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Foreword to the 7th International 
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Monash University (Australia), INSEAN (Italy), and the University of Pavia (Italy) are 
pleased to organise the 7th SPHERIC workshop, and to welcome you to the ancient but 
stimulating city of Prato.  
 
The SPHERIC workshop is the main annual event on smoothed particle hydrodynamics 
(SPH). The governing organisation is SPHERIC (the SPH European Research Interest 
Community) which is part of ERCOFTAC. The vitality SPHERIC is due to the 
interdisciplinary nature of the subject where engineers, physicists and mathematicians can 
work together. 
 
The SPHERIC community plays an important role in the advancement and dissemination of 
SPH methods and ideas. The method has matured over the last decade and includes an 
extraordinary range of applications that will be evident by a quick scan of the table of 
contents of this document. 
 
The depth of interest in SPH can be measured by the fact that nearly 80 abstracts were 
submitted and a final set of 60 papers accepted for presentation. 
 
This format of the workshop in 2012 involves some changes to previous SPHERIC 
workshops. We have introduced discussion periods and made the materials we use more 
environmentally friendly. We hope you find that these changes make the workshops even 
better. Do let us know what you think. 
 
A workshop such as this requires considerable support. In particular we would like to thank 
Monash University, ERCOFTAC, and HydrOcean for their contribution. 
 
 

 
Joe Monaghan and Jules Kajtar 
On behalf of 7th SPHERIC local organising committee. 
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Abstract— The convection-diffusion of gas bubbles in a liquid is 
modeled by a fully coupled Lagrangian approach in which the 
liquid flow is simulated by a traditional SPH scheme while the 
trajectories of the particles in the bubbly phase are directly 
tracked in time. Two families of particles (SPH liquid particles 
and gas bubbles) are defined. The momentum exchange between 
the bubbles and the surrounding fluid is taken into account by a 
suitable kernel approximation centered either in a bubble or in a 
SPH particle. Therefore, the motion of a liquid particle depends 
also on the reaction forces (such as drag and lift) exerted on it by 
the gas bubbles included in its domain of influence. Preliminary 
tests (which do not account for bubble-bubble interactions) have 
been performed by simulating an horizontal gas-liquid jet 
deflected by the interaction with the bubbly phase and the 
bubble-driven flow in a column. The results confirm the validity 
of the implemented approach for the simulation of the coupled 
liquid-gas system. 

I. INTRODUTION 
The convection-diffusion of gas bubbles in a liquid flow 

impacts on many engineering branches, ranging from the 
traditional hydraulic applications (e.g. aerated hydraulic jumps, 
cavitation bubbles in pipes, etc…) to the most advanced 
chemical and environmental engineering systems, such as 
various types of reactor tanks or of wastewater biological 
treatment plants. 

In the latter applications, usually, the concentration of 
certain species (e.g. oxygen) into the liquid phase is obtained 
by injecting a bubbly gas flow into the liquid (through jets or 
porous plates or other systems) in order to enhance the 
dissolution of the dispersed gas phase into the continuous 
liquid one. A proper evaluation of these mass transfer 
processes requires a detailed prediction of the motion of the 
gas bubbles and of their interaction with the surrounding 
liquid. 

In recent years many efforts have been spent to try to 
improve the hydrodynamic modeling of these flows by 
adopting either Eulerian/Eulerian (E/E) or Eulerian/Lagrangian 
(E/L) approaches, in order to reproduce the complex dynamics 
of the interacting phases [1, 2]. 

The problems regarding bubbly flows are usually classified 
according to their complexity level. The simplest problems are 
the so-called “one-way coupling” problems in which the 
dispersed phase is simply convected by the continuous phase 
but has negligible effect on the liquid flow. In the “two-way 

coupling” problems, the bubbly flow interacts and modifies the 
liquid flow evolution. “Four-way coupling” problems consider 
also the interactions occurring within the dispersed phase, such 
as coalescence and rupture of bubbles. 

Several numerical studies are available in literature. Studies 
on aeration columns involve E/E [3-5] and E/L approaches [6-
8]. “One-way coupling” E/L analyses have been conducted 
also on bubbly jet systems used for oxygenation purposes [9]. 

Lagrangian/Lagrangian (L/L) approaches for the analysis of 
dispersed multiphase flows have been mostly applied in the 
case of solid dispersions in liquid flows. In particular, methods 
coupling a SPH representation of a continuous liquid or gas 
phase with a DEM description of a particulate have been used 
to simulate the sedimentation of solid particles [10, 11].  

The present paper discusses a simplified L/L approach 
based on SPH for the representation of the continuous liquid 
phase, to simulate two-phase bubbly flows. The obtained 
results are compared with literature experiments which are 
relevant in the chemical and environmental engineering field, 
such as the motion of bubble columns originating from porous 
plates in aeration tanks [12] and bubbly jet flows [13]. 

II. NUMERICAL METHOD 
The bubbly two-phase flow is here analyzed by a L/L 

approach which couples a SPH solution of the Navier-Stokes 
equations which govern the liquid flow with the direct solution 
of the Newton’s law for the computation of the trajectories of a 
set of computational particles, each representing a certain 
number of gas bubbles. The interaction between the two phases 
is taken into account by a force term added to the  momentum 
balance equation of the liquid phase and by a local equilibrium 
hypothesis when solving the bubble trajectories. 

The approach is close, with some simplifications, to the 
SPH-DEM coupling approach adopted by [10, 11] to simulate 
solid suspensions in liquid flows. 

The Navier-Stokes equations for the weakly compressible 
liquid phase can be written as. 

v
Dt
D rr

⋅∇−= ωρωρ)(  (1) 

bfgp
Dt

vD rrr
rr

++⋅∇+
∇

−= τ
ωρωρ
1  (2) 
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Abstract—The widely-used single-fluid SPH scheme allows
for the successful modelling of various high dynamic flows
although the role of additional non miscible phases cannot be
neglected in many cases. These phases must actually be taken
into consideration in order to obtain results more in line with
the experiments for flows such as, sloshing, flooding of a confined
volume, bubbly flows, or to capture a pressure peak smoothing
by air entrapment in various situations.
Two stable two-phase SPH models addressing the issue of

accurately evaluating the quantities which are discontinuous
across the interface were derived and validated in [1] and [?].
They are used here to study bubbly flows of increasing complexity.
The viscosity and surface tension role are especially investigated.
The study cases chosen are, a Rayleigh-Taylor instability, a single
rising bubble reaching its terminal velocity and two merging
bubbles. The results are compared to solutions given by mesh-
based Level Set solvers.

I. INTRODUCTION

Multi-fluid flows of non miscible phases occur in numerous
engineering fields and problems and present highly-nonlinear
interfacial phenomena such as fragmentation and reconnection
which are difficult to handle with traditional methods. The
SPH method with its robust handling of interfaces is capable
of maintaining sharp interfaces with virtually no numerical
diffusion of one fluid into the other. Due to its Lagrangian
character, interface creation and destruction happens naturally
with no need to localize the interface.

II. NUMERICAL MODELS

Near the interface, some physical properties such as pressure
or normal velocity are continuous (in the absence of surface
tension as far as pressure is concerned) while others such
as density, tangential velocity for inviscid fluids, velocity
divergence or pressure gradient are discontinuous. Yet the SPH
interpolation is based on the evaluation of these variable on a
radial kernel, which smoothes discontinuities. The challenge is
thus to derive a discrete model which ensures the coexistence
of both continuous and discontinuous fields.
In the two models described below, the classic modified Tait

equation closes the system.

A. Multi-fluid ALE SPH formulation with Riemann solvers

The following ALE formulation is based on [2]:






dxi

dt

∣∣∣∣
v0

= v0i

dωi

dt

∣∣∣∣
v0

=
∑

j∈Ω ωiωj

(
v0j − v0i

)
·∇Wij

d(ωΦ)i
dt

∣∣∣∣
v0

= −
∑

j∈Ω ωiωj

(
Fi + Fj

)
∇Wij + ωiSi

(1)
xi, v0i , ωi, Φi, Fi and Si are, respectively, the position, arbi-
trary velocity, volume, conservative variable vector, flux and
source term of particle i.Wij represents the SPH interpolation
kernel function.
Rather then using artificial viscosity to stabilize this scheme,

it is possible to solve a mono-dimensional Riemann problem
between each pair of particles. The multi-dimensional flux
is obtained by spatially averaging these interactions. This
procedure provides the minimum upwind to ensure numerical
stability. Practically, the centred flux

(
Fi + Fj

)
is replaced

with the Riemann problem solution, taking into account the
interface movement. To limit numerical dissipation, a MUSCL
(Monotone Upstream-centred Scheme for Conservation Laws)
procedure is also implemented.
This solution generates a flux of momentum between the

particles but also a flux of mass. The latter must be blocked
at the interface in order to avoid diffusion of one phase into
the other, which is possible according to Leduc et al. [?]
by carefully choosing the referential in which to solve the
Riemann problem so as to cancel the mass flux.
Inside each phases, the Godunov solver (exact) is used; it

is based on the resolution of a nonlinear equation which is
approached with a Newton-Raphson iterative method, see [3].
At the interface, as in [?] we rather use an approximate Rie-
mann solver where we impose consistently that the interface is
a moving contact discontinuity. This kind of linearized solver
is often referred to as acoustic solver.

B. Grenier et al. formulation
Grenier et al. [4] derived a multi-fluid formulation which

is an improvement of the Hu and Adams one [5]. In partic-
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Abstract— In numerous technological applications, surface 
tension effects are highly relevant. As the surface to volume 
fraction increases with smaller scales, the behavior of a fluid 
in contact with solid structures is primarily dominated by 
surface tension effects. In this study, we propose an efficient 
and reliable implementation in SPH, which prescribes the 
normal direction of the phase boundary at the triple line 
based on the desired equilibrium contact angle. The proposed 
algorithm is able to capture different wetting angles, pinning 
effects and wetting of structured surfaces. 

 

I. INTRODUCTION 

Surface tension is very important for nano- and micro-
scale free-surface and multiphase flows. Compared to 
macroscopic length scales, surface tension forces become 
dominant while the impact of inertial forces on the flow is 
strongly diminished. The wetting of water drops on the 
leaves of the Lotus plant is a popular example of a natural 
phenomenon caused by surface tension. Surface tension 
effects are also important in numerous industrial processes 
and technological applications, such as surface coating, 
inkjet printing, soldering and in microfluidic devices [1]. 
Due to this broad range of applications, the multitude of 
numerical simulation methods which have been developed 
to describe surface tension and flow is not surprising [2].  

The inclusion of surface tension in SPH simulations has 
been addressed in several studies. The approaches used may 
be divided into two main classes. The first class uses 
pairwise interaction force-potentials to account for surface 
tension [6, 7]. These force-potentials are not readily 
available, and need to be fitted for each case in order to 
reproduce the desired contact angles and surface tension. 
Since in most practical applications, the surface tension and 
contact angles are given as macroscopic input parameters 
which vary often from case to case, this approach is not 
necessarily the most practical one.  

The second classes of approaches are those based on the 
continuum surface force (CSF) model [8]. Here the pressure 
jump at the gas-liquid phase boundary, given by the Young-
Laplace equation, is applied by introducing a volume force 
on a thin finite layer of matter on either side of the interface:  

𝐅 = −𝜎  𝜅𝒏 (1) 
The magnitude of this force is determined by the surface 

tension coefficient 𝜎 and the curvature 𝜅 of the interface. Its 

orientation is given by the normal 𝒏 of the interface. Morris 
[9] adapted this concept to an SPH scheme using a 
smoothed continuous color function to distinguish between 
the two phases. However, this resulted in difficulties 
calculating the normal and curvature of the interface, which 
were caused by non-full support of the kernel at the borders 
of the phase transition region [9]. Using a discontinuous 
color function the calculation of the curvature can be 
circumvented by introducing an interface stress tensor [10]. 
The remaining errors in the furthermost normal become 
irrelevant as the magnitude of the corresponding forces 
approaches zero. This method has been further developed 
using a density weighted summation gradient and a 
renormalized Laplacian of the color function, which allows 
for high ratios of density [11]. 

Besides the description of surface tension effects, 
modeling wetting phenomena using CSF requires the 
implementation of suitable boundary conditions, taking into 
account the interaction between fluids and the solid 
substrates near the triple line. The normal correction method 
[8] enforces the normal direction in the vicinity of the triple 
line to comply with the desired shape of the drop. This 
approach has been used within an asymmetric SPH 
implementation to simulate microchannel flow [12]. Hu and 
Adams [10] reproduced contact angles as derived from 
Young’s equation by applying the tensor based scheme to 
three-phase systems. Alternatively, Liu and Liu [13] 
reproduced desired wetting angles by directly translating 
particles in the fluid-solid boundary region. 

