrophy (bot-
tom), increasing the resolution. Re=1000.

Separation of the dissipative terms, free-surface terms

The decomposition in terms of power linked to the free-surface deformation
and the enstrophy is shown in figure 7.12 for the higher spatial resolution
simulated: H/∆x = 800. The simulation is still the one presented in figure 7.8.
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Figure 7.11.: Convergence on the SPH dissipation in enstrophy, Re=1000.

The free-surface role in the total dissipation is proportionaly higher than
in the more viscous case Re=100. In the plot showing the dissipative power
terms, the vertical lines indicates the time instants of each snapshot of the flow
pictured in figure 7.8. The two methods of computing the free surface contri-
bution are giving a very similar result, although the flow is rather complex.

Figure 7.12.: Power and relative energy dissipated in enstrophy and by the free-
surface deformation, Re=1000.
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7.4 summary of the chapter

The decomposition in energy terms done at continuum and adapted to the
SPH model in the previous chapters has been tested on test cases. The results
show that the numerical model reproduces accurately the physics if the param-
eters as the discretization and the Mach number are set to certain levels. The
energy loss due to breaking has been divided into a enstrophy and free-surface
term. The relative importance of the two contributions have been identified.
Finally the effect of the presence of the ghost-fluid has been studied, showing
interesting features.





8 NONL INEAR WATER WAVE
INTERACT ION WITH FLOAT ING
BOD IES IN SPH

8.1 introduction

In this chapter five different test cases are discussed. The first one deals with a
diffraction test in which a fixed body interacts with a regular wave system. For
this problem experimental data for the forces and torque acting on the body
are available and are used for the validation of the loads on bodies, crucial for
the fluid-body coupling algorithm.

The second problem is dedicated to check the capability of the numerical
model in maintaining in time the equilibrium of a simple floating body. In
particular, it is shown that increasing the number of particles numerical errors
on the body motions are reduced.

In the third test case, the robustness of the ghost-fluid technique discussed
in section 4.3 is inspected by studying the time evolution of a complex floating
body dropped in a water tank. It is also shown that the floating body reaches
the correct static equilibrium at the end of the transient stage.

The fourth test deals with a simple floating box with a non uniform mass
distribution. At the initial conditions the box is not in equilibrium and, conse-
quently, it starts oscillating for several cycles around its equilibrium position.
The convergence of the numerical scheme is measured heuristically and the
mechanical energy exchange between the floating box and the fluid is anal-
ysed in detail.

In the final test case, the problem of a wave packet interacting with a floating
box is studied. For this case the proposed ghost-fluid technique has been
validated against experimental data available in the literature.

8.2 diffraction test on a semi-immersed triangu-
lar body

Force and torque equations (4.12) and (4.16) are tested on a diffraction test case
based on the experiments of Vugts 1968. The V-shape body is chosen for this
test. The setup of the numerical test case is given in figure 8.1. The NWT has
to be long enough in order to reach a steady-state oscillatory regime of the
forces and moments acting on the shape and avoid spurious reflections at the
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end of the tank. The depth has to be more than half wave length in order to
simulate deep water waves.

Figure 8.1.: Sketch of the 2D diffraction test case by Vugts 1968.

Seven tests have been done in a wide range of frequencies, namely 2.8 <
λ < 17, with λ = 2π/k being the wave length. The steepness of the generated
wave is fixed at kA = 0.05 (A being the wave amplitude) but, for the calculus
of the non-dimensional results, the effective value of the amplitude/steepness
is taken into account. The signals of the force and torque are characterised
by quasi-harmonic oscillations over a mean value. Figure 8.2 displays the
amplitude of these oscillations for the components of the force and the torque
and the comparison with the experiments of Vugts 1968. For what concerns the
torque, the V-Shaped body gives rise to an asymmetric oscillation at kA = 0.05.
In this case, the value reported in figure 8.2 corresponds to the maximum
displacement with respect to the mean value.

Figure 8.2.: Amplitude of the oscillations of the wave forces and torque for the diffrac-
tion test case: sway (left), heave (centre) and roll motion (right).

The overall agreement is fair though some discrepancies can be noticed. As
a further check, an inspection of nonlinear effects on the V-shaped body would
be necessary. However, in the experiments of Vugts 1968, the steepness of the
incoming wave is not accurately documented.
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8.3 floating body in rest condition

The aim of this case is to check the stability of a 2D square initially floating in
a tank in static equilibrium. The centre of gravity G of the body is the centre
of the geometric figure. The body is a 2D box of breadth 0.8L and height 0.4L.
The tank is large Ltank = 5L and the filling height is fixed to Htank = 0.7L.
This trivial floating test is used to verify the stability of the algorithm, since
the floating condition at rest generally spurs the development of instabilities,
especially close to corners. Furthermore, it often represents the first part of a
simulation involving water waves generated in a tank. Indeed, the box has to
hold steady before the first wave comes.

Figure 8.3.: Stability of 2D box at equilibrium in buoyancy condition: heave (left) and
roll motion (right)

.

The results are shown in figure 8.3 for three discretizations. The vertical
displacement shows a maximum of order O(∆x) (comparable with the spacing
between particles) that is acceptable. For the roll motion, the spurious motion
is of order 0.1 degrees for the coarser particles distribution and reduces by
increasing the spatial resolution.

8.4 drop of a complex floating body in a water
tank

In this section, a floating body characterised by a complex 2D geometry is
considered. The geometry, together with the axis and the origin are depicted
in the left upper plot of figure 8.4 for the initial condition. The body surface
presents no symmetry planes and is composed by different curved patches
(both concave and convex) that connect twelve corners. The mass of the body
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has been set equal to M = 0.1483ρL2 (where ρ is density of the fluid). The
center of gravity, G, is positioned in the forward part of the body and its
coordinates areG = [0.2683L, 0.4352L] in the system indicated in figure 8.4. The
moment of inertia with respect to G is IG = 0.01ρL4. The Reynolds number
(namely, Re = L

√
gL/ν) is equal to 2000.

The chosen values of G and M ensure that only one stable equilibrium con-
figuration exists. With respect to the initial configuration, this corresponds to
a counter-clockwise rotation of 97.7 degrees around G and an immersion of
the center of gravity equal to 0.5098L below the free surface.

Starting from the initial condition, the body is dropped with zero velocity.
Under the action of the gravity a complex water entry stage occurs (see plot
upper plots of figure 8.4). After that, the body quickly rotates and sinks. In

Figure 8.4.: Snapshots of the evolution of a complex floating body dropped in a water
tank. The geometric details of the floating body are reported on the left
upper plot. The particles are coloured according to their initial vertical
positions.
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Figure 8.5.: complex floating body dropped in a water tank. Left: time history of the
vertical position of the centre of gravity G (left) and of the rotation around
it (right).

the meanwhile, an energetic wave motion takes place inside the tank (middle
plots of figure 8.4). Due to the low viscosity adopted, the fluid motion is
slowly damped in time (lower plots of of figure 8.4). At t = 100

√
L/g the fluid

and the body are almost at rest condition. The time histories of the vertical
position of G, yG, and of the angle of rotation, θb, are reported in figure 8.5.
These plots show that the present numerical scheme is able to reach the correct
equilibrium after a complex fluid-body interaction.

8.5 oscillating floating box: convergence tests
and energy conservation

In this section the long time evolution of a simple 2D floating box is studied
in detail. The sketch of the problem is depicted in figure 8.6. The water tank

Figure 8.6.: Sketch of the 2D test case with a freely floating box with a non symmetric
mass distribution.

has a total length of 5L while the box is 0.8L× 0.4L. The centre of gravity, G, is
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Figure 8.7.: Time evolution of the vorticity field for an oscillating floating box in a
water tank (L/∆x = 800).

shifted horizontally by 0.2L and, therefore, the box is not in equilibrium in the
initial condition. The filling height, H, is equal to 0.7L. Consequently, the tank
bottom induces a relevant effect on the box motion, as well as on the wave
radiated.

The mass of the box M is set equal to M = 0.16ρL2 (ρ is the fluid density),
the momentum of inertia with respect G is IG = 0.01072ρL2 and the Reynolds
number is 5000. Because of the large value of Re, a very fine spatial resolution
is needed to correctly capture the whole vortical structures developed dur-
ing the evolution. Specifically, three spatial resolutions are adopted (namely,
L/∆x = 100, 200, 400) to simulate a time evolution up to t = 80

√
L/g. A fourth

test with L/∆x = 800 is performed but only for the first 20
√
L/g seconds. This

fine spatial resolution requires 2 millions of particles and is used to show the
evolution of the vorticity field in the first stage.

The whole time evolution is driven by the initial potential energy of the
body and the box. During the motion this is dissipated and converted into
internal energy by the viscous forces. After the fluid and the body motions
are extinguished, the box reaches the unique stable configuration, that is the
vertical position with centre of gravity immersed by 0.2L under the free surface.
In such configuration the variation of the potential energy of the box and the
fluid is respectively ∆Efluidp = 0.1MgL and ∆Esolidp = −0.2MgL. Then, the
whole dynamical system (i.e. body and fluid) dissipates an energy equal to
0.1MgL.
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Figure 8.7 shows some snapshots of the time evolution with L/∆x = 800

(the colours indicate the intensity of the vorticity field). At the beginning of
the simulation, the box starts rotating and, consequently, sheds vortexes from
the corners and irradiates waves that propagate back and forth. The vortical
structures interact with the bottom, with the free surface, and couple in dipole
structures moving in the fluid domain.

Figure 8.8.: Time evolution of a floating box in a water tank. Left: sway motion of the
centre of gravity, xG. Middle: heave motion, yG. Right: roll angle around
G, θb.

Figure 8.9.: Time evolution of a floating box in a water tank: mechanical energy of the
fluid (Efluidm , dashed line), of the floating body (Eboxm , dash-dotted line)
and of the internal energy of the fluid (Efluidint ).

Figure 8.8 shows the time histories of the floating box motion in its three
degrees of freedom. The results are obtained by using three different spatial
resolutions, namely L/∆x = 100, 200, 400. The results of Figure 8.8 show that
the data obtained with the highest resolution reach convergence. The time se-
ries yG(t) and θb(t) of figure 8.8 are used to evaluate, in L2 norm, the distance
between the results obtained with the different resolutions. The convergence
rate lays between 1 and 2. This is the usual convergence rate for the δ-SPH
model (see e.g. Antuono et al. 2010, Antuono et al. 2011, Marrone et al. 2011b)
and shows that the coupling with a rigid body dynamics does not alter such a
feature of the numerical scheme.
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Finally, an analysis of the different energy contributions of the fluid-body
system is performed. Figure 8.9 shows the time evolution of the mechani-
cal energy of the body, Eboxm , and of the fluid, Efluidm . Part of Eboxm is initially
transferred to the fluid, inducing an increase of Efluidm , while the total mechan-
ical energy of the fluid-box system, that is ETOTm = Eboxm + Efluidm , decreasing
under the action of the viscous forces. The total energy of the system, i.e.
ETOT = Efluidint + ETOTm , should be zero since no external force is doing work
on the fluid-box system. Figure 8.9 shows that the total energy evaluated by
the present model oscillates around zero but the amplitude of the oscillations
is very small. This means that errors are generally very small and proves the
accuracy of the body-fluid interaction model.

8.6 wave packet interacting with a floating body

In Hadžić et al. 2005 a detailed study of a floating body subjected to a wave
packet was carried out. In particular, experimental data were obtained in a
small towing tank of the Berlin University of Technology. The body was a
rectangular prism 10cm wide, 5cm high and 29cm long, with density relative
to water being 0.68. The body was located at x = 2.11m away from the wave-
maker, whose motion was controlled to produce a wave packet with a focusing
point at the original location of the body. Because of the long transversal
dimension of the prism, the experiments can be regarded as two-dimensional.
The time history of the three degrees-of-freedom were recorded during the
interactions with the wave packet. A sketch of the problem is depicted in
figure 8.10. The mass of the body is 0.986Kg while the moment of inertia is
14Kg · cm2 (the body is an aluminium box).

Figure 8.10.: 2D sketch of the freely floating box interacting with a wave packet).

Figure 8.11 shows the time history of the flap wavemaker angle used to
generate the wave packet. This experimental condition is appropriate to val-
idate the SPH capabilities in correctly reproducing the motion forced by the
wave packet. At the focusing point the wave packet is quite steep and has a
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Figure 8.11.: Time history of the flap wavemaker angle used for the generation of a
wave packet.

height equal to the body. Then, a nonlinear behaviour is observed in both the
resulting wave evolution and the body motion.

In Antuono et al. 2011 the present δ-SPH scheme was already validated on
the generation and propagation of wave packets. In that work, it was also
pointed out that the ratio between the wave amplitude and the particle size,
A/∆x, has to be of order of 10 to avoid overdamping. In the present test case
the resolution adopted is A/∆x = 40, that is, sufficient to correctly model the
wave packet in the numerical tank.

During the experiments the wave elevation was recorded by two fixed probes
at x = 1.65m and x = 2.66m (see figure 8.13). Figure 8.12 shows the compari-
son between SPH and the time histories of the two wave elevations recorded,
confirming the correct generation/propagation of the wave packet.

Two snapshots of the free-surface deformation and the position of the float-
ing body at time t = 7.2s and t = 7.54s are depicted in figure 8.13. The
comparison with the two experimental pictures shows a good matching be-
tween the SPH solution and the experiments during the interaction between
the wave packet and the floating body. The comparison of the time histories
of the floating motions is shown in figure 8.14.

8.7 summary of this chapter

A SPH solver has been developed for applications in the framework of NWT
(Numerical Wave Tanks) and floating bodies. To this aim, a complete algorithm
able to compute viscous and fully-coupled Fluid-Solid interactions has been
described.

No-slip boundary conditions on the solid surface are enforced through a
ghost-fluid technique. For the problems considered, the intersection between
the free surface and the solid profile has to be carefully addressed. The assess-
ment of loads acting on bodies is validated through a difficult diffraction test
case with satisfactory results.



84 nonlinear water wave interaction with floating bodies in sph

Figure 8.12.: Time histories of the wave elevation during the evolution of the wave
packet (SPH, solid line; experimental data, N). Top: x = 1.65m. Bottom
x = 2.66m.

Figure 8.13.: Free-surface deformation and position the floating body at t = 7.2s (top)
and t = 7.54s (bottom). Pictures of the experiments are reported on
the top part of the plots. The wave probes positions x1 and x2 are also
reported.
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Figure 8.14.: Time histories of the floating body motions during the interaction with
the wave packet (SPH, solid line; experimental data, N).

Stability, convergence and conservation properties of an explicit synchronous
algorithm for the full coupling between fluid and rigid bodiesare tested on
several freely-floating test cases and a final validation of the full algorithm is
performed for the interaction between a 2D box and an incoming wave packet.
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PHYS ICAL INVEST IGAT IONS





9 FLOW PAST A C IRCULAR CYL INDER
CLOSE TO A FREE SURFACE

9.1 introduction

The flow past a submerged cylinder is an old challenge in hydrodynamics.
First treated as an inviscid problem in the first part of the 20th century, Have-
lock was able, in a series of articles starting with Havelock 1927, to construct
a complete formal solution to the linear problem and to find an expression for
the lift and drag dependence on submergence and Froude number. The linear
problem was later treated in a more satisfactory way by Wehausen and Laitone
1960. According to Tuck 1965, who presented a higher order solution, linearis-
ing the problem is acceptable only if the cylinder is at a deep submergence
level compared with its own dimensions. Clearly in this case also the body
will produce small waves merely because it is a relatively distant disturbance.
There is a substantial body of work done on non-linear free-surface potential
flows around a cylinder or an obstacle (see e.g. Vanden-Broeck 1987). In par-
ticular, Scullen and Tuck 1995; Scullen 1998 showed that they had convergence
problems with their non-linear solver at certain Froude numbers (≈ 0.7) when
the cylinder got close to the free surface.

In real engineering problems there is a prevalence of viscosity effects and
wave-breaking. The potential flow assumption is not applicable. There are
engineering problems of large interest in the offshore industry where the forces
on cylinders are crucial, in particular those in which vortex-induced-vibrations
(VIV) occur Williamson and Govardhan 2004. VIV can also be used for energy
generation, with miniature and mid-size electric power generators currently
under development Ding et al. 2013; Nguyen et al. 2013. The flow dynamics of
horizontal cylinders in currents and waves is also relevant for the problem of
oil spill containment with mechanical barriers (Amini et al. 2008; Wicks 1969).

Miyata et al. 1990 did seminal experimental and numerical work on the topic.
They were able to measure how decreasing depth can induce a reduction in
drag and an increase in lift forces acting on the cylinder. The Froude numbers
(when not otherwise specified, the Froude number refers to the diameter) of
their experiments (≈ 0.24) are lower than the ones considered in later literature,
which makes their research more likely to be relevant for applications more
focused on such low speed regimes. Carberry 2002 carried out experiments
at fixed intermediate Froude (0.167) and moderate Reynolds (2100) numbers.
The deformation of the free-surface is in this case very limited, and he could
identify three flow modes depending on the cylinder submergence ratio. Each
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mode is characterised by a certain combination of lift time history pattern
and mean and instantaneous vorticity fields. Considering the range of Froude
numbers treated in this research, it will be later seen that the flow taxonomy
is going to be substantially more complex.

Sheridan et al. 1995, 1997 studied experimentally the vorticity patterns in
the wake downstream cylinders close to a free surface at moderately large
Reynolds numbers (6000-9000) and Froude numbers (0.47-0.72). They described
the presence of what they called metastable modes, meaning that two states
in the wake are possible: in the first state, a jet is generated on the free sur-
face, above the cylinder, which remains parallel to the free surface. In the
second state, the most frequent, the jet is projected downwards into the bulk
of the cylinder rear flow, interacting with the negative vorticity later generated
at the top of the cylinder. The transition between the two states occurs with
characteristic times much longer than those associated with the von Kármán
shedding.

Prof. Bernitsas and his group have been investigating the flow behind hori-
zontally submerged cylinders with the aim, as mentioned earlier, of using it to
generate electrical power. In Ding et al. 2013 they documented numerical work
conducted in deep water conditions using a finite volume solver. However, the
flow around the cylinder becomes a more challenging problem as the cylinder
gets closer to the free surface.

Using the commercial package FLUENT, Reichl et al. 2005 computed the
flow around submerged cylinders at low Reynolds number (180), with Froude
numbers equal or smaller than 0.6, and with submergence ratios between 2.5
and 0.1. They compared their simulations with the experiments by Sheridan
et al. 1995, 1997. Even with different Reynolds numbers, Reichl et al. 2005

found that the shedding patterns depended more on the submergence ratio
and Froude number than on viscous effects. As a matter of fact, Reichl et al.
2001; Reichl et al. 2003 had previously found phenomena that strongly resem-
bled Sheridan et al. 1995, 1997 metastable flows and which occurred, in their
simulations, at Reynolds numbers around 40 times lower than in Sheridan et
al. 1995, 1997 experiments.

FLUENT uses Volume of Fluid (VOF) technique to track the free surface.
This interface capturing technique can exhibit excessive diffusion when the
free surface becomes fragmented, as it is the case when the cylinder gets close
to, or intersects, the free surface. In addition, with a Eulerian technique, such
as Fluent’s finite volume, the investigation of mixing and transport properties
of the flow is not straightforward. Performing a numerical investigation with
a less diffusive Lagrangian technique thus becomes interesting.

The Smoothed Particle Hydrodynamics method presented in the previous
chapters is the numerical model that has been used to perform the simulations
in the present research.
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In all the cited literature, the cylinder is completely submerged. The dy-
namics of partially submerged cylinders is also interesting and was treated
by Triantafyllou and Dimas 1989 who discussed the stabilising effect of the
free surface on the wake of partially submerged cylinders. Due to the nature
of their analysis they considered some restrictive assumptions, the main one
being that the free surface remains flat during the evolution of the instabil-
ities. They were able to predict that the von Kármán type vortex shedding,
though blocked at intermediate Froude numbers, is again the prevalent insta-
bility above a certain Froude number. The numerical technique used in the
present work allows to verify their prediction without such a restrictive as-
sumption on the free surface. Dimas 1998; Dimas and Triantafyllou 1994 also
investigated more general cases, introducing a given initial shear flow and fol-
lowing its evolution over time with Euler equations and a with single-valued
free surface model.

Considering this literature analysis, the following questions will be investi-
gated in the present chapter:

(1) Extend existing knowledge by computing and analyzing larger Froude
numbers and lower and negative submergences cases.

(2) Investigate the mixing and transport processes in the cylinder wake when
close to a free surface, including the influence of breaking.

(3) Investigate the existence of specific instabilities.

(4) Discuss Triantafyllou and Dimas 1989 predictions regarding stability modes
at the free surface.

(5) Provide benchmark data that can be taken as a reference to be challenged
by other researchers.

The chapter is organised as follows: the physical problem is first described
by presenting the physical domain and the continuum equations. Next fur-
ther details specific to this chapter are given about the computational model.
Results are presented thereafter, comparing them withe the existing literature
when possible. Finally, some conclusions are drawn.

9.2 physical model

9.2.1 Physical problem

Two-dimensional monophasic flow around a low submergence cylinder with
diameter d, its axis parallel to the free surface and perpendicular to the incom-
ing flow is considered in this work. A sketch of the problem is depicted in Fig.
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Figure 9.1.: Case setup notation and system of reference. Reichl et al. 2005 notation is
used.

9.1 in order to introduce the notation and problem setup. Reichl et al. 2005

convention for the notation has been used. The gap h between the cylinder
top and the undisturbed free surface is taken as the measure of the cylinder
submergence. The cylinder is fixed with its center at coordinates (0,H− d/2).
Uniform inflow velocity U is imposed on x = x1.

The flow is governed by a series of non-dimensional numbers: the gap (or
submergence) ratio h/d, Reynolds number and a set of Froude numbers.

Reynolds number is defined as:

Re =
U d

ν
, (9.1)

with ν being is the liquid kinematic viscosity.
Following Sheridan et al. 1997, three different Froude numbers are defined,

depending on whether Ĥ, d, or h is chosen as characteristic length:

FrĤ =
U√
gĤ

, Frd =
U√
gd

, Frh =
U√
gh

, (9.2)

where g is the gravity acceleration. Unless otherwise specified, when referring
to the Froude number in the text, it is assumed that we refer to the Froude
number based on the diameter.

9.2.2 Boundary conditions (BCs)

A no-slip BC is imposed on the cylinder surface, ∂ΩC, while a free-slip BC is
imposed along the bottom, ∂ΩB. Along the free surface, both kinematic and
dynamic BCs should be fulfilled. The kinematic free-surface BC implies that
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while evolving with the fluid flow, the material points initially on ∂ΩF remain
on ∂ΩF. This condition fails to hold when two fronts merge during impact
events (e.g., plunging breaking wave).

At the inlet ∂ΩI, a constant velocity inlet boundary condition is imposed
and pressure is set as hydrostatic in that boundary. At the outlet downstream
boundary ∂ΩO, zero-gradient boundary conditions for pressure and velocity
fields are imposed.

9.3 computational model

9.3.1 Field equations

For of the problem proposed in section 9.2, the fluid domain is assumed to be
discretised with N fluid particles. The δ-SPH scheme presented in chapter 4 is
adopted to compute the numerical solution.

All the simulations to be discussed in this work have been run on a desk-
top PC equipped with six-core Xeon 2.33 GHz processors. The present SPH
algorithm, which has been parallelised with a simple OpenMP programming
strategy, requires a time cost of 25 µs per particle, per iteration and per core.

9.3.2 Enforcement of the boundary conditions

The ghost-fluid technique is used to enforce the boundary conditions on the
body surface. Specifically, the solid domain is modelled through a set of “imag-
inary particles” and the velocity-pressure fields are extended on these fictitious
particles through a mirroring technique (for details see e.g. Macià et al. 2012).
Different mirroring techniques can be adopted to enforce different boundary
conditions (i.e. free-slip on the bottom and no-slip on the cylinder). The de-
tails of the mirroring procedure adopted in this work are described in chapter
4.

Regarding the free-surface boundary conditions, the kinematic one is iden-
tically fulfilled as a consequence of the particle Lagrangian formalism. Re-
garding the dynamic boundary condition, in the weakly compressible SPH
formalism, such condition is implicitly satisfied in a weak sense, as demon-
strated in Colagrossi et al. 2009 for inviscid fluid and in Colagrossi et al. 2011

for viscous flow.

Inflow and outflow boundary conditions are set as in Federico et al. 2012

where suitable sets of inflow and outflow particles are defined to enforce up-
stream and downstream conditions. In the inflow boundary, pressure and ve-
locity are imposed on the particles. When fluid particles cross the outflow they
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keep their velocity and pressure until they leave the area where interactions
with other fluid particles are still possible.

9.4 numerical investigation

9.4.1 General

Due to the scope and objectives of the present research, in which very high
Froude number flows are dealt with, the size of the physical and computa-
tional domain can play a significant role in the flow physics. For this reason,
the inflow, outflow and bottom positions used in the simulations have been
thoroughly documented.

In addition, in order to get accurate results, suitable spatial resolutions have
to be set with the aim of resolving all the main vorticity scales for the selected
Reynolds number, 180. In other words, the numerical resolutions adopted
must be sufficient to achieve, within reasonable bounds, convergent results.
As high-quality variable resolution SPH formulations are not available yet for
this type of problem, the same particle size applies over all the whole domain.

Considering these two aspects, analyses have been performed in order to:
firstly; find a compromise on the domain size so that the computational effort
is kept under control and, secondly; checking convergence by increasing the
number of particles for two representative cases.

The techniques used to assess the influence of the computational domain di-
mensions and the number of particles on the results were to examine vorticity
fields, the streamlines and the lift and drag coefficients time histories.

Since the focus of the present work is on the physics of flow and not on nu-
merical aspects of the simulations, these analyses are documented in appendix
9.9.

In the plots, lift and drag forces have been made non dimensional using the
relations:

CL(t) =
L(t) − B

0.5 ρ d U2
, CD(t) =

D(t)

0.5 ρ d U2
, (9.3)

where L(t) and D(t) are the instantaneous lift and drag values, computed as
described in Bouscasse et al. 2013a; Marrone et al. 2013. As can be appreciated
in equation (9.3), in order to evaluate the lift coefficient, a constant hydrostatic
vertical force, B, (corresponding to undisturbed free-surface condition buoy-
ancy) has been subtracted from the computed lift time history. Note that for
the half-submerged cases, this buoyancy B is set to half the one corresponding
to submerged cases. Time histories of forces have been treated by a low-pass fil-
ter in order to remove oscillations given by the weakly compressible approach.
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9.4.2 List of case studies

As mentioned in the introduction, a renowned work on the numerical analysis
of the flow around a cylinder beneath a free surface is the one carried out dur-
ing Reichl 2001 PhD thesis, which led to influential publications such as Reichl
et al. 2005; Reichl et al. 2001; Reichl et al. 2003. Test conditions considered in
this thesis and related publications, all with Re = 180, have been collected
and are summarised in Fig. 9.2. The conditions have been assigned a different
marker depending on the type of flow. On one side, for large gap ratios, vortex
shedding was observed by Reichl and colleagues, suggesting that the flow has
strong similarities with unbounded cylinder flow. The shedding was shown to
be blocked as the cylinder approaches the free surface. It must be highlighted
that, in order to block the shedding for low Froude number, it is necessary to
get closer to the free surface than is the case when higher Froude numbers are
considered. For some intermediate Froude number cases, metastable states (as
described in the Introduction) were observed.

In the same Fig. 9.2, the cases considered in the present research have been
added. As it can be appreciated, these cases extend the research of Dr. Reichl
and colleagues to larger Froude numbers and to negative submergences (half-
submerged cases) keeping the Reynolds number as 180. The motivation for
the Reynolds number choice is threefold:

1. For Re = 180, no significant 3D effects in the flow are expected (Barkley
and Henderson 1996), which allows us to state that 2D simulations can
capture the dynamics. Since the analysis is wide, keeping computational
effort within reasonable limits is paramount and 2D simulations are a ma-
jor advantage in these regards.

2. The aim is to resolve all the vorticity scales (to conduct a DNS) in the
flow. This would be extremely difficult (maybe impossible at this stage)
if a larger Reynolds number had been chosen. It has to be accounted
that a free-surface flow with no surface tension is resolved, for which the
suitability of turbulence models is questionable.

3. And last but not least, there is a substantial body of literature on this
problem, led by Reichl and colleagues, which can serve as a reference for
present work.

The cases are organised around the following main four sequences:

1. The first sequence looks at the effect of submergence on the flow char-
acteristics for Frd = 1, higher than the range considered by Reichl and
colleagues (see Fig. 9.2). Since the numerical technique used, SPH, is
capable of modelling more complex free-surface dynamics (strong break-
ing and fragmentation) when compared to FLUENT VOF technique used
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Figure 9.2.: Summary of the cases simulated classified by Frd and h/d. Re = 180.
Green (and blue) are conditions presented in Reichl 2001; Reichl et al.
2005; Reichl et al. 2001; Reichl et al. 2003. Red points are the conditions
tested in the present work.

by Dr. Reichl and colleagues, gap ratios equal to zero or even negative
values (tangent and intersecting the undisturbed free surface) have been
investigated.

2. The second sequence looks at the impact that Froude number has on the
cylinder wake and downstream free surface shape for a fixed submergence.
Froude numbers as high as 2.0 are investigated, extending the previously
existing literature. A submergence ratio of h/d = 0.55 was chosen for
this sequence based on the fact that Reichl and colleagues discussed some
cases with this submergence in detail.

3. It is advanced now that interesting flow types have been found when inves-
tigating sequence number 2. The natural follow-up is therefore to assess to
what extent these flows occur when the cylinder is half-submerged, thus
motivating this third sequence, which mimics the previous one but setting
h/d = −0.5.

4. Again, based on what has been found in previous sequences, it was de-
cided that it would be relevant for the research to investigate the flow
dependence on the cylinder submergence, like in sequence 1, but at the
highest Froude number Frd = 2.0.

5. Finally, some isolated points have been chosen in order to revisit some of
the cases for which the metastable regime was found by Reichl et al. 2005.
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The analysis to be conducted hereinafter follows the order in which these se-
quences have been introduced. It has to be stressed that although the emphasis
will be on the flow characteristics, drag and lift coefficient time histories will
be also provided. The aim is that this study will serve as reference data so that
other solvers can either better confirm or challenge the present results.

Different types of flows will be identified later in the chapter. In order to
name them in a compact way they will be labeled with 3 letters: the first letter
will refer to the type of flow around the cylinder: K (von Kármán), C (coanda),
M(metastable) and B (cylinder surface acting as a barrier for the free-surface
streak lines). A second letter will be used for designating the free-surface
pattern: F (Flat) S(Spilling) P(Plunging). Finally, a third letter will be used
for describing the interaction between vorticity from cylinder and from FS:
I(Interaction) R(Recirculation zone under FS) V(large vortex). More details on
these flow types will be given, and the labeling will be used in the summary
of all cases.
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Frd h/d Ĥ/d FrĤ
1 2.5 6 0.41

1 2.0 6 0.41

1 1.5 6 0.41

1 1.0 6 0.41

1 0.5 6 0.41

1 0.0 6 0.41

1 -0.5 6 0.41

Table 9.1.: Sequence 1: influence of submergence on flow characteristics: numerical
test matrix. Re = 180 in all cases. Particle resolution: ∆x/d = 0.01 .
Domain horizontal limit: x1/d = −11 and x2/d = 26

9.5 sequence 1: influence of submergence on
flow characteristics at intermediate-high froude
number Frd = 1

Case studies have been considered setting Frd = 1.0 and looking at several
gap ratios, h/d, from deep submergence cases to free surface piercing ones.
A list of these cases, using the notation of Fig. 9.1, is presented in Table 9.1.
The most representative of these cases are discussed in detail in the following
sections.

9.5.1 Large gap ratio (deep submergence), h/d = 2.5 (KSN)

The analysis starts with the case with the deepest cylinder position. Looking at
the flow features, a clear von Kármán vortex shedding pattern is observed (Fig.
9.3) with a Strouhal number, St=0.21, slightly larger than the unbounded flow
reference, St∞ = 0.191, obtained using a particle vortex method (see Rossi
et al. 2015 for details). The cylinder wake induces the formation of a small
spilling breaker at the free surface. The vorticity generated with that breaking
is diffused in a narrow region close to the free surface, which prevents it from
interacting with the cylinder wake. Such small-scale breaking events resemble
those, induced by a free-surface drift layer, studied by Dimas 2007.

Due to the vortex shedding the mixing is intense and similar to that observed
in cylinder unbounded flows (see Fig. 17 in Marrone et al. 2013). However, the
transversal expansion of the detached vortices does not occur due to their
confinement between the free surface and the channel bottom. Even though
the mixing is intense, the upper layers of water (coloured in blue) remain close
to the free surface, consistently with the aforementioned absence of interaction
between free-surface and cylinder wake vorticity fields.
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Figure 9.3.: Influence of submergence on flow characteristics: h/d = 2.5, Frd = 1.
(Flow label KSN) Streaklines (top) and vorticity field (bottom) plots,
t(g/d)0.5 = 68. Dimensionless vorticity curl(u)

√
d/g scales from -2 (blue)

to 2 (red).

The drag coefficient is reasonably stable (Fig. 9.4), with a value, 1.58, which
is higher than the reference one for unbounded flow domain, 1.28±0.036 Rossi
et al. 2015. This value, 1.28, is labeled as CD∞ to be used, hereinafter, to
normalise the drag coefficient. As later discussed in appendix 9.9, the presence
of the free surface and the bottom modifies the forces around the cylinder
and justifies the divergence between the value obtained in this case and the
reference unbounded domain solution.

The net lift value is zero (Fig. 9.4), as is to be expected considering the large
distance between the cylinder and the free surface. The lift coefficient oscilla-
tions rms is approximately 0.66, reasonably close to the value 0.59 obtained in
the unbounded condition.

9.5.2 Moderate gap ratio (intermediate submergence), h/d = 1.5 (KSI)

As for h/d = 2.5, a clear vortex shedding pattern originating from the cylin-
der is observed (Fig. 9.5) and the Strouhal number grows very slightly (0.23

compared to 0.21 for h/d = 2.5). The breaking intensity at the free surface
is larger, compared to h/d = 2.5, and cyclical plunging breaking events take
place (similarly to the ones observed by Landrini et al. 2007) (see movie pro-
vided as supplementary material). It is relevant to mention that these breaking
events are an important additional vorticity generation mechanism, as can be
appreciated in the bottom panel of Fig. 9.5.
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Figure 9.4.: Influence of submergence on flow characteristics: drag and lift coefficient
time histories, h/d = 2.5, Frd = 1, Re = 180 (solid line) compared to
unbounded domain reference solution (dashed line), obtained with the
DVH method described in Rossi et al. 2015.

Figure 9.5.: Influence of submergence on flow characteristics: h/d = 1.5, Frd =
1. (Flow label KSI) Streaklines (top) and vorticity field (bottom) plots,
t(g/d)0.5 = 75. Dimensionless vorticity curl(u)

√
d/g scales from -2 (blue)

to 2 (red).
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Figure 9.6.: Influence of submergence on flow characteristics: h/d = 1.5. En-
larged view of the vorticity field behind the cylinder, t(g/d)0.5 =

25.6; 26.2; 26.6; 27.6. Dimensionless vorticity curl(u)
√
d/g scales from -4

(blue) to 4 (red).

Figure 9.7.: Influence of submergence on flow characteristics: drag and lift coefficient
time histories. h/d = 1.5, Frd = 1.
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It is notable that the vorticity originated by the breaking interacts in a com-
plex way with the cylinder wake, something that does not happen for the
previous deeper case. This can be appreciated in the zoomed view of Fig. 9.6
in which, in order to better appreciate the vorticity flow details, its color range
has been doubled. As a consequence of this vorticity interaction, the mixing
is intense, with substantial entrapping of the free-surface layers in the bulk of
the domain (see top part of Fig. 9.5). It is important, at this point, to bring for-
ward the groundbreaking linear stability analysis of Triantafyllou and Dimas
1989, in which, the role of the free surface was included. Due to the limita-
tions of their model, however, they wer not able to capture the instabilities
arising from breaking and could not explain these strong interactions between
breaking waves and cylinder wake vorticity fields.

Regarding forces, mean drag remains at the same value of the previous
case, even if its time behaviour is not sinusoidal (left panel of Fig. 9.7). Lift
periodic oscillations are reduced in amplitude (right panel of Fig. 9.7), but are
still present, consistent with the still prevailing alternate vorticity shedding
regime.

9.5.3 Small gap ratio (low submergence), h/d = 0 .5 (CSV)

The von Kármán vortex shedding from the cylinder surface is blocked as h/d
is reduced from 1.5 to 0.5 and a Coanda-like flow develops (Fig. 9.8). Moreover,
the cylinder wake is deflected downwards “attracting” a jet of material from
the free surface, projecting it into the bulk of the fluid. The cylinder wake is
almost steady. A similar behaviour for smaller gap ratio (0.25) and Froude
number (0.6) is documented by Reichl et al. 2005 (§3.7.3).

In this particular case, the free surface shows unsteady behaviour due to
the cyclical onset of breaking waves which gives rise to vorticity of both signs.
The vortices combine with each other resulting in a complex wake behind
the cylinder. In particular, large positive vortices develop on the far wake
region (see upper part of Fig. 9.8) by merging approximately 3 consecutive
vortices originating from the free surface. This successive merging induces an
accumulation of vorticity which continues until this vortical structure reaches a
certain size and magnitude, being then advected downstream and downwards
(see detailed description in Fig. 9.9). This phenomenon will be referred to as a
“meta-vortex”.

A sequence of frames corresponding to instants whose difference is the un-
bounded flow vortex shedding period (i.e. St−1∞ ) is presented in Fig. 9.10.
It cannot be inferred from this short sequence that the shedding of these
meta-vortices occurs with full periodicity. If that were the case, and based on
the present simulation, its Strouhal number would be around 3 times smaller
(around 0.08) than the individual vortex generation in the free surface. Due to
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Figure 9.8.: Influence of submergence on flow characteristics: h/d = 0.5, Frd = 1.
(Flow label CSV) Streaklines (top) and vorticity field (bottom) plots,
t(g/d)0.5 = 50. Dimensionless vorticity curl(u)

√
d/g scales from -2 (blue)

to 2 (red).

Figure 9.9.: Meta-vortex formation: h/d = 0.50, Frd = 1.0, t(g/d)0.5 = 39, 43, 47,
51, 55, 59 (from left to right and top to bottom). Dimensionless vorticity
curl(u)

√
d/g scales from -4 (blue) to 4 (red).
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Figure 9.10.: Meta-vortices, Frd = 1-h/d = 0.5, from top to bottom: t(g/d)0.5 =
12.4+ 5+ 5+ .....

the demanding computational effort to confirm this, it is left for future work
to conduct longer simulations.

It is interesting to think of this process of merging vortices as resembling the
cyclone formation process, something Ritchie˙Holland˙MWR˙2014˙cyclogenesis
investigated, discussing how vorticity produced by different sources accumu-
lates to form larger structures leading to tropical cyclones in the north western
Pacific.

To our knowledge, this form of instability has not been previously reported
in the literature. It must be said that since the cylinder wake is almost steady,
and the unsteadiness of the far-wake region is induced by the breaking, this
case cannot be considered as a metastable configuration. However, these large
downstream meta-vortices share some similarities with the far wake patterns
in metastable states briefly described by Reichl et al. 2003.

Regarding forces, periodic lift oscillations disappear, consistent with the fact
that alternate vorticity shedding is blocked, and a substantial net negative lift
appears (see Fig. 9.11). Drag seems to oscillate in the last part of the simulation
with a period similar to the large meta-vortices. The drag coefficient mean
value is 1.52, slightly lower than the previous cases.
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Figure 9.11.: Influence of submergence on flow characteristics: drag and lift coeffi-
cient time histories. h/d = 0.5, Frd = 1.

9.5.4 Null gap ratio (tangency), h/d = 0 (CFR)

This is a quite challenging case from the computational point of view since the
cylinder top is in contact with (tangent to) the undisturbed free surface. It was
not treated by Reichl et al. 2005.

A Coanda-like flow is established in this case, with the cylinder bottom wake
being significantly deflected (Fig. 9.12) and a layer of fluid getting attached to
the top part of the cylinder to be projected downwards at the rear of the cylin-
der. However, this jet does not reach great depths, remaining close to the free
surface. Due to this, the large recirculation area that is formed downstream
remains close to the free surface, gets stretched, and is slowly advected down-
stream without mixing with the bulk of the fluid. A typical length of around
15 diameters can be assigned to this area, which is of the same order as the
length of the steady unstable recirculation bubble, obtained for this Reynolds
number for unbounded cylinder flows by Fornberg 1985.

The vorticity generation is quite stationary (bottom panel of Fig.9.12) leading
to basically constant drag and lift time histories. Compared to all previous
submergences, drag drops and the net negative lift is larger and quite constant,
as can be seen in Fig. 9.13.

9.5.5 Negative gap ratio (half-submerged cylinder), h/d = −0.5 (BSI)

This is a difficult case, not treated by Reichl et al. 2005. The first distinct
flow feature that can be appreciated (Fig. 9.14) is that the cylinder acts as
a barrier for the free-surface particle trajectories and the fluid does not flow
over the obstacle, whose top part remains dry. This behaviour resembles that
of mechanical containment systems for oil spills, as those discussed by, e.g.
Amini et al. 2008; Wicks 1969. Regarding the wake, very small vortices are
generated which are convected downstream, leaving a quite stable stretched
recirculation area.
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Figure 9.12.: Influence of submergence on flow characteristics: h/d = 0, Frd = 1.
(Flow label CFR) Streaklines (top) and vorticity field (bottom) plots,
t(g/d)0.5 = 75. Dimensionless vorticity curl(u)

√
d/g scales from -2

(blue) to 2 (red).

Figure 9.13.: Influence of submergence on flow characteristics: drag and lift coeffi-
cient time histories. h/d = 0, Frd = 1.
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Figure 9.14.: Influence of submergence on flow characteristics: h/d = −0.5, Frd =
1. (Flow label BSI) Streaklines (top) and vorticity field (bottom) plots,
t(g/d)0.5 = 75. Dimensionless vorticity curl(u)

√
d/g scales from -2

(blue) to 2 (red).

This stabilizing effect of the free surface on the wake of partially submerged
cylinders has been discussed in detail by Triantafyllou and Dimas 1989. They
extended linear stability analysis to problems with a free surface. They ex-
plained that the presence of the free surface may help to stabilize the wake
of a half submerged cylinder, transforming (at certain Froude numbers) the
unbounded flow von Kármán vortex shedding absolute instability into a con-
vective instability. According to Triantafyllou and Dimas 1989, above a certain
threshold, Frd = 1.77, this effect would not take place and the absolute in-
stability of staggered von Kármán type vortex shedding would be recovered.
It must be borne in mind that Frd is 1.0 in this case, well below the referred
threshold.

It is also notable that small amplitude propagating waves are generated
downstream of the cylinder, travelling a short distance downstream before
getting quickly damped. They can be appreciated in the top panel of Fig. 9.14.

As for h/d = 0, the vorticity generation is again quite stationary (bottom
panel of Fig.9.14) leading to basically constant drag and lift time histories.
Drag drops again, compared to all previous submergences, and a large net
negative lift is generated, as can be seen in Fig. 9.15.

9.5.6 Influence of submergence on flow characteristics: summary

The free-surface elevation mean and root-mean-square (rms) bars (computed
in all instances for this paper after subtracting the mean), for the considered
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Figure 9.15.: Influence of submergence on flow characteristics: drag and lift coeffi-
cient time histories. h/d = −0.5, Frd = 1.

Figure 9.16.: Variation of the free-surface profile with submergence: Frd = 1.0.

cases, are displayed in Fig. 9.16. When observed together, it is interesting that
the largest downstream free -surface positive elevation occurs for the deepest
submergence. Regarding the wave trough, its depth grows as the submergence
is reduced. This fact is qualitatively in agreement with the observations by
Duncan 1983 for a submerged hydrofoil (see Fig. 3 in such reference).

Coming back to Fig. 9.16, the largest volume of displaced liquid corresponds
to h/d = 0, indicating that a significant amount of kinetic energy from the
incoming flow is transformed into potential energy through the creation of the
recirculation area (see again Fig. 9.12).

A summary of computed forces can be seen in Table 9.2 and graphically
in Fig. 9.17, including rms bars. The drag coefficient tends to stabilise as
submergence increases, laying above the deep water conditions reference value
1.28±0.036 Rossi et al. 2015, a fact that is explained on the basis of the presence
of the bottom and the free surface. The drag coefficient drops monotonically
as submergence gets smaller, reaching a minimum of 0.45 for h/d = −0.5.
This tendency is qualitatively in agreement with low Froude number flows
observations by Miyata et al. 1990.
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h/d Re Frd CD CD/CD∞ CL CLrms St St/St∞
-0.5 180 1.0 0.45 0.35 -0.74 0.06 - -
0.0 180 1.0 1.26 0.99 -1.00 0.06 - -
0.5 180 1.0 1.52 1.19 -0.48 0.06 - -
1.0 180 1.0 1.46 1.14 -0.17 0.12 0.30 1.55

1.5 180 1.0 1.54 1.21 -0.08 0.38 0.23 1.22

2.5 181 1.0 1.58 1.24 -0.02 0.57 0.21 1.10

Table 9.2.: Sequence 1: results summary for submergence dependence analysis at
fixed Frd = 1.0. Mean values of CD and CL reported. All cases Re = 180

Figure 9.17.: Variation of horizontal and vertical force coefficients with submergence:
Frd = 1.

Such qualitative agreement with Miyata et al. 1990 also holds for the lift co-
efficient, whose net value is negligible for large submergences and negative as
the cylinder approaches the free surface. The rms of the lift coefficient is also
presented in Table 9.2. The value, 0.57, obtained at h/d = 2.5, compares reason-
ably well with value of 0.59 of Rossi et al. 2015, corresponding to unbounded
flow conditions.

Regarding the Strouhal number, it is slightly larger than the unbounded flow
reference value of 0.191 obtained with the DVH method described in Rossi et
al. 2015. The normalised Strouhal, based on that value, presents a maximum
of 1.55 at h/d = 1.0 and shedding stops for lower submergences. These results
are coherent with those found by Reichl et al. (see Reichl et al. 2005 Fig. 8) for
lower Froude numbers (between 0.25 and 0.40, compared to 1.0 in the present
study).
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9.6 sequence 2: influence of froude number on
flow characteristics at moderate submergence:
h/d = 0 .55

A set of tests has been carried out varying Frd, from 0.3 to 2.0, setting the
submergence ratio h/d = 0.55. This gap ratio was given substantial attention
by Reichl et al. 2005, since for this and lower ratios, metastable states were
described.

The channel depth has been varied in order to keep FrĤ not larger than 0.5.
The computational domain has been made longer for high Froude number
cases in order obtain enough information to properly analyze the wake. A
summary of the cases analysed is presented in Table 9.3. Specific discussion of
selected cases, among these, follows, starting with the lowest Froude number
one.

Frd h/d Ĥ/d FrĤ x1/d x2/d

0.3 0.55 7 0.11 -8 26

0.6 0.55 7 0.23 -8 26

0.8 0.55 9 0.27 -10 26

1.0 0.55 11 0.30 -10 26

1.2 0.55 11 0.36 -10 26

1.6 0.55 11 0.48 -18 36

2.0 0.55 16 0.50 -18 36

Table 9.3.: Sequence 2: case studies with varying Frd and h/d = 0.55. In all the
simulations ∆x/d = 0.02.

9.6.1 Low Froude number: Frd = 0.3 (KFI)

Streaklines and vorticity fields for one arbitrary instant in the simulation are
presented in Fig. 9.18. As can be appreciated, the free surface hardly gets
deformed, with the flow resembling that of a cylinder close to a no slip wall,
something discussed in detail by Reichl et al. 2005. This case, h/d = 0.55, Frd =

0.3 was actually considered by Reichl et al. 2005 (see Fig. 3(b) in their paper).
They did not provide a scale for their vorticity field but, from observation of
the figures, the qualitative agreement can be deemed good. It can be inferred
that this Froude number was chosen by Reichl et al. 2005 because they indicate
it approximately marks the boundary between low- and high-Froude number
cases. It has to be borne in mind that their Froude number range went up to 0.6.
Since that range is extended to 2.0 in the present analysis, more nuances can
be introduced regarding the characterization of Froude number regimes: low
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Figure 9.18.: Influence of Froude number on flow characteristics: h/d = 0.55, Frd =
0.3. (Flow label KFI) Streaklines (top) and vorticity field (bottom) plots,
t(g/d)0.5 = 149.6. Dimensionless vorticity curl(u)

√
d/g scales from -0.8

(blue) to 0.8 (red).

Figure 9.19.: Influence of Froude number on flow characteristics: drag and lift coeffi-
cient time histories. h/d = 0.55, Frd = 0.3.

(Frd = 0.3), intermediate (0.3 < Frd 6 0.6), intermediate-high (0.6 < Frd 6 1.2),
high (1.2 < Frd 6 1.6), and very high (Frd > 1.6).

Drag and lift coefficients time histories are shown in Fig. 9.19. The alternate
shedding is responsible for the periodic behaviour of these coefficients that
show a Strouhal number very similar to the unbounded reference value. The
normalised mean value of the drag coefficient is 1.26. A slightly net negative
lift value of -0.26 is obtained, which presents oscillations with an rms of 0.6,
similar to the unbounded flow reference value of Rossi et al. 2015.
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9.6.2 Intermediate Froude number: Frd = 0.6 (CFR)

As the Froude number moves from 0.3 to 0.6, the physics changes dramatically.
The free surface remains almost flat, as for Frd = 0.3, but the von Kármán
vortex street onset is completely blocked (see Fig. 9.20). A recirculation area is
formed just behind the cylinder and close to the free surface. This circulating
fluid is slowly advected and diffused downstream close to the free surface,
without getting mixed with the bulk of the fluid.

As can be appreciated in Fig. 9.20, layers of positive vorticity are gener-
ated at the free surface and at the bottom of the cylinder, enclosing a layer of
negative vorticity originating from the top part of the cylinder. The layer of
negative vorticity is weakened through its interaction with the positive vortic-
ity generated at the free surface. This kind of dynamics is described in detail
by Brøns et al. 2014 for a case with the same Froude number and slightly
smaller submergence ratio.

The cross annihilation between the negative vorticity originating from the
cylinder boundary and the positive one from the free surface results in a dis-
tinct wake, which, according to Reichl et al. 2005, can be associated to the
existence of metastable states. Actually, Sheridan et al. 1997 found metastable
states for the same Froude number Frd = 0 .6 and for submergence ratios
0 .75 > h/d > 0 .24, within which, the present case, h/d = 0 .55, falls.

This case, h/d = 0 .55, Frd = 0 .6, was considered by Reichl et al. 2005

(see vorticity field in Fig. 3(d) in their paper). As for Frd = 0 .3, they did not
provide a scale for their vorticity field. However, comparing their results and
the bottom panel of Fig. 9.20, the qualitative agreement can be deemed good.

A similar vorticity flow structure to the one corresponding to this case was
described in section 9.5.4, for the case with Frd = 1, and similar submergence
h/d = 0 .5. In that case, large meta-vortices were generated, something which
suggests that some relationship between the metastable states and the large
meta-vortices could exist. This aspect deserves further investigation.

Drag and lift coefficients time histories are shown in Fig. 9.21. Since the
shedding has been blocked, the periodic behaviour in the coefficients has van-
ished. There are however some low frequency oscillations of the drag coef-
ficient (normalized Strouhal of 0.14) that could be related to an underlaying
connection with the metastable states. In contrast, the lift coefficient becomes
approximately constant after an initial transient. The normalised mean value
of the drag coefficient is 1.12 and the lift coefficient is -0.3.

9.6.3 Intermediate-high Froude number: Frd = 1.2 (CPV)

A different dynamics emerges as Frd grows from 0.6 to 1.2, keeping h/d fixed
at 0.55 (see Fig. 9.22). Although no vortices are shed from the cylinder, the
positive vorticity generated by the spilling breaker, at the free surface, builds
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Figure 9.20.: Influence of Froude number on flow characteristics: h/d = 0.55, Frd =
0.6. (Flow label CFR) Streaklines (top) and vorticity field (bottom) plots,
t(g/d)0.5 = 300.0. Dimensionless vorticity curl(u)

√
d/g scales from -2

(blue) to 2 (red).

Figure 9.21.: Influence of Froude number on flow characteristics: drag and lift coeffi-
cient time histories. h/d = 0.55, Frd = 0.6.
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Figure 9.22.: Influence of Froude number on flow characteristics: h/d = 0.55, Frd =
1.2. (Flow label CPV) Streaklines (top) and vorticity field (bottom) plots,
t(g/d)0.5 = 150. Dimensionless vorticity curl(u)

√
d/g scales from -2

(blue) to 2 (red).

up a large positive meta-vortex behind the cylinder which is then advected
downstream. A similar dynamics was also identified in sequence one, for
Frd = 1.0 and h/d = 0.5 (see section 9.5.3), which approximately falls between
these two cases (Frd = 0.6− 1.2, h/d = 0.55). Although these meta-vortices
are not strictly periodic, its approximate Strouhal number is around 0.05 (see
videos provided as supplementary materials), which is around 4 times smaller
than St∞.

It is notable that vorticity generated by the breaking processes is not ac-
counted for in Triantafyllou and Dimas 1989 free-surface flows linear stability
analysis. However, as previously discussed, such vorticity plays a key role in
the development of this meta-vortex instability type.

Drag and lift coefficients time histories are shown in Fig. 9.23. Both coeffi-
cients display a quite stable behaviour. However, some low amplitude subhar-
monics can be appreciated in the drag, possibly related to the meta-vortices
dynamics. The normalised mean value of the drag coefficient is 0.98 with a
net negative lift of -0.18.

9.6.4 High Froude number: Frd = 1.6 (CPI)

Moving to even a higher Froude number, the unsteadiness of the problem
grows and the large meta-vortices dynamics is less noticeable since the down-
stream convection is too fast for the vortices to merge from one breaking event
to the next. For this reason, the prevalent regime consists of vortex pairs gener-
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Figure 9.23.: Influence of Froude number on flow characteristics: drag and lift coeffi-
cient time histories. h/d = 0.55, Frd = 1.2.