In this work we present an efficient and robust 
implementation of SPH that allows a reliable calculation of 
surface tension including the effects at the triple line based 
on the desired macroscopic contact angle. In particular, we 
introduce additional boundary conditions for the CSF 
implementation proposed by [11] to incorporate the effect of 
the interaction with solid walls. We apply our method to the 
simulation of equilibrium drop shapes. In [12] further 
extensive testing and validation will be presented.  

II. GOVERNING EQUATIONS 

This section describes the equations governing 
microscopic multiphase flow problems. The Navier-Stokes 
equations describe the motion of an incompressible fluid 

= −𝜌𝛁𝒗  
𝒗 = −𝛁𝑝 + 𝜂𝛁 𝒗 + 𝑭( ) + 𝒈  , 

(2) 

14



Contact line hydrodynamics with SPH
S. Adami, X.Y. Hu, N.A. Adams

Institute of Aerodynamics and Fluid Mechanics
Technische Universität München

Garching, Germany
stefan.adami@tum.de

Abstract—Surface tension effects can dominate multi-phase
flows when the length scales of the problem are small. The
resulting Capillary forces at a phase interface between two
immiscible fluids are proportional to the local curvature of the
flow and try to minimize the interfacial area. A more complex
situation occurs when three phases are in contact or when two
phases are in contact with a wall. The simulation of the contact
line at a wall is still a challenging task since the motion of the
contact line is contradictory to the no-slip assumption at walls.

In this work we present a multi-phase SPH method considering
surface tension effects that is capable of simulating contact line
problems. Based on previous works [4] we revisit our finite-width
interface model and introduce a new stress boundary condition
at the wall.

I. INTRODUCTION

SPH [5] offers a powerful framework to model complex
multi-phase phenomena due to its Lagrangian formulation.
Using particles as discretization points and advecting them
with the flow it is straightforward to introduce multiple types
of particles of different phases and include phase interactions
such as surface tension forces. By the nature of the method
no interface capturing is required and the method is mass and
momentum conservative (note, we use the mass conserving
density summation form).

Morris [6] proposed a multi-phase SPH model based on
the continuum surface force model (CSF) [1] to account for
surface tension effects. He applied this model to isolated
drops and analysed capillary waves. But this method does
not conserve momentum and the calculation of the curvature
is cumbersome.

Another approach to model the surface-tension effects
on a macroscopic scale without the need of calculating the
curvature is presented in Hu and Adams [4]. There, a stress
tensor is calculated from the color-index gradients and the
resulting surface tension forces conserve linear momentum.
They showed that this method captures the dynamics of
isolated drops in shear flows and presented a three-phase
interaction with triple junction. Fundamentally different,
Nugent and Posch [8] model the surface-tension effect with
microscopic inter-phase attractive potentials. This method is
appealing since simple pair-wise interactions are introduced
without the need of a color-index gradient calculation. But
on the other hand the remaining parameter in the model have
to be calibrated as there is no analytical relation between the

resulting surface tension coefficient and the model parameter.
Tartakovsky and Meaking [9] proposed a similar method
and studied the influence of contact angles on flows through
bifurcations. Recently, Das and Das [2] used SPH to simulate
equilibrium shapes and contact angles of sessile drops. They
used a CSF model and adjusted the position of the wall-nearest
SPH particles according to the static contact angle as found
from the Young-Laplace equation to impose the equilibrium
contact angle. Furthermore they showed that their results
could be improved with a diffuse-interface approximation.
But consequently, the thickness of the transition region along
the interface is doubled and it is not clear how this method
performs in dynamic situations since static equilibrium angles
are imposed at the contact line.

In this work we propose an extension of the original method
of Hu and Adams [4] to simulate contact angle problems.
Using the original formulation to simulate the equilibrium
contact angle and shape of a drop on a flat surface we
achieved already physically reasonable results. That means
the wetting or non-wetting behaviour of the fluid on the wall
was represented correctly according to the surface-tension
coefficients. But analysing the equilibrium state we found
comparably strong spurious currents close to the triple point
(in two dimensions the triple line or contact line reduce to a
triple point or contact point, respectively), see Fig. 1.

Fig. 1. Velocity vectors showing spurious currents at triple point.

Particles close the triple line are continuously accelerated
since the stress singularity is not discretized correctly and
consequently the kinetic energy does not decrease. To solve
this problem we introduced a new stress boundary condition
at the wall that requires only a simple extrapolation of the
nearest adjacent phase. Then, the stress at an interface particle
is calculated based on its real neighbour particles and its
interpolated image particles. With this new approach we are
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Abstract—We propose a new three-dimensional smoothed
particle hydrodynamics (SPH) non-Newtonian model to study
coupled ice sheet and ice shelf dynamics. Most existing ice
sheet numerical models use a grid-based Eulerian approach,
and are usually restricted to shallow ice sheet and ice shelf
approximations of the momentum conservation equation. SPH,
a fully Lagrangian particle method, solves the full momentum
conservation equation. SPH method also allows modeling of free-
surface flows, large material deformation, and material fragmen-
tation without employing complex front-tracking schemes, and
does not require re-meshing. As a result, SPH codes are highly
scalable. Numerical accuracy of the proposed SPH model is first
verified by simulating a plane shear flow with a free surface
and the propagation of a blob of ice along a horizontal surface.
Next, the SPH model is used to investigate the grounding line
dynamics of ice sheet/shelf. The steady position of the grounding
line, obtained from our SPH simulations, is in good agreement
with laboratory observations for a wide range of bedrock slopes,
ice-to-fluid density ratios, and flux. We examine the effect of non-
Newtonian behavior of ice on the grounding line dynamics. The
non-Newtonian constitutive model is based on Glen’s law for a
creeping flow of a polycrystalline ice. Finally, we investigate the
effect of a bedrock geometry on a steady-state position of the
grounding line.

I. INTRODUCTION

Mathematical modeling of ice sheet dynamics is usually
complicated by the non-linearity of governing equations and
boundary conditions. A grid-based Eulerian discretization of
governing equations has been mostly used in previous studies
of ice sheet dynamics [1]–[4]. However, an Eulerian grid-based
discretization has several disadvantages: it requires a complex
front-tracking technique; and it has limited capability to handle
large material deformations. As a consequence, it is common
to use various approximations of the momentum conservation
equation [5]. These approximations replace the momentum
conservation equation with a steady-state Stokes equation
and assume the shallowness of ice sheet/shelf and thereby
allow linearization and other significant simplifications of the
momentum conservation equation [3]. The most commonly
used approximations are the first-order shallow ice approxima-
tion [1] and the shallow shelf approximation [2], and they may
lead to significant errors under certain conditions. Examples
include ice sheets with large aspect ratio and/or large bedrock

slope; tidewater glaciers; ice shelves; ice streams; surge dy-
namics; the dynamics of flow across the grounding line; and
the dynamics in the vicinity of ice sheet divides [5]. Recently,
several higher-order approximations have been proposed [3],
[4], [6]–[9] to partially improve the predictive ability of grid-
based models.
In typical ice sheets, the accumulation of ice occurs at the

top of mountains and then the ice flows down the bedrock
under the force of gravity. Ice is less dense than water,
and when ice sheets terminate in the ocean, the ice tends
to detach from the bedrock, and float on the water surface
forming an ice shelve. The location of the detachment is
called the grounding line. Since different approximations of
the momentum conservation equation are used to model ice
sheet and ice shelf, there is a significant challenge in coupling
them at the grounding line. That fact that the position of
the grounding line is unknown, makes the coupling a highly
non-linear problem. Various assumptions were used in the
past to facilitate the coupling. For example, [10] assumed the
continuity of the depth-averaged longitudinal stresses across
the grounding line, [11] suggested that the grounding line
is tangential to the bedrock and [12] had to use a free slip
conditions at the grounding line to obtain a unique solution.
At the moment there is no consensus about the appropriate
treatment of, and nor reliable models for, three-dimensional
time dependent dynamics of the grounding line [13].
In this work, we propose a three-dimensional smoothed

particle hydrodynamics (SPH) non-Newtonian model to study
the coupled ice sheet and ice shelf behavior. This model is
an extension of our two-dimensional model that treated ice
as a viscous Newtonian fluid [14] and solves full momentum
conservation equation for both ice sheet and ice shelf. The
SPH model treats ice sheet and ice shelf as a whole, and
there is no need for coupling. As any Lagrangian particle
method, SPH does not require interface-tracking algorithms for
modeling free-surface (e.g., [15], [16]) and moving-boundary
problems (e.g., [17]–[19]), and is very efficient for ice sheet
and ice shelf modeling. We verify the numerical accuracy of
the model by simulating the Poiseuille flow, a plane shear
flow with a free surface and the propagation of a blob of
ice (modeled as a non-newtonian fluid with Glen’s rheology)
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Abstract—Simulation of flow in fractured porous media rep-
resents a challenge due to the highly non-linear dynamics of
fluid-air interfaces. Here we present small-scale flow simulations
on wide aperture fractures using a modified three-dimensional
multiphase SPH model [1]. The model is enhanced to include the
effects of random thermal noise and able to reproduce a wide
range of wetting conditions and Reynolds numbers encountered
in laboratory experiments using pairwise fluid-fluid and solid-
fluid interaction forces. Static and transient flow dynamics are
compared to empirical and semianalytical solutions: (1) Droplets
in a critical state are in agreement with laboratory experiments
of [2]. (2) Well-defined random thermal noise is introduced via
the fluctuation-dissipation theorem and its effect on dynamics
of droplets in a critical state is investigated. (3) Transient flow
dynamics on dry surfaces are validated using the dimensionless
relationships established by [3] and compared to (4) dynamics
on prewetted surfaces where flow velocities are shown to be
nearly tripled. Finally we establish flow regimes and occurence
of trailing films on initially dry fracture surfaces based on
dimensionless scaling parameters and Reynolds numbers.

I. INTRODUCTION

Aquifers are the largest water reservoirs for continental fresh-
water. Groundwater recharge depends on the geometrical and
hydraulic properties of the vadose zone (rock formations
between surface and water table) where pore space is only
partially filled with water. The underlying saturated zone,
delineated by the water table, may reach depths of several hun-
dred meters and therefore is coupled to the hydrodynamic state
of the unsaturated zone. Quantification of recharge and water
travel times through the unsaturated zone are of importance
for understanding of large-scale hydraulic behavior, transport
of contaminants, management of groundwater resources and
nuclear waste repositories ( [4], [5]).

The large heterogeneity of the hydraulic parameter field
found in fractured geological media represents a challenge
for numerical modeling of flow and transport, especially in
the unsaturated zone, where high flow intermittency ( [6],
[7], [8]), preferential pathways ( [9], [10], [11]), and complex
interaction of porous matrix and fractures have to be con-
sidered ( [12], [13]). Most macro-scale effective unsaturated
flow models underestimate flow velocities and travel time

distributions on local scale even though they might be adequate
to simulate catchment scale dynamics.

Small scale flow dynamics in fractures are governed by
the complex interplay of body and surface forces resulting in
several flow regimes such as absorbed films ( [14]), droplets (
[3], [15], [7]), rivulets ( [16] , [17]) and traveling liquid waves
which all contribute to the rapid movement of water through
the unsaturated zone and interaction with the porous matrix
system.

Here we want to present simulations of flow in fractured
media in order to gain a deeper understanding of the complex
flow dynamics and show the versatility of Smoothed Particle
Hydrodynamics in this context.

II. METHOD

In the following we give a brief description of our model and
the governing equations. Detailed derivations and approxima-
tions involved in the SPH method can be found, for example,
in ( [18], [19]). We use an SPH discretization of the Navier-
Stokes equations following [1]:
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where v is the particle velocity, t is the time, P and ⇢

denote pressure and density, m is mass of particle i and g
is the gravitational acceleration. Following [20] a fourth-order
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Abstract— The Smoothed Particle Hydrodynamics (SPH) 

has undergone a significant development during the past few 
decades and has been used for a wide range of research topics. 
On the field of geotechnical engineering, it especially benefits 
from its ability to deal with large deformation and different 
materials or rather phases way much better than conventional 
mesh methods. This paper focuses on the soil-fluid interaction 
on the examples of jet grouting and lowering of a gravity 
foundation of an offshore wind turbine. The simulation of jet 
grouting aims to reproduce the correlation between soil and 
fluid stress as well as the mechanism of dissolving the soil 
under high pressure. The lowering of gravity foundations, on 
the other hand, induces additional flows, which may erode the 
soil underneath the foundation. Consequently, inclination of 
the foundation may occur and the stability of the wind turbine 
may be affected. Both processes are assumed to be due to the 
accumulation of excess pore water pressure and soil-fluid 
interaction. The results show the coherence between pore 
water pressure and soil dissolution as well as the feasibility 
and the potential of different soil models with SPH on 
geotechnical problems. 