Figure 9.24.: Influence of Froude number on flow characteristics: h/d = 0.55, Frd =
1.6, t(g/d)0.5 = 108. (Flow label CPI) Streaklines (top) and vorticity
field (bottom) plots. Dimensionless vorticity curl(u)

√
d/g scales from

-2 (blue) to 2 (red).

ated through breaking being advected downstream, with moderate transport
of mass from the free surface to the bulk of the fluid (Fig. 9.24).

Drag and lift coefficients time histories are shown in Fig. 9.25. Their values
are essentially constant after a short initial transient. The normalised mean
value of the drag coefficient is 0.81 while net lift is close to zero.

9.6.5 Very high Froude number: Frd = 2.0 (KPI)

This is the case with the strongest dynamics. Interestingly, a von Kármán
street vortex type instability is recovered, which increases the unsteadiness
and complexity of the flow (Fig. 9.26). Positive vortices detaching from the
bottom of the cylinder merge with same sign vortices originating at the free
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Figure 9.25.: Influence of Froude number on flow characteristics: drag and lift coeffi-
cient time histories. h/d = 0.55, Frd = 1.6.

Figure 9.26.: Influence of Froude number on flow characteristics: h/d = 0.55, Frd =
2.0, t(g/d)0.5 = 80. (Flow label KPI) Streaklines (top) and vorticity
field (bottom) plots. Dimensionless vorticity curl(u)

√
d/g scales from

-2 (blue) to 2 (red).

surface. This merging projects material from the bottom parts of the fluid
domain towards the free surface, creating complex mixing patterns.

As discussed in section 9.5.5, Triantafyllou and Dimas 1989 explained that
for a half-submerged cylinder, above a certain threshold, Frd = 1 .77 (Frd/2 =

2 .5 if the Froude number is based on the cylinder radius, as it is Triantafyllou
and Dimas 1989 case), the von Kármán street vortex is again the prevalent
instability type. This transition seems to happen, with the present case sub-
mergence, h/d = 0 .55, also in the range of Frd between 1.6 and 2.0. This
statement is supported by the fact that the von Kármán instability is prevalent
for Frd = 2 .0 while that is not the case for previous example, Frd = 1 .6,
which is below Triantafyllou and Dimas 1989 threshold. Considering that Tri-
antafyllou and Dimas 1989 linear stability analysis refers to a half submerged
cylinder, it becomes relevant to investigate whether the transition found for
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Figure 9.27.: Influence of Froude number on flow characteristics: drag and lift coeffi-
cient time histories. h/d = 0.55, Frd = 2.0.

h/d = 0 .55 also takes place for the half submerged case (h/d = −0 .5). A
section treating this matter is included later.

Drag and lift coefficient time histories are shown in Fig. 9.27. The fact that
the vortex shedding is recovered has a noticeable effect in these coefficients,
with low amplitude high frequency oscillations and a normalised Strouhal of
0.98. The mean value of the drag coefficient is 0.92 and the lift coefficient
presents small amplitude oscillations whose rms is approximately 0.07.

9.6.6 Froude number flow dependence summary

Regarding the wake structure, the von Kármán vortex shedding that has been
found to occur for low Froude numbers (Frd ≈ 0.3), is blocked for intermediate
and high Froude numbers (0.6 6 Frd 6 1.6) and is recovered for very high
Froude numbers (Frd ≈ 2). A similar behaviour, in a different context, occurs
for tilted cylinders piercing a free-surface Meunier 2012.

The free-surface elevation mean and rms intervals for the considered cases
are displayed in Fig. 9.28. As can be seen, the amplitude and wave-length
of the free-surface deformation grow with the Froude number. These are
facts qualitatively consistent with the increase, for displacement hulls, of wave-
making resistance with Froude number (see e.g. Lewis 1989).

A summary of computed forces can be seen in Fig. 9.29. The drag coefficient
slightly diminishes as Froude number increases. Lift coefficient follows the
opposite trend, with even weaker variations. A global explanation for these
trends is, at this stage, not available. Working on it is left for future study.
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Figure 9.28.: Variation of the free surface profile with Froude number. h/d = 0.55

Figure 9.29.: Variation of horizontal and vertical force coefficients with Froude num-
ber for fixed h/d = 0.55.

h/d Re Frd CD CD/CD∞ CL CLrms St St/St∞
0.55 180 0.3 1.61 1.26 -0.26 0.60 0.20 1.03

0.55 180 0.6 1.44 1.12 -0.30 0.03 - -
0.55 180 0.8 1.26 0.98 -0.25 0.03 - -
0.55 180 1.0 1.13 0.89 -0.25 0.01 - -
0.55 180 1.2 1.19 0.93 -0.18 0.03 - -
0.55 180 1.6 1.03 0.81 -0.02 0.03 - -
0.55 180 2.0 0.92 0.72 -0.06 0.07 0.19 0.98

Table 9.4.: Sequence 2: Froude number flow dependence summary: h/d = 0.55.
Mean values of CD and CL reported.
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Frd h/d Ĥ/d FrĤ x1/d x2/d

2.0 -0.50 14 0.53 -18 36

1.6 -0.50 9 0.53 -18 36

1.0 -0.50 6 0.41 -11 26

0.6 -0.50 6 0.24 -8 26

0.4 -0.50 6 0.16 -8 26

Table 9.5.: Sequence 3: case studies with half-submerged cylinder and varying Frd.
∆x/d = 0.02 in all cases.

9.7 sequence 3: influence of froude number on
flow characteristics for the half-submergence
condition

As discussed in section 9.6.5 a transition in the kind of shedding occurs be-
tween Frd = 1 .6 and Frd = 2 .0 for h/d = 0 .55, with the von Kármán street
vortex being recovered in the latter, as predicted by Triantafyllou and Dimas
1989 linear free-surface stability analysis for a half-submerged cylinder. This
fact has motivated the inclusion of a sequence with h/d = −0 .5 and some
cases with h/d = 0. The ones corresponding to h/d = −0 .5 are specifically
discussed in this section while those corresponding to h/d = 0 are just labeled
when results are globally taxonomised later. In order to improve the readabil-
ity it has been found convenient to start the discussion of this sequence by the
highest Froude number case, moving down to smaller Frd cases.

9.7.1 Very high Froude number: Frd = 2.0 ((C/K)PI)

Coming to the case with Frd = 2.0, the fluid flows on top of the cylinder and
a jet is formed. Although some flapping in the vorticity layers detaching from
the cylinder can be appreciated (see Fig. 9.30), the von Kármán street vortex
does not take place and most of the vorticity that is advected downstream is
generated by consecutive plunging breakers.

Regarding drag and lift, the coefficients are quite stable, with a drag coeffi-
cient around 0.5 and a zero lift coefficient (see Fig. 9.31). The reduction in drag
coefficient, from around 1.0 for h/d = 0.55 to CD = 0.5 for h/d = −0.5, can be
partially attributed to the fact that a significant part of the flow detaches from
the cylinder surface, as can be appreciated in Fig. 9.30. As a final comment for
this case, the very short duration of the initial transient is a distinct feature to
be highlighted when comparing this case to the rest in the test matrix.
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Figure 9.30.: Influence of Froude number on flow characteristics: h/d = −0.5, Frd =
2.0, t(g/d)0.5 = 142.40. (Flow label [C/K]PI) Vorticity field (bottom)
plots. Dimensionless vorticity curl(u)

√
d/g scales from -3 (blue) to 3

(red).

Figure 9.31.: Influence of Froude number on flow characteristics: drag and lift coeffi-
cient time histories. h/d = −0.5, Frd = 2.0.
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Figure 9.32.: Influence of Froude number on flow characteristics: h/d = −0.5, Frd =
1.6, t(g/d)0.5 = 150. (Flow label [B/C]PI) Streaklines (top) and vorticity
field (bottom) plots. Dimensionless vorticity curl(u)

√
d/g scales from

-3 (blue) to 3 (red).

Figure 9.33.: Influence of Froude number on flow characteristics: drag and lift coeffi-
cient time histories. h/d = −0.5, Frd = 1.6.

9.7.2 High Froude number: Frd = 1.6 ((B/C)PI)

For Frd = 1.6, the flow is non-periodic. A layer of positive vorticity is gener-
ated at the bottom part of the cylinder, interacting downstream with the free
surface breaking structures (see bottom panel of Fig. 9.32). The right-top part
of the cylinder presents an intermittency phenomenon and becomes dry in
some stages of the process (see top panel of Fig. 9.32 and video provided as
supplementary material). This intermittency is reflected in both the lift and
drag curves, which present significant oscillations lacking a periodic pattern
(see Fig. 9.33). If a Fourier analysis is performed on the drag coefficient time
history, the typical normalised Strouhal number of these oscillations is 0.13.
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Figure 9.34.: Influence of Froude number on flow characteristics: h/d = −0.5, Frd =
0.6. (Flow label BFR) Streaklines (top) and vorticity field (bottom) plots,
t(g/d)0.5 = 200. Dimensionless vorticity curl(u)

√
d/g scales from -1

(blue) to 1 (red).

9.7.3 Moderate Froude number: Frd = 0.6 (BFR)

The case with Frd = 1.0 was already discussed as part of sequence number
one in section 9.5.5. This is the reason for the jump between Frd = 1.6 and the
present section Frd = 0.6.

The streaklines and vorticity graphs are shown in Fig. 9.34. A small recircu-
lation area is formed behind the cylinder, bounded by a thick layer of positive
vorticity. The cylinder resembles a flow barrier that, unlike for Frd = 1, does
not efficiently work as such. Actually, the particles at the free-surface just flow
under the cylinder and form the recirculation area. The subsequent particles
do not stay in that recirculation area but are advected downstream and come
back to the free surface without being mixed with the bulk of the fluid, nor
transported to low depth zones (see movie provided as supplementary mate-
rial).

The positive vorticity layer creates a significant suction on the cylinder, lead-
ing to a negative lift coefficient of approximately -0.58. Lift presents slight
oscillations, which can be related to the ones observable in the vorticity layer
(see again movie).

The flow is overall radically different to the one corresponding to the same
Froude number but with a submergence ratio h/d = 0.55, discussed in section
9.6.2, in which a jet of surface particles was projected into the cylinder wake.
In that case, the drag coefficient reached a value of 1.5, while in this case it
falls to around a value of 0.25, the lowest amongst all the analyzed cases.
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Figure 9.35.: Influence of Froude number on flow characteristics: drag and lift coeffi-
cient time histories. h/d = −0.5, Frd = 0.6.

Figure 9.36.: Influence of Froude number on flow characteristics: h/d = −0.5, Frd =
0.4. (Flow label BFI) Streaklines (top) and vorticity field (bottom) plots,
t(g/d)0.5 = 600. Dimensionless vorticity curl(u)

√
d/g scales from -1

(blue) to 1 (red).

9.7.4 Low Froude number: Frd = 0.4 (BFI)

The last case discussed in this half-submerged configuration sequence corre-
sponds to a Froude number Frd = 0.4. A change in the flow pattern from 0.6
to 0.4 is noticeable in Fig. 9.36. In the latter, the cylinder quite effectively acts
as a barrier for the transport downstream of the free surface fluid particles.
The recirculation area is now formed upstream of the cylinder and positive
vorticity is generated in this recirculation area.

Regarding force coefficients, the transient period is long for this case (see
supplementary material movies). Drag coefficient tends to a value around
0.35 while lift coefficient reflects the mild suction generated by the positive
vorticity layer below the cylinder, oscillating around a value of -0.25.
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Figure 9.37.: Influence of Froude number on flow characteristics: drag and lift coeffi-
cient time histories. h/d = −0.5, Frd = 0.4.

Figure 9.38.: Variation of the free surface profile with Froude number. h/d = −0.5

9.7.5 Influence of Froude number on flow characteristics for the half-submergence
condition: summary

The free-surface elevation mean and rms intervals for the considered cases are
displayed in Fig. 9.38. A downstream shift, with growing Frd, of the minimum,
is visible, as was the case for the sister sequence 2 (see Fig. 9.28). Although,
overall, the tendencies observed for h/d = 0.55 have survived when moving
to the half-submerged condition, the difference between 1.6 and 2.0 profiles is
now larger.

Force coefficients have been plotted in Fig. 9.39. The tendencies observed
for h/d = 0.55 of decaying CD with Frd do not hold for the half-submerged
case, in which the drag coefficient experiences moderately low variations, with
values much lower than those of h/d = 0.55. Lift coefficient is significantly dif-
ferent too, with significant negative values due to the suction of the positive
vorticity generated below the cylinder and discussed when presenting the in-
dividual cases.
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Figure 9.39.: Variation of horizontal and vertical force coefficients with Froude num-
ber for fixed h/d = −0.5.

h/d Re Frd CD CD/CD∞ CL CLrms St St/St∞
-0.5 180 0.4 0.35 0.27 -0.24 0.06 - -
-0.5 180 0.6 0.25 0.19 -0.58 0.09 - -
-0.5 180 1.0 0.40 0.31 -0.66 0.08 - -
-0.5 180 1.6 0.48 0.37 -0.44 0.09 0.03 0.13

-0.5 180 2.0 0.54 0.42 -0.11 0.03 - -

Table 9.6.: Sequence 3: Froude number flow dependence summary: h/d = −0.5.
Mean values of CD and CL reported.
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Frd h/d Ĥ/d FrĤ x1/d x2/d

2 1.0 16 0.50 -18 36

2 1.5 16 0.50 -18 36

2 2.5 16 0.50 -18 36

Table 9.7.: Sequence 4: influence, at very high Froude number, of submergence on
flow characteristics: test matrix. ∆x/d = 0.02 in all cases.

9.8 sequence 4: influence of submergence on
flow characteristics at very high froude num-
ber, Frd = 2 .

This is the fourth and last sequence considered in the present work (see Fig.
9.2). It replicates the initial sequence of section 9.5 but doubles the Froude
number, from 1.0 to 2.0. The motivation for this sequence is to understand
how this increase in the Froude number affects the dynamics across differ-
ent submergences. Some of these very high Froude number cases, namely
those corresponding to the sequences 2 and 3, have been discussed in those
sequences and therefore, only the ones not considered there are treated in this
section. A list of these new cases, using the notation of Fig. 9.1, is presented
in Table 9.7. Those with the same submergence of the cases discussed in detail
in sequence one, are treated next.

9.8.1 Large gap ratio (deep submergence), h/d = 2.5 (KSN)

A very noticeable von Kármán street vortices wake has been found for this
case (see Fig. 9.40), analogous to the one discussed for the same submergence
case with Frd = 1 in section 9.5.1. The periodicity of the wake is reflected in
the force coefficients: the normalised drag coefficient is 0.82 compared to 1.24

for Frd = 1.0. The rms of the lift also drops, from 0.57 to 0.18. By contrast,
the Strouhal number remains similar, very close to the reference unbounded
conditions value. (see Fig. 9.41).

Regarding the free surface shape, while it remains almost flat for Frd = 1,
a long and large amplitude wave is found for Frd = 2.0, whose length is in
agreement with potential flow theory for deep condition water waves obtained
from linear dispersion relation (see e.g. Dean and Dalrymple 1991).

9.8.2 Moderate gap ratio (intermediate submergence), h/d = 1.5 (KSI)

The von Kármán street vortices wake occurring for the deepest submergence
case persists as we move to a smaller submergence, h/d = 1.5 (see Fig. 9.42).



9.8 sequence 4: influence of submergence on flow characteristics at very high froude number, Frd = 2 . 127

Figure 9.40.: Influence of Froude number on flow characteristics: h/d = 2.5, Frd =
2.0. (Flow label KSN) Streaklines (top) and vorticity field (bottom) plots,
t(g/d)0.5 = 100.0. Dimensionless vorticity curl(u)

√
d/g scales from -2

(blue) to 2 (red).

Figure 9.41.: Influence of submergence on flow characteristics: drag and lift coeffi-
cient time histories. h/d = 2.5, Frd = 2.
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Figure 9.42.: Influence of Froude number on flow characteristics: h/d = 1.5, Frd =
2.0. (Flow label KSI) Streaklines (top) and vorticity field (bottom) plots,
t(g/d)0.5 = 70.0. Dimensionless vorticity curl(u)

√
d/g scales from -2

(blue) to 2 (red).

Figure 9.43.: Influence of submergence on flow characteristics: drag and lift coeffi-
cient time histories. h/d = 1.5, Frd = 2.

They were also present for the same submergence case with Frd = 1. Similar
tendencies for the force coefficients and shedding frequency found for h/d =

2.5 are also present in this submergence (Fig. 9.43).
Regarding the free surface shape, a significant amplitude trough is notice-

able just downstream from the cylinder, larger than the one found for Frd =

1 .0, with a more intense breaking taking place at the free surface.

9.8.3 Influence of submergence at very high Froude number Frd = 2 on flow
characteristics: summary

The free-surface elevation mean and rms intervals for the cases corresponding
to sequence 4 in Fig. 9.2 are displayed in Fig. 9.44. It comprises not only



9.8 sequence 4: influence of submergence on flow characteristics at very high froude number, Frd = 2 . 129

Figure 9.44.: Variation of the free-surface profile with submergence: Frd = 2.0.

the data of the two cases that have been presented but those which belonged
to the intersection between sequences 2-3 and 4. A very consistent trough, of
around one diameter amplitude downstream from the cylinder, is noticeable
across all submergences considered. According to the variability interval, the
unsteadiness is at it maximum for the case with h/d = 0.5. The free-surface
profiles were radically different for the sister sequence number 1 presenting
then a much larger variability across the range of considered submergences,
as can be appreciated looking at Fig. 9.16.

Regarding the forces, a summary of computed forces can be seen in Table
9.8 and graphically in Fig. 9.45, including bars for the oscillation amplitudes.
The drag coefficient increases slightly with submergence, from 0.5 for h/d =

−0.5 to approximately CD = 1.0 for h/d = 0.5, remaining basically constant
for larger submergences. The behaviour was similar for Frd = 1 (see Fig.
9.17) but the value found there for the larger submergences was approximately
1.5, equally closer, but above the unbounded cylinder case. This difference
suggests that we may have to go to much larger submergences for Frd = 2.0
to approach the unbounded domain limit.

The lift coefficient is slightly negative for h/d 6 0 and close to zero for the
rest of submergences. This value presented a more complex behaviour for
Frd = 1, consistent with the fact that the flow presented a larger variability.

Regarding the Strouhal number, while slightly larger values than the un-
bounded flow condition reference values were found at Frd = 1.0 in the pre-
vious case, here they are very similar and stable across the different submer-
gences.
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Figure 9.45.: Variation of horizontal and vertical force coefficients with submergence:
Frd = 2.

h/d Re Frd CD CD/CD∞ CL CLrms St St/St∞
-0.5 180 2.0 0.54 0.42 -0.13 0.03 - -
0.0 180 2.0 0.69 0.54 -0.35 0.03 - -
0.6 180 2.0 0.92 0.72 -0.06 0.07 0.19 0.98

1.0 180 2.0 0.89 0.70 -0.09 0.11 0.20 1.03

1.5 180 2.0 0.98 0.76 -0.04 0.17 0.20 1.04

2.5 181 2.0 1.05 0.82 -0.01 0.18 0.20 1.07

Table 9.8.: Sequence 4: results summary on flow dependence on submergence at very
high Frd = 2.0. Mean values of CD and CL reported.
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9.9 influence of the computational domain size
and resolution on the results

9.9.1 Channel depth

A first set of tests with varying channel depth, aimed at evaluating the influ-
ence of the bottom position on the dynamics, is considered. A representative
intermediate, Frd = 1 .0, as well as the maximum Froude number considered,
Frd = 2 .0, have been chosen, with h/d = 0. A summary of channel depths
analysed, assuming the notation of Fig. 9.1, is presented in Table 9.9.

Ĥ/d h/d Re FrĤ Frd x1/d x2/d ∆x/d

4 0 180 0.50 1 -11 26 0.04

6 0 180 0.41 1 -11 26 0.04

11 0 180 0.30 1 -11 26 0.04

20 0 180 0.22 1 -11 26 0.04

44.5 0 180 0.30 2 -18 36 0.04

22.5 0 180 0.42 2 -18 36 0.04

15.5 0 180 0.51 2 -18 36 0.04

9 0 180 0.67 2 -18 36 0.04

Table 9.9.: Dimensions of the computational domain: influence of the channel depth,
Ĥ. Numerical tests matrix with fixed Frd = 1.

For cases with Frd = 1, the results for drag and lift curves are shown in
Figure 9.46 where it can be appreciated that drag coefficient curves are similar
in shape but their values present significant variations if FrĤ is larger than
0.3. These differences are explained on the basis of the influence that the
presence of the bottom has on the flow, deforming the streamlines (see Fig.
9.47). However, looking at that same figure, such influence can be considered
not so significant in regards to the type of flow that appears in the wake.

Regarding cases with Frd = 2.0, drag coefficient shows little dependence
with FrĤ and if FrĤ 6 0.5 the channel depth does not seem to influence the
value of the lift coefficient (see Fig. 9.48). Considering this brief analysis,
simulations have been conducted with a maximum value of FrĤ = 0.42 for
low and moderate Frd cases and with a maximum value of FrĤ = 0.5 for high
Frd cases.

9.9.2 Inflow and outflow boundaries

Regarding the positions of the inflow and outflow boundaries, the presence
of the cylinder in the flow creates waves that propagate downstream and up-
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Figure 9.46.: Dimensions of the computational domain: influence of the channel
depth, Ĥ. Drag and lift coefficient time histories (Froude number
Frd=1.0).

Figure 9.47.: Dimensions of the computational domain: influence of the channel
depth, Ĥ. Enlarged view of the vorticity field and streamlines around
the cylinder at Frd = 1.0 and h/d = 0: Left FrH = 0.42, right FrH = 0.30.
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Figure 9.48.: Dimensions of the computational domain: influence of the channel
depth, Ĥ. Drag and lift coefficient time histories (Froude number
Frd=2.0).

Ĥ/d h/d Re FrĤ Frd x1/d x2/d ∆x/d

6 0 180 0.41 1 -11 26 0.04

6 0 180 0.41 1 -16 26 0.04

6 0 180 0.41 1 -8 34 0.04

Table 9.10.: Influcence of the inflow and outflow position, Frd = 1: test matrix.

stream. The position of the boundaries must be such that, on one hand, the
homogeneity of the inflow velocity is guaranteed and, on the other, the wake
and downstream free surface shape are not affected by the outflow boundary
position.

In order to verify such matters, a set of numerical tests has been considered,
with Frd = 1 and h/d = 0 and 0.4. The channel depth is also fixed, H/d = 6.
A summary of the cases analyzed is presented in Table 9.10.

The Drag and Lift obtained are plotted in Fig. 9.49. The position of the
outflow modifies the time history but has only a small effect on the mean
value.

The influence of the inflow and outflow boundary position has also been
analyzed in another condition, namely for Frd = 0.55 and h/d = 0.4. This
condition is quite significant since it was the focus of a dedicated analysis by
Reichl et al. 2005. The tests are summarised in Table 9.11.

The drag and lift coefficients obtained are plotted in Fig. 9.50. Again, the
position of the outflow boundary modifies the time history but has only a mi-
nor effect on the mean value. Considering both analyses, the simulations have
been conducted with inlet boundaries verifying that x1/d 6 −8 and outlet
ones with x2/d > 26.
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Figure 9.49.: Influence of the position of inflow and outflow: close up view of the
drag and lift coefficient time history.

Ĥ/d h/d Re FrĤ Frd x1/d x2/d ∆x/d

6.9 0.4 180 0.21 0.55 -8 26 0.04

6.9 0.4 180 0.21 0.55 -21 26 0.04

6.9 0.4 180 0.21 0.55 -11 36 0.04

Table 9.11.: Influence of the inflow and outflow position, Frd = 0.55: test matrix

Figure 9.50.: Drag and lift coefficient time histories. Influence of the inflow/outflow
boundaries position.
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9.9.3 Numerical resolution

It could be argued that the previous sections discussion on influence of the do-
main size could be affected by the particle resolution. This question is closely
related to the convergence of the numerical scheme. A set of checks have been
devised with the following characteristics:

1. Frd = 1.0, h/d = 0, fixed channel depth Ĥ/d = 6, inlet/oulet boundaries at
x1/d = −11, x2/d = 26, respectively, and two different particle resolutions:
∆x/d = 0.01, 0, 02, 0.04.

In Fig. 9.51 the time histories of the drag & lift coefficient for these cases
are plotted. Both coefficients appear to have converged, with negligible
differences between ∆x/d = 0.01 and ∆x/d = 0.02 curves. From this, it can
be deemed that ∆x/d = 0.02 could be enough to perform the simulations.
Since the increase in computational cost, due to using a larger number of
particles, is, in some cases, admissible, full computations discussed have
been carried out with either ∆x/d = 0.02 or with the finest resolution,
∆x/d = 0.01.

Figure 9.51.: Drag and lift coefficient time histories. Influence of the spatial resolution
(Froude number Frd=1.0).

2. Frd = 2.0, h/d = 0, fixed channel depth Ĥ/d = 9, inlet/oulet boundaries at
x1/d = −18, x2/d = 36, respectively, and two different particle resolutions:
∆x/d = 0.02, 0.04.

In Fig. 9.52 the time histories of the drag & lift coefficients for Frd = 2.0
cases are plotted. There is some difference in the drag coefficient while
the lift coefficient for both resolutions fits within a narrow band. The
results can be considered close enough to justify the use of a resolution of
∆x/d = 0.02 for high Froude number cases. This means it is not necessary
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to resort to ∆x/d = 0.01, which would be too computationally demanding
due to the domain sizes required for these high Froude number cases.

Figure 9.52.: Drag and lift coefficient time histories. Influence of the spatial resolution
(Froude number Frd=2.0).

9.10 summary of the chapter

This study has examined two-dimensional monophasic flow past a horizontal
circular cylinder intersecting, or close to, a free surface at low Reynolds num-
ber, 180. It has looked at low, moderate and large Froude number (between
0.3 and 2.0), based on the cylinder diameter. The numerical technique used
has been the meshless method Smoothed Particle Hydrodynamics. The de-
tached flow pattern dependence on the submergence of the cylinder and on
the Froude number has been investigated. Vorticity, mixing processes, vortex
generation patterns, free-surface breaking, and drag/lift coefficient behaviour
have been discussed. Taking advantage of the Lagrangian nature of the solver,
mixing processes have been documented with more detail than previous stud-
ies.

An analysis based on varying the cylinder submergence has been carried out
fixing the Froude number to a value of one. For large submergences the flow
has been found to behave similarly to unbounded flows, with von Kármán
street of vortices developing at a frequency comparable to classic unbounded
flows literature. As the submergence is reduced, certain mixing with the free
surface occurs and substantial breaking takes place. Moreover, it has been
found that below a certain distance from the free surface, the classical von
Kármán street of shedding vortices does not take place, while moderate vortex
shedding departs from vorticity generated at the free surface. In some of these
cases, consecutive vortices may merge, leading to the formation of a large
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meta-vortex which is advected downstream, a previously unreported form of
wake instability to the authors’ knowledge.

Within the submergence dependence analysis, computations have been car-
ried out for a cylinder in contact with the undisturbed free surface as well as
a half submerged cylinder. In both cases the Froude number was equal to one.
For these configurations, the vorticity layer remains fixed between the cylinder
and the free surface, and a recirculating area at the wake develops.

Regarding the dependence of the flow on Froude number, an analysis has
been carried out for a submergence ratio of 0.55, which had been given some
attention in previous literature at low and moderate Froude numbers. That
range has been extended here reaching up to a value of 2. For this submer-
gence, up to Froude number 1.6, the von Kármán vortex shedding is blocked,
but that is not the case when the Froude number reaches a value of 2. This
transitional effect is in agreement with the stability analyses of half submerged
cylinders in the existing literature.

In order to investigate whether this transition occurred for the half sub-
merged condition, a dedicated sequence was set up. For the high Froude
number cases, the incoming fluid flows over the cylinder and the von Kármán
street vortex does not take place. For lower Froude number cases, the cylinder
acts as a barrier to the incoming flow.

Finally the dependence of the flow on submergence for the highest Froude
number, 2.0, was investigated. The free surface shows less variability when
compared to the sequence with Frd = 1.0. In the deepest submergence case,
the flow physics has some resemblances with potential flow water waves.

Drag and lift coefficients have not been the main focus of the present work.
They have however been investigated and found coherent with the physics de-
scribed for each analyzed condition. In addition, these drag and lift coefficients
have been found to compare reasonably with experimental results available in
the literature for larger Reynolds number regimes.

Some questions have been, for different reasons, left open, and remain as
future work goals:

1. The matrix of cases completed in the present work has significantly ex-
tended previously existing literature. However, in order to have a more
detailed map of the flow dependence on Froude number and submer-
gence ratio, a matrix with more test cases would be necessary.

2. An explanation of the drag and lift coefficient tendencies when varying
the Froude number for a fixed submergence is left for future work.

3. In some of previous experimental and numerical works, the existence at
low submergences of meta-stable states characterised by low frequency
flapping of the jet projected from the free surface into the cylinder wake,
had been described. Flow patterns that resemble such behaviour have
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been found in the present research for low submergences and moderate
Reynolds numbers. However, it remains as future research to conduct
longer simulations under those conditions which may allow the detec-
tion of whether such distinct instability types are replicated.

4. The analysis conducted in some of the cases presented in this chapter
suggests some relationship between the metastable states, and the large
meta-vortices, could exist. This aspect also deserves further investiga-
tion.

5. A coupled model of the flow around the cylinder and corresponding
forces with a dynamic model such as that used by Ding et al. 2013, over-
coming its limitations when close to a free surface, is an interesting future
research goal.

6. A final relevant future work line, related to the previous one, is the dy-
namics of a cylinder subjected to a uniform current, its own buoyancy
and one, or several, mooring tethers, in the presence of a free surface.
This dynamics shares similarities with that investigated by Fani and Gal-
laire 2015 in the case of a cylindrical pendulum subjected to its own
weight, tether reaction and the fluid dynamic forces.



10 NUMER ICAL AND EXPER IMENTAL
INVEST IGAT ION OF NONL INEAR
SHALLOW WATER SLOSH ING

10.1 introduction

Sloshing flows are those occurring when free-surface waves are generated in-
side tanks, usually creating significant global and local loads on the tank due
to the impact of travelling waves. An abundant literature on sloshing can be
found, reviewed in the book of Prof. Ibrahim (Ibrahim 2005), and in the more
recent book of Prof. Faltinsen and Prof. Timokha (Faltinsen and Timokha
2009).

These phenomena are of interest for several branches of engineering includ-
ing marine, aerospace and civil engineering. Nowadays, the sloshing phe-
nomenon is particularly important for Liquefied Natural Gas carriers (LNG
hereinafter). During LNG operative life, sloshing may prevent to operate in
some particular filling conditions. The capability to properly predict the dy-
namic local and global loads acting on tanks for any filling condition is a chal-
lenge for any numerical algorithm. Specifically, when the frequency spectrum
of the ship motion is focused on the region close to the lowest natural tank
mode, violent free-surface flows may appear, inducing large local loads (see
Faltinsen et al. 2004) and increasing the risk for the integrity of the structure.

Among the sloshing flows, low filling depth conditions are attractive due
to the wave systems that are generated under these depth conditions, as ex-
ample travelling waves and bores - i.e. hydraulic jump (Olsen and Johnsen
1975). A first attempt of classification of the different wave systems has been
proposed by Olsen and Johnsen 1975 who, however, only focused their analy-
sis on a single sloshing case (i.e., filling height and amplitude excitation) for
the roll motion. In Bridges 1986, the transition from cnoidal waves to travel-
ling hydraulic jump is discussed for larger wave amplitudes. Following the
work of Olsen and Johnsen 1975, a wider analysis is tried in the present work.
Specifically, we focus on the sway motion (horizontal amplitude excitation)
and consider a broad range of frequencies, filling conditions and amplitude
excitations. When possible, the sloshing motions are classified by following
Olsen & Johnsen while a novel configuration is added for those wave systems
that are not described in their work.

An extensive experimental campaign has been carried out at CNR-INSEAN
in the shallow-water regime to investigate the sloshing response in a wide
range of frequency and amplitude excitations. Specifically, moderate and large
sway amplitudes have been tested for five filling heights and a narrow rectan-

139
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gular tank has been used to limit the 3D effects. Regarding the small ampli-
tudes regime, the experimental campaign of Lepelletier and Raichlen 1988 has
been used.

The numerical simulations have been performed to cover the configurations
where no experiments were available to provide an exhaustive description of
the shallow-water sloshing motion. In order to have a complete understand-
ing of such a phenomenon and to recover some information not available with
the experiments (e.g., wave elevation on the whole tank), the numerical simu-
lations have been performed on a set of cases overmatching the experimental
tests. Because of the major role played by nonlinearities and of the complex
free-surface evolution (e.g., fragmentation and wave breaking), the numerical
simulation of violent sloshing flows is a very demanding problem. In this
context, the SPH scheme has proved to be a reliable choice (see, for example
Bouscasse et al. 2007; Bulian et al. 2010; Colagrossi et al. 2010; Souto-Iglesias
et al. 2006), thanks to its Lagrangian structure and to the absence of any com-
putational grid. In particular, here, the δ-SPH scheme is adopted.

In all the simulations/experiments, a rectangular tank is used and the frame
of reference is set like in figure 10.1. Specifically, L and D indicate the tank
length and breath respectively, h the filling height and k = π/L the wave
number.

10.2 cnr-insean experimental set-up

The tank used during the experimental campaign at CNR-INSEAN is L = 1 m
long, D = 0.1 m wide and is filled with water up to a height h. To ensure a
purely sinusoidal motion, A sin(2πt/T) along the longitudinal direction, an ad
hoc mechanical system has been used. Here A is the displacement amplitude
and T is the period of the prescribed motion. The geometry of the tank, i.e.
D/L = 0.1, ensures an almost-2D flow in the main tank plane.

y

x

L

h

D

Figure 10.1.: Left: sketch of the tank and of the frame of reference. Right: sketch of
the probes used during the experimental campaign at CNR-INSEAN.
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Three capacitance wave probes are placed at the sides of the tank. The first
one η1 is positioned at a distance of 1 cm from one side, the second one η5 at
distance of 5 cm and the third one η50 at the middle of the tank. During the
tests, flow visualisations have been performed through a digital video camera
(JAI CV-M2). This camera has a spatial resolution of 1600x1200 pixels and
frequency rate equal to 15 Hz. It has been placed in front of the tank and
sufficiently far from it to record the global behaviour of the wave propagating.
Finally, a wire potentiometer has been used for a direct measurement of the
position of the tank. Particular care has been devoted to the synchronisation
of the several acquisition systems with different sampling rates, used for the
recording of the signals.

10.3 numerical sph simulation and tuning of the
viscosity

Simulations of sloshing problems generally require a huge computational time,
even in a 2D framework. Indeed, it is necessary to overcome the transitory
stage and reach a periodic state condition. The time needed for each run de-
pends on the spatial resolution and the time step adopted. A large convergence
study has been performed and the tests shown are simulated with a sufficient
discretization.

Apart from these aspects, the average cost for each sloshing test case is of
about 10 hours with an optimised parallel code running on 8 Xeon 2.33 GHz
cores. To cover all the cases presented in this work, about 250 simulations have
been run, simulating about ten hours of physical time.

The Reynolds number of the sloshing experiments considered in the present
work is of the order O(105). In this context, the flow is turbulent and three-
dimensional, therefore, an direct numerical simulation should model turbu-
lence along with the viscous dissipations induced inside the fluid bulk and by
the boundary layers. This would imply the modelling of small-scale phenom-
ena which are very complex and that would lead to an enormous computa-
tional time.

In the sloshing literature these small-scale effects are generally approxi-
mated or neglected entirely, leading to simplified models (see, for example,
Faltinsen and Timokha 2001, Hill 2003, Faltinsen et al. 2006). The validity of
the approximations is checked “a posteriori” by comparison with experiments.
This is also the procedure adopted in the present work.

In sloshing numerical simulations the turbulence is generally neglected while
the viscous dissipations due to boundary layers is represented through approx-
imated models. Under the hypothesis that the flow is laminar and using a
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first-order solution, Keulegan 1959 obtained the following damping term for
the kinetic energy of the sloshing motion:

β = 4 ν k2 +

√
k cν

2

(
2h+D

hD

)
, (10.1)

where k = π/L is the wave number, ν is the kinematic viscosity of the fluid
and c is the shallow water celerity, that is, c =

√
gh. The above expression

represents the mean dissipation rate during a period of the evolution and takes
into account both the dissipation in the fluid bulk (first term in the right-hand
side) and the dissipation due to the boundary layers at the tank walls (second
term in the right-hand side). Conversely, for an SPH scheme with free-slip
conditions along solid boundaries (that is, like the SPH scheme adopted here),
the damping coefficient for gravity waves is βSPH = 4 νSPH k

2 (see Antuono
et al. 2012b for details).

Since the structure of the SPH damping coefficient is intrinsically different
from (10.1), the SPH can only approximately model the dissipation due to
boundary layer. However, a good approximation is to require that the order of
magnitude of βSPH is similar to that of β. After several tests, it is found that

βSPH ' 0.2β (10.2)

generally gives a good agreement between experiments and SPH results. This
approximation allows choosing the value of the SPH viscosity. Using the celer-
ity
√
gh as a reference velocity and νSPH, it is possible to define a Reynolds

number for the SPH scheme:

ReSPH =
h
√
gh

νSPH
= h

√
gh

20

β

(
π

L

)2
. (10.3)

This is used in the following to express the SPH viscosity as a function of the
damping coefficient β. It has been checked that limited variations of the coef-
ficient 0.2 in (10.2) do not induce significant changes in the SPH simulations.
This confirms that, notwithstanding the relation (10.2) is quite a rough approx-
imation, what is really relevant for the SPH model is the order of magnitude of
the numerical viscosity more than the choice of an hypothetical “exact” value
for νSPH.

10.4 nonlinear shallow water sloshing inside a
swaying tank

The shallow water flows that occur in a sloshing tank either subjected to sway
or roll motion are extremely dependent on the excitation frequency. Olsen
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and Johnsen 1975 performed some systematic studies on the roll motion. They
found that for very low excitation the sloshing is characterised by a standing
wave (I in figure 10.2). For slightly higher excitation frequency, a set of small
travelling waves appears (II in figure 10.2). With a small rise in frequency, the
train of waves is suddenly transformed into a bore (i.e. hydraulic jump) that
travels from mid section (III in figure 10.2). For even higher frequency, the
bore travels from one side of the tank to the other (IV in figure 10.2). If the
frequency keeps rising, the bore becomes a solitary wave (or more precisely
a 1-mode cnoidal standing wave following Bridges 1986) (V in figure 10.2).
The presence of these different propagation patterns highlights the complexity

Figure 10.2.: Free-surface patterns described by Olsen and Johnsen 1975 for shallow-
water roll motion.

and the non-linearities involved in the phenomena. These flow features are
strongly dependent on the excitation amplitude A, the circular frequency of
oscillation ω and the filling height h.

The sloshing phenomenon is characterised by natural frequencies of oscilla-
tions. These are derived using the linear theory as a first-order approximation
and read:

ω
(n)
r =

√
gnk tanh(nkh) n = 1, 2, 3, . . . (10.4)

For the ease of the notation, the lowest natural frequency (that is, n = 1)
it is simply denoted by ωr. Violent surface-wave response may take place
when the forcing frequency is close to ωr, regardless of the forcing amplitude.
This resonant excitation ceases at a critical frequency ωf close to ωr due to a
bifurcation phenomenon explained in Faltinsen et al. 2000. Resonance arises
also around higher natural frequencies (that is, n > 1) even if these generally
induce a weaker wave response. In our particular case, the five scenarios
described by Olsen and Johnsen 1975 are obtained by increasing the excitation
frequencies from zero up to the first bifurcation.

Unfortunately, the study of Olsen and Johnsen is just limited to few cases of
roll motion. Then, the aim of the present work is to perform a similar analysis
for the sway motion covering a broad range of excitation amplitudes and fre-
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A/h h/L motion regime Experimental campaign
Series 1 0.033 0.098 weak Lepelletier and Raichlen 1988

Series 2 0.065 0.051 weak Lepelletier and Raichlen 1988

Series 3 0.500 0.060 moderate CNR-INSEAN (see section 10.2)
Series 4 0.800 0.125 strong CNR-INSEAN
Series 5 2.333 0.030 strong CNR-INSEAN

Table 10.1.: Experimental campaigns considered in the present work.

quencies. Following Olsen and Johnsen , a classification of the sway motions
occurring for shallow depth is given. Remarkably, a new configuration has
been added to those proposed by Olsen and Johnsen.

10.4.1 Present investigation

The parameters A,ω,h are chosen on a broad range of physical cases. Several
series, each characterised by a couple (A,h) - amplitude of the horizontal exci-
tation and the water depth - are investigated. For each of them, several runs
have been performed varying the excitation frequency, ω, and detecting the
value ωf where the bifurcation occurs.

The water depth varies between 0.03L− 0.125L so that all the cases under
consideration belong to the shallow water regime. Details of the adopted series
are summarised in Table 10.1.

The analysis is focused on the steady-state conditions, in the sense given by
Faltinsen et al. 2000, that is, as the periodic behaviour observed after the end
of the transient. The steady state range can be identified as

TS = [tend − nT , tend] (10.5)

where tend is the last time recorded and n the number of periods in the steady
range regime. The latter number varies with ω since the duration of the tran-
sitory stage changes from one case to the other and is influenced by the occur-
rence of beating phenomena.

During the steady state, the wave elevation at fixed longitudinal positions
of the tank has been recorded. The wave elevation is measured through ca-
pacitance wire probes whose signal is proportional to the whole wet surface.
The same strategy has been used numerically, i.e. the wave elevation in a
prescribed position is calculated as the integral along the vertical direction of
the vertical coordinate occupied by the fluid particle. The average maximum
wave height is simply denoted by ηa and the index a indicates the longitudi-
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nal position of the numerical wave probe (as percentage of the tank length, i.e.
a = 100 (x/L))

For small and moderate amplitude of the excitation, a periodical wave ele-
vation (with the period of the excitation) is recorded at the regime state. In
contrast, for large amplitude, the stochastic characteristics of the flow (with
breaking waves, impacts, splashes and jet) may induce a sub-harmonic be-
haviour. Then, the mean of the maximum wave heights recorded at each cycle
during the temporal range TS is taken as significant parameter. The associated
standard deviation σ, giving a measure of the stochastic behaviour, can be
used as an indicator of the severity of the considered sloshing flow. Then, ηa
(with the associated σ) as function of the excitation pulsation ω is used in the
follow to define the global flow regimes characterizing the sloshing flow.

The excitation amplitude of the two first series in Table 10.1 is very small and
waves are non-breaking: wave trains and solitary waves are observed. The low
value of σ stresses the high repeatability which characterizes non-breaking
sway motions. In the last two series the motion amplitude is very large, high
breaking bores develop and, close to the bifurcation frequency, energetic roof
impacts take place. For series 1, 2 and 3, the bifurcation is characterised by
an abrupt jump of ηa at ω = ωf and is easily detectable. Conversely, the
bifurcation seems to disappear for Series 4 and 5 (that is, for the most energetic
sloshing cases) and ηa essentially behaves as a continuous function of ω. The
local stochastic behaviours and, therefore, a low repeatability are characteristic
of violent impacts (see, for example, Lugni et al. 2010a,b).

Among the large amount of data, some interesting cases reproducing the
typical configuration of Olsen have been selected and studied in detail with
photos and time-space data.

Small amplitude sway motion

Lepelletier and Raichlen 1988 performed a campaign for small amplitude mo-
tions and considered two different filling heights and geometries. In the
present work, these configurations are denoted through Series 1 and 2 (see
table 10.1). Series 1 is characterised by h/L = 0.098 and, therefore, is very
close to the intermediate water regime. The tank dimensions are L = 60.95 cm,
D = 23 cm and the still water level is h = 6 cm. The first resonant frequency
predicted through the linear theory is ωr = 3.89 s−1, the horizontal forcing
law is sinusoidal and its amplitude is A = 0.196 cm.

The left plot of figure 10.3 displays the maximum wave height at x/L = 0

(that is, η0) as obtained by the experimental measurements (triangles and thin
solid line) and by the δ-SPH scheme (diamonds and thin solid line). In the
same Figure 10.3 the standard deviation (namely, σ) of the numerical maxi-
mum wave height is also displayed. Note that σ is very small and the varia-
tions of η0 are limited to few percentages. This is a consequence of the fact
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Figure 10.3.: Sway motion, response amplitude operator at x/L = 0 for the Lepelletier
and Raichlen 1988 experiments. Left: h/L = 0.098, A/h = 0.033 (Series
1), Right: h/L = 0.051, A/h = 0.065 (Series 2).

that the sloshing motion presents an high repeatability during the steady state
regime. A local maximum along the left branch of the response amplitude
operator (ω/ωr ' 0.97) separates two regimes of the sloshing motion: a two-
wave regime (Conf. II) and a solitary-wave regime (Conf. V). Between these
regimes a special region of motion was detected during the experimental cam-
paign. In that region no steady state was attained and a nonlinear subhar-
monic modulation of 18 periods was observed (see Lepelletier and Raichlen
1988). Remarkably, the δ-SPH scheme predicts the same modulation in a re-
gion very close to that shown by the experiments (see the left plot of figure
10.3). Details on the nonlinear beating phenomenon are provided in figure
10.4 where the time history of the wave elevation recorded at x/L = 0.05 is
plotted. In this case, very long simulations have been performed to ensure the
attainment of a periodic asymptotic solution.

For the Series 2 (see table 10.1), the tank dimensions are L = 117.5 cm, D =

12 cm and the still water level is h = 6 cm, and ωr = 2.04 s−1. The horizontal
forcing law is sinusoidal and its amplitude is A = 0.39 cm.

The right plot of figure 10.3 displays the comparison between the experi-
ments by Lepelletier & Raichlen (triangles and thin solid line) and the δ-SPH
scheme (diamonds and thin solid line)for maximum wave height measured at
the left wall of the tank (x/L = 0). The local maxima (sawtooth) that appear
along the left branch of the response amplitude operator (see right plot of
figure 10.3) correspond to the boundaries of different regimes of the sloshing
evolution. Each regime is characterised by a specific number of waves and this
number decreases as the peaks approach the bifurcation point. This particu-
larity has been deeply investigated in Cox et al. Cox et al. 2005. For example,
Figure 10.5 some snapshots of a two-wave regime (Conf. II) at the frequency
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Figure 10.4.: Time history of the wave elevation measured at x/L = 0.05 (Series 1,
ω/ωr = 0.99) as predicted by the δ-SPH scheme.

Figure 10.5.: Snapshots of the free-surface evolution for the Series 2 (h/L = 0.051,
A/h = 0.065, ω/ωr = 1.02). Black diamonds indicate the analytical
solution obtained through the modal system described in Antuono et al.
2012b.

Figure 10.6.: Free-surface evolution in the time-space plane for Series 2 (ω/ωr = 1.02).

ω/ωr = 1.02. These SPH results have been compared with the modal system
described in Antuono et al. 2012b, showing an excellent match. Figure 10.6
shows the contour plot of the wave elevation in a time-space plane for the
same case. The two-wave system is clearly visible, its velocity of propagation
is almost constant and very close to c =

√
gh (dotted black line). This was ex-
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Figure 10.7.: Snapshots of the free-surface evolution for the Series 2 (h/L = 0.051,
A/h = 0.065, ω/ωr = 1.08). Black diamonds indicate the analytical
solution obtained through the modal system described in Antuono et al.
2012b.

pectable since the sloshing dynamics is quite weak and, consequently, waves
propagate in accordance with the shallow-water linear theory.

The last regime before the bifurcation is characterised by a solitary wave
(Conf. V) that moves back and forth in the basin. Figure 10.7 displays some
snapshots of the free surface for this case. As in the precedent case, figure
10.8 shows the contour plot of the wave elevation in a time-space plane. The
propagation velocity of the solitary wave is again close to c =

√
gh.

After the bifurcation, only small-amplitude standing waves (Conf. I) of
length 2L are observed for the range simulated (until ωf < ω < 1.15ωr).

Figure 10.8.: Free surface evolution in the time-space plane for Series 2 (ω/ωr = 1.08).

Moderate amplitude sway motion

Series 3 represents a typical sloshing case where non-linearities play a major
role and wave breaking and jet run-ups/run-downs on vertical walls occur. In
table 10.1, the sloshing motion of this series is classified as “moderate”.

The maximum wave heights recorded at x/L = 0.05 and x/L = 0.50 are
displayed in figure 10.9. The bifurcation occurs at ω/ωr = 1.35, that is, at a
higher frequency with respect to the Series 1 and 2. This behaviour is quite
common in sloshing problems. Indeed, an increase of the motion amplitude
(that is, A) generally corresponds to an increase of the bifurcation frequency
ωf with respect to the natural frequency ωr. For this series the standard
deviation on ηa largely spreads because of local phenomena (like run-up jets,
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breaking waves, splash-ups, etc.) which induce a non-repeatability behaviour
on the free-surface motion.

Figure 10.9 clearly shows that the wave height at x/L = 0.05 is larger than
that recorded in the middle of the tank and this is induced by the run-ups
against the vertical wall.

Similarly to the previous sloshing cases, the Series 3 shows interesting fea-
tures as the frequency of the sway motion increases. For low frequencies,
standing waves (Conf. I) modulated with a linear beating are observed and the
wave elevation inside the tank is very small. Increasing the frequency up to
ω/ωr ' 0.8, the system reaches the stable branch of the bifurcation and undu-
lar bores (Conf. II) are observed. The steepness of the leading crest increases
with the frequency until wave breaking occur atω/ωr = 0.874. This behaviour,
shown in figure 10.10, is confirmed by both experiments and numerical results
with an overall satisfactory agreement.

The top panel of figure 10.11 shows the contour plots of the wave elevation
on the time-space plane. This allows a simple and clear tracking of the wave
trains propagating inside the tank and of their self-interaction at the side walls.
In this case, the velocity of propagation is generally smaller than

√
gh. The

bottom panel of figure 10.11 displays the comparison between experiments
and numerics for the wave elevation measured at x/L = 0.05. Increasing ω,
the breaking wave (initially Conf. III) becomes more energetic and intense
splash-up events are observed for 0.9ωr < ω < ωf (Conf. IV). In this region
the profile of the response amplitude operator (see figure 10.9) becomes flatter
since part of the wave energy is dissipated during the breaking events. At
ω/ωr = 1.192 a single traveling wave appears (Conf. V). Close to the vertical
walls, this overturns to form a plunging jet (see figure 10.12). This behaviour
is predicted by both experiments and numerics.

The top panel of figure 10.13 displays the contour plots of the wave elevation
in the time-space plane. Here, the path of a single traveling wave is clearly

Figure 10.9.: Sway motion, response amplitude operator for the Series 3 described in
table 10.1. Left: at x/L = 0.05, Right: at x/L = 0.50.
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Figure 10.10.: Snapshots of the free-surface evolution for Series 3 (ω/ωr = 0.874).
Comparison between experimental data (top) and numerical simula-
tions (bottom).

Figure 10.11.: Time history of the wave elevation for Series 3 (ω/ωr = 0.874): evolu-
tion in the time-space plane (top panel, numerical solution) and com-
parison with experimental data at x/L = 0.05 (bottom).

visible. Differently from the previous case (top panel of figure 10.11), the
velocity of propagation is close to

√
gh.

In the lower panel of figure 10.13, the time histories of the wave elevation
measured at x/L = 0.05 wall are reported for both experiments and numerics.
In this case, the non-repeatability of the sloshing evolution is quite evident.
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Figure 10.12.: Snapshots of the free-surface evolution for Series 3 (ω/ωr = 1.192).
Comparison between experimental data (top) and numerical simula-
tions (bottom).

Figure 10.13.: Time history of the wave elevation for Series 3 (ω/ωr = 1.192): evolu-
tion in the time-space plane (top panel, numerical solution) and com-
parison with experimental data at x/L = 0.05 (bottom).

After the bifurcation (specifically, for ωf < ω < 1.15ωr), the wave ampli-
tude strongly reduces. In any case, the flow evolution is still complex and,
differently from the Series 1 and 2, it is not characterised by standing waves
nor by other kind of flow shown by Olsen, but by a configuration here denoted
as (Conf. VI), that we will describe in the following sections.
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Figure 10.14.: Sway motion, response amplitude operator for the Series 4 described
in table 10.1. Left: x/L = 0.05, Right: x/L = 0.50.

Large amplitude sway motion with a moderate water depth

The Series 4 is characterised by h/L = 0.125 and A/h = 0.80, that is, by a water
depth at the higher limit of the shallow water regime and by a horizontal
motion of amplitude comparable to the water depth. Under these conditions,
breaking bores with intense splash-up events occur during the flow evolution
and this series represents a very demanding test case for numerical schemes.

Figure 10.14 displays the maximum wave height recorded at x/L = 0.05 (η5,
left plot) and at x/L = 0.5 (η50, right plot) for both experiments and numerics.
With respect to the previous Series, the behaviour of η5 is quite different since
it increases for 0.6 < ω/ωr < 1.15 and decreases for ω/ωr > 1.5 without
showing any bifurcation phenomena. The standard deviation of η5 largely
increases in the range 1 < ω/ωr < 1.9 because of the occurrence of violent
fluid dynamics. In particular, breaking bores develop at ω/ωr = 0.74 (Conf.
III). Wave breaking and splash-up events become stronger and stronger as the
frequency increases (Conf. IV around ω/ωr = 0.84) and, finally, impacts on
the roof are observed for ω/ωr > 1.

An example of the complex flow evolution which characterizes the Series
4 is given in figure 10.15. In this case, ω/ωr = 1 and both numerical and
experimental results display a violent breaking bore followed by strong splash-
up events. The top panel of figure 10.16 displays the wave elevation contour
in the time-space plane. The velocity of the bore seems initially smaller than√
gh but increases during the evolution. The good agreement between the

experiments and the δ-SPH scheme is confirmed in the bottom panel of the
same figure where the saw-tooth profile of the wave elevation is observed
both experimentally and numerically.
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Figure 10.15.: Series 4: comparison between experimental and numerical results
(ω/ωr = 1).