I. INTRODUCTION 
The interaction between soil and water is of importance 

for a wide range of geotechnical problems. This paper 
focuses on two example cases: jet grouting and lowering of 
a gravity base foundation for an offshore wind turbine. Jet 
grouting is a common method for ground improvement and 
stabilization, which uses high pressure streams to break up 
and cement the soil. The simulation of this process involves 
different phases as well as large deformations and pressure 
and velocity gradients. The lowering of a gravity base 
foundation induces additional flows, which may damage the 
foundation pit and cause inclinations of the offshore wind 
turbine. The numerical analysis of both processes involves a 
soil-fluid-interaction. For this purpose, the smoothed 
particle hydrodynamics are used. This meshfree method has 
been established in many research domains, including fluid 
and solid mechanics as well as hydrodynamics and also 
geotechnical engineering.  

II. SPH 
This section outlines the numerical model used for the 

simulations in this paper. The code Gadget H2O ([10], [11], 
[12]) is applied for both jet grouting and lowering of a 

gravity foundation. It is a modification of the cosmological 
code Gadget2 ([8], [9]). Some adjustments in the code were 
also made in order to obtain better results for the soil.  

A. Conservation equations 
Gadget H2O uses the conservations equation for mass (1) 

and momentum (2) in their SPH approximation with the 
Kernel function ܹ݆݅  ([4],[5]). 

� ߩܦ
ݐܦ
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where ݅ stands for a focal particle, ݆ for a neighbour 
particle. The particle mass is defined by ݉, its density by ߩ 
and the velocity by ݔ .ݒ is the position of a particle. 
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where ߪ marks the stress and ݂ an external force.  

In contrast to the studies of Ulrich ([10], [11], [12]), a 
different definition for soil stress is also used in this paper.  

B. Treatment of fluids 
A Newtonian fluid is considered in this paper. The stress 

tensor consists of isotropic stress and viscous stress, which 
can be expressed by the viscosity and the strain rate tensor: 

� ߬ = �ߝߤ ����

The isotropic stress is calculated by Tait’s pressure 
equation as in [11]. Furthermore, a large eddy simulation is 
employed to describe turbulence. A XSPH smoothing 
technique is applied in order to meet disturbances in flow, 
especially due to high pressure gradients. 

C. Treatment of soil 
The definition of soil in Gadget H2O was employed for 

the first simulations. It contains a definition of soil particles 
as a viscous fluid, whose viscosity is described by a 
criterion similar to that of Mohr-Coloumb. It also allows 
the development of a boundary layer between the soil and 
the water phase. This model has provided some reliable 
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Abstract—The paper reports on the evaluation of a simple
SPH two-phase flow model for water/soil-interaction to capture
the change of the soil strength in porous media exposed to
seepage flow. The soil-phase is modeled in line with the Mohr-
Coulomb yield-stress criterion together with a combined elastic-
solid/fluid approach. The framework is supplemented by an
apparent cohesion model that is governed by the saturation of
the porous media. A simple Darcy-approach is used to mimic
the seepage flow through the soil skeleton in combination with
baseline material properties, e.g. capillarity, porosity, gravity and
pressures. A comparison with experimental references reveals
that the approach can capture the principal mechanism at minor
computational surplus and modest additional modelling efforts.

I. INTRODUCTION

The interaction of water and soil poses problems to different
areas of marine and hydraulic engineering. Typical erosive
processes dislocate parts of the soil and may therefore weaken
the stability of load-bearing soil formations. Such phenomena
are usually induced by large relative motions between water
and soil which yields a water/soil-suspension layer. Contrary
to this, failure of granular material is frequently caused by
internal water flows and the resulting change of soil saturation.
In this case, the failure mechanism is not necessarily domi-
nated by flow induced forces but by changing soil properties.
Especially the effective material cohesion can be significantly
reduced for fully saturated soils. Both phenomena might
interact, thus numerical studies require simulation tools which
can cope with both mechanisms.

While preceding studies [12], [13] focused on the devel-
opment of a SPH-suspension model and the simulation of
related erosions, our present work is devoted to flows within
porous media. Accordingly, the paper outlines the extension
of the modelling capabilities of the hydrodynamic SPH-code
GADGET-H2O towards the prediction of seepage flows. The
GADGET-H2O-procedure is a modification of Springel’s [11]
cosmological TreeSPH-Code GADGET-2. The applied seepage
flow description is based on a simple Darcy-approach outlined
by Lenaerts [5] that does not require additional fluid particles
to represent the pore water. The corresponding flow through
the soil skeleton is evaluated with respect to material properties
such as capillarity, porosity, gravity and pressures. A variable
soil cohesion which depends on the soil particles’ saturation is
used to account on changing material strength. In addition to

the seepage model, the paper presents a combined solid/fluid
approach to predict dynamic soil deformations based on work
by Leppert [6]. In order to keep the procedure as simple
as possible, the Mohr-Coulomb yield criterion is applied in
conjunction with Hooke’s law for the elastic branch of the
solid model. Large deformations are captured by considering
the soil as a non-Newtonian fluid. The related viscosity that
is derived from the Mohr-Coulomb criterion. The solid/fluid
transition is managed by the invariant of the strain rate tensor.
The combined model is introduced to overcome problems
related to traditional pure fluid formulations (e.g. creeping)
which are widely used in SPH studies, e.g. [4], [8], [12].

The remainder of the paper is structured as follows: In
section Computational Model, the employed governing equa-
tions and their respective finite approximations are described,
followed by the section Model evaluation which shows several
validation examples. Final conclusions are summarised in the
last section.

II. COMPUTATIONAL MODEL

The section outlines the governing equations and their
respective SPH-based approximations. Vectors and tensors are
defined by reference to cartesian coordinates. The notation
uses latin subscripts to identify particle locations and greek
superscripts to mark cartesian tensor coordinates. The latin
subscript i denotes the focal particle whereas the subscript
j refers to its neighbours. Einstein’s summation is employed
over repeated Greek superscripts.

A. Kernel Function

A standard cubic spline kernel function is used in the present
study

Wij = W (r, h) = αd
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with the normalisation coefficient αd = 40

7πh2 in 2D and
αd = 8

πh3 in 3D. The relation between the kernel length h
and the particle spacing ∆P is kept constant, i.e. h = 2.4∆P .
The partition of unity might not be maintained, particularly
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Abstract—Results obtained from the application of SPH for
simulating granular columns collapses are presented in the paper.

A constitutive equation for a visco-plastic fluid with a pressure
dependent yield stress has been employed for simulating the
granular material.

The paper describes how the afore mentioned constitutive
equation has been implemented into a SPH model and how
numerical issues arising from such implementation have been
treated.

The proposed model, taking advantage of well known SPH
abilities, can be used to model flows of incoherent granular
material with a free surface. The model also represents a first step
towards an alternative approach to sediment transport in natural
and artificial channels: an extension of the model to multiphase
flows might indeed be able to reproduce such phenomena.

The model has been tested by reproducing existing experiments
on granular columns collapses in which sand columns of fixed
width and different heights, initially contained inside a cylindrical
container, were suddenly released.

I. INTRODUCTION

A possible way of modeling granular material is the one of
treating it as a fluid with a specific rheological law. After a
suitable rheology has been chosen, it is in principle possible
to use any kind of numerical method for simulating the flow.

A general rheology for granular matter, suitable for any
kind of situation, isn’t yet available in scientific literature.
Nevertheless, a number of models have been proposed, each
one of them being able to simulate specific classes of granular
flows. In this study, attention has been focused on the rheology
proposed by Pouliquen et al. [17] and Jop et al. [9] and its
adaptation to SPH.

The rheology attempts to reproduce granular matter’s be-
havior with a non-Newtonian viscosity depending on pressure
in order to take into account intergranular shear. The model
has been found efficient for dry dense granular flows at low
velocities [12], [17]. The rheology is particularly suitable for
situations in which grains remain close to each other when
moving.

Main features of the considered rheological law are the
following:

• It is represented by a non-Newtonian viscous constitutive
laws: the resulting momentum equation therefore contains
space-varying viscosity.

• The constitutive law shows a yield value for stress: this
means that when deformations tend to zero, viscosity will

approach infinity. A viscosity regularization technique has
to be applied to treat high values of viscosity.

In the present work, the development of a SPH model using
the mentioned rheology to SPH is shown together with an
application to available experimental data.

II. CONSTITUTIVE EQUATIONS FOR GRANULAR
MATERIALS

The mechanics of an assembly of particles can be very
complicated. All the available constitutive equations have a
limited range of applicability, which depends among others
on velocities, average spacing of grains during motion etc..

In the case of cohesionless granular material, if the grain
size is sufficiently large (i.e. d > 250 µm) and the interstitial
fluid isn’t too viscous, the interactions between grains are dom-
inated by contact interactions [12]. This means that mechanical
properties of the material depend only on momentum transfer
during grains collisions or frictional contacts between grains.

Other variables, such as capillary forces or interstitial fluid-
grain viscous interactions may be neglected. Among the var-
ious situations comprised under these conditions, which are
not unusual in nature, the flow regime is usually divided into
three classes depending on the nature of the main interaction
between grains [12], [17]. Within each one of these classes,
different rheologies have been proposed in literature.

When velocities are very low and grains inertia is negligible,
a quasi-static regime occurs. Within this regime, soil plasticity
models have been successfully used even in the SPH frame-
work [3].

On the other hand, when the flow intensity is very high and
grains are apart from each other, a collisional regime occurs.
Interactions are dominated by collisions between grains and it
becomes crucial to provide a correct estimate of energy losses
during collisions in order to devise an efficient constitutive
law for the material. Within this regime the granular matter
behavior is similar to the one of a gas and kinetic theories
based approaches have been developed [7].

In the intermediate regime, herein called ”liquid” regime, it
is impossible to use kinetic theories as particles still experience
enduring contact and grains inertia becomes important. The
studies of Pouliquen et al. [17] and Jop et al. [9] follow from
the GDR MiDi research [12] and other related papers and are
focused on this regime.
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Abstract—We report on the development of coupled SPH and
DEM simulations for the investigation of abrasive processes of
technical fluids in industrial applications. These suspensions are
interspersed with small solid particles responsible for the abrasive
wear. In addition, in some industrial applications, the suspensions
show viscoelastic behavior. For the numerical treatment of such
fluids a numerical scheme of an Oldroyd-B fluid has been
implemented into the SimPARTIX R© SPH code. However, we
can show by simulations of an oscillation rheometer that such a
model is only a crude approximation to the behavior of complex
polymeric fluids.

Furthermore we present a technique that allows us to numer-
ically reconstruct the complete three dimensional geometry of
single abrasive grains by the use of the discrete element method
(DEM). These abrasive DEM grains can then be used in coupled
SPH simulations of abrasive processes.

Rheological simulations of a suspension consisting of a New-
tonian fluid with varying volume fractions of the DEM grains
demonstrate that the simulations agree well with experimentally
gathered data. This allows us to confidently use the suspension
for simulations of abrasive flow machining.

I. INTRODUCTION

Important manufacturing techniques of complex geometries
in technical materials often rely on the precise finishing
of surfaces in order to achieve its designated performance.
Obtaining the necessary surface roughness and a sufficiently
high material removal rate in finishing processes of hard-to-
access surfaces remains a great challenge, especially under the
requirements of energy efficiency in the conducting process.
The complex interactions between the fluid and the abrasive
grains embedded within the fluid cause great difficulties in
optimizing the process parameters for satisfying results.

The finishing processes often include cutting, burring and
surface polishing within technical components exhibiting com-
plex geometries. An example process is abrasive flow ma-
chining (AFM). In spite of the huge range of application
of this, the difficulties to adjust the parameters correctly for
each workpiece geometry prevents its utilization in a greater
variety of industrial applications. For abrasive flow machining,
there are only few numerical models available and the applied
physical models are strongly simplified, e.g., abrasive grains
are considered to be homogeneous, therefore neglecting their

individual structure. Until now, there are no numerical sim-
ulations available that take into account the individual grain
characteristics and their highly dynamic interactions with the
workpiece. However, in order to optimize the wear of the
material, an explicit approach of including individual particles
in the abrasive suspension is promising.

AFM processes are commonly used for the finishing of
internal surface geometries. Depending on the size of the
inlet and the internal structure, fluids of different viscosity are
applied. For smaller geometries, fluids of low viscosity are
used, while for larger inlets, highly viscous and viscoelastic,
flowable polymeric composites are utilized. In both cases
the abrasive medium is embedded within the fluid. This
abrasive suspension is forced to flow along the contours of
the technical component. The relative motion between the
abrasive medium and the component then causes the wear
of material. Experimentally conducted research has focused
on the characterization of the abrasive medium and the in-
vestigation of the wearing behavior and quality. The aim of
optimizing the process parameter for a given workpiece in
industrial applications is usually only achieved by trial-and-
error.