Figure 10.16.: Time history of the wave elevation for Series 4 (ω/ωr = 1): evolution in
the time-space plane (top panel, numerical solution) and comparison
with experimental data at x/L = 0.05 (bottom).

Large amplitude sway motion with a small water depth

As a last example, the Series 5 (see table 10.1) is considered. This Series is
characterised by h/L = 0.03 and A/h = 2.33, that is, by very shallow depth
and by a large horizontal motion.
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The maximum wave heights recorded at x/L = 0.05 and x/L = 0.50 are re-
ported respectively in the left and right plot of figure 10.17. For this series, the
experimental data are available only at six frequencies. The overall behaviour
is somehow similar to that of Series 4. Specifically, no bifurcation is observed
and the profile of η5 (left plot of figure 10.17) appears even more rounded
than that displayed for Series 4. This result clearly shows that the behaviour
of the sloshing problems described in the present section is completely differ-
ent by the hard-spring model discussed in Faltinsen et al. 2000. Indeed, the
occurrence of breaking bores generated by large sway motions leads to large
dissipations which affect the response of the fluid between the first and the
second resonant natural frequencies.

For ω/ωr = 0.705 standing waves without any beating phenomenon have
been observed while, increasing the frequency, undular bores (Conf. II) de-
velop. Because of the large amplitude of the excitation, the steepness of the
leading crest is very high and breaking occur for ω/ωr > 0.85.

Figure 10.18 shows the motion of a breaking bore for ω/ωr = 1.231. The
bore is quite energetic and, therefore, this case is classified as Conf. IV. For
the same case, figure 10.19 (top panel) displays the contour levels of the wave
elevation in the time-space plane. Here, the splash-up regions and the scar
lines of the free surface are well visible. Because of the splash-up events, the
velocity of propagation is much larger than

√
gh. Finally, the bottom panel of

figure 10.19 shows the comparison between the experiments and the numerical
solution for the wave elevation measured at x/L = 0.05.

Increasing the oscillation frequency up to ω = 2.31ωr, the sloshing flow
reduces its energy and the bore behaviour disappear. Two wave systems de-
velop inside the tank, as clearly shown in the time-space plane obtained from
the δ-SPH simulations (top plot of figure 10.20). The interactions between these
waves lead to a strong increase of the wave elevation at a distance of about 0.2L
from the vertical walls. As a consequence, the maximum of η is not attained at
the vertical wall anymore. This sixth scenario has not been discussed in Olsen

Figure 10.17.: Sway motion, response amplitude operator for the Series 5 described
in table 10.1. Left: x/L = 0.05, Right: x/L = 0.50.
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Figure 10.18.: Series 5: comparison between experimental data (top) and numerical
results (bottom) for ω/ωr = 1.231.

Figure 10.19.: Time history of the wave elevation for Series 5 (ω/ωr = 1.231): evolu-
tion in the time-space plane (top panel, numerical solution) and com-
parison with experimental data at x/L = 0.05 (bottom).

and Johnsen 1975 and is, to our knowledge, completely new. Continuing their
classification, this scenario has been labeled as Conf. VI.

When the sway amplitude is very large, as in the Series studied here, the
nonlinearities induce a peculiar behaviour on Conf. VI which consists in a total
asymmetry of the wave system. Indeed, the wave elevation measured at one
side of the tank is not a simple half-period time shift of that recorded on the
other side. This has been confirmed experimentally and numerically, as shown
in the bottom plots of figure 10.20. On the top part of figure 10.21 three digital
photos are reported showing three different time instants where the strong
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Figure 10.20.: Time history of the wave elevation for Series 5 (ω/ωr = 2.31): evolu-
tion in the time-space plane (top panel, numerical solution) and com-
parison with experimental data at x/L = 0.01 (bottom).

nonlinear interaction between the two-wave systems can be appreciated. On
the bottom part of the same figure the numerical evolution of the free surface
has been extracted at the same time instants.

10.4.2 Summary of the sloshing scenarios

Following the approach of Olsen and Johnsen 1975, a classification of the dif-
ferent scenarios for sway motions in shallow depths is depicted. Such a clas-
sification has been performed for the lowest and the highest filling heights,
i.e. h/L = 0.03, h/L = 0.125, using five sway amplitudes, namely: A/L =

0.01, 0.03, 0.04, 0.05, 0.07, 0.10.

Numerical simulations have been used for those configurations which are
not covered by experiments. The good agreement between the δ-SPH and
the experimental measurements provided in the previous sections confirms
the reliability and accuracy of the δ-SPH scheme in the prediction of sloshing
phenomena.
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Figure 10.21.: Series 5: comparison between experimental data (top) and numerical
results (bottom) for ω/ωr = 2.31.

For h/L = 0.03, almost 180 simulations have been run, covering the frequen-
cies range [0.71ωr, 2.41ωr]. The top plot of figure 10.22 displays the maximum
wave elevation at 1cm from the vertical wall (i.e. η1) as predicted by the δ-SPH
scheme. The standard deviation has also been reported. The bifurcation phe-
nomenon is well visible and the plot shows that theωf moves rightward when
the sway amplitude increases. Remarkably, for the highest amplitude (that is,
A/L = 0.1) the bifurcation is close to the second linear resonance.

All the cases shown in the top panel of figure 10.22 have been classified us-
ing the five configurations proposed by Olsen & Johnsen and the sixth sloshing
scenario described in Section §10.4.1 (see the bottom panel of figure 10.22). On
the same graph, the parabolic law of Verhagen and Van Wijngaarden 1965 has
been reported (the derivation of this law for sway motion is described in Faltin-
sen and Timokha 2009). This law is obtained by using the two-dimensional
shallow water theory and relies on the hypothesis that A/h is small. Specifi-
cally, it predicts that a propagating bore (namely, scenarios Conf. III and Conf.
IV) may only occur when the couple (A/h,ω/ωr) is inside the parabola de-
picted in the bottom panel of figure 10.22. In the present experimental and
numerical analysis, this forecast is verified when A/h 6 1.5 while, for higher
values, energetic bores (Conf. IV) may develop to the right of the parabola.

The above analysis has been repeated for the filling height h/L = 0.125, sim-
ulating more than 110 runs (among these, 80 have been performed in the same
conditions of the experiments while the remaining runs have been simulated
in order to complete the analysis). The top plot of figure 10.23 shows the maxi-
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Figure 10.22.: The maximum wave elevation (top) and wave configurations (bottom)
for several frequencies and sway amplitudes (h/L = 0.03).

mum wave elevation for η1 as predicted by the δ-SPH scheme. Differently from
the previous case, the bifurcation phenomenon disappears. The maximum
wave height decreases continuously in the frequency interval (1.2ωr, 2.0ωr)
without any sharp discontinuity. For the largest values of the sway amplitude
(that is, A/L = 0.07 and A/L = 0.1), the standard deviation associated with
η1 is very large because of the violent flow motion occurring inside the tank.
The different sloshing cases have been classified in the bottom graph of figure
10.23. This time, the two-dimensional shallow water theory is in good agree-
ment with the results and all the couples (A,ω) leading to Conf. III and Conf.
IV occur inside the Verhagen & Van Wijngaarden parabola. This is likely due
to the fact that the ratio A/h is always smaller than 1. It is worth mention-
ing that for the lowest sway amplitude (that is, A/L = 0.03) a subharmonic
modulation may develop before the transition from Conf. II to Conf. V. This
is caused by nonlinear beating phenomena and is somehow similar to what
observed for the Series 1.
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Figure 10.23.: The maximum wave elevation (top) and wave configurations (bottom)
for several frequencies and sway amplitudes (h/L = 0.125).

10.5 summary of the chapter

An extensive study of the shallow water sloshing problems has been done us-
ing both experimental and numerical data. Different configurations (Series) of
sway motion have been considered in detail, spreading from small-amplitude
excitations (A/h = 0.033, 0.065) to moderate (A/h = 0.500) and large excita-
tions (A/h = 0.800, 2.333). For each Series, wave amplitude operators have
been computed by varying the frequency of the excitation. Specific cases have
been selected among the broad range of simulations to describe the main fea-
tures of the sloshing motion (wave trains, wave breaking, jet run-up/run-down
at the vertical walls, etc.). The results have been analyzed according to the
classification proposed by Olsen and Johnsen 1975, proving the existence of a
novel sloshing configuration, namely Conf. VI.

Finally, a summary has been done for two filling ratios, describing the wave
scenarios and the wave amplitude operators for a large range of frequencies
and inspecting the influence of the excitation amplitude.
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11.1 introduction

In recent decades, a certain amount of studies have been dedicated to the
damping/suppression of unwanted oscillations. This is especially true for civil
infrastructures such as large buildings or bridges for which some mechanical
damping systems for structural vibration control have also been devised (Ka-
reem et al. 1999). Among them, Tuned Liquid Dampers (TLD) (see left sketch
of Fig. 11.1) exploit the liquid sloshing motion in a tank in order to counter-
act the external forces and dissipate energy. These dampers can be used to
control a building’s motion during earthquakes and strong winds (Novo et al.
2014; Tamura et al. 1995), motion instabilities in spacecrafts (Abramson 1966;
Graham and Rodriguez 1952) and the rolling motion in ships (Armenio et al.
1996a,b; Bass 1998).

The topic is receiving nowadays substantial attention in countries like Japan,
where a campaign to install dampers in existing buildings is ongoing (Ya-
mamoto and Sone 2014). The extra weight due to the damper, to be added
to a building commonly on its top floors, often requires extremely expensive
reinforcement of the building structure. For example, as reported in the me-
dia, adding mass dampers to the Shinjuku Mitsui Building in Tokyo has been
budgeted in USD 51 million. Enhancing the effectiveness of dampers, while
keeping their weight low, becomes thus extremely important from the eco-
nomic point of view.

With all these motivations, and concentrating on the TLD concept, several
investigations have been performed over the years in an attempt to reproduce
sloshing flows. The first studies were performed using a potential flow linear
or non-linear theory, but later studies were conducted using CFD. Abundant
sources can be found in the books of Faltinsen and Timokha 2009 and Ibrahim
2005.

161
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Modeling the energy dissipation in sloshing has always been a challenge. As
an example, in order to take into account the viscosity effects and the bound-
ary layers, some formulae for dissipation have to be added to potential flow
based or shallow-water based models. In 1983, Demirbilek treated this prob-
lem of dissipation in sloshing waves both theoretically and numerically Demir-
bilek 1983a,b,c considering the full Navier Stokes equations. This allowed him
to obtain some results regarding the influence of both Froude and Reynolds
numbers on the dissipation values, but without any validation.

Sun and Fujino 1994 performed a numerical and experimental analysis of
the problem in a tank without immersed screens or structures. They identified
the breaking as an important source of dissipation and determined a semi-
analytical procedure to take it into account. Reed et al. 1998 investigated in
greater detail the effects of large amplitude sloshing on a TLD. Marsh et al.
2011 performed experimental and numerical works regarding the analysis of
dissipation mechanisms in egg-shaped sloshing absorbers, focusing on slosh-
ing and solid boundary layer effects. From a physical point of view, the study
of the dissipation induced by a free-surface flow is arduous, especially in the
presence of a wave breaking flow. Perlin et al. 2013 presented a review and
analysis on works dedicated to dissipation under wave breaking.

Cooker 1994, 1996 performed elegant decay experiments with a free oscillat-
ing tank suspended as a bifilar pendulum in the shallow-water limit, suggest-
ing that hydraulic jump theory can provide some insight into the dissipation
mechanisms. The transfer of energy between a moving vessel and the con-
tained fluid is studied in Turner and Bridges 2013.

The calculation of resonance properties for a coupled system is often difficult
in the presence of a liquid. For that, different techniques have been developed
in order to model the sloshing flow and solve the coupled problem, namely
Yu et al. 1999 and Tait 2008 using a mass-spring subsystem, Frandsen 2005

using potential flow theory and Ardakani and Bridges 2010; Ardakani et al.
2012 using shallow water equations.

Recently, an alternative TLD configuration defined as a hybrid mass liquid
damper (HMLD) (see Banerji and Samanta 2011 and Fig. 11.1, right) was
introduced.

The idea is to tune the mass damperMh to maximize the force counteraction
between the primary and secondary structures and to attach a sloshing damper
to the mass damper in order to dissipate large amounts of energy through
violent sloshing. An optimally designed HMLD configuration is shown to be
more effective as a control device than the standard TLD configuration since
it maximises the force counteracting and dissipating effects.

In the present chapter, a specially devised fully coupled damper system first
described in Bulian et al. 2010, called hereinafter Pendulum-TLD, is analysed.
The mechanical system is essentially a non-linear driven pendulum, where the
pendulum is a rectangular tank rotating around a fixed pivot. With the tank
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Figure 11.1.: Sketch of the two dynamical systems TLD (left) and HMLD (right) from
Banerji and Samanta 2011. The aim is to dampen the motion of M
induced by an external acceleration Ae.

partially filled with a liquid, energy is supplied to the whole system by a mass
sliding along a linear guide fixed on the tank. The mechanical system and the
resulting sloshing flow are coupled in a very complex non-linear manner.

This chapter is organised as follows: first, the frame of reference, notation
and elements of the coupled system are presented, the torques and main en-
ergy terms affecting the dynamics are identified and an analogy with TLD
and HMLD systems is provided. The dynamics of the empty tank is then
described prior to developing the theoretical model representing the fluid ac-
tion. The loads of the fluid on the tank during sloshing are theoretically and
numerically investigated by varying both the frequency and the amplitude of
the roll motion. Theoretical considerations are done on the scaling of the en-
ergy dissipation by the fluid. The numerical investigation is conducted using
a Smoothed Particle Hydrodynamics numerical model, widely validated (see
Antuono et al. 2012b; Bouscasse et al. 2013b) in the context of violent free
surface fragmentation. The chosen model is further adapted to simulate the
coupled dynamics, allowing for a non linear analysis of the coupled system be-
haviour in the frequency domain. Conclusions are drawn and an experimental
validation analysis with three different liquids is left for chapter 12.

11.2 a pendulum tuned liquid damper

The pendulum TLD (see Fig. 11.2) is composed of three coupled sub-systems:

1. the sliding mass,

2. the moving parts of the sloshing rig including the empty tank but ex-
cluding the sliding mass; this sub-system will be hereafter referred to as
the tank; the energy balances will refer to this sub-system.
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3. the fluid.

The sloshing tank is assumed to be 2D, perfectly rigid, and rotating in the
vertical plane about a fixed horizontal axis passing through a fixed pivot O.
Although the findings herein are of general value, in order to conform with
the experimental data of chapter 12, the tank length L is set equal to 0.9 m and
the width B, normal to the plane of motion, is 0.062 m.

The length l = 0.1 m is taken as a characteristic length of the system. The
filling height h adopted and the sliding mass motion amplitude will be of this
order.

The distance H between the center of rotation and the tank bottom is set
equal to 0.47 m.

The moment of inertia around O is I0 and the static moment SG of the rigid
system around O is the product of the mass, mtank, and the distance, ηG,
between the center of gravity of the tank and the pointO, thus SG = mtankηG.
I0 is set equal to I0 = 26.9 kg.m2 and the static moment to SG = −29.2 kg.m
(see chapter 12). The rotation center is above the center of gravity of the whole
system, implying that the system is stable in the absence of external forcing.

Since the system is purely rotational, the dynamics can be described in terms
of variations in angular position and through balances of angular momentum
(torques) contributions. The different torques acting on the tank derive from
the following four external forces: one given by the fluid Ffluid/tank, another
stemming from the sliding mass Fmass/tank, the third being the weight of the
tank Fstatic = mtank g (g is the gravity acceleration) and the last one being
the reaction of the holding structure Raxis/tank on the hinge O . A scheme of
these forces is provided in Fig. 11.2.

The inertial frame of reference is indicated by (Oi j) and the velocity u of a
generic point P on the tank is

u(P) = φ̇k × r,

Figure 11.2.: Tank and oscillating mass (arrows are vector representation of forces).
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where k = i× j and is the normal vector orthogonal to the rotating plane, φ is
the angular displacement, φ̇ is the angular velocity and r is the position vector
of the generic point P with respect to the pivot O.

The sliding mass m = 4.978 kg moves along the linear guide with ξm(t) be-
ing the coordinate along the slide. This sliding mass is forced under a defined
harmonic motion:

ξm(t) = Am sin( 2π t/T), (11.1)

where Am is the amplitude of the oscillating mass along the linear guide, T is
the oscillation period. The sliding mass motion amplitude Am is set to 0.05,
0.10, 0.15 and 0.20 m. Since ξm is imposed, the state of the dynamical system
can be defined as a function of the angle φ and its derivatives.

The mass moves along the axis defined by the pivot O and the vector î. The
non-inertial frame of reference indicated by

(
O î ĵ

)
is defined in Fig. 11.2.

The forces on the sliding mass are: its weightmg, the force given by the elec-
tric motor Fe and the force exerted by the tank on the mass Ftank/mass. From
the momentum equation in the inertial reference system (Oi j) an expression
of Ftank/mass is given as a function of the sliding mass acceleration am:

Ftank/mass = −mg − Fe + mam, (11.2)

where am is given in (Oi j) frame by:

am = ( ¨ξm − ξm φ̇
2) î + (2 ˙ξmφ̇ + ξm φ̈) ĵ. (11.3)

The torque about O on the tank, due to the sliding mass, is:

Mmass/tank = ξmî× Fmass/tank · k =

= −mξmg cos(φ) −m(2ξmξ̇mφ̇+ ξ2mφ̈).
(11.4)

This expression comprises a term due to the weight of the sliding mass plus
inertia terms originating from the mass motion on a rotating beam.

This equation mixes together the exciting term ξm with the roll angle φ, the
latter being the main output of the dynamical system. For a sufficiently small
roll angle φ, a good approximation of Mmass/tank can be given by −mξmg.
The linear behaviour with respect to ξm should be dominant for Mmass/tank,
thus simplifying the analysis of the system. This hypothesis is checked with
the conditions studied herein.

Following Bulian et al. 2010 a friction torque is included in the mechanical
model:

Mfriction = −Bφφ̇−Kdfsgn(φ̇), (11.5)

with Kdf = 0.54N.m and Bφ = 0.326N.m.(rad/s)−1. These values have been
determined in Bulian et al. 2010 using a set of inclining and decay tests on the
experimental set-up adopted in chapter 12 of this series.
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The natural frequency of the rigid system:

ωm1 =

√
−gSg
I0

(11.6)

is equal to 3.263 (rad/s) and the corresponding period is T1 = 1.925 s.

11.2.1 Angular momentum and energy balances

Considering the terms cited above, the angular momentum equation for the
roll motion of the tank reads:

I0φ̈− gSg sin(φ) − Mfriction − Mfluid/tank = Mmass/tank, (11.7)

where the first two terms of the left-hand side represent a classical non-linear
pendulum equation (the static moment Sg has a negative value), and the right-
hand side Mmass/tank is the forcing term of the system.

Substituting the expressions reported above, the ODE (11.7) can be rewritten
in an expanded form as:

(I0+mξ
2
m)φ̈+(Bφ+2mξmξ̇m)φ̇+Kdfsgn(φ̇)−gSg sin(φ)+mξmg cos(φ) = Mfluid/tank .

(11.8)

The torque Mfluid/tank is given, for a Newtonian fluid, by:

Mfluid/tank = −

∫
∂ΩB

r× pndS + 2µ

∫
∂ΩB

r× DndS (11.9)

where the two addends represent the contribution of the pressure and the vis-
cosity forces, ∂ΩB is the internal surface of the tank, n is the normal vector
to this surface pointing away from the fluid, D is the fluid velocity strain rate
tensor and µ the dynamic viscosity of the fluid. For an ideal fluid in absence
of breaking, it is generally possible to find an analytical or semi-analytical ex-
pression for eq. (11.9) (see i.e. section 11.4), while for the more general case,
Mfluid/tank can only be found through a numerical solver (see i.e. subsection
11.4.4). A proper choice of the fluid characteristics and filling height should
allow for a fluid response Mfluid/tank that can suppress unwanted tank os-
cillations excited by external forces.

Equation 11.7 can be multiplied by the angular velocity φ̇ and integrated
over an oscillation period to obtain the following energy balance:

[Emechtank ]
t+T
t − ∆Efriction − ∆Efluid/tank = ∆Emass/tank (11.10)

in which:
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1. ∆Emass/tank accounts for the energy transfer between the sliding mass
and the tank in one cycle; it is defined as:

∆Emass/tank =

∫t+T
t

Mmass/tank(s) φ̇ ds. (11.11)

The sliding mass is the driving element of the system and ∆Emass/tank
is therefore expected to be positive. In reality, if the damping phenomena
are not energetic enough, there may be cycles for which there is a net
transfer of energy from the tank to the moving mass, as shown in the
next sections.

2. [Emechtank ]
t+T
t is the variation of the mechanical energy of the tank during

one oscillation cycle; it is defined as:

[Emechtank ]
t+T
t :=

∫t+T
t

(
I0φ̈− gSg sin(φ)

)
φ̇ ds, (11.12)

3. ∆Efriction, always negative, is the energy variation of the tank due to
the mechanical friction for one cycle; it is defined as:

∆Efriction :=

∫t+T
t

Mfriction(s) φ̇ ds, (11.13)

4. ∆Efluid/tank is the energy transfer between the fluid and the tank dur-
ing one cycle; it is defined as:

∆Efluid/tank :=

∫t+T
t

Mfluid/tank(s) φ̇ ds. (11.14)

This term is linked to the sloshing phenomena induced by the tank mo-
tion. In order to dampen such a motion, ∆Efluid/tank should be nega-
tive, that is, in one period of oscillation the tank exerts a positive work
on the fluid and not vice versa; this issue will further be discussed in
detail in the rest of the paper.

The energy variation ∆Efluid/tank is characterised by two components:

1. [Emechfluid ]
t+T
t is the mechanical energy balance of the fluid in one oscilla-

tion cycle.

2. ∆Edissipationfluid is the energy dissipated by the fluid in one cycle and is
always negative (see e.g. Aris 1989).

The energy ∆Edissipationfluid involves different phenomena: (i) the fluid friction
on the tank walls, (ii) water impacts against the vertical walls, (iii) breaking
waves. The magnitudes of these different components depend on the nature
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of the fluid. For example, when using water, breaking waves are expected to
be the main source of fluid dissipation.

The energy balance for the fluid hence reads:

∆Efluid/tank = −[Emechfluid ]
t+T
t + ∆E

dissipation
fluid (11.15)

and therefore equation (11.10) becomes:

[Emechtank ]
t+T
t + [Emechfluid ]

t+T
t − ∆Efriction − ∆E

dissipation
fluid = ∆Emass/tank

(11.16)
The work done by the sliding mass, when positive, increases the mechanical
energy of the tank and fluid, but is partially dissipated by the mechanical
friction and fluid dissipation mechanism.

All the energy contributions are represented in Fig. 11.3, where the direction
of the arrow indicates the positive sign contribution.

Figure 11.3.: Energy balance between the sliding mass, the tank and the fluid; the
direction of the arrow corresponds to positive contributions.

11.2.2 Analogies between the present system, a TLD and a HMLD

TLD

The amplitude of the roll angle φ is the main indicator of the performance of a
TLD system with angular motion. For a given excitation Am, the lower the φ
the more effective the TLD is considered to be. An analogy can be established
between the present system and an angular motion TLD. Looking at the left
panel of Fig. 11.1, mass M can be thought of as tank for the system described
herein, the TLD being the fluid, K being the restoring term of the moment
equation, C the friction term, and Ae the moment due to the moving mass.

However, this analogy falls short because, as will later be seen, if the exci-
tation is above a certain threshold, the roll angle may not be reduced even if
the system is dissipating a large amount of energy. This property suggests the
idea of looking at the system as a hybrid mass liquid damper (HMLD).
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HMLD

A large proportion of the analysis for the present system is in the energy trans-
fer between the moving mass and the tank, ∆Emass/tank. Looking at the right
panel of Fig. 11.1, the present system can be seen as the secondary system
(with mass Mh) and may experience a larger amplitude motion than permit-
ted if attached to the main structure. Under this large motion scenario, high
levels of energy transfer may be induced from the primary damper M through
the term ∆Emass/tank, finally being dissipated on the secondary system with
the large angular motion sloshing flows.

11.2.3 Definition of envelopes and phase lags functions

In this subsection, useful quantities are defined in order to properly analyze
the present system. These quantities are not used to obtain analytical solutions
but only to extract important information from the numerical simulations and
experimental results. As an example, the solution of equation (11.8), φ(t), can
be approximated as:

φ(t) = Φenv(t)

∞∑
n=1

sin [nωt + δn(t) ] , (11.17)

provided that the envelope function Φenv(t) and phase shift functions δn(t)
each have slow dynamics with respect to the period T = 2π/ω. As will be
shown later, the first harmonic component is largely dominant in the roll mo-
tion. Therefore, φ(t) can be described with a good approximation by:

φ(t) ≈ Φenv(t) sin [ωt + δ(t) ] . (11.18)

Due to their slow dynamics, the envelope function Φenv(t) can be approxi-
mated as:

Φ(t) =
π

2 T

∫t+T
t

|φ(s)|ds , (11.19)

and the shift function δ(t) can be approximately evaluated looking at the max-
imum values of φ(t) and ξm(t) in a moving T−time window, and measuring
the relative time shift in order to evaluate the phase lag.

Due to the existence of dissipative terms, equation (11.8) may admit a a
“time-periodic solution” and equation (11.18) becomes:

φ(t) = Φ sin[ωt + δ] (11.20)

This is true for a large number of conditions, however, it is known Bouscasse
et al. 2013b that shallow water sloshing can lead to subharmonics, in particular
with low amplitude oscillations. Regarding the torque Mfluid/tank, at time-
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periodic state, equation (11.8) shows that even considering the approximation
(11.20) for the roll angle, the non-linear terms induce non-negligible effects on
the time behaviour and the torque exerted by the fluid on the tank needs to be
expressed as:

Mfluid/tank =

∞∑
n=1

Mn sin[n(ωt + δ) + Ψn ] (11.21)

where Ψn is the phase lag between the torque n−harmonic component and
the roll angle φ(t) and in which, the first harmonic component is expected to
play a lead role in the time-periodic state balance.

Prior to the time-periodic state, and similarly to what is done with δ(t), it is
possible to extract a function Ψ(t) from the time histories of Mfluid/tank(t),
looking for the local maximum. Indeed, this phase lag function evolves with
slow time dynamics with respect to the period T .

Summarizing, in the time-periodic state, it is possible to define phasors on a
complex plane using the modulus and phases of the different quantities. The
origin for the phases is given by the sliding-mass motion. In order to help in
assimilating the notation and in identifying the main actors of the dynamics
under study, a typical configuration at time-periodic state is sketched in Fig.
11.4.

Figure 11.4.: Complex plane: main torques and motions involved in the analysis.

The following observations can be made:

1. Typically, the tank motion, φ(t), is lagged with respect to the sliding
mass motion, ξ(t), with an angle, δ, smaller than 90◦.

2. The torque created by the sliding mass, Mmass/tank, is lagged approxi-
mately 180◦ with respect to the sliding mass motion ξ(t).