The long term goal of this work is to study numerically
the process of abrasive flow machining at a scale where the
actual interaction between the abrasive grain and the technical
component occurs. Knowing the interaction at the grain size
scale, we intend to develop analytical models for the removal
rate at larger scales that can then be implemented in numerical
codes operating at a length-scale of the workpiece. This would
allow to derive process parameters and to design suspensions
with specific abrasive characteristics for a given industrial
application. Our goal is to develop numerical tools and models
that include the precise coupling between various viscous and
viscoelastic polymeric suspensions, the abrasive grains and the
technical component.

In section II, we will shortly review the underlying physical
models and the SPH framework applied in our numerical
approach. Section III introduces the concept of oscillation
rheology for the characterization of viscoelastic suspensions
and their numerical approximation. The workflow for the dig-
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Abstract—In this paper a modification of the Godunov
Smoothed Particle Hydrodynamics (GSPH) method of [11] is
presented for isotropic materials with strength. This modification
removes the need to rotate the stress-tensor for interacting
particles and solve the Riemann problem for the transversal
wave system. A consequence of this modification is that it
allows for calculations of higher spatial order of accuracy via
variable reconstruction as well as the use of different kernel
functions within each time-step. Results are presented for one
and two dimensional test cases and compared with corresponding
predictions made using conventional Artificial Viscosity SPH (AV
SPH).

I. INTRODUCTION

The use of SPH for simulations of solid dynamics is most
commonly focussed on high strain-rate problems such as high
velocity impacts, as the mesh free Lagrangian nature of SPH is
ideally suited to simulations involving large deformations [6].
High velocity impacts generate shock-waves and in a con-
tinuum level numerical scheme the spatial discretization is
typically several orders of magnitude larger than the shock-
wave thickness. Therefore, in order to maintain a stable
solution, the shock-wave must be smeared such that there is a
smooth variation in field quantities across the shock. In SPH,
this is usually achieved by applying an Artificial Viscosity
(AV) [8] to the momentum and energy equations. Several
forms of the AV have been presented in the literature [1],
[3], [8] with the most common implementation, found in most
commercial SPH codes, being that of Monaghan et al. [8]:

⇧ij =
�ac̄ij�ij + b�

2
ij

⇢̄ij
if vij · xij < 0 (1)

where a and b coefficients control the level of damping intro-
duced by the AV. It has been shown that the choice of a and
b can significantly affect the results [6]. In addition, in order
to apply an optimal level of damping, a time consuming trial-
and-error analysis is required [12] which may be undesirable
for the user.
Recently, the Godunov reformulation of the SPH equations
have been presented [5], [11], whereby the Riemann prob-
lem is solved at the midpoint of interacting particles and
thus sufficient numerical dissipation is introduced to allow
stable integration. The advantage of these formulations is that

no user-defined damping parameters or associated sensitivity
analyses are required. While being more conservative, the
method of Inutsuka [5] requires the use of the summation
density equation in place of the continuity equation and is
thus impractical for simulations involving free-surfaces and
stiff equations of state, such as that routinely found in solid-
dynamics. The method of Parshikov et al. [11] , however, uses
the Godunov reformulation of the SPH continuity equation
and therefore is more applicable to simulations of solid-
dynamics. In [11] , Riemann solutions are required for both
the longitudinal and transversal wave systems for materials
with strength.
This work presents a modification to the GSPH method
of Parshikov et al. [11] , whereby a time-operator-splitting
procedure, based on the method presented by Howell et al. [4] ,
is used to separate the integration routine into a hydrodynamic
and a deviatoric stage. The modified method negates the
requirement to solve the Riemann problem for the transversal
wave system and thus facilitates a higher-order reconstruction
of the left and right Riemann states for the longitudinal
wave-system. Another consequence of the separation of the
integration procedure is that different kernel functions may
be used within the temporal discretization. The use of a
quadratic kernel for the deviatoric step may help alleviate
the compressive instability intrinsic to the Gaussian shaped
kernels, while not affecting the accuracy of the interpolation
significantly. In addition, a simple modification to the GSPH
continuity equation [11] is shown to enhance the accuracy
of the density field in simulations involving particles with
different masses [10]. Some one and two dimensional tests
are presented and compared with standard AV SPH.

II. TIME-OPERATOR SPLITTING PROCEDURE

In [4] the Cauchy stress tensor is decomposed into the
diagonal and non-diagonal components (2) and the integration
procedure operates sequentially on each component.

�

↵�
i = ⌧

↵�
i � Pi�

↵� (2)
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Abstract—We discuss the application of a dynamic refinement
procedure to reduce the computational requirements of an elastic-
plastic model to simulate non-cohesive soil. In the refinement
procedure, the diagonal components of the strain tensor are
used as the criterion for the refinement, and an SPH particle
is refined by replacing it with new daughter particles which are
located according to a square pattern centered at the refined
particle position. The position of the daughter particles and their
smoothing distance are determined such that the error introduced
due to the refinement is kept small. Further, possible numerical
instabilities are identified and avoided by using adequate re-
finement parameters. Obtained results are compared with those
of simulations using a fine discretization in the whole domain.
The comparison shows a good agreement, while the savings in
computational time and memory consumption are considerable.

I. INTRODUCTION
Smoothed Particle Hydrodynamics (SPH) has been proved

as a valid alternative to mesh-based methods for solving
geotechnical problems. Its application in this area has been
motivated by the difficulties that arise from applying mesh-
based methods, like Finite Elements, to problems involving
large deformations or other complicated phenomena that in-
clude multi-physics. Recent works in this area include the
simulation of seepage failure and erosion [1], water/soil-
suspension [2], landslides [3], post-failure flow of soil [4]–[6],
and others.
The model proposed by Bui and co-workers in [4] is

of particular interest for geotechnical applications since it
considers the plastic behavior of the material, which is very
important for accurate soil simulations. However, when using
this model, the simulations are computationally demanding.
In this work we discuss the application of a dynamic re-

finement procedure to reduce the computational requirements
of the method while still achieving a similar accuracy. The
application of this strategy allows the simulation of larger
physical domains using the same computational resources.

II. SPH FORMULATION FOR SOIL

In this section we briefly describe the SPH formulation
of an elastic-plastic soil model based on the Drucker-Prager
yield condition. More details can be found in the original
work by Bui et al. [4]. In the formulas, Greek superscripts

denote Einstein’s notation, and Latin subscripts i and j denote
individual particles.

A. Density and momentum equations
The continuity equation is applied to evolve the soil density

ρ for particle i, using the expression

Dρi
Dt

=
N
∑

j=1

mj(v
α
i − vαj )

∂Wij

∂xα
i

, (1)

where m, v and x are the mass, velocity and position of a
particle, and W is the cubic spline kernel function.
The momentum equation used is described by

Dvαi
Dt

=
N
∑

j=1

mj

(

σαβ
i

ρ2i
+
σαβ
j

ρ2j
−Πijδ

αβ

)

∂Wij

∂xβ
i

+ Fα
i , (2)

with δαβ the Dirac delta function, σ is the total stress tensor
and F corresponds to external forces (gravity in this work).
The artificial viscosity term Π is included to reduce numerical
instabilities. It is given by

Πij =

{

−αcµij+βµ2

ij

ρ̄ij
: vij · xij < 0

0 : otherwise
, (3)

where h is the smoothing distance, µij = hvij·xij

x
2

ij+0.01h2 , ρ̄ij =
ρi+ρj

2
, the notation Aij = Ai − Aj is used, and α and β are

constants that are taken to be ∼ 0.1 as suggested in [4].

B. Stress-strain relationship within the elastic-plastic model
Within the elastic-plastic model, the strain rate tensor

ε̇αβ =
1

2

(

∂vα

∂xβ
+
∂vβ

∂xα

)

, (4)

is composed of two parts, the elastic ε̇αβe and the plastic ε̇αβp
strain rate tensors, resulting in

ε̇αβ = ε̇αβe + ε̇αβp . (5)

The elastic term is calculated by applying Hooke’s law,

ε̇αβe =
ṡαβ

2G
+

1− 2υ

3E
σ̇γγδαβ . (6)
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Abstract—Prediction of the flow during reactive rotational

molding is of great interest to optimize process conditions and

wall thickness distribution of the molded part. Simulation is one

of the ways; based on smoothed particle hydrodynamics method

we performed 2D and 3D simulations in order to observe the

influence of the change of viscosity on the flow, due to the

chemical reactions. Adhesion of the polymer on the mold surface

is modeled by new boundary conditions.

I. INTRODUCTION

Rotational molding is a process for manufacturing the
hollow plastic parts from few cm3 to several m3 [1]. The mains
advantages of this method are; no residual stresses in final
parts, no weld line and no heterogeneity of material behavior
compared to other polymer processes such as injection mold-
ing or blowing extrusion. The mains weaknesses are the time
to heat and melt the polymer powders and the time to cool and
solidify the polymer. Consequently, the cycle time to produce
a plastic part is long (0,5-1h), depending on the dimensions
of the part. Nowadays rotational molding of thermoplastics
is widely used in industry; nevertheless there are only few
applications for reactive materials due to the complexity of
the polymer transformation. The first work carried out in this
field outlined these problems [2], [3]. Reactive Rotational
Molding (RRM) has several advantages compare to traditional
rotomolding of thermoplastic powders: process cycle time is
shorter; raw material is less expensive because polymerization
occurs during processing and high performance polymers may
be used such as thermosets (polyepoxy [4] and polyurethane
[5], [6]), thermoplastic (Polyamide 6 [7]) or blends (polye-
poxy/PMMA [8]). However implementation of RRM is not
easy because of chemical reactions. Fig. 1 shows the variation
of viscosity related to the rheology evolution during poly-
merization. According to reaction rate, the viscosity increases
and we can distinguish several types of flows. In the early
step of the chemical reactions, the viscosity is low and the
material can not adhere to the mold (pool). At that point, the
viscosity begins to increase and the material starts to adhere
but due to gravity, it falls down; this is the cascading flow.
Then we can observe the rimming flow where the material is
well distributed on the mold surface but a wave phenomenon
is still occurring on the fluid surface. Finally we can observe

the solid rotation; this is the desired flow where the fluid is
uniformly distributed on the internal mold surface. This flow
must appear before the gel point of the material (Fig.1-c),
over this point the material becomes stiff and there is no more
flow. The chemical reactions are not completed but the part
can be removed from the mold for the post-curing process.
It is important to note that these different kinds of flows are
dependent on the viscosity and the rotational speed. Here we
can clearly see the importance of the simulation to predict
the flow according to the mold geometry, the rotational speed
of both axes and the mold temperature which influences the
reaction rate. Before starting researches in this field, no work
was found in the literature. First simulations were carried out
using the Volume Of Fluid (VOF) method with a commercial
software [9], [10], these first simulations showed the influence
of different parameters on cycle time (rotation speed, amount
and viscosity of polymer). However the results were not good
enough for a realistic prediction of the material flow mainly
because of the free surface representation and the absence
of a good rheokinetical model for the evolution of viscosity.
Mounif [10] started to develop a solver based on Smoothed
Particle Hydrodynamics (SPH) method to simulate RRM. This
lagrangian particular approach is well adapted to simulate free
surface flows such those occurring during RRM. SPH method
is already used to model material processing, notably metal
forming [11] and injection molding [12]. Since Mounif’s work
we improved the initial solver to be able to simulate 2D and
3D flows. To simulate the variation of viscosity according
to chemical reactions, we added a rheokinetical model based
on experimental results and we implemented a new type of
boundary condition to model the adhesion of the reactive fluid
on the mold surface.

II. METHOD

In pre-gel phase, where the viscosity is low, the fluid flow
is characterized by a free surface flow with the competition of
two main forces: gravity and viscosity. The fluid is modeled as
an incompressible viscous Newtonian fluid because rotational
speed is low (1 to 10 rpm) and shear force is negligible. In
SPH method, material is represented by n particles of masses
m

i

, velocity v

i

and others hydrodynamics properties such as
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Tall structures, such as towers and bridges, are subject to 
wind and earthquake loads which can cause them to oscillate 
at excessive magnitudes. Liquid sloshing absorbers can be 
used to suppress these excessive oscillations by tuning the 
frequency of the sloshing to the critical frequency of the 
structure to be controlled. These absorbers are simple 
structures consisting of a partially full container of liquid with 
a free surface. Tuning ensures that significant amounts of 
harmful energy can be extracted from the structure to the 
sloshing liquid. However, there needs to be a rapid means of 
dissipating this energy to avoid its returning back to the 
structure (then back to the liquid periodically).   
 
The raw hen’s egg uses liquid sloshing to efficiently dissipate 
energy to protect its embryo. Hence, the potential to 
implement the egg’s unique shape as a liquid sloshing 
absorber design for structural control purposes is the main 
focus of this study.  
 
3-dimensional numerical predictions in this paper are 
undertaken using Smoothed Particle Hydrodynamics (SPH). 
These numerical predictions are validated with experimental 
observations. SPH will also be used to analyse complex liquid 
free surface shapes and identify the natural egg’s effective 
energy dissipation characteristics.  

I. INTRODUCTION 
Liquid sloshing absorbers are simple structures 

consisting of a partially full container of liquid with a free 
surface. Sloshing within these absorbers can be used to 
suppress excessive oscillations for structural control 
purposes. Investigation of liquid sloshing absorbers for 
structural control purposes has attracted considerable 
attention in the literature [1-4].  
 

Liquid sloshing absorbers require tuning for optimum 
energy dissipation. This is achieved by tuning the 
frequency of the sloshing liquid to the critical frequency of 
the structure to be controlled. The free surface length and 
liquid height are key parameters for tuning a rectangular 
shaped sloshing absorber. Rectangular absorbers are the 
most common shape studied in the literature [3-5]. 
Exploring absorber shape has received considerably less 
attention for structural control purposes. Apart from 
rectangular, these studies have been mostly limited to 
cylindrical [6] and trapezoidal shapes [7]. So and 
Semercigil [8] have investigated a raw hen’s egg as an 
effective energy dissipater through experimental 
observations. Marsh et al. [9] explored an egg shaped 

cylinder to identify physical events responsible for 
effective energy dissipation.  
 

The raw hen’s egg uses liquid sloshing to efficiently 
dissipate energy to protect its embryo. Transient 
displacement histories of a raw and boiled egg are 
displayed in Figure 1(a) [8]. The raw egg’s energy 
dissipation is substantially higher when compared to a 
boiled egg as displayed in Figure 1(a) [8] where the boiled 
egg takes approximately 10 times longer to cease 
oscillations compared to the raw egg when both are 
released from the vertical (long axis) position.  
 

So and Semercigil gave evidence to suggest that 
replacing the content of the egg with water can marginally 
enhance energy dissipation making the egg’s design a lot 
more practical as a liquid sloshing absorber. Also 
surprisingly the egg seems to be insensitive to fill volume 
having similar times for the egg to cease oscillations for 
different fill volumes. This makes it very attractive for 
design purposes as tuning for a rectangular shaped absorber 
requires specified fill volumes to achieve effective energy 
dissipation. Substantial variations have been recorded in the 
effectiveness between deep and shallow rectangular liquid 
sloshing absorbers [10].  
 

Numerical predictions in this study are undertaken using 
Smoothed Particle Hydrodynamics (SPH) due to its ability 
to simulate liquids without the need for a mesh structure. 
SPH can accurately capture complex free surface behaviour 
because of its Lagrangian nature [11, 12]. Due to 
prohibitive computational requirements Marsh et al. [9] 
was limited to two-dimensional predictions of an egg shell 
using SPH. Here SPH is used to model a three-dimensional 
hen’s egg and the results are compared with experiments 
from So and Semercigil [8]. The simulations are also used 
to investigate the natural egg’s effective energy dissipation 
characteristics and provide details, such as liquid velocity 
flow fields, which are not possible through experimental 
observations. Conclusions from Marsh et al. [9] are 
compared with this study to identify if there are similarities 
between two and three-dimensional predictions.  

II. EXPERIMENTS 
Experimental displacement history data for numerical 

validation was acquired from So and Semercigil [8]. The 
study gave evidence that the raw egg possesses efficient 
energy dissipation while keeping the white and the yolk in 
separate membranes as displayed in Figure 1(b) [13]. 
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Abstract— The paper focuses on the development and 
application of a new strategy to deal with the need of imposing 
a driving force in the simulation of internal, incompressible 
flows employing Smoothed Particle Hydrodynamics (SPH) 
together with periodic boundary conditions. With the 
exception of simple flows such as the plane channel problem, 
the value of the driving force is not known apriori. The usual 
procedure involves adjusting the value of the driving force by 
trial-and-error so that the desired value of the mass flow rate 
is met. Here we propose the use of a time-dependent driving 
force, which value is self-adjusting to the problem along the 
simulation by simultaneously enforcing global mass 
conservation. In the present work, we analyze the impact of 
this new procedure on the performance of SPH simulations of 
flows exhibiting self-sustained oscillations. 

Two test cases have been considered in this analysis: a) flow in 
a periodically grooved channel; b) flow around a square 
obstacle in a periodic channel. Both cases are considered in 
supercritical state, hence exhibiting self-sustained oscillations. 
In the former, finite amplitude oscillations develop due to the 
interaction of the complex flow dynamics inside the groove 
with the separated shear layer above, which via its 
impingement on the groove edge generates a pressure-
feedback mechanism. In the latter, the well-known von 
Kármán vortex street develops in the wake of the obstacle, 
displaying periodic vortex shedding. It must be noted that, 
due to the nature of the aforementioned mechanisms and the 
different approaches to calculate the pressure field, the choice 
of using either a Weakly Compressible SPH (WCSPH) or 
Incompressible (ISPH) formulation is expected to penalize the 
ability of properly resolve all the physical features of these 
flows. Calculated results are compared with Finite Volume 
(FV) simulations with the same and higher resolution 
calculations. 

 

I. INTRODUTION 
Smoothed Particle Hydrodynamics (SPH) is a 

Lagrangian technique where the medium under observation 
is modelled with discrete number of particles, whose 
movement describes the motion inside the medium. It was 
initially developed to deal with astrophysical problems [1,2] 
and has since been expanded to a wide range of areas [3]. 
To calculate the particle variables, their interaction with the 

neighbouring ones is accounted for through the use of a 
kernel function and, subsequently, by making the 
summation over all the interactions. 

The meshless character is a great advantage of SPH over 
traditional grid-based methods. On the other hand, there are 
two major methodologies in SPH to simulate 
incompressible flows. The first, called Weakly 
Compressible SPH (WCSPH), consists in the approximation 
of simulating incompressible flows with a small 
compressibility level [4]. Compressibility is considered by 
assigning a finite speed of sound to the fluid, which forces 
the use of smaller time-steps, thus a larger number of 
iterations is needed. The second methodology, called 
Incompressible SPH (ISPH), simulates the flow by 
enforcing an incompressibility condition [5]. 
Incompressibility is achieved by a divergence-free velocity 
field, which brings up the need to solve a system of linear 
equations. Hence, for large problems, the latter 
methodology becomes computationally expensive [6].  
Irrespective of their differences, both of these 
methodologies suffer from instabilities, which may 
compromise their accuracy. There are a number of remedies 
proposed [7, 8, 9] to improve the accuracy and the stability 
of SPH. Among these we have the procedure known as 
Modified SPH (MSPH) [8] and the use of a particle shifting 
algorithm [9], which has been implemented in the present 
work.  

Flows in grooved channels present a wide variety of 
problems of interest to both theoretical and computational 
dynamicists [11].  The most striking feature of these flows is 
their unsteadiness. Such flows arise in a large number of 
modern engineering applications, such as microchannel 
emulsification [12] and microchannel heat sinks for high 
performance cooling of microprocessors [13]. These flows 
serve as a simple, yet rich, example of separated flow, in 
which the complex interactions of separated vortices, free 
shear layers, and wall-bounded shear flows can be examined 
in detail. In [14] a simulation of the flow in a periodically 
grooved channel was carried out using a spectral method to 
cover a significant range of Reynolds numbers (Re) in the 
laminar regime. The critical value of this parameter, beyond 
which self-sustained oscillations developed in flow, and also 
the corresponding frequency have been determined in the 
aforementioned study. Later, Finite Volume (FV)  
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Abstract—Recently several authors have proposed the use of SPH 
truly-incompressible algorithms, see e.g.[1; 2; 3; 4; 5; 6]applied 
in different domains of the computational fluid dynamics. Within 
this technique, based on a projection method, a pressure Poisson 
equation (PPE) is solved to obtain an incompressible pressure 
solution. Even though good results are obtained, the method 
lacks of CPU performance as an equation has to be solved in an 
implicit manner (through algorithms like Bi-CGStab, GMRES, 
etc.) and because only moderately large time steps can be used 
since the convection remains explicit due to the Lagrangian 
nature of the method. 

 In this article we present a fully-explicit incompressible 
SPH algorithm where the PPE is solved using a Jacobi-like 
technique. This method is validated against analytical and 
literature results as well as against other existing SPH methods 
for both viscous and free-surface flows. In the proposed model 
we also use a more precise free-surface detection algorithm and a 
simpler and as performing stabilizing technique than the ones 
used in existing incompressible SPH models of the literature. 

I. INTRODUCTION 
Smoothed particle hydrodynamics (SPH) method is a fully 

Langrangian, mesh-free method where the fluid domain is 
discretized by a set of calculation points called particles, where 
differential operators are evaluated through the use of a kernel 
function which determinates a range of interaction with the 
neighbor particles. It has firstly been introduced by Lucy[7]and 
Gingold & Monaghan[8]and has since been applied to a great 
variety of flow problems. In order to simulate incompressible 
flow, there are two main solutions available in the literature: 
(1) the method called Weakly-Compressible SPH (WCSPH) 
where the fluid is represented by the compressible Navier-
Stokes equations and incompressibility is represented as a 
pseudo-compressibility where the sound speed is artificially set 
in a way to keep the density variation below a certain level 
(±1%); or (2) the Incompressible SPH (ISPH) method where 
the incompressibility of the flow is assured at each time step by 
solving a pressure Poisson equation to an arbitrary accuracy. 
Variations of the first approach exist like Riemann-SPH [9] 
and -SPH [10]. The ISPH mentioned in this paper is the one 
based on the projection method, as originally presented by [1], 
although some other alternatives exist [4]. 

Since the introduction of the ISPH method by Cummins & 
Rudman [1], it has been used to model free-surface flows [2], 
wave breaking problems with the inclusion of a turbulence 
model [11], viscous flows [5], and multiphase flows [3], [12]. 

The method can be divided into three main variants: the first, 
presented in [1], involves a dependence on the velocity 
divergence in the right hand side (RHS) of the Poisson 
equation. This variant is referred to as ISPH_DF in this article 
(DF standing for Divergence Free). In the second variant, the 
RHS of the Poisson equation depends on a density prediction 
as outlined by Shao & Lo [2], referred to as ISPH_DI (DI 
standing for Density Invariant). The third variant is a 
hybridization of ISPH_DF and ISPH_DI, solving two Poisson 
equations (PPE) as described by Hu & Adams [3], and referred 
to as ISPH_DFDI (Divergence Free and Density Invariant). 

A detailed comparison of these three variants has been 
performed by Xu et al. [6]. They showed that ISPH lacks of 
accuracy for certain flow problems (free-surface flow mainly), 
due to errors associated with the truncated kernels. In order to 
prevent this loss of accuracy, they have proposed a FVPM-like 
(Finite Volume Particle Method) shifting algorithm [13] 
applied to the divergence free variant. This technique showed 
to perform well both for viscous and free-surface flows. The 
same author has proposed a Peclet number-based free-surface 
stabilization technique [14] where the viscosity of the particles 
close to the free-surface is artificially increased. It has shown 
good results, mainly for wave propagation phenomena. 
Recently, another approach has been developed by Lind et 
al.[15] based on Fick's law of diffusion and good results have 
been achieved for a variety of flows. In [16] a repulsive 
component of Lennard-Jones potential in the advection 
equation is used to prevent particles fracturing and therefore 
stabilize the method. 

Other authors proposed to use some alternative corrections 
to increase the accuracy of the method, involving a greater 
effort to get in turn a more precise solution of the pressure 
Poisson equation. Khayyer et al. [17] proposed to correct the 
kernel gradient by renormalizing it. Large effort has also been 
made to improve the MPS (Moving Particle Semi-Implicit) 
method by Khayyer & Gotohin [18]where they used a higher 
order Laplacian operator and a renormalization-like operator to 
improve the PPE precision. The MPS method is very similar to 
Incompressible SPH, having the same solving procedure 
(projection method) and it is also a particle-based Lagrangian 
technique. 