3. The torque due to the friction term is advanced approximately 90◦ with
respect to the tank motion φ(t).

4. The optimum condition in order to damp the tank motion takes place
when the torque Mfluid/tank acts in counter-phase with respect to the
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torque Mmass/tank. Fulfillment of this condition is discussed in section
11.4.

11.3 dynamics of the system with the empty tank

11.3.1 General

In this section the system is studied without fluid, focusing on the depen-
dencies of the moving mass amplitude Am and the effect of friction on the
dynamics.

Considering an empty tank and null friction term, equation (11.8) can be
reduced to:[
1 +

mA2m
I0

sin2(ωt)
]
φ̈ +

mA2m
I0

ω sin(2ωt) φ̇+ω1m
2 sin(φ) +

mgAm

I0
sin(ωt) cos(φ) = 0

(11.22)

As previously mentioned, equation (11.22) has practically the same behaviour
as a driven non-linear pendulum. The dynamics of the empty tank condition is
explored numerically looking at this ODE (11.22). The accuracy of this model
of the “empty-tank” behavior was demonstrated in Bulian et al. 2010.

In Fig. 11.5, the solid line refers to the solution of equation (11.22) using the
largest amplitude of excitation Am = 0.20 m for the sliding mass and ωm1 as
excitation frequency. The solution shows the classical beating characteristic of
a driven non-linear pendulum (see e.g. Butikov 2008).

Figure 11.5.: Empty tank model: Roll angle φ plotted as a function of time using
an excitation amplitude Am = 0.20 m, ω = ωm1 . Solid line: without
friction, dashed line: with the friction model.

The energy exchanged between the tank and the sliding mass periodically
changes in sign during the beating periods.
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In the initial part of the time histories plotted in Fig. 11.5, φ(t) essentially
follows the linear resonant solution:

φLin(t) =
mgAm

I0

t cos(ωm1 t)
2ωm1

(11.23)

in which the amplitudeΦ(t) grows linearly with time and φLin(t) is in quadra-
ture (i.e. 90 degrees out of phase) with the sliding mass ξm(t) .

When considering the friction of the system, the solution (see dashed line
in Fig. 11.5) shows that φ reaches a time-periodic state after a long transient.
A similar behaviour is expected when the fluid is in the tank. Indeed, the
dissipation mechanisms of the fluid added to the friction mechanism should
generate a time-periodic state in a shorter time range.

Figure 11.6 shows the shift function δ(t) plotted as a function of time in the
empty tank condition (Am = 0.20 m with and without friction terms). Without
friction, the phase lag oscillates periodically between 90◦ and −90◦ (solid line).
With friction, the oscillations of δ(t) decrease in time towards a constant value
(8◦).

For positive values of δ, the mass is transmitting energy to the tank whilst for
negative δ, the tank gives back some energy to the sliding mass (i.e. ∆Emass/tank <
0). The behaviour of ∆Emass/tank, Φ and δ in time is better depicted by the
plots in Fig. 11.7.

Figure 11.6.: Empty tank model: shift function δ plotted as a function of time using
an excitation amplitude Am = 0.20 m,ω = ωm1 . Solid line: without
friction, dashed line: with the friction model.

Fig. 11.8 shows the frequency behaviour of [Φ, δ,∆Emass/tank] at time-
periodic state. This plot highlights the non-linearity of the mechanical system
with the typical bifurcation phenomenon on Φ when varying the frequency ω
(see e.g. Butikov 2008). Also, when increasing Am, the frequency at which the
maximum Φ appears (i.e. at which δ = 90◦) moderately decreases and is lower
than ωm1 . This “soft spring” behaviour is well documented in the literature.

Table 11.1 reports the value of [Φ , δ ,∆Emass/tank ] reached at a time-periodic
state using ω = ωm1 . Those values are to be used as reference data for chapter
12 where the tank is filled with a liquid.
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Figure 11.7.: Empty tank model: ∆Emass/tank plotted as a function of time using
an excitation amplitude Am = 0.20 m, ω = ωm1 . Top: without friction
terms, bottom: with friction terms.

Figure 11.8.: Empty tank model with friction terms: roll angle Φ, phase lag δ and
∆Emass/tank reached at a time-periodic state for different excitation
frequencies.

Am [m] 0.05 0.10 0.15 0.20

Φ [degree] 20 27 31 34

δ [degree] 26 14 10 8

∆Emass/tank/mgl 0.30 0.42 0.50 0.54

Table 11.1.: Empty tank model: values of the main quantities reached at time-periodic
state for the excitation amplitudes: Am= 0.05, 0.10, 0.15 and 0.20 m and
using the excitation frequency ω = ωm1 .

11.3.2 Torque exerted by the sliding mass on the empty tank

Figure 11.9 shows Mmass/tank/mgAm as a function of time for ω = ωm1 at
a time-periodic state (when the time-periodic state is met). This torque is a
non-linear function of ξ(t), φ(t) and their derivatives (see eq. 11.4).



174 mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. i. theoretical formulation and numerical investigation

The mentioned figure highlights the effect of increasing Am. For the lowest
Am = 0.05 m, the torque is almost sinusoidal. When increasing the excitation
amplitude it remains in phase with the sliding mass motion ξ(t). It is also no-
ticeable from the figure that a saturation effect takes place on the upper/lower
parts of the signal when Am is increased.

Figure 11.9.: Empty tank model: Mmass/tank is plotted as a function of time during
a time-periodic state where ω = ωm1 for four excitation amplitudes.

11.4 theoretical and numerical predictions of the
torque exerted by the fluid and the associ-
ated dissipation

11.4.1 General

The resonance characteristics of a sloshing tank subjected to swaying and
rolling have been thoroughly investigated over the years. The torqueMfluid/tank

(see equation 11.9) depends on the value of the pressure and velocity fields. It
is not possible to find a general formulation in closed form for the Navier
Stokes equations, especially when free surface breaking occurs.

Figure 11.10 shows a typical frequency behaviour of the wave amplitude
during periodic sloshing in a rectangular tank for shallow water conditions.
Increasing the excitation frequency raises the wave elevation until a frequency
ωb where a bifurcation is observed. For frequencies ω > ωb the wave ele-
vation is drastically reduced. In shallow water condition ωb is always larger
than ωf1 (see Faltinsen and Timokha 2002 and Bouscasse et al. 2013b), where
ωf1 is the first natural sloshing frequency:

ωf1 =
√
gπ/L tanh(πh/L). (11.24)

Therefore, the sloshing flow intensity has a “hard spring” type amplitude re-
sponse, the opposite of the “soft spring” behaviour of Φ discussed in section
11.3 for the empty tank condition. In Fig. 11.10, small peaks are visible on the
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wave amplitude measurements when ω < ωb. Those are related to secondary
resonance effects, which are typical phenomena in shallow water sloshing dy-
namics (for more details see Chester 1968, Chester and Bones 1968).

Figure 11.10.: Maximum wave elevation measured at 0.05 m from the left vertical
wall obtained during the time-periodic state varying the excitation fre-
quency ω. The roll angle amplitude is set to Φ = 1◦.

11.4.2 Torque from Verhagen and Van Wijngaarden analysis

In the pioneer work of Verhagen and Van Wijngaarden 1965, the non-linear
inviscid problem is solved for a shallow water regime using hydraulic jump
solutions on a tank forced in roll motion with a harmonic time history:

φ(t) = Φ sin(ωt + δ),

with a constant Φ and an arbitrary phase δ.

According to Verhagen and Van Wijngaarden 1965, hydraulic jumps travel-
ling back and forth between the walls of the tank exist in the following range
of excitation frequencies:

(
ω − ωf1

)2
<
24gΦ

L
. (11.25)

Mfluid/tank can be expressed with Fourier series:

Mfluid/tank = ρg

(
L

2

)3
B

∞∑
n=1

M̃n sin[n(ωt + δ) + Ψn ], (11.26)

with Ψ1 being the phase lag between the first harmonic component of the
torque and the roll angle φ(t) (see Fig. 11.4).
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In the vicinity of the resonance frequency ωf1, the first harmonic component
in equation 11.26 is given by:

M̃1 =

(
2

3

) 3
2
(
4

π

)4(
Φh

L

) 1
2
[
1 −

L(ω − ωf1)
2

32 gΦ

]

Ψ1 = −
π

2
− 2 arcsin

[
L(ω − ωf1)

2

24 gΦ

] 1
2

+ arcsin

[
L(ω − ωf1)

2

96 gΦ − 3L (ω − ωf1)
2

] 1
2

.

(11.27)
Therefore, in the Verhagen and Van Wijngaarden 1965 analysis, the torque
magnitude is proportional to

√
Φ and its maximum value is achieved for ω =

ωf1, i.e. when the system is forced with the fluid resonance frequency.

From equation (11.27) and for values of ω in accordance with equation
(11.25), Ψ1 decreases from 0 to −180◦. Specifically for ω = ωf1, Ψ1 = −90◦,
which implies that the first harmonic of Mfluid/tank is in quadrature with
the tank motion (see equation 11.26).

11.4.3 Theoretical fluid dissipation

A theoretical approximation of the fluid energy dissipation has now been de-
veloped similar to Verhagen and Van Wijngaarden 1965, where hydraulic jump
solutions for an inviscid flow are used. Following Stoker 1957, the energy loss
dissipated across a hydraulic jump between water heights h0 and h1 moving
with velocity u over a wave period is:

∆E
dissipation
fluid ≈ −Bρgh0u

(h1 − h0)
3

4h0h1
T . (11.28)

Over one period the total distance that the wave must propagate down the
length of the tank and back again, is uT = 2L. Therefore, the above expression
becomes:

∆E
dissipation
fluid ≈ −2BLρgh0

(h1 − h0)
3

4h0h1
. (11.29)

All of the energy given to the fluid comes from the motion of the tank’s walls.
For an inviscid fluid this can be approximated to the work done by pistons
acting against the net difference between the (approximately hydrostatic) pres-
sure distributions at the two end walls. For an elementary angle rotation dφ
the work is:

dWp = −
ρgB

2
(h21 − h

2
0)
√
H2 + (L/2)2dφ (11.30)

Integrating over an oscillation period and since this value should be equal to
∆E
dissipation
fluid , on one hand (h1 − h0) is obtained combining above expres-
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sions, on the other hand h1+h0 ≈ 2h, and subsequently the following estima-
tion for ∆Edissipationfluid can be given:

∆E
dissipation
fluid = −[(2H/L)2 + 1]3/4 (4ρ g BLh2)Φ

3
2 =

= −[(2H/L)2 + 1]3/4 (4mliquid gh )Φ
3
2

(11.31)

where mliquid is the mass of the sloshing liquid contained in the tank. Since
for the present system 2H/L ' 1, the above expression reduces to:

∆E
dissipation
fluid

(4mliquid ghΦ
3
2 )

= −23/4 ≈ −1.68 (11.32)

This dissipation rate is constant in time, which is generally not the case for a
real sloshing flow where a breaking wave front develops only on limited time
ranges and is not present during the whole oscillation cycle. This is the reason
why equation (11.32) tends to over-predict the fluid dissipation as shown in
the next subsection.

This non-dimensional coefficient linked to the energy dissipated by the fluid
is referred to hereinafter as:

α := −
∆E
dissipation
fluid

4mliquid ghΦ
3
2

. (11.33)

Being α of order unity, the reference energy, 4mliquid ghΦ
3
2 models that part

of the mechanical fluid energy (kinetic plus gravitational potential) which is
available to be dissipated in breaking.

11.4.4 Numerical predictions of the torque exerted by the fluid and the as-
sociated dissipation

The theoretical model presented in section 11.4 is not expected to be valid for
large oscillation amplitudes, as is the case for some used in the present work,
or for very small oscillations where hydraulic jumps do not occur. For this
reason, numerical simulations in a 2D framework are performed using the
Smoothed Particle Hydrodynamics model discussed and validated for slosh-
ing flows in Bouscasse et al. 2013b and in Antuono et al. 2012b.

The filling height adopted is equal to h = 0.092 m. This choice is motivated
by the points discussed in section 11.5.

Plots in Fig. 11.11 show the maximum torque Mfluid/tank recorded in the
time-periodic regime for five different roll amplitudes Φ: 1, 2, 10, 20 and 35

degrees and a range of exciting frequencies ω close to ωf1.
The peak values of Mfluid/tank in each oscillation cycle have a very dif-

ferent frequency behaviour for small and large roll angles. Furthermore, for
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small roll amplitudes, the associated standard deviation across these cycles is
very low. This result indicates repeatability, a characteristic of non-breaking
sloshing flows. For a roll angle greater than 2 degrees, breaking waves occur,
inducing a standard deviation on the evaluated Mfluid/tank that increases
with Φ.

The analytical prediction of Mfluid/tank in the proximity of ωf1 ( see equa-
tion (11.27) ) isM1 ' 0.457

√
Φ. The theoretical model tends to exceed the SPH

predictions, however, the agreement between the theory and the numerics on
the maximum torque remains fair for all investigated roll angles.

Fig. 11.12 depicts the α coefficient defined in equation 11.33 for the five pre-
viously defined roll amplitudesΦ. For the lowest roll amplitudes, the obtained
α-values present a complex frequency behaviour with different peaks linked to
secondary resonance effects. Besides this, for Φ equal to 1 and 2 degrees, α is
very close to the value 1.68 predicted by the analytical expression(11.32) when
ω is close to the frequency ωf1. These results are compatible with those found
in Landrini et al. 2007 where the energy dissipated by breaking waves, when
simulating hydraulic jumps with SPH, was shown to be similar to analytical
results.

Increasing the roll amplitude, SPH predicts a reduction of the viscous co-
efficient α which remains in the range of variation α ∈ (0.8, 1.8) for all the
five amplitudes studied. This reduction is also confirmed by the experimental
measurements presented in the chapter 12.

Figure 11.11.: Maximum value for the torque Mfluid/tank predicted by the SPH
method during the time-periodic state varying the excitation frequency
ω. The maximum values plotted are the average of those obtained for
the simulated periods. The error bars indicate the associated standard
deviation. Left: roll amplitude Φ = 1,2, 10 degrees. Right: Φ = 20 and
35 degrees.
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Figure 11.12.: The energy ∆Edissipationfluid predicted by the SPH method during the
time-periodic state is plotted for an excitation frequencies range (0.4 <
ω/ωf1 < 1.5) and for five different roll amplitudes Φ.

11.5 the fully coupled angular motion system

11.5.1 General

Once the empty tank mechanical system and the fluid system have been inde-
pendently analyzed, it is relevant to observe them coupled.

If the fluid is considered “frozen”, considering a filling height h = 0.092 m
and a “frozen” liquid with density ρ = 1000Kg/m3, the moment of Inertia I0
has an 8% variation. However, since Sg also varies, the effect on the mechanical
resonance frequency ωm1 is limited to a decrease of 0.5%. Therefore, the effects
of the presence of a liquid inside the tank, are mainly due to the induced
sloshing flows and not so much to the liquid mass added in the system.

In the previous sections the non-linear empty tank and the forced sloshing
dynamics have been described. To analytically study the frequency behaviour
of the coupled fluid/rig TLD system the methodology described in the works
of Frandsen Frandsen 2005 or Alemi Ardakani et al Ardakani et al. 2012 should
be followed.

In other articles (e.g. Tait’sTait 2008), the sloshing dynamics of the TLD sys-
tem is approximated as a simple secondary mass-spring system. This allows
(as with the model of Frandsen Frandsen 2005) the selection of an optimal
mass of fluid in order to reduce the oscillation amplitude at the resonance
frequency of the mechanical system ωm1 .

In the case studied here for the pendulum-TLD, the roll motion makes these
analytical approaches more complex. Furthermore, for the large range of exci-
tation amplitudes Am investigated here the linearised approach fails.

The optimal choices for the mass of fluid found in the linearised approaches
are in the neighborhood of ωf1/ω

m
1 ≈ 1 and this can be explained by the

following simple considerations:
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1. As discussed in section 11.4.2, if the system is forced at ω = ωf1 then
Ψ1 = −90◦ (the first harmonic of Mfluid/tank is in quadrature with the
tank motion).

2. The largest counteraction expected is when Mfluid/tank is lagged 180◦

with respect to Mmass/tank. Looking at Fig. 11.4, this case corresponds
to δ+Ψ1 = 0.

3. For the smallest forcing (Am = 0.05m, see section 11.3.1), the roll motion
of the mechanical system with an empty tank is in quadrature (δ = 90◦)
with the sliding mass motion when the system is forced at the mechanical
resonance (ω = ωm1 ).

4. From the above considerations, when the first sloshing frequency is equal
mechanical resonance frequency of the system:

ω1 := ωf1 = ωm1 ⇒ gπ/L tanh(πh/L) = −gSg/I0,
(11.34)

which allows identifying the filling height h = 0.092 m.

Summarizing the above considerations for all the different torques, it is pos-
sible to define phasors on a complex plane using the modulus and phases
of the first harmonic components obtained by a Fourier decomposition (as in
equation 11.21).

The phasors expected for an idealised system are sketched in Fig. 11.13. The
inertial and static components are defined respectively as Minertial = −I0φ̈

and Mstatic = gSg sinφ. The origin of the phases is given by the sliding-mass
motion.

In real cases, the dynamic system moves away from this ideal condition. As
a consequence, the optimum choice for the filling height, h∗, is not necessarily
obtained by (11.34) since h∗ also varies due to non-linearities with respect to
the forcing amplitude Am or to the nature of the fluid. These non linearities
are the subject of the present study, where the filling height h is therefore set to
0.092 m and this choice is tested across a range of frequencies using a suitable
numerical solver to get the fluid reaction Mfluid/tank.

11.5.2 Pendulum TLD: numerical simulation with SPH

In this section, the Smoothed Particle Hydrodynamics model presented is ap-
plied to simulate the fully coupled angular motion system. The two-dimensional
hypothesis is still maintained mainly for computational costs.

Fig. 11.14 depicts the sloshing flow predicted by the SPH model. For the
frequency ω = ω1, two different excitation amplitudes Am of the sliding mass
are used: Am = 0.05 m and Am = 0.20 m. For the smallest amplitude, a train
wave develops inside the tank and no breaking wave phenomena are predicted;
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Ideal case

inertial

static

fluid/tankmass/tank

friction 0 deg.

90 deg.

270 deg.

180 deg.180 deg.

Figure 11.13.: Torque modulus and phase. Phasor expected for a tank filled with an
inviscid liquid at oscillating with small amplitude angle, for resonance
condition of both liquid and mechanical system.

the motions of the sliding mass and the rolling tank are almost in quadrature.
The agreement with the experimental results is very good as it can be seen
comparing with the results of chapter 12.

Conversely, using the highest Am = 0.20, the sloshing flow becomes very
violent, with an intense free surface fragmentation process; for this case, the
sliding mass and the roll tank are far away from the quadrature condition.
The SPH prediction of the flow presents no negligible discrepancies with re-
spect to the experiments. Indeed, because of the violent sloshing condition,
the flow comprises air entrapment, turbulence processes and significant three-
dimensional effects; they are not modeled by the numerical method.

For both amplitudes Am, the roll angle and the phase lags predicted by the
numerical model agree with the experimental results reported in chapter 12 of
this work. In Fig. 11.15 the roll angle φ(t) predicted by the SPH is plotted as
a function of time. For Am = 0.05 m an almost time-periodic state is reached
after almost ten periods. Even if a small sub-harmonic develops, the roll-angle
amplitudeΦ stabilizes at a value of around 2 degrees. The largest Am requires
more periods of oscillation to reach a a time-periodic state, for which a value
of 35 degrees is attained. Comparing the maximum roll angles with the ones
evaluated with the empty tank conditions in the case with Am = 0.05 m (see
section 11.3), the presence of liquid induces a drastic reduction of the roll
motion and the system thus behaves like a classical TLD.

This is not the case for the largest amplitude Am = 0.20 m. Indeed, in such
a condition the final roll angle with water inside the tank is practically the
same as obtained with the empty tank condition. Fig. 11.15 shows the phase
lags δ and Ψ predicted by SPH and plotted as a function of time. Since the
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Figure 11.14.: Tank filled with water: Sloshing flow predicted by the SPH model us-
ing two excitation amplitudes of the sliding mass: Am = 0.05 m (top)
Am = 0.20 m(bottom). Particles are colored according to their vorticity.

Figure 11.15.: Tank filled with water: roll angle plotted as a function of time using
Am = 0.05 m (top) and Am = 0.2 m (bottom) obtained through the
SPH model.
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Figure 11.16.: Tank filled with water: phase lags δ and Ψ are plotted as a function of
time using four different excitation amplitudes Am obtained through
the SPH model.

roll motion φ(t) is not affected by super-harmonics, δ presents a smooth time
behaviour. Conversely, Ψ(t) displays a noisy time history, which is linked to
the more complex numerical treatment of Mfluid/tank (see 11.2.3)

For Am = 0.05 m, δ and Ψ are close to 90 degrees and -90 degrees respec-
tively. The system is therefore close to the ideal condition discussed in section
11.5.1. For Am = 0.20 m the time history of δ is more complicated and only
begins to stabilize after 60 periods of oscillation at around 35 degrees. This
condition gives an indication of how the non-linearities of the dynamical sys-
tem play a relevant role for this second case. This unique behaviour will be
discussed in greater detail in chapter 12 of the manuscript.

11.5.3 Pendulum TLD: frequency behaviour

Since the SPH model seems to predict the time evolution of the coupled system
with sufficient accuracy, it is also used to study the frequency behaviour.

For the smallest amplitude (Am = 0.05 m, Fig. 11.17 shows the roll angle
Φ reached at time-periodic state for a range of frequencies. Φ(ω) presents
four peaks while the analysis proposed in Frandsen 2005 shows a classical
TLD system which presents only two peaks around the mechanical resonant
condition. However, the reduction of Φ in the neighborhood of ω1, is also
maintained in the present system.

Fig. 11.18 shows the frequency operators on the roll angle Φ, the phase lag δ
and the energy transfer between the moving mass and the tank, ∆Emass/tank,
reached at time-periodic state for two different excitation amplitudes (Am =

0.05, 0.20m). The operators for the empty tank condition presented in section
11.3.1 are reported in this plot to highlight the differences induced by the
sloshing liquid.
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Figure 11.17.: Fully coupled angular motion system. Frequency operators evaluated
through the SPH model, for Roll angle Φ, reached at periodic state for
the excitation amplitude Am= 0.05 m

Figure 11.18.: Fully coupled angular motion system. Frequency operators evaluated
through the SPH model, for the Roll angle Φ, the phase lag δ and
energy transfer between the moving mass and the tank, ∆Emass/tank,
reached at periodic state for two different excitation amplitude Am:
0.05 m (top panel), 0.20 m (bottom panel).

For Am = 0.05m the frequency behaviour of the phase lag δ is very complex
as a result of the shallow water sloshing dynamics. However, for ω = ω1 the
coupled system confirms that it is close to a quadrature condition. Since the
rolling motion is highly reduced in the presence of water, the work done by
the sliding mass ∆Emass/tank is smaller than in the empty tank condition.

Conversely, for Am equal to 0.20 m, the Φ angles reached at time-periodic
state are practically not affected by the presence of the water, and although
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there are some visible effects on the phase lag δ, the main differences appear
on ∆Emass/tank. Indeed, when water is present inside the tank and for a large
Am, the sloshing flow is not able to reduce the roll motion and the system does
not perform as an efficient TLD. However, the work exerted by the sliding
mass, ∆Emass/tank, increases up to a factor of five. This phenomenon will be
further described in chapter 12.

11.6 summary of this chapter

The kinematics, dynamics and energy dissipation mechanisms of a pendulum-
TLD system have been analyzed.

The pendulum-TLD is composed of three coupled sub-systems: first, a slid-
ing mass whose weight excites the motion, second, the moving parts, including
the empty tank, of an angular motion sloshing rig, and third, the fluid which
partially fills that tank.

An analogy with TLD and HMLD systems has been provided. Differently
from other TLDs studied in the literature, the Pendulum-TLD involves large
motions and complex flows, which do not permit the use of an analytical fluid
dynamic model.

The nonlinear dynamics of the Pendulum-TLD has been documented both
for the empty tank and for the tank partially filled with water. The frequency
behaviour of the roll angles, phase lags and energy transfer has been discussed.

The energy dissipated by the sloshing flow has been quantified through a
simple theoretical model based on hydraulic jump solutions. This model al-
lows for an evaluation of the mechanical energy available to be dissipated in
breaking. Furthermore, a scaling factor for the energy available to be dissi-
pated in breaking has been obtained from this analysis. This scaling factor has
been used to make non dimensional in a meaningful way the numerical results
obtained by an SPH model (and the experimental data of part II).

From the numerical simulations, the complex kinematics and dynamics of
the flow has been discussed: low amplitude traveling waves occur for the small
excitation cases while breaking waves and violent fluid-structure impacts de-
velop for large excitations.

Through the SPH model the complete frequency behaviour of the fully
coupled system has been obtained. Interesting features have been identified.
Specifically, for small excitations, the system behaves like a classical TLD. The
frequency response changes drastically with large excitations.
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12.1 introduction

Much work has been done in order to assess the sloshing related loads that
occur during forced harmonic motions (see e.g. Bass 1998; Diebold et al. 2011;
Souto-Iglesias et al. 2006). Concerning the coupling between a mechanical sys-
tem and fluid dynamics, one of the most interesting experimental work is due
to Cooker 1994 who carried out decay experiments with a free oscillating tank
suspended as a bifilar pendulum in the shallow-water limit. The most attrac-
tive feature of this system is that friction effects are negligible. Herczyński and
Weidman 2012 also tested several shapes for a free swaying tank. Marsh et al.
2011; So and Semercigil 2004 present other decay tests with egg shaped forms,
claiming that they are close to optimum in motion dampening for a range of
filling heights.

Experiments for coupled roll motion in waves are found in e.g. Armenio
et al. 1996a; Nasar et al. 2010. The effects of screens and baffles placed inside
the tank, have been studied experimentally in the works of e.g. Firoozkoohi
and Faltinsen 2010; Tait 2008; Tait et al. 2005. The extra dissipation is achieved
when viscous boundary layers separate from the many solid edges of a screen.
There is a rapid generation of vorticity, and therefore an associated high rate of
dissipation of mechanical energy by the viscous forces. Pirner and Urushadze
2007 carried out experimental tests to assess the efficiency of a rolling and
translating tank to dampen external vibrations. They performed a frequency
analysis of the device, testing different filling levels and liquids with different
viscosities.

In the present chapter, the Pendulum-TLD, described in chapter 11 and in
Bulian et al. 2010, is experimentally studied. Only one frequency of excita-
tion is considered, forcing the system to roll at the mechanical linear resonant
frequency (see discussion in chapter 11). In the designed system, forces and
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energy are retrieved from kinematic quantities. This avoids the use of sensors
for the measurement of force and torque which introduces practical difficulties
and measurement uncertainties. The accuracy of these results could make this
work interesting for the validation of numerical models as well as to provide
useful information for TLD or HMLD designers.

In order to investigate viscosity effects, three fluids are considered: water,
sunflower oil and glycerine. They have a similar density but a very differ-
ent viscosity. Using these three liquids makes possible the investigation of
the influence of Reynolds number for both the time-periodic state dissipation
and the transient dynamics of the motion. Particular attention is given to the
dissipation linked to wave breaking.