Unlike for the WCSPH method where free surface 
conditions are intrinsic provided a globally consistent 
discretization is used, see Colagrossi et al. [41], when ISPH is 
applied to free surface flow problems one needs to impose free 
surface conditions to be able to solve the PPE. The kinematic 
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Abstract—Viscous attenuation in a standing wave is analyzed
with weakly compressible SPH. The dissipation mechanisms
are explored firstly by comparing the kinetic energy decay
with an approximate analytic solution, secondly by considering
a decomposition of the mechanical energy variation which
highlights the e↵ect of the weakly compressibility assumption
and thirdly by analyzing, using the enstrophy, the dissipation
related to the generation of spurious vorticity. The roles of the
Reynolds number and the number of neighboring particles are
analyzed.

I. Motivation

Computing the dissipation due to wave-breaking remains
a challenging problem in the computational fluid mechanics
context. Only semi-empirical approaches like that of Sun et al.
[1] can be found in the literature. Since no boundary condition
is needed at the free surface [3], it is not necessary to explicitly
detect the free surface geometry, and weakly compressible
SPH then becomes a promising technique in approaching
this di�cult problem [2]. This is a major advantage when
dealing with highly distorted free surface flows because
no numerical di↵usion is introduced through the interface
tracking. Nonetheless, dissipation mechanisms related to free
surface flows have to be accurate.

In Colagrossi et al. [4] it was demonstrated that in the
continuum, Monaghan, Cleary and Gingold’s [5] viscosity
formula (MCG formula from now on) provides the correct
viscous dissipation for free surface flows. However, it is
necessary to check to what extent this is the case when
such continuous formulation is discretized. This viscosity
formulation was originally devised as an artificial viscosity but
was later shown to be a consistent Newtonian viscous term for
incompressible flows [6].

The discretized formulation is applied in the present work
to model the evolution of a standing wave. On one hand
this choice is justified because this was one of the cases
considered in Colagrossi et al. [4] continuous analysis. But
more importantly, a standing wave does not propagate meaning
that the computational domain can be restricted. On the other
hand, an external wave maker and a much wider domain are
necessary to model progressive waves, as shown in [7]. Due
to the huge computational e↵ort required, this is a major
drawback when convergence properties of the discretized
formulations are analyzed. The work of Antuono et al. [7]

is relevant for its study of the dissipative properties of the
artificial viscosity term. Another important reason for the
standing wave choice is that an approximate analytic solution
is available for its attenuation.

Other authors have focused on the the dissipative properties
of discrete SPH implementations. Macià et al. [8] studied
the accuracy of viscous di↵usion processes modeling in flows
without free surfaces and with negligible e↵ect of solid body
boundary conditions. They found that the prevalent SPH
viscous terms behave similarly in such flows. Nonetheless,
they also found that when transport and di↵usion are equally
important, the accuracy of the SPH dissipation mechanisms
was substantially reduced.

Basa et al. [9] tried to describe the instability occurring in
SPH simulations of viscous flows (Poiseuille and lid driven
cavity) relating its inception to the Reynolds number. Also,
spurious dissipation has been a concern in SPH [10], [11]
but to our knowledge, no analysis of spurious dissipation in
viscous free surface flows can be found in the literature.

This paper is organized as follows: first, the governing
equations of the physical problem we are interested in are
presented. Second, the dissipation mechanisms of the physical
model are introduced by identifying di↵erent contributions to
the mechanical energy dissipation. Third, the practical problem
considered, which is the attenuation of the kinetic energy in a
standing wave, is discussed. The SPH model and the matrix
of tests, considering a wide range of Reynolds numbers, are
then presented. Finally, results are discussed at di↵erent levels
and a conclusions summary together with future work targets
are provided.

II. Governing equations

A. Field equations

SPH modeling of the dissipation mechanisms in gravity
waves due to the existence of a free surface as well as the
internal dissipation are the main focus of this paper. The
fluid domain ⌦ is limited by a free surface, @⌦F , a bottom
solid boundary, @⌦B, and by lateral boundaries, @⌦P, in which
periodic boundary conditions will be imposed (figure 1).

The flow is modeled with the compressible (to be discretized
using weakly compressible SPH) Navier-Stokes equations for
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Abstract—We present SPH formulations of Dedner et al’s
hyperbolic/parabolic divergence cleaning scheme for magnetic
and velocity fields. Our implementation preserves the conserva-
tion properties of SPH which is important for stability. This is
achieved by deriving an energy term for the  field, and imposing
energy conservation on the cleaning subsystem of equations. This
necessitates use of conjugate operators for r · B and r in
the numerical equations. For both the magnetic and velocity
fields, the average divergence error in the system is reduced by
an order of magnitude with our cleaning algorithm. Divergence
errors in SPMHD are maintained to < 1%, even for realistic
3D applications with a corresponding gain in numerical stability.
Density errors for an oscillating elliptic water drop using weakly
compressible SPH are reduced by a factor of two.

I. INTRODUCTION

Magnetic fields have the property of being divergence free,
that is r · B = 0. Incompressible fluids have a similar
divergence free property for the velocity field. Maintaining
these divergence constraints is one of the central difficulties
in performing accurate simulations of magnetohydrodynamics
(MHD) and incompressible fluid behaviour. For MHD in
particular, the presence of magnetic monopoles introduces a
spurious force which, when large, is disruptive to the dynamics
of the system.

Similar approaches can be utilised to satisfy the divergence
constraints in both cases. For example, projection methods
construct a divergence free vector field via the solution of
a Poisson equation and have been applied successfully to both
systems. Specialised approaches have also been developed for
each case. One example is the constrained transport method
[1] for MHD, which by conserving magnetic flux through a
closed surface, can keep the divergence constraint to within
machine precision. For SPH simulations of incompressible
fluids, a stiff equation of state can be used to limit density
variations to ⇠ 1% [2], creating a weakly compressible fluid
approximating incompressibility.

The hyperbolic divergence cleaning method of Dedner et al
[3] was introduced for maintaining the r ·B = 0 constraint in
MHD. It involves the addition of a new scalar field,  , which
is coupled to the magnetic field by

✓
dB

dt

◆

 

= �r . (1)

This  field evolves according to
d 

dt
= �c

2
h

r ·B�  

⌧

, (2)

and combined these produce a damped wave equation

@

2(r ·B)

@t

2
� c

2
h

r2(r ·B) +
1

⌧

@(r ·B)

@t

= 0. (3)

Thus divergence is spread away from sources by a series of
damped waves. The wave speed, c

h

, is typically chosen to be
the fastest wave obeying the Courant stability condition. The
damping timescale, ⌧ , acts as a diffusion on the divergence.
By using waves to spread the divergence over a larger volume,
the amplitude of any single large source is diminished and
the diffusion is more effective. While originally proposed for
use on the magnetic field for MHD simulations, this approach
would be valid for any vector field. The damping timescale is
set to ⌧�1 ⌘ �c

h

/h, where h is the smoothing length and �
is a dimensionless quantity specifying the damping strength.

Hyperbolic divergence cleaning has found popular use
in both Eulerian [4], [5] and Lagrangian based codes [6],
[7], chiefly for its simplicity, easy implementation, and low
computational cost. However, for the SPH implementation of
MHD (SPMHD), this method has not been widely adopted.
Initial implementation attempts by Price [8] found divergence
reductions were not substantial (a factor ⇠ 2), and the method
risked actually increasing divergence in certain test cases.

The work presented here describes a new formulation of
hyperbolic divergence cleaning for SPH that removes previous
difficulties [9]. Implementations for both the magnetic and
velocity fields are presented. Our formulation imposes the
constraint of energy conservation on the subsystem of cleaning
equations, guaranteeing that energy transferred to the  field
must either be conserved or dissipated. This prevents increases
in divergence.

The paper is laid out as follows: Sec. II discusses hyperbolic
divergence cleaning for the magnetic field of SPMHD. A
brief description of SPMHD is presented (Sec. II-A), along
with the Euler Potentials (Sec. II-A1) and artificial resistivity
(Sec. II-A2) since they will be used as a basis of comparison
for the new divergence cleaning method. In Sec. II-B, the
energy contained in the  field is derived and modifications
are made to the cleaning equations to conserve energy, then
the energy conserving SPMHD implementation is constructed
(Sec. II-C). Hyperbolic divergence cleaning for the velocity
field is discussed in Sec. III. Starting from an outline of
weakly compressible SPH (Sec. III-A), a new energy term
is created for the  field for contributions from the velocity
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Abstract—In recent years several key advances have been made
in modelling both magnetic fields and turbulence in smoothed
particle hydrodynamics. Solving the equations of magnetohydro-
dynamics (MHD) has proved an ongoing challenge over the last
35 years, but we have recently made a key breakthrough by
developing a robust and safe method for enforcing the divergence-
free condition on the magnetic field, enabling smoothed particle
magnetohydrodynamics simulations with control of divergence
errors and no restrictions on the field geometry. Modelling
turbulence in SPH has benefited from faster algorithms allowing
high resolution calculations capable of resolving the inertial
range, particularly in supersonic flow, though SPH is most
efficient when studying statistics of the density field, such as
the density PDF. In subsonic flow use of viscosity switches is key
to reaching high Reynolds numbers, which has been the source
of recent controversy.

I. INTRODUCTION
Magnetic fields and turbulence are important physical pro-

cesses not only in many areas of astrophysics but also in
Earth-bound applications of smoothed particle hydrodynamics
(SPH). Both of these processes are thought to play a key
role during the formation of stars from the gravitational
collapse of interstellar clouds [17], a problem that SPH was
originally designed for [10], [16] and is very well suited to
modelling because of the ability to adaptively resolve the
many orders of magnitude change in length and timescales
involved. Turbulence itself is a ubiquitous phenomenon that
defies analytic solution, so from the outset requires a numerical
approach in order to model any system it occurs in. Recently
we have made great strides in modelling both magnetic fields
and turbulence using SPH, both of which I will attempt to
outline in this paper.

II. MAGNETIC FIELDS

A. Magnetohydrodynamics
Magnetic fields are usually modelled in the magnetohydro-

dynamics (MHD) approximation, where the equations of fluid
dynamics adopt the form

dρ

dt
= −ρ∇ · v, (1)

dv

dt
= −

1

ρ
∇ ·
[(

P +
1

2

B2

µ0

)

I −
BB

µ0

]

, (2)

du

dt
= −

P

ρ
∇ · v, (3)

dB

dt
= (B ·∇)v −B(∇ · v), (4)

where ρ is the density, v is the velocity, P is the gas pressure, u
is the specific thermal energy, B is the magnetic field, infinite
electrical conductivity has been assumed, d/dt ≡ ∂/∂t+ (v ·
∇) refers to the comoving (Lagrangian) derivative, and the
equation set is closed by adopting an appropriate equation of
state (e.g. P = (γ − 1)ρu).

B. Smoothed Particle Magnetohydrodynamics
Although an early attempt was made by Gingold & Mon-

aghan [10] to model magnetic stars, Phillips and Monaghan
[25] represented the first systematic attempt to formulate
the MHD equations in SPH, later coined ‘Smoothed Particle
Magnetohydrodynamics’ (SPMHD) by Joe Morris [22]. In
their most basic form the equations are very similar to the
usual SPH equations and, like the SPMHD equations, can
be derived in a self-consistent manner using a variational
principle [37]. Taking full account of a spatially variable
smoothing length h, the equations on a given particle a are
given by

ρa =
∑

b

mbWab(ha), (5)

dvia
dt

=
∑

b

mb

[

Sij
a

Ωaρ2a

∂Wab(ha)

∂xj
a

+
Sij
b

Ωbρ2b

∂Wab(hb)

∂xj
a

]

,(6)

dua

dt
=

Pa

Ωaρ2a

∑

b

mb(va − vb) ·∇Wab(ha), (7)

where the summations are over neighbouring particles, b =
1..Nneigh, within the kernel radius, the MHD stress tensor is
defined according to

Sij ≡ −
(

P +
1

2

B2

µ0

)

δij +
BiBj

µ0
, (8)

and Ω is a dimensionless correction term resulting from the
smoothing length gradients (see [19], [39]).

C. Removing the tensile instability in SPMHD
Phillips and Monaghan [25] discovered that the momentum-

conserving formulation of the equations of motion (Eq. 6) is
unstable when the magnetic pressure exceeds the gas pressure,
1
2
B2/µ0 > P . The reason for this is both numerical and
physical. The numerical explanation is that in this regime
the overall stress tensor is negative, resulting in a negative
total pressure, which when combined with the negative-definite
sign of the kernel gradient in Eq. 6, results in an attractive

123



An algorithm for dusty gas with SPH
Guillaume Laibe, Daniel J. Price

Monash Centre for Astrophysics (MoCA) and School of Mathematical Sciences,
Monash University,

Clayton, Vic 3800, Australia
guillaume.laibe@monash.edu

Ben A. Ayli↵e
School of Physics,

University of Exeter,
Stocker Road, Exeter EX4 4QL

Abstract—We present a new algorithm for simulating two-
fluid gas and dust mixtures in SPH, systematically addressing
a number of key issues. This includes the generalised SPH
density estimate in multi-fluid systems, the consistent treatment
of variable smoothing length terms, finite particle size, time step
stability, implicit integration, the treatment of non-linear drag
regimes, thermal coupling terms and the choice of kernel and
smoothing length used in the drag operator.

In this paper, we detail the two key points which allow the
two phase gas and dust SPH algorithm to correctly solve the
problem of the propagation of a sound wave in the mixture.
First, using double- hump shaped kernels improves the accuracy
of the drag interpolation by a factor of several hundred compared
to the use of standard SPH bell-shaped kernels, at no additional
computational expense. Second, the spatial resolution criterion
h . csts is a necessary condition that becomes critical at high
drag (i.e. small stopping time ts) in order to correctly simulate
the propagation.

I. Introduction

SPH is commonly used to simulate astrophysical objects
since free boundaries and large density gradients are easily
handled. However, astrophysical mediums consist not only of
gas, but also of dust particles, whose sizes vary from sub-
micron sized grains in the interstellar medium to kilometre
sized planetesimals involved in planet formation. Moreover,
the ratio of dust to gas as well as the density and temperature
of the gaseous environment in which dust is embedded can also
vary strongly. Extending the SPH formalism to gas and dust
mixtures is therefore crucial to correctly simulate the evolution
of such astrophysical objects.

A first generation of SPH gas and dust algorithms have been
developed by [1], [2] and used for astrophysical simulations,
mostly in the context of planet formation [3]–[8]. However,
after several tests, we found that the existing algorithm was
not su�ciently accurate (especially for treating compressible
flows) and developed a new suitable SPH formalism for gas
and dust mixtures [9], [10].

II. SPH equations for dust and gas mixtures

The SPH version of the continuity equations are given by
the density summations for both the gas and the dust phase,

computed according to:
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the indices a, b, c refer to quantities computed on gas particles
and i, j, k refer to quantities computed on dust particles. The
volume filling fraction ✓, is defined on a gas particle, a,
according to

✓
a

= 1 � ⇢̂d,a

⇢d
, (3)

where ⇢̂d,a is the density of dust at the gas particle location,
calculated using

⇢̂d,a =

N

neigh,dust

X

j=1

m

j

W

a j

(h
a

), (4)

where h

a

is the smoothing length of the gas particle com-
puted using gas neighbours (in general, the drag term has
to be smoothed using the maximum smoothing length of the
two fluids, rather than using an average to avoid unphysical
resolution-dependent clumping of one fluid below the scale of
the other). The local density of dust at the gas location can thus
be zero (giving ✓ = 1) if no dust particles are found within
the kernel radius computed with the gas smoothing length.
Since ⇢̂ and h are mutually dependent, they are simultaneously
calculated for each type of particle. The kernel employed
to perform the SPH density calculation is the standard bell-
shaped kernel W:

W

(
r, h) =

�

h

⌫
f

(
q

) , (5)

where h denotes the smoothing lengths of each phases, ⌫
the number of spatial dimensions and q ⌘ |r � r0|/h is the
dimensionless variable used to calculate the densities and the
buoyancy terms. The function f are usually the M4 cubic or
the M6 quintic spline kernel.

The SPH equations of motion for the gas and the dust
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Abstract—In this study, Smoothed Particle Hydrodynamics 
(SPH) is used to solve the Saint-Venant equations (SVEs) for 
modeling non-rectangular channel flows with open boundaries. 
So far, SPH has been developed to simulate dam-break flows 
with free boundaries and rectangular channel flows with open 
boundaries. However, for solving practical hydraulic problems, 
it is necessary to extend SPH to non-rectangular channel flows 
with open boundaries. Hence, the in/out-flow algorithm and the 
characteristic boundary method are improved herein to study 
the aforementioned problems. The study cases are aimed at 
transitions between subcritical and supercritical flows with non-
uniform bed slopes in trapezoidal channels. In comparison with 
the exact results, it can be found that the present SPH approach 
produces satisfactory results for non-rectangular channel flows 
with open boundaries. 

I. INTRODUTION 
SPH as a Lagrangian meshless method, was originally 

invented to simulate astrophysical problems by Lucy (1977) 
[1] and Gingold and Monaghan (1977) [2]. Later, SPH was 
extended successfully to model free surface flows by 
Monaghan (1994) [3]. After that, SPH was applied to a 
variety of applications by solving the Navier-Stokes equations 
(NSEs), such as free-surface flow problems, impact-fracture 
problems and multiphase flow problems etc. In recent years, 
SPH has been attempted to simulate dam-break flows by 
means of solving the SVEs [4-7]. These researches obtain 
promising results. Then, Vacondio et al. [8] proposed the 
characteristic boundary method to solve rectangular channel 
flows with open boundaries. This work has made SPH 
capable of handling more practical hydraulic problems. 

However, for natural channels, the shape of cross-section 
is not only limited to be rectangular. To deal with non-
rectangular channel flows, instead of water depth ( wd ) and 
velocity ( u ), two variables, i.e. wetted cross-section area ( A ) 
and discharge ( Q ) should be solved. Three study cases, 
containing two rectangular and one trapezoidal channel flows 
with open boundaries, are tested. The comparisons of 
simulated and exact results are presented. 

II. METHODOLOGY 
In this study, the SVEs are solved to discuss non-

rectangular channel flows. The SVEs written in a Lagrangian 
form are: 
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where A  is wetted cross-section area, Q  is discharge, wd  is 
water depth, 0S  is bed slope, fS  is friction slope (= 
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A R ), n  is Manning roughness coefficient, R  is the 

perimeter and g  is gravitational acceleration. 

A.  Evaluation of wetted cross-section area 
To obtain better accuracy of the solution of the SVEs, a 

variable smoothing length ( h ) scheme is applied. Thus, the 
smoothing length of particle i ( ih ), is connected to the wetted 
cross-section area [4,6] with 
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where 0,ih  and 0,iA  are the initial wetted cross-section area 
and the smoothing length for particle i, respectively and mD  
is the number of space dimensions ( mD  = 1 herein). 

In general, the wetted cross-section area is computed 
through the purely weighted summation. However, a Newton-
Raphson iteration is proposed [4] because of the use of the 
variable smoothing length scheme. The iterative procedure is 
as follows. 
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Abstract—In this paper the semi-analytical wall boundary

conditions by Ferrand et al. [1] are investigated theoretically

by looking at the property of skew-adjointness in a continuous

setting. As stabilizing procedure a volume diffusion term [2] is

used and a new interpretation for it is given in the Reynolds

averaged context. Additonally, a correction term for external

forces is presented. The final theoretical contribution concerns

arbitrary order Robin boundary conditions. The theoretical

constructs are then investigated in various confined and free-

surface flows. The issue of convergence is illustrated in the case of

Poiseuille flow, the external force correction terms in the volume

diffusion term and the boundary conditions are demonstrated

via still water simulations. Finally, a standing wave and a dam-

break over a wedge is simulated and quantitative comparisons

are given. The paper is concluded by highlighting the difficulties

associated with the extension to three dimensions as well as giving

an insight into the current developments.

I. INTRODUCTION

Fig. 1. The different types of elements.

Semi-analytical wall boundary conditions for arbitrary
boundaries in SPH were introduced by Ferrand et al. in [1],
[3], [4]. We first recall the main principles of this method. The
key idea was to use an analytical kernel correction factor �
given by

�a =

Z

⌦
wabdrb. (1)

The boundary conditions are implemented by using the sets
of elements described in Table I. The fluid is discretized
using particles. The boundary is split into line segments of
length approximately �r. These segments are called boundary
elements and are located between two vertex particles as

Set Description

P All particles
V Particles on boundary (vertex particles)
F Particles inside the fluid domain
S Boundary segments

TABLE I
OVERVIEW OF ELEMENTS.

shown in Fig. 1.
In the following differential operators will be written in bold
(e.g. Div). Vectors and matrices will be written as B and M
respectively. The general SPH approximation for a scalar f at
position a is given by

[f ]a =

1

�a

X

b2P
Vbfbwab, (2)

where V is the volume, P the set of all particles and w the
SPH kernel. In order to obtain the analytical value for �, a
governing equation is used, given by

d�a

dt
= vr

a ·r�a, (3)

where vr is the velocity relative to the wall. Ferrand et al.
[3] derived an analytical expression for r�a in 2-D for the
Wendland kernel. Without loss of generality this kernel will be
used throughout this paper. The other key idea is to rigorously
derive the differential operators without neglecting boundary
terms coming from the integration by parts. For the SPH
approximation as given by Eq. (2) Ferrand et al. proposed the
following SPH approximation for the divergence of a vector
field B

Div

�,F
a (B) := � 1

�a⇢a

X

b2P
mbBab ·rawab +

1

�a

X

s2S
Bas ·r�as,

(4)
where the superscript F stands for ”Ferrand” and Bab = Ba�
Bb. Following the same paper, the gradient of a scalar field f
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Abstract—When the particles restoration method is applied on 
the free surface particles, the SPH simulation may blow-up. 
The blow-up may due to the error accumulation when solving 
the linear equation with high condition number. In current 
study, the dynamic free surface boundary condition is applied 
on the free surface to remove the error accumulation and 
prevent the simulation blow-up. With this method, the 
consistency of all the particles in the simulation domain is 
restored to C1. An improved surface detection method is also 
introduced in the study. The benchmark of hydrostatic and 
sloshing problems show the new method can improve the 
energy conservation, free surface tracking and pressure 
estimation. 

I. INTRODUTION 
The Smooth Particle Hydrodynamics (SPH) is a 

Lagrangian particle method and has been widely used in 
many areas such as astronomy, computational fluid 
dynamics, solid mechanics and so on. However, the 
traditional SPH method suffers several drawbacks. The lack 
of particle consistency is one of the most severe problems 
[1-3]. 

Many approaches have been published to restore the 
particle consistency to C1 in previous researches [4, 5]. 
With the particle consistency restoration, the energy 
conservation, the accuracy of free surface tracking and 
pressure estimation can be improved. However, these 
methods only restore the consistency of particles inside the 
fluid domain, while the particles near or at the free surface 
are not. This may due to the consistency restoration methods 
involve a set of linear equations and the condition number 
of the linear equations for particles near to at the free 
surface may very high. Solving these equations may 
introduce numerical errors and cause the SPH simulation 
blow-up,   if   the   numerical   error   can’t   be   removed   and  
accumulate in the system. Although only restore the inner 
particles can avoid the simulation blow-up and improve the 
results, it still has several limitations. First, the consistency 
of particles inside the fluid domain has been restored to C1, 
but the consistency of particles near or at the free surface is 
C0 or less than C0. In overall the consistency of the whole 
system is less than C1. Second, for these low consistency 
particles, the accuracy of the velocity divergence and 
pressure gradient maybe low, which may influence the 

density evaluation, pressure estimation, free surface tracking 
and total energy conservation. Hence, the restoration of 
consistency for particles near or at the free surfaces is 
important.  

In this paper, the one searching step correction method is 
employed to restore the particle consistency for particles 
inside the fluid domain, near the free surface and at the free 
surface. The reason of the simulation blow-up will be 
discussed. A simple but efficient method will be proposed to 
prevent the simulation blow-up. An improved surface 
detection method will be introduced. The new method is 
benchmarked by the hydrostatic simulation and the water 
oscillation in a 2D tank. 

II. THE GOVERNING EQUATION  
In the present   work,   the   δ-SPH scheme proposed by 

Antuono,   et   al.   [6]   is   employed.   The   δ-SPH scheme 
introduces the artificial diffusion term in continuity equation 
to remove the pressure oscillation. The equation can be 
expressed as: 
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r , 

ab a b r r r , a  ,  ,a a au vu  and aP  are the density, 
velocity and pressure of particle a , respectively. h  is the 
smoothing length, 0c is the initial sound speed, bV  is the 
volume of particle b ,   2ab a b     is the average 
density,   2ab a bc c c   is the average sound speed, a abW  
is the gradient of kernel function respect to particle a ,   
and   control the magnitude of the diffusion terms, 

0.0001   and 0.03   are employed in current study [1]. 
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Abstract—The SPH model in his weakly compressible formu-
lation is applied to simulate viscous flows at low and intermediate
Reynolds numbers (10 < Re < 1000) around a cylinder. It is well
know in the literature that this kind of problem represents a
challenge for the proposed numerical model. To overcome these
drawbacks, here a proper ghost-fluid technique is proposed to
deal with blunt bodies in viscous fluids. The no-slip condition
on the body surface is implemented combining the technique
proposed by Takeda et al. (1994) with the one proposed by De
Le↵e et al. (2011). The global loads on bodies are e�ciently
evaluated in the ghost fluid framework. Making use of a weakly
compressible approach, additional issues have to be addressed
for the sound waves. An in-depth validation of the model is
performed comparing the numerical outcome with experiments
data from the literature and other numerical references. In
particular the solver is validated on the prediction of: drag and
lift coe�cients, wake length and shape and angle of separation
(low Reynolds number), shedding frequency and minimum and
maximum angles of separation (intermediate Reynolds number).
The influence of the domain size is discussed in order to avoid
wall side e↵ects and at the same time to limit the computa-
tional costs. Convergence of the numerical solutions have been
checked for both global and local quantities choosing appropriate
Reynolds-cell number for the di↵erent test cases.