This chapter is organised as follows: the second section is dedicated to the
experimental setup, the third section presents experimental results for the
empty tank, and in the fourth the results for water are discussed. This is a
relevant case since it is the closest to an inviscid case, for which a theoreti-
cal model was developed in chapter 11. In the fifth section, results for more
viscous liquids are analyzed. A summary of the energy dissipation measure-
ments is presented considering the scales developed in chapter 11. Finally, a
novel damping device, the hybrid pendulum mass liquid damper (HPMLD),
is discussed before presenting conclusions.

This case is a benchmark for the SPHERIC SPH community and all data is
available for reanalysis by third parties. See http://canal.etsin.upm.es/papers/bouscasseetal2013/)
for videos of the experiments. Watching them across together with reading the
paper is recommendable.

12.2 experimental setup

The experiments were conducted with the tank testing device of the CEHINAV
- UPM research group. It is a single degree of freedom angular motion sloshing
rig used for a number of experimental campaigns documented in the literature,
e.g. Brizzolara et al. 2011; Degroote et al. 2010; Delorme et al. 2009; Idelsohn
et al. 2008 and described thoroughly in Souto-Iglesias et al. 2011. The tank
chosen for the simulations is depicted with its dimensions in Fig. 12.1. In
particular, the tank length L is 0.90 m, and the width B is 0.062 m. The length
l = 0.1 m is defined as a characteristic length of the system, indeed, the filling
height adopted will be of this magnitude (almost shallow water regime) as
well as the amplitude of the sliding mass motion. The distance H between
the center of rotation and the tank bottom is set equal to 0.47 m. The rotation
center is above the center of gravity of the whole system, implying that the
system is stable at the equilibrium position.

The tank is intentionally narrow along the z-direction, i.e. the direction
perpendicular to the paper, in comparison with the horizontal and vertical

http://canal.etsin.upm.es/papers/bouscasseetal2013/
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Figure 12.1.: Tank dimensions and sliding device

dimensions, in order to have a predominantly two dimensional flow. A 0.60 m
long linear guide is mounted parallel to the tank bottom passing though the
rotation center. A controllable electrical engine slides a mass, m = 4.978 kg,
along the guide with a specified motion. The weight and inertia of the mass
generates a torque that acts as the external excitation to the system, and gives
energy to the tank, which begins to roll. Consequently, sloshing is induced
and influences the dynamics of the rigid body angular motion.

The sloshing tank rotates on a fixed plane around the fixed pivot O. The
moment of inertia around O is I0 = 26.9 kg.m2 and the static moment of the
rigid system around O is SG = mtankηG = −29.2kg.m. The sliding mass
moves with a defined harmonic motion ξm(t),

ξm(t) = Am sin(ωt)

where Am is the amplitude of the mass oscillation and ω is the oscillation
frequency. T is the related period set equal to the resonance period of the
mechanical system T1 = 1.925 s. The sliding mass motion amplitude Am is set
to 0.05, 0.10, 0.15 and 0.20 m. Since ξm is imposed, the state of the dynamical
system can be defined as a function of the angle φ and its derivatives.

In order to understand how this system works, the reader is referred to the
video presented as supplementary material for Fig. 12.2. On the left part
of this figure, sample cases with the empty tank and the tank partially filled
with water are presented. In the top panel the angular motion of the tank is
presented for these two cases. The influence of the fluid on the tank motion
time history can be appreciated. Finally, in the bottom panel, the motion of
the exciting sliding mass, which is the same for both cases, is plotted.

12.3 dynamics of the system with the empty tank

As shown in chapter 11, the dynamics of the system with the empty tank
is not a straightforward problem due to the strong non-linear features. The
analysis of chapter 11 focused mainly on the time-periodic state, and results
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Figure 12.2.: Experimental device in action, top: empty tank, bottom: tank par-
tially filled with water. Videos available as supplementary materials
at http://canal.etsin.upm.es/papers/bouscasseetal2013/.

were obtained through a numerical integration of equation (III.22) in chapter
11. The transient dynamics was shown to lead to very large angles.

In order to remain within the safety operational margins of the sloshing
rig, the experiments are stopped when the roll angle φ exceeds 35◦ (see Fig.
12.3). This constraint impedes the time-periodic state showed in chapter 11

to be reached. In the early phase of the test, ∆Emass/tank is converted in
[Emechtank ]

t+T
t and partially in ∆Efriction. The system can be said to behave

linearly with Am in that early phase.

The primarily linear behaviour seen on the experimental plots is confirmed
in Fig. 12.4, where the lag function δ(t) (see definition in chapter 11 section
II.C) is plotted as a function of time. δ remains close to 90◦ (meaning that the
roll motion is in quadrature with the sliding mass) for all amplitudes Am.

Figure 12.3.: Empty tank: experimental roll angle φ plotted as a function of time
for different Am value using the excitation frequency ω = ω1. The
horizontal purple line indicates the safety margins of the sloshing rig
(35 degrees).

http://canal.etsin.upm.es/papers/bouscasseetal2013/
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Figure 12.4.: Empty tank: shift function δ obtained from experiments plotted as a
function of time for different Am value using the excitation frequency
ω = ωm1 .

12.4 analysis of the dynamical system: tank filled
with water.

In this section, the analysis of the dynamical system is considered when the
tank is partially filled with water. The filling level is set equal to h = 0.092 m
and has been chosen so that the first sloshing period matches the resonance
period of the structure T1 = 1.925 s (see chapter 11). The period for the motion
of the sliding mass T has been set equal to T1, and the excitation amplitudes
Am are again 0.05 , 0.10 , 0.15 , 0.20m, labeled respectively as Series 1,2,3,4.

A discussion is presented for the four excitation amplitudes since distinct
features in the sloshing regimes are observed; these are summarised in Table
12.1. In order to illustrate them, some pictures of the flow are presented in Fig.
12.5 for each of the Series. Two instants are selected for each case, one with
the maximum angle and one with a flat angle.

Am (m) motion regime developed flow
Series 1 0.05 weak wave train without breaking event
Series 2 0.10 moderate plunging breaker in the middle of the tank
Series 3 0.15 strong strong hydraulic jump flow
Series 4 0.20 very strong an almost dam-break flow

Table 12.1.: Sloshing regime induced in the oscillating tank when using water.

For the first Series, only a wave train without breaking events takes place.
For the second Series, a plunge breaking event develops towards the middle
of the tank. For the most violent case, Series 4, when the maximum roll angle
is reached, almost all the water accumulates on the tank side and a quasi dam-
break type flow occurs.
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Figure 12.5.: Sloshing wave in tank filled with water from left to
right Am = 0.05, 0.1, 0.15, 0.2 m. Videos available from
http://canal.etsin.upm.es/papers/bouscasseetal2013/.

12.4.1 Roll angle

The experimentally obtained roll angles are plotted as a function of time in
Fig. 12.6. For the first three Series, the system reaches an approximate time-
periodic state within 40 periods; the duration of the experiment is not long
enough for Series 4 to reach such state.

Figure 12.6.: Tank filled with water: roll angle plotted as a function of time using
Am = 0.05 m, Am = 0.1 m (top), Am = 0.15 m, Am = 0.2 m (bottom),
excitation frequency ω = ωm1 .

Fig. 12.7 depicts the envelope function Φ defined in equation 11.19 as:

Φ(t) =
π

2 T

∫t+T
t

|φ(s)|ds (12.1)

http://canal.etsin.upm.es/papers/bouscasseetal2013/
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Figure 12.7.: Envelope function Φ plotted as a function of time, using excitation am-
plitudes Am = 0.05 m (top) and Am = 0.20 m (bottom) for the empty
tank and for the water filled tank.

obtained with the empty tank and with the tank filled with water for both
Series 1 and 4.

The top plot is obtained for the smallest excitation amplitude Am = 0.05 m.
In this case, the system behaves like a classical TLD, i.e. when water is present,
Φ is drastically reduced. In the transient stage and for the largest excitation,
Am = 0.20 m, the angle Φ is lower when water is present (maximum angle
52◦ with the empty tank against 40◦ with water), as can be seen in the same
figure. On the other hand, at time-periodic state, the roll angle is similar for
the two different configurations (empty / filled with water).

This behaviour is partially explained by the fact thatMmass/tank is approxi-
mately proportional toAm (see equation (II.4) of chapter 11) whileMfluid/tank

is approximately proportional to
√
Φ (see equation (IV.27) of chapter 11). The

behaviour of the coupled system is further influenced by the phase lags be-
tween the different torques.

12.4.2 Phase lags analysis of the coupled system

The results of the time evolution of δ (phase lag between the sliding mass
motion and roll angle) and Ψ (phase lag between Mfluid/tank and the roll
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Figure 12.8.: Tank filled with water: phase lags δ and Ψ plotted as a function of time
using the four different excitation amplitudes Am mentioned in section
12.2.

angle) are shown in Fig. 12.8. The torque Mfluid/tank is evaluated through
(Eq. II.8 of chapter 11):

Mfluid/tank = I0φ̈−gSg sin(φ)+Bφφ̇+Kdfsgn(φ̇) + mξmgcos(φ)+m(2ξmξ̇mφ̇+ξ2mφ̈)

(12.2)
where the motions of the sliding mass ξm(t) and of the tank φ(t) are experi-
mentally recorded.

For the smallest value of Am, the torque Mfluid/tank (see 12.2) is approx-
imately in quadrature with the tank motion (Ψ ≈ −90◦) during the time evo-
lution. The roll motion is also approximately in quadrature with the sliding
mass motion (δ ≈ 90◦). For larger Am, the phase lag Ψ measured at the
time-periodic state moves to Ψ = −30◦ for Series 3). δ also changes accord-
ingly with the net outcome being that Mfluid/tank remains approximately in
counter-phase withMmass/tank at time-periodic state. Indeed, the fluid helps
the system to reduce the effect of the external excitation.

This can be appreciated in the phasors’ graphs, corresponding to the time-
periodic state, of Fig. 12.9. For the smallest value of Am (top panel), the system
behaves basically like the ideal TLD system presented in chapter 11. For the
largest value of Am (bottom panel), the behaviour is completely different from
what expected in a ideal TLD.

In chapter 11, the dissipation properties of the Pendulum-TLD excited with
large values of Am was discussed and the analogy of the present system with
a hybrid mass liquid damper was established. With such an analogy it is
important that the damper does not return energy to the external system. As
it shown in chapter 11, this is not always the case with the empty tank. This
implies that it is necessary to analyze energy transfers during the process in
order to establish the practical interest of the present system.
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Figure 12.9.: Phasors obtained for the tank filled with water (see definition in chapter
11). Torque modulus and phase are retrieved as the first harmonic at
time-periodic state.

12.4.3 Energy transfer from tank to fluid

The time history of the energy transfer between the sliding mass and the tank
in one cycle, ∆Emass/tank, can be calculated with equation:

∆Emass/tank =

∫t+T
t

Mmass/tank(s) φ̇ ds, (12.3)

This variable is depicted in Fig. 12.10 for the extreme sliding mass motion
amplitudes (the reader is referred to chapter 11 for all the torque and energy
term definitions and sign conventions).

For Series 1, when the tank is empty, ∆Emass/tank is always positive and
the value largely oscillates before ending in a time-periodic state. When water
is in the tank, ∆Emass/tank is drastically reduced and so is the roll angle
amplitude. The low level of ∆Emass/tank is continuously transferred to the
gentle sloshing flow regime.

For Series 4, when the tank is empty, ∆Emass/tank periodically changes in
sign; in other words, the sliding mass exerts work on the tank during some
parts of the process but also receives work from the tank in others. This is a ma-
jor concern, assuming that the goal is to retrieve energy from the exciting sys-



196 mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. ii . experimental investigation.

Figure 12.10.: ∆Emass/tank plotted as a function of time, using excitation ampli-
tudes Am = 0.05 m (top) and Am = 0.20 m (bottom) for the empty
tank and for the tank filled with water.

tem. With this amplitude and the empty tank, the sign only stabilizes as posi-
tive after many periods. On the other hand, in presence of water, ∆Emass/tank
remains positive; the sliding mass always makes a positive and intense work
on the tank which is then transferred to the fluid through −∆Efluid/tank. At
time-periodic state this work is fully dissipated by the fluid. This dissipation
can be quantified, as discussed hereafter.

12.4.4 Wave breaking and energy dissipation

The energy transfer between the fluid and the tank, ∆Efluid/tank, is obtained
as:

∆Efluid/tank :=

∫t+T
t

Mfluid/tank(s) φ̇ ds, (12.4)

where Mfluid/tank(s) is computed from experiments using eq. (12.2). Fig.
12.11 plots ∆Efluid/tank as a function of time for the four Series. This term
comprises the fluid mechanical energy variation and a dissipation term (see
also chapter 11):

∆Efluid/tank = −[Emechfluid ]
t+T
t + ∆E

dissipation
fluid (12.5)

On these plots a dissipated energy per cycle, ∆Edissipationfluid , time history plot
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Figure 12.11.: Energy transfer ∆Efluid/tank plotted as a function of time, using ex-
citation amplitudes Am = 0.05, 0.10, 0.15 and 0.20 m (from top to bot-
tom).

is also included computing it with the following semi-analytical expression
(see eq. 11.33):

∆E
dissipation
fluid (t) = −α

[
4mliquid ghΦ

3
2 (t)

]
, (12.6)

in which Φ(t) is the recorded envelope (see eq. (11.19)) and α is a constant
coefficient α tuned in order to match the curves on the final part of the time
histories. The range of α adopted is in agreement with what was obtained in
the numerical analysis for forced motion performed in chapter 11. Indeed, for
the smaller excitation amplitude cases, Am = 0.05 m, the coefficient α is close
to the theoretical value 1.68 found in chapter 11. By increasing the amplitude,
α is progressively reduced as predicted by the SPH model discussed in chapter
11.
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Even if these “semi-analytical” curves may be a crude approximation, the
fine match with the experimental data indicates:

1. the predicted values for the dissipation in time-periodic state for water
are within the range found in chapter 11.

2. that for moderate and large amplitude cases, the large increases in dis-
sipation are linked to the breaking wave phenomena, that dominate the
flow dynamics.

3. the component [Emechfluid ]
t+T
t seems to be much smaller than ∆Edissipationfluid

along the whole process, except for the very early stage. This is also con-
firmed by other results shown in section 12.5.5.

It is observed that a perfect time-periodic state is not reached for Series
1 and a sub-harmonic behaviour appears. However, the amplitudes of the
sub-harmonics are small and the phenomenon can be ignored in the present
analysis.

Using the results of the previous subsection, it can be stated that the dissi-
pation associated with intense breaking wave phenomena stabilizes the sign
of the energy ∆Emass/tank for Series 2, 3 and 4. For Series 1 the low level of
energy involved only induces the development of wave trains inside the tank.

12.4.5 Summary of results for the water case

To summarize the results of this section, the value of the main quantities at
time-periodic state are reported in table 12.2. It can be noted that the energy
transfers ∆Efluid/tank and ∆Emass/tank for the case Am = 0.20 m are almost
50 times higher than the one with Am = 0.05 m, while the external work ratio
∆Ewatermass/tank/∆E

empty
mass/tank

increases by a factor of 25.
Finally, in Fig. 12.12 the torque Mmass/tank is plotted as a function of

time for the excitation amplitude Am = 0.20 m for both the empty tank and
for the tank filled with water. This plot confirms that even when the water
is present, Mmass/tank remains in phase opposition with the sliding mass
motion. It also confirms that the torque amplitude is practically unaffected by
the presence of water (i.e. the differences induced by the roll motion φ(t) on
the torque Mmass/tank are negligible).

12.5 effects of the liquid adopted: viscosity and
density.

In the performed experiments, the influence of the viscosity of the fluid is
explored. Table 12.3 records the physical properties of the three liquids used:
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Figure 12.12.: Torque Mmass/tank plotted as a function of time, using excitation
amplitude Am = 0.20 m for the empty tank and for the water filled
tank.

Am [m] 0.05 0.10 0.15 0.20

Φ [deg] 1.7 12 28 33

δ [deg] 105 85 50 35

Ψ [deg] -100 -60 -33 -30

∆Emass/tank/mgl 0.05 0.65 1.8 2.2
∆Efluid/tank/mgl -0.035 -0.52 -1.42 -1.68

∆Efriction/mgl -0.015 -0.13 -0.38 -0.52

Φwater/Φempty 0.085 0.43 0.90 0.97

∆Ewatermass/tank/∆E
empty
mass/tank

0.17 1.55 3.6 4.07

Table 12.2.: Tank filled with water: values of the main quantities reached at time-
periodic state for the excitation amplitudes: Am= 0.05, 0.10, 0.15 and 0.20

m.

water, sunflower oil, and glycerine. The total mass of fluid in the tank, the
surface tension coefficient, and the density, all differ little among the three
liquids. But the three values of the kinematic viscosity vary such that the oil
is fifty times more viscous than water, and the glycerine is 740 times more
viscous than water.

ν(m2 · s−1) σ(mN/m) ρ(kg ·m−3) mliquid(Kg)

Glycerine 7.4 · 10−4 64 1261 6.474

Sunflower Oil 5 · 10−5 33 900 4.620

Water 10−6 72 998 5.123

Table 12.3.: kinematic viscosity, surface tension, density and mass inserted inside the
tank for the studied fluids.
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In Table 12.4 the different Reynolds numbers, defined as Re =
√
ghAm/ν,

and Weber number, defined as We = ρghAm/σ, are reported, assuming
√
gh

is the characteristic flow velocity in shallow water condition.

Am (m) Rewater Reoil Reglycerine Wewater Weoil Weglycerine

Series 1 0.05 47500 950 64 625 1230 890

Series 2 0.10 95000 1900 128 1250 2460 1780

Series 3 0.15 142500 2850 193 1880 3690 2670

Series 4 0.20 190000 3800 256 2500 4920 3560

Table 12.4.: Reynolds and Weber numbers for the sloshing flows induced in the os-
cillating tank when using water, sunflower oil and glycerine inside the
tank.

As shown hereinafter, when using sunflower oil and glycerine, the roll an-
gle obtained is generally larger than the one recorded with water. As a conse-
quence and for safety reasons, the tests for Series 3 and Series 4 are stopped
during the transient, before a time-periodic state could be reached.

12.5.1 Series 1

Two pictures, representative of the flow evolution at time-periodic state for
Series 1, are shown in Fig. 12.13 for all three fluids. The wave train obtained
with water has already been discussed. For the oil case, the viscosity damps
out the wave train and wave steepness is drastically reduced. When using
glycerine, the free surface remains almost flat.

The left plot of Fig. 12.14 shows the roll angle amplitude Φ as a function
of time for Am = 0.05 m with water, sunflower oil and glycerine. An almost
time-periodic state is achieved for all cases within about 20 periods. The time-
periodic state angles are 2, 3 and 7◦ for water, oil and glycerine, respectively.
Therefore, the least viscous fluid (water) leads to the lowest roll angles, and
the most viscous (glycerine) to the largest ones. The time-periodic state angle
obtained with glycerine is more than twice the one obtained with oil and more
than three times that of water. These results are in agreement with those
reported in Pirner and Urushadze 2007 who found a similar behaviour with
methanol, water and glycerine. This means that, if the dynamical system is
considered as a TLD, the use of water allows for the best reduction of the roll
angle for a given harmonic torque at ω1.

The right plot of Fig. 12.14 depicts the energy transfer ∆Efluid/tank as a
function of time. This plot shows that using water, the response of the energy
transfer is accelerated, whereas using glycerine ∆Efluid/tank takes more time
to stabilize.
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Figure 12.13.: Sloshing wave in tank: filled with water, oil and glyc-
erine Am = 0.05m. See supplementary materials from
http://canal.etsin.upm.es/papers/bouscasseetal2013/.

Figure 12.14.: Envelope function Φ (left) and energy transfer ∆Efluid/tank (right)
plotted as a function of time, with an excitation amplitude Am = 0.05
m, using water, sunflower oil and glycerine inside the tank.

Liquid water oil glycerine
Φ [degree] 1.7 3.2 6.8
δ [degree] 105 110 125

Ψ [degree] -100 -103 -127

Φliquid/Φempty 0.085 0.16 0.34

∆E
liquid
mass/tank

/∆E
empty
mass/tank

0.17 0.29 0.52

Table 12.5.: Tank filled with water, oil, glycerine: values of the main quantities
reached at time-periodic state for the excitation amplitude Am= 0.05 m.

http://canal.etsin.upm.es/papers/bouscasseetal2013/
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The main quantities at time-periodic state using the three different liquids
are reported in table 12.5. From these measurements, it is observed that by
increasing the viscosity, the moduli of δ (positive) and Ψ (negative) also in-
crease, as shown with the phasors of the various torques plotted in Fig. 12.15.
The phasor plane obtained with water has the closest behaviour to an ideal
TLD such as the one discussed in chapter 11. This justifies why using water
is a more efficient option for the reduction of the roll angle than using other
liquids.

Figure 12.15.: Phasors obtained for the tank filled with water Am = 0.05m. Torque
modulus and phases are retrieved as the first harmonic at time-periodic
state.

12.5.2 Series 2

Typical pictures of the sloshing flow at time-periodic state for Series 2 are
shown in Fig. 12.16 for all three fluids. For Series 2 and with water, an en-
ergetic plunger develops in the middle of the tank. When oil is present, a
spilling breaking phenomena develops. When using glycerine, the high vis-
cosity inhibits the formation of steep waves.

The left plot of Fig. 12.17 shows the roll angle amplitude Φ plotted as
a function of time for the amplitude Am = 0.10 m using water, sunflower
oil, and glycerine. The attainment of the time-periodic state requires more
oscillations than in Series 1. Indeed, at least 50 periods are needed for all
three liquids. The experimental records are too short to take the system to the
time-periodic state regime. Experimental data can only be extrapolated upon
in order to get the value of Φ for longer time ranges. The time-periodic state
angles are approximatively 12, 16 and 20 degrees for water, oil and glycerine
respectively. The least viscous fluid (water) leads to the lowest roll angles
and the most viscous (glycerine) to the largest ones as in the previous Series.
However, the relative differences between the liquids are smaller than those
observed in Series 1.

The right plot of Fig. 12.14 depicts the energy transfer ∆Efluid/tank plotted
as a function of time. Considering the steepness of these curves during the
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Figure 12.16.: Am = 0.1m; sloshing wave in tank: filled with water,
oil and glycerine. See supplementary materials from at
http://canal.etsin.upm.es/papers/bouscasseetal2013/.

Figure 12.17.: Envelope function Φ (left) and energy transfer ∆Efluid/tank (right)
plotted as a function of time, with an excitation amplitude Am = 0.10
m, using water, sunflower oil and glycerine inside the tank.

initial stage, it can be inferred that water has a faster response with respect to
energy transfer. Fig. 12.14 also reports the time instants when the first breaking
of the free surface is observed. Using water, the breaking appears earlier than
with oil, that is, after just four periods. When the breaking develops, the
slope of ∆Efluid/tank is reduced and the curve related to water crosses the
curves corresponding to oil and glycerine. In the early stages, the increase of
∆Efluid/tank is affected by the mechanical energy component (see eq. (11.15)).
Water and oil increase their mechanical energy quickly as a result of the tank
motion. The breaking process then induces a large increase of the dissipation
component ∆Edissipationfluid ; it is the only one present at time-periodic state.
Due to the breaking processes for water and oil, and to the high viscosity

http://canal.etsin.upm.es/papers/bouscasseetal2013/
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of the glycerine, the value of ∆Efluid/tank increases one order of magnitude
with respect to the measurements in Series 1.

The phasors of the various torques are plotted in Fig. 12.18. With water and
oil, the phasor plane keeps close to the ideal TLD of chapter 11.

Figure 12.18.: Phasors obtained for the tank filled with water Am = 0.1m.

Liquid water oil glycerine
Φ [degree] 12 16 20

δ [degree] 85 96 120

Ψ [degree] -60 -80 -110

Φliquid/Φempty 0.43 0.57 0.71

∆E
liquid
mass/tank

/∆E
empty
mass/tank

∼ 1.7 ∼ 2.3 ∼ 2.3

Table 12.6.: Tank filled with water, oil, glycerine: values of the main quantities
reached at time-periodic state for the excitation amplitude Am= 0.05 m.

For this Series 2, an estimation of the main quantities at time-periodic state
using the three different liquids are reported in table 12.6. The work done
by the sliding mass on the tank, ∆Emass/tank, is very similar when using
glycerine or oil, although the pair of values (δ,Φ) are different. The phase lags
δ and Ψ increase in modulus together with viscosity.

12.5.3 Series 3

The sloshing flows for the Series 3 cases are visualised with several pho-
tographs (see Fig. 12.19). The selected pictures correspond to an oscillation
angle of about 30◦, which is extremely large for roll motion sloshing. With wa-
ter, almost the entire side wall is covered, and the successive evolution shows
a large plunging wave with a splash-up producing air entrapment. For the oil,
the elevation on the wall is similar, whilst the breaking wave is less violent.
With the glycerine, a spilling breaker develops, a salient feature to be found in
a liquid 740 times more viscous than water.
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Figure 12.19.: Sloshing wave in tank: filled with water, oil and glyc-
erine Am = 0.15m. See supplementary materials from
http://canal.etsin.upm.es/papers/bouscasseetal2013/.

The left plot of Fig. 12.20 shows the time histories for the envelope function
Φ. When oil and glycerine are used, the roll angle exceeds 35◦ and the experi-
ment is stopped in order to avoid risking the integrity of the rig. This reduces
the possibilities of the analysis, but the time history of Φ suggests that with oil
and glycerine the roll angle at time-periodic state can be higher than the one
reached with the empty tank.

The large roll motion induces an intense energy transfer ∆Efluid/tank (see
right plot of Fig. 12.20), almost three times larger than in Series 2. The time
instants when the breaking phenomena start to develop are reported in Fig.
12.20. The first breaking event occurs during the first four periods of oscilla-
tions for oil and water. Glycerine shows an extended transient phase; the first
breaking event appears after 15 periods.

Fig. 12.21 shows the phase lags δ and Ψ plotted as a function of time for
Series 3. Large time ranges are needed to stabilize the phase lag δ (left panel)
between the sliding mass and the roll angle. However, even if the dynamical
system is far from a time-periodic state, Ψ (right panel) is almost stable after
20 periods. The increase of viscosity generates an increase in modulus for both
δ and Ψ, at least in the time range covered by the experiments, similar to what
was obtained in previous Series. These results also show that when using
oil in the tank, the torque Mfluid/tank is in quadrature with the roll motion.
This affects the energy transfer between the fluid and the tank. Indeed, the
∆Efluid/tank obtained with oil is almost the same as the one obtained with
glycerine, even though the roll angle with oil is lower.

http://canal.etsin.upm.es/papers/bouscasseetal2013/
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Figure 12.20.: Envelope function Φ (left) and energy transfer ∆Efluid/tank (right)
plotted as a function of time, with an excitation amplitude Am = 0.15
m, using water, sunflower oil and glycerine inside the tank.

12.5.4 Series 4

Very little information is available for the last Series, mainly because after a
few periods the roll angles induced are larger than allowed by the rig, and
therefore the experimental time records are too short for a complete analysis
of the system’s dynamics.

The left plot of Fig. 12.22 shows the envelope function for the roll angle Φ
obtained for the first eight periods. The angles relative to the three different
liquids manifest small differences. Again, as already shown for the first three
Series, the roll angle attained is smallest when using water. The energy transfer
∆Efluid/tank is also very similar for the three liquids in the transient stage. In
these first eight oscillations, the phase lag δ remains close to 90◦ (left plot of
Fig. 12.23) whilst the phase lag Ψ has a more complex time behaviour. When
using oil, Ψ shows a tendency to remain closer to a quadrature configuration
90◦ whilst, when using water, Ψ decreases in modulus until the value of −30◦.
Contrarily, when using glycerine, Ψ increases in modulus, finally settling on
the value −120◦.

Fig. 12.24 depictsMmass/tank, Mfluid/tank and φ in the transient stage, as
a function of time. Mfluid/tank quickly opposes Mmass/tank (i.e. δ+Ψ ≈ 0).
Conversely Mfluid/tank increases in amplitude very slowly, indicating that,
in the first 10 periods of oscillation, the system is quite far from the time-
periodic state, as confirmed by the increase of the roll angle φ(t). Furthermore,
Mmass/tank shows a small non-linear behaviour resulting from the large am-
plitude Am, as already commented upon in section 12.4.



12.5 effects of the liquid adopted: viscosity and density. 207

Figure 12.21.: Phase lags δ (left) and Ψ (right) plotted as a function of time, with an
excitation amplitude Am = 0.15 m (Series 3), using water, sunflower
oil and glycerine.

Figure 12.22.: Envelope function Φ (left) and energy transfer ∆Efluid/tank (right)
plotted as a function of time, with an excitation amplitude Am = 0.20
m, using water, sunflower oil and glycerine.

12.5.5 Summary of dissipation results for the different liquids

Putting together all the data recorded in the four Series, some conclusions can
be drawn about the influence of dissipation induced by sloshing on the sys-
tem’s dynamics. Fig. 12.25 shows the time histories for Φ and ∆Emass/tank
for the four Series using the three different liquids. According to this figure, in-
creasing the viscosity of the liquid drives both Φ and ∆Emass/tank to increase.

However, a more detailed analysis can be achieved for the performance of
the sloshing liquid using the theoretical findings introduced in sections IV and
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Figure 12.23.: Phase lags δ (left) and of Ψ (right) plotted as a function of time, with
an excitation amplitude Am = 0.20 m, using water, sunflower oil and
glycerine.

Figure 12.24.: Torque Mmass/tank and Mfluid/tank as a function of time recorded
during the first period of oscillation with an excitation amplitude
Am = 0.20 m and using sunflower oil.

V of chapter 11 and the evaluation of the viscosity coefficient α (see equation
(11.33) expected to be close to the theoretical value 1.68.

Fig. 12.26 shows the energy transfer ∆Efluid/tank for the four Series ob-
tained experimentally. This energy is made non dimensional using the co-
efficient (4mliquid ghΦ

3
2 ). Since the energy transfer between the fluid and

the tank, ∆Efluid/tank, is fully dissipative at a time-periodic state, the ratio
∆Efluid/tank/(4mliquid ghΦ

3
2 ) is expected to converge to −α over time.

The left plot of Fig. 12.26 concerns the Series with water. For the first two
Series, the α coefficient oscillates around the theoretical value but tends to
diminish when Am increases. This means that for the most energetic case,
the sloshing flow decreases its dissipation efficiency. Sunflower oil shows a
similar behaviour, but with much smaller variations. Glycerine shows a more
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regular behaviour but this time the coefficient α is very low with respect to the
theoretical one. This can be linked to the fact that its high viscosity inhibits the
formation of hydraulic jumps and their associated dissipation. Furthermore,
α rises with the glycerine only when increasing the excitation amplitude Am.
Even if the glycerine presents a smaller α value, this is partially compensated
by its larger density, which, in absolute terms, induces a certain increase on
∆E
dissipation
fluid .

Another way to read the above results is to directly plot the experimental
results on the [∆Efluid/tank vs Φ3/2] graph. Fig. 12.27 shows this same result
with the energy made non-dimensional by the factor 4mliquid gh. On this plot
the time dependence disappears and points related to the transitory stages are
plotted together with those related to the periodic conditions. This confirms
that ∆Efluid/tank is essentially a dissipative contribution for the sloshing con-
ditions studied in this work. The data related to all three liquids lie on curves
where the steepness is linked to the α coefficient. As shown previously for wa-
ter, α decreases as the roll angle Φ increases. Water and sunflower oil exhibit
a similar behaviour. Considering the mass mliquid of the three liquids (see
table 12.3) ∆Efluid/tank is comparable for large Φ.

Figure 12.25.: Roll angle φ(t) (top) and of energy transfer ∆Emass/tank (bottom)
plotted as a function of time for all the excitation amplitudes, varying
the liquid present inside the tank.
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Figure 12.26.: Energy transfer ∆Efluid/tank plotted as a function of time for all the
excitation amplitudes, using water (left), sunflower oil (middle) and
glycerine (right) inside the tank.

Figure 12.27.: Energy transfer ∆Efluid/tank plotted as a function of Φ3/2, using wa-
ter, sunflower oil and glycerine.

12.6 practical application

From the analysis performed in previous sections, it can be seen that the effec-
tive roll angle Φ reached by the system depends not only on the amplitude of
the sliding mass motion but on the phase lags δ and Ψ, which in turn depend
on the fluid, the filling height h, and the excitation frequency ω.

In Part II of this paper series, the analysis has been limited to one filling
height and one frequency of excitation ω = ω1. The analysis performed also
shows that the energy dissipation capability with this system can be large.
Indeed, the system first transforms the external energy given by the sliding
mass into mechanical energy, making the tank move. Then, the large roll
motion induces violent sloshing and its associated dissipation which prevent
the energy accumulated by the tank to be sent back to the sliding mass.
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Considering this analysis and noting that the forcing term in a horizontally
driven pendulum Lourenco 2011 is analogous to the forcing term of the present
system (equation (II.4) of chapter 11), a novel damping system is proposed. It
is named here a hybrid pendulum mass liquid damper (HPMLD). The me-
chanical sketch of such a system is shown in Fig. 12.28. Its principle is that of
a HMLD, (see section 11.2.2 in chapter 11), but the secondary damping system
is a pendulum partially filled with liquid.

The idea to transfer energy from horizontal motions into pendular ones
(with a mass and no liquid) was already presented by Tedesco et al. 1999, and
a full analysis of a such a device, a Pendulum Tuned Mass Damper (PTMD),
is carried out by Lourenco 2011. For an analysis of an oscillating structure
containing liquid and coupled with a horizontal motion device, see the work
of Pirner and Urushadze 2007.

The system proposed herein incorporates both ideas. Its capability to dissi-
pate large amounts of energy through sloshing and wave breaking has been
discussed in this paper. An in-depth analysis of its full potential as a HPMLD
is still left for future work.
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Figure 12.28.: Mechanical sketch of the use of the pendulum has a hybrid pendulum
mass liquid damper (HPMLD).

12.7 summary of this chapter

A Pendulum-TLD system has been analyzed in terms of its kinematics, dy-
namics and energy dissipation mechanisms.

It is composed of three coupled sub-systems: a sliding mass, the moving
part of an angular motion sloshing rig, including an empty tank, and the fluid
which partially fills that tank. The data from a set of experiments in which the
sliding mass is excited with harmonic motions is discussed.
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The experimental analysis of this system has been performed at the mechan-
ical system resonance frequency. This choice together with the filling height
adopted, both stem from chapter 11 of the present paper series. The experi-
mental analysis of other frequencies and other filling heights is left for future
work. The test matrix has included fluids of different densities and viscosities,
namely water, sunflower oil and glycerine, and four different exciting ampli-
tudes.

The kinematics and dynamics of the flow are complex and extremely nonlin-
ear. Low amplitude traveling waves occur for the small excitation cases, while
large breaking waves are found for large excitations.

The different physical quantities can be evaluated with great accuracy since
the experimental set-up allows for the computation of all terms from the roll
angle time history and its derivatives. In particular, the time evolution of
energy balances between the fluid and the tank can be evaluated. At time-
periodic state this balance becomes the energy dissipated by the fluid.

The experiments have been analyzed considering modulus and phase for
the different torques acting on the system. The phase lags between the sliding
mass motion, roll angle, and torque exerted by the fluid allows for the un-
derstanding of the time-periodic state reached by the system in terms of roll
amplitude and work done by the sliding mass.

The fluid dissipation measured during the experiments has been compared
to the theoretical model described in chapter 11. The predictions obtained with
this model match those corresponding to the water cases. Since the energy
dissipation in such a model is obtained though a hydraulic jump solution,
the conclusion is that the dissipation source for these cases is mostly due to
breaking.

The influence of the nature of the liquid on the system has been studied for a
set of excitation amplitudes. At the time-periodic state, the most viscous liquid,
glycerine, leads to the largest oscillation amplitude. On the contrary, using
the least viscous liquid, water, leads to the smallest oscillation amplitude. The
liquid choice is shown to greatly influence the phase lags between the different
torques. During the early transient stage, the least viscous fluid (water) is
shown to have a faster increase of the roll counteracting effect, and to reach a
time periodic state within a smaller number of periods.

When correctly scaled using the theoretical model, the fluid dissipation
value for a fixed roll angle diminishes as viscosity increases. However, since
the time-periodic state roll angle is larger when increasing viscosity, the net
dissipation is also larger. This is another conclusion from this research and
it implies that the choice of liquid when obtaining the best damping perfor-
mance is not straightforward.

For the empty tank condition, the system may return energy to the sliding
mass; this does not happen when fluid is present, even when similar angles are
found at time-periodic state. This idea inspires a novel damping device, named
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hybrid pendulum mass liquid damper (HPMLD), which is introduced here.
This system may be able to take advantage of the intense mechanical response
of the structure in order to pump the initial energy and later dissipate it with
the violent sloshing flow generated. Its proper development and analysis is
left for future work.
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13 CONCLUS IONS AND
PERSPECT IVES

A meshless technique based on the Smoothed Particle Hydrodynamics has
been further developed and has been found to be able to correctly reproduce
the dynamics of a viscous flow interacting with a rigid body in the presence of
a free surface. Special attention has been paid to energy conservation proper-
ties of the numerical scheme, with emphasis on accurate evaluation of power
and energy balances with fragmented free-surface and breaking waves. The
choice of the numerical technique has some consequences, the most impor-
tant ones being not to use any turbulence model nor any resolution adaptivity
methods in order to avoid as much as possible the dissipation linked to other
sources than the Navier-Stokes equations.

The numerical method has been benchmarked and validated, and some
physical investigations conducted. Firstly, a cylinder under the free surface
has been simulated at a relatively high Froude number, keeping the Reynolds
number relatively low. This has allowed for identification of charateristic pat-
terns and in some cases retrieved already-known flow behaviours. Particular
attention was paid to the interaction between the wake of the cylinder and the
free-surface, and some interesting new instability types have been found.

Secondly, sloshing in a rectangular tank caused by a horizontal sinusoidal
excitation has been extensively studied in the case of low-filling ratios. The
characteristic wave systems have been identified and allowed for a more com-
plete picture of the phenomena.

Finally, the analysis of the TLD-like system has been done, focusing on the
dissipation mechanism and the non-linear behaviour of the coupled system.
Some key behaviours have been identified and the different viscosities of the
fluids tested have allowed for a better undestanding of the dissipation capacity
of such a system.

13.1 major findings

13.1.1 Computing the energy dissipation using SPH

An energy decomposition technique for viscous free-surface flows has been
presented and applied to the δ-SPH modelling of a standing wave. For this
topic, a matrix of test cases covering a large range of Reynolds numbers and
wave amplitudes, has been set. For the high Reynolds and large amplitude
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case, wave breaking appears. Its influence in mechanical energy dissipation
has been discussed. It has been found that:

1. The dissipated mechanical energy can be written as the sum of two terms:
the enstrophy volume integral and a surface integral along the free sur-
face.

2. Applying energy conservation, a double-checking of the free surface
term is developed and applied, confirming the quality of the surface
integral SPH evaluation, even in the presence of moderately fragmented
free surface.

3. For low amplitude cases the free-surface contribution to dissipation is
substantially larger than the enstrophy one.

4. For large amplitude cases, the flow becomes very energetic, eventually
leading to steep and/or breaking waves.

5. In the case with wave breaking, the related vorticity generation in the
first breaking event, induces a mechanical energy dissipation of around
8% of the initial energy.

13.1.2 Explicit algorithm for fluid/body interaction using SPH

A SPH solver is developed for applications in the framework of NWT (Numer-
ical Wave Tanks) and floating bodies. To this aim, a complete algorithm able
to compute viscous and fully-coupled Fluid-Solid interactions is described.

A no-slip boundary condition is enforced on the solid surface through a
ghost-fluid technique. For the considered problem, the intersection between
the free surface and the solid profile has to be carefully addressed. The details
of a specific treatment regarding the ghost fluid close to the free surface are
described. Further, a formula for the evaluation of forces and torque is also
provided in the ghost-fluid framework. The assessment of loads acting on
bodies is validated through a difficult diffraction test case with satisfactory
results.

An explicit synchronous algorithm is developed for the full coupling be-
tween fluid and rigid bodies. Stability, convergence and conservation prop-
erties are tested on several freely-floating test cases and a final validation of
the full algorithm is performed for the interaction between a 2D box and an
incoming wave packet.

13.1.3 Flow past a submerged cylinder

Two-dimensional monophasic flow past a horizontal circular cylinder intersect-
ing or close to a free surface at low Reynolds number, 180, and at low, mod-
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erate and large Froude number (between 0.3 and 2.0 based on the cylinder
diameter), has been investigated numerically using Smoothed Particle Hydro-
dynamics. The variety of case studied cover a larger range than the previous
studies on the topic.

The detached flow patterns dependence with the submergence of the cylin-
der and the Froude number has been investigated. Vorticity, mixing processes,
vortex generation patterns, free-surface breaking and drag and lift coefficient
behaviour have been discussed. Mixing processes have been documented with
more detail than previous studies, taking advantage of the Lagrangian nature
of the solver.

An analysis varying the cylinder submergence has been carried out fixing
successively the Froude number to a value of one and two. At Froude one,
for large submergences, the flow has been found to behave similarly to un-
bounded flows, with von Kármán street of vortices developing at a frequency
comparable to classic unbounded flows literature. As the submergence is re-
duced, certain mixing with the free surface occurs and substantial breaking
takes place. Moreover, it has been found that below certain distance to the
free surface the classical von Kármán street of shedding vortices does not take
place while moderate vortex shedding departs from vorticity generated at the
free surface. In some of these cases, consecutive vortices may merge, lead-
ing to the formation of a large meta-vortex which is advected downstream, a
previously unreported form of wake instability, to the authors’ knowledge.

Within the submergence dependence analysis, computations have been car-
ried out until the cylinder being in contact with the undisturbed free surface
as well as half submerged. For these configurations, the vorticity layer remains
fixed, placed between the cylinder and the free surface and a recirculating area
at the wake develops.

Regarding the dependence of the flow on Froude number, the analysis has
been carried out for a fixed submergence, 0.55, which had been given some
attention in previous literature at low and moderate Froude numbers. That
range has been extended here reaching up to a value of 2. For this submer-
gence, up to Froude number 1.6, the von Kármán vortex shedding is blocked,
but that is not the case when Froude number reaches a value of 2. This transi-
tional effect is in agreement with stability analysis of half submerged cylinder
existing in literature.

13.1.4 Shallow water sloshing on a rectangular tank

An extensive study of the shallow water sloshing problems has been done us-
ing both experimental and numerical data. Different configurations (Series) of
sway motion have been considered in detail, spreading from small-amplitude
excitations (A/h = 0.033, 0.065) to moderate (A/h = 0.500) and large excita-
tions (A/h = 0.800, 2.333). For each Series, wave amplitude operators have



220 conclusions and perspectives

been computed by varying the frequency of the excitation. Specific cases have
been selected among the broad range of simulations to describe the main fea-
tures of the sloshing motion (wave trains, wave breaking, jet run-up/run-down
at the vertical walls, etc.). The results have been analyzed according to the clas-
sification proposed by Olsen & Johnsen Olsen and Johnsen 1975, proving the
existence of a novel sloshing configuration, namely Conf. VI.

Finally, a summary has been done for two filling ratios, describing the wave
scenarios and the wave amplitude operators for a large range of frequencies
and inspecting the influence of the excitation amplitude.

13.1.5 Pendulum-TLD, and dissipation in a coupled fluid-body problem

The kinematics, dynamics and energy dissipation mechanisms of a pendulum-
TLD system have been analyzed.

The pendulum-TLD is composed of three coupled sub-systems: first, a slid-
ing mass whose weight excites the motion, second, the moving parts, including
the empty tank, of an angular motion sloshing rig, and third, the fluid which
partially fills that tank.

An analogy with TLD and HMLD systems has been provided. Differently
from other TLDs studied in the literature, the Pendulum-TLD involves large
motions and complex flows, which do not permit the use of an analytical fluid
dynamic model.

The nonlinear dynamics of the Pendulum-TLD has been documented both
for the empty tank and for the tank partially filled with water. The frequency
behaviour of the roll angles, phase lags and energy transfer has been discussed.

The energy dissipated by the sloshing flow has been quantified through a
simple theoretical model based on hydraulic jump solutions. This model al-
lows for an evaluation of the mechanical energy available to be dissipated in
breaking. Furthermore, a scaling factor for the energy available to be dissi-
pated in breaking has been obtained from this analysis. This scaling factor has
been used to make non dimensional in a meaningful way the numerical results
obtained by an SPH model (and the experimental data of part II).

From the numerical simulations, the complex kinematics and dynamics of
the flow has been discussed: low amplitude traveling waves occur for the small
excitation cases while breaking waves and violent fluid-structure impacts de-
velop for large excitations.

Through the SPH model the complete frequency behaviour of the fully
coupled system has been obtained. Interesting features have been identified.
Specifically, for small excitations, the system behaves like a classical TLD. The
frequency response changes drastically with large excitations.

The data from a set of experiments is also discussed.
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The test matrix has included fluids of different densities and viscosities,
namely water, sunflower oil and glycerine, and four different exciting ampli-
tudes.

The kinematics and dynamics of the flow are complex and extremely nonlin-
ear. Low amplitude traveling waves occur for the small excitation cases, while
large breaking waves are found for large excitations.

The different physical quantities can be evaluated with great accuracy since
the experimental set-up allows for the computation of all terms from the roll
angle time history and its derivatives. In particular, the time evolution of
energy balances between the fluid and the tank can be evaluated. At time-
periodic state this balance becomes the energy dissipated by the fluid.

The experiments have been analyzed considering modulus and phase for
the different torques acting on the system. The phase lags between the sliding
mass motion, roll angle, and torque exerted by the fluid allows for the un-
derstanding of the time-periodic state reached by the system in terms of roll
amplitude and work done by the sliding mass.

The fluid dissipation measured during the experiments has been compared
to the theoretical model described in Part I. The predictions obtained with
this model match those corresponding to the water cases. Since the energy
dissipation in such a model is obtained though a hydraulic jump solution,
the conclusion is that the dissipation source for these cases is mostly due to
breaking.

The influence of the nature of the liquid on the system has been studied for a
set of excitation amplitudes. At the time-periodic state, the most viscous liquid,
glycerine, leads to the largest oscillation amplitude. On the contrary, using
the least viscous liquid, water, leads to the smallest oscillation amplitude. The
liquid choice is shown to greatly influence the phase lags between the different
torques. During the early transient stage, the least viscous fluid (water) is
shown to have a faster increase of the roll counteracting effect, and to reach a
time periodic state within a smaller number of periods.

When correctly scaled using the theoretical model, the fluid dissipation
value for a fixed roll angle diminishes as viscosity increases. However, since
the time-periodic state roll angle is larger when increasing viscosity, the net
dissipation is also larger. This is another conclusion from this research and
it implies that the choice of liquid when obtaining the best damping perfor-
mance is not straightforward.

For the empty tank condition, the system may return energy to the sliding
mass; this does not happen when fluid is present, even when similar angles are
found at time-periodic state. This idea inspires a novel damping device, named
hybrid pendulum mass liquid damper (HPMLD), which is introduced here.
This system may be able to take advantage of the intense mechanical response
of the structure in order to pump the initial energy and later dissipate it with
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the violent sloshing flow generated. Its proper development and analysis is
left for future work.

13.2 perspective

In some aspects, the work covered by this thesis is an invitation to pursue
with these methods of Lagrangian modelling. It proves that it is possible to
model a viscous flow interacting with a floating body with a nice accuracy. It
proves also that some very complex physical problems like TLDs are very well
modelled by this kind of techniques.

On the other hand all the problems shown are in reality 3D, and all the best
conservation properties for the numerical model have been demonstrated for
moderate Reynolds.

In order to be able to transfer this technology to a very large set of indus-
trial or environnmental problems, some work has to be performed to increase
the accuracy of the method in problems with larger Reynolds number. Di-
minishing the viscosity the stability puts the particle system at risk and the
parameters of the simulation, like the particle size, have to be further modi-
fied, increasing the computational effort.

It remains as future work to apply the methodology presented in the the-
sis to more complex fragmented free-surface flows for which, the dissipated
energy may influence the external dynamics of a building, vehicle, etc.. It re-
mains also to compare the results with those of mesh-based methods and to
incorporate gas phase and surface tension in the analysis.

Some questions have been, for different reasons, left open, but could be a
follow to the present work:

1. Extend the conservation study to more complex problems. It could be
also interesting to compare with other numerical methods.

2. Extend the detailed analysis of the freely floating problem to the 3D case.

3. A coupled model of the flow around the cylinder and corresponding
forces with a dynamic model such as that used by Ding et al. 2013, over-
coming its limitations when close to a free surface, is an interesting future
research goal.

4. The same kind of extensive analysis of sloshing could be extended for
larger filling height, or for the 3D case.

5. For the PTLD, various interesting studies could be conducted varying
the natural frequencies of the tank and the sloshing.
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A USEFUL RELAT IONS

(a×b) · c = a · (b× c) (A.1)

therefore in the present framework:

(u×ω) ·n = u · (ω×n) (A.2)
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B TRANSPORT THEOREM

Considering the case where Vc(t) is not the a material fluid volume but a
generic control volume.

D

Dt

∫
Vc(t)

fdV =

∫
Vc(t)

∂f

∂t
dV +

∫
∂Vc(t)

(vb ·n)fdS (B.1)

substituting f→ (ρf)

D

Dt

∫
Vc(t)

(ρf)dV =

∫
Vc(t)

ρ
∂f

∂t
dV +

∫
Vc(t)

f
∂ρ

∂t
dV +

∫
∂Vc(t)

(vb ·n) (ρf)dS (B.2)

Df

Dt
=
∂f

∂t
+u · ∇f (B.3)

D

Dt

∫
Vc(t)

(ρf)dV =

∫
Vc(t)

ρ
Df

Dt
dV+

∫
Vc(t)

(
f
∂ρ

∂t
− ρu · ∇f

)
dV+

∫
∂Vc(t)

(vb ·n) (ρf)dS

(B.4)

div(ρfu) = div(u) (ρf) + f∇ρ ·u+ ρ(∇f) ·u (B.5)
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(B.9)

using the continuity equation 2.1:

D

Dt

∫
Vc(t)

(ρf)dV =

∫
Vc(t)

ρ
Df

Dt
dV +

∫
∂Vc(t)

(vb −u) ·n (ρf)dS (B.10)

If vb = u this means that the control volume is a material volume and the
equation (B.10) becomes:

D

Dt

∫
Ω

(ρf)dV =

∫
Ω

ρ
Df

Dt
dV (B.11)



C DETA I LED CALCULAT IONS

c.1 detail 1

The term Pwall can be combined with Pext which can be rewritten as:

−Pext + Pwall =

∫
∂ΩB

Tn ·uB dS− 2µ

∫
∂ΩB

(∇uuB) ·ndS + 2µ

∫
∂ΩB

div(u)(uB ·n)dS

=

∫
∂ΩB

(T − 2µ∇u ) uB · ndS+ 2µ
∫
∂ΩB

div(u)(uB ·n)dS

(C.1)
using the constitutive equation (2.3)

PBody = Pext + Pwall =

∫
∂ΩB

−puB · ndS + (λ+ 2µ)

∫
∂ΩB

div(u)uB · ndS

+ 2µ

∫
∂ΩB

(� − ∇u ) uB · ndS

=

∫
∂ΩB

−puB · ndS + (λ+ 2µ)

∫
∂ΩB

div(u)uB · ndS

− µ
∫
∂ΩB

(ω × uB) · ndS

=

∫
∂ΩB

−puB · ndS + (λ+ 2µ)

∫
∂ΩB

div(u)uB · ndS

+ µ
∫
∂ΩB

(ω × n) · uB dS

(C.2)

c.2 detail 2

PPresFS +PλBFS +PViscFS =

∫
∂ΩF

(−pu · n+ λdiv(u)u · n+ µ(ω × n) · u) dS

(C.3)

The boundary condition equation (2.8) applied on the free surface gives:

[−pu + λdiv(u)u]n+ µ (n×ω)u = −2µ (∇u)n ·u (C.4)
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PPresFS +PλBFS +PViscFS =

∫
∂ΩF

[2µ(ω × n) − 2µ (∇u)n] ·udS

=

∫
∂ΩF

2µ [−(ω × u) ·n− (∇u)n ·u]dS

=

∫
∂ΩF

2µ
[
−(2�u) ·n− (∇Tu)u ·n

]
dS

=

∫
∂ΩF

2µ
[
−((∇u−∇Tu)u) ·n− (∇Tu)u ·n

]
dS

= PFS
(C.5)

c.3 alternative decomposition

Using equation (2.4) in equation (3.11):

PM − PNC =

∫
Ω

(
−∇p+ µ∇2u+ (λ+ µ)∇(∇ ·u)

)
· udV (C.6)

∫
Ω

(∇p) · udV =

∫
Ω

(∇p) · udV

=

∫
Ω

[div (pu) − pdiv(u)] dV

=

∫
∂Ω

(pu) ·ndS−
∫
Ω

pdiv(u)dV

(C.7)

∫
Ω

∇(divu) · udV =

∫
Ω

[
div(div(u) ·u) − div2(u)

]
dV

=

∫
∂Ω

div(u)(u ·n)dS−
∫
Ω

div2(u)dV
(C.8)

Using the formula ∇2u · u = div(u×ω) − |ω|2 +∇div(u) ·u∫
Ω

∇2u · udV =

∫
Ω

[
div(u×ω) − |ω|2 + ∇div(u) ·u

]
dV

=

∫
∂Ω

(u×ω) ·n−

∫
Ω

|ω|2 dV +

∫
Ω

∇div(u) ·udV

=

∫
∂Ω

(u×ω) ·n−

∫
Ω

|ω|2 dV +

∫
∂Ω

div(u)(u ·n)dS−
∫
Ω

div2(u)dV

(C.9)

Each expression is composed of a volume integral and a boundary integral.
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PM − PNC+PC =

∫
∂Ω

[
−pu+(λ+µ)div(u)u+µ(u×ω))

]
·ndS+P

(λ+2µ)
B +Pω

(C.10)
The decomposition of the boundary integral on the free surface and on the

body will lead to the same balance of equation (3.37)
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