I. Introduction
The vortex shedding from blunt bodies is of practical im-

portance in many engineering applications. For bridge columns
laying on sandy bottoms, the released vorticity interacts with
the sediments eventually leading to the dangerous scouring of
the basement [25]. In o↵shore engineering, the oil rigs can
undergo severe oscillations induced by the alternate vortex
shedding when storms approach the extraction site. Neglecting
this phenomenon in the design stage can cause economic loss,
either the rigs get damaged or have to be temporarily removed
during storms [29]. Similar issues occur in several other fields.
For this reason, several academic studies address the problem
of the simple vorticity generated by a cylinder in a stream
(see e.g. [28] for a review). In SPH, this problem presents
several issues. One of them is the choice of a suitable no-slip
boundary condition. A common way is to use a ghost fluid
technique. Macia et al. [14] showed that, using the Monaghan
& Gingold [19] viscous operator together with the Takeda et
al. [26] mirroring procedure, the viscous stress on the body is
correctly modelled.

Recently, some authors (e.g. [13]) showed that the weakly-
compressible SPH is not suitable to simulate the above men-

tioned flows while the incompressible variants seem to be more
e↵ective. Nevertheless, Takeda et al. [26] in 1994 obtained
good results for the flow around a circular cylinder at Re = 40,
however limiting its analysis only to low Reynolds numbers.
This success is due mainly to three reasons: the choice of an
appropriate equation of state, direct density computation from
particles masses and positions, an accurate enforcement of no-
slip condition on solid boundaries. Conversely, if the density
is evaluated through integration of the continuity equation,
De Le↵e et al. [7] showed that the ghost fluid properties
need to be di↵erent for the momentum equation and for the
continuity equation. The use of a unique ghost fluid, leads to
model inconsistencies that cause strong numerical instabilities.
Finally, in [15] a way to extend the classical particles ghost
technique to curved and edge surface is presented an validated
extensively.

The present work proposes a ghost fluid approach formu-
lation which takes into account the above considerations. The
model is used to study the flow around cylinders. Detailed
analyses of the flow have been done for a wide range of
Reynolds numbers and several parameters, as features of the
loads acting on the body and also of the velocity field, are
taken into account. Satisfactory results have been obtained
by only introducing: accurate modelling of no-slip boundary
conditions, appropriate conditions to get rid soon of the
unwanted weakly compressibility e↵ects, e�cient evaluation
of the global loads. These prescriptions are valid for each WC-
SPH formulation even though, here, they have been adopted
for the �-SPH model proposed by [1]. The analysis has been
developed into two parts. In the first one, the flow is confined
and the cylinder moves with a prescribed function and the
results are compared with a Finite Di↵erence Navier-Stokes
solver (FDNS) described in [5]. Later, more complexity is
added to the problem introducing open boundaries. These have
been treated with the inflow/outflow algorithm proposed by
[12]. For this case the obtained results are compared with
experiments and with other numerical data available in the
literature.

II. The adopted model

In the present work we adopt the �-SPH scheme proposed
by [1]. In this framework, the fluid is assumed to be barotropic
and weakly-compressible and the reference equations are the
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Abstract—The nature of wave breaking at beaches and the 
subsequent three-dimensional turbulence under the waves are 
of great interest in coastal engineering. The breaking waves 
were modelled on a slope using the 3-D open-source GPUSPH 
code of Hérault, Bilotta and Dalrymple (2010). Then, different 
coherent structure detection methods were employed, 
including vorticity, ! criterion, and !! criterion. These last 
two criteria are based on the velocity gradient tensor and its 
symmetric and anti-symmetric components. The evolution of 
the turbulence under a plunging wave is discussed. For 
plunging waves, the plunger touch-down, the jet penetration, 
and subsequent splash-up are all sources of vorticity. 
 

I. INTRODUTION 
The characteristics of wave breaking in the surf zone has 

been of great interest for coastal engineers and fluid 
dynamicists.  As ocean waves propagate towards shore they 
undergo shoaling, shortening in length and increasing in 
height.   As the waves enter the diminishing water depths 
close to the beach, waves break, leading to splash-up, and 
white water fronts or spray depending on the nature of the 
waves. There are four different generic breaker types: 
spilling, plunging, collapsing and surging waves, depending 
on the initial steepness of the waves and the steepness of the 
beach slope [1].  

• In spilling waves, when the wave crest becomes 
unstable, it spills forward and creates white water in 
front of the wave and the wave energy is dissipated in 
this turbulent white water. Spilling waves usually occur 
on gradual beach slopes. 

• In plunging waves, the crest of the wave becomes very 
steep--almost vertical, then it overturns as a jet and falls 
into the water in front of the wave, followed by a 
splash-up, which is sometimes higher than the original 
wave. Depending on the position of the first plunging 
point, a sequence of plunging and overturning jets 
appear in front of the initial wave. This splash-up cycle 
produces vortex structures propagating towards the 
shore. 

• In collapsing waves, the lower part of the wave gets 
steeper and curls over, following by bubbles and foam. 

• For surging waves, which appear on very steep 
beaches, the lower part of the wave moves rapidly 
forward and the wave crest does not curl over. There is 
no turbulent breaking process. 

Several laboratory and numerical studies demonstrated 
that the turbulent flow under the breaking wave could be 
characterized by large-scale flow structures, which are 
called coherent structures. Nadaoka, Hino and Koyano [2] 
performed a set of laboratory experiments to examine the 
breaking wave dynamics and the generated turbulence 
structure. They studied the three-dimensional eddies found 
under and behind the wave crest, called obliquely 
descending eddies. Ting [3] studied a solitary wave 
experimentally and captured coherent structures under the 
breaking wave, which were the sources of turbulent energy. 
Watanabe, Saeki and Hosking [4] modelled the large-scale 
vortex structures under spilling and plunging waves using 
large eddy simulation (LES) method. Three dimensional 
vortex structures were captured in both plunging and 
spilling waves. They studied the obliquely descending 
eddies, which have an important role in sediment 
transportation and beach erosion. 

     In this study, generation and evolution of Lagrangian 
three-dimensional coherent structures under the plunging 
water waves are numerically modelled using SPH 
(Monaghan, 1994), specifically the GPUSPH model 
developed by Hérault, Bilotta and Dalrymple (2010) [5], [6]. 
The Navier-Stokes equations are numerically solved using a 
turbulence closure model to consider small-scale eddies as 
well. 

II. COHERENT STRUCTURES 
In this section, we briefly outline some definitions 

related to the vortex and coherent structures in fluid 
mechanics. Study of spatially coherent, time-depending 
vortex structures has an important role on the understanding 
of turbulent flow physics. Several researchers have 
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Abstract—A coarse-grained particle model for incompressible
Navier-Stokes (NS) equation is proposed based on spatial filtering
by utilizing smoothed particle hydrodynamics (SPH) approxi-
mations. This model is similar to our previous developed SPH
discretization of NS equation (Hu X.Y. & N.A. Adams, J. Comput.
Physics, 227:264-278, 2007 and 228:2082-2091, 2009) and the
Lagrangian averaged NS (LANS-α) turbulence model. Other
than using smoothing approaches, this model obtains particle
transport velocity by imposing constant σ which is associated
with the particle density, and is called SPH-σ model. Numerical
tests on two-dimensional decay and forced turbulences with high
Reynolds number suggest that the model is able to reproduce
both the inverse energy cascade and direct enstrophy cascade
of the kinetic energy spectrum, the time scaling of enstrophy
decay and the non-Guassian probability density function (PDF)
of particle acceleration.

I. INTRODUCTION

The smoothed particle hydrodynamics (SPH) method is a
fully Lagrangian, grid free method. Since its introduction by
Lucy [14] and Gingold and Monaghan [6], SPH has been
applied to a wide range of macroscopic and mesoscopic flow
problems [19] [10]. Though the SPH method was originally
developed for astrophysical problems involving compressible
fluids, it has been extended to problems involving incompress-
ible fluids by using either a weakly compressible model of
the fluid [17], or by algorithms designed to solve the full
incompressible equations [3] [11] [12].
Many of the incompressible flow problems, such as flood

and coastal flows, to which SPH has been applied are turbulent.
Since the direct numerical simulation of these problems is not
always feasible, turbulence modeling is required for the com-
putational more efficient coarse-grained numerical simulation.
One straightforward approach of SPH turbulence modeling
is applied the turbulence models originally developed for
Euelrian methods directly [7] [25] [27].
Monaghan [18] first noticed the similarity between the

version of SPH called XSPH [16] and the Lagrangian averaged
Navier-Stokes (LANS) turbulence model [8] [9] on the relation
between the velocity determined from particle momentum
(momentum velocity) and the transport velocity, and proposed
a turbulence model specifically for the SPH method. In this
model, the SPH particle moves with the transport velocity
smoothed from momentum velocity by an iterative algorithm
and a dissipation term is introduced to mimic the standard
large eddy simulation (LES) model originally developed for
Eulerian methods. A further modification of this model (SPH-
ε) is to obtain transport velocity directly by the XSPH method

with a parameter ε [20]. On the other hand, we have noticed the
importance of SPH particle moving with the velocity different
from its momentum velocity when simulating flows beyond
small Reynolds number in our previous developed incom-
pressible SPH method [11] [12]. In this method, other than
using the XSPH method or smoothing approaches, the Eulerian
incompressibility condition (zero velocity divergence) and the
Lagrangian incompressibility condition (constant density) are
used respectively to determine the momentum velocity and the
transport velocity.
In this paper, we propose a coarse-grained particle system

for turbulence simulation based on spatial filtering the Navier-
Stokes (NS) equation by utilizing SPH approximations. Since
the resulting particle equations are similar to those of the
above mentioned incompressible SPH method, except for an
additional effective stress term introduced by moving particle
with transport velocity, the same numerical method is applied.
The numerical tests show that, while achieving good accuracy
for resolved flow, the present model can recover the spectral
and statistical properties of the two-dimensional decay and
forced turbulences with high Reynolds number.

II. MODEL

We consider the incompressible isothermal NS equation in
Lagrangian form

dv

dt
=

∂v

∂t
+ v ·∇v = −1

ρ
∇p+ ν∇2v, (1)

dρ

dt
= 0 or ∇ · v = 0, (2)

where ρ, p and v are fluid density, pressure and velocity,
respectively, and ν = η/ρ is the kinematic viscosity. Note
the two expressions (constant density and zero velocity-
divergence) in Eq. (2) are formally equivalent.
In the next section, we propose a coarse-grained particle

system based on filtering the NS equation with numerical
techniques in the SPH method. This approach is different from
the SPH-ε model, which is devised from the SPH discretized
form of Eckart’s Lagrangian [4].

A. Coarse-grained NS equation and SPH method
Assume that the incompressible flow field is coarse-grained

into a particle system with spatial filtering, the variables on
particles are obtained by

ψi = Gi ∗ ψ =

∫
ψW (r − ri, h)dr, (3)
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Abstract—In this paper we extend our previous study of decay-
ing turbulence in two dimensions using SPH by simulating driven
turbulence. Previous studies of driven turbulence have used
stochastic forces to maintain the turbulence, presumably because
it was thought that the simulation of mechanical stirrers was
too complicated. However, mechanical stirrers can be simulated
easily with SPH and we do it in this paper for cylindrical stirrers
moving on specified trajectories. The turbulence is generated by
the vortices that are produced behind the cylinders as they move
through the fluid. To confirm that our algorithm generates these
vortices accurately we applied it to the vortex induced vibration
of a cylinder in channel flow finding very satisfactory results. To
drive the turbulence one or more stirrers move on a trajectory
that is a Lissajous figure with a 3:1 frequency ratio. We show
that the spectrum and correlation functions agree with theory
and with other simulations. The motion of the cylinders, the
formation of the vortices, and their subsequent interaction with
the motion of the stirrers provides very interesting examples of
fluid dynamics with moving bodies.

I. INTRODUCTION

Recent studies of decaying turbulence in two dimensions (
[24], [17], [27]) have shown that SPH simulations converge
and give results in good agreement with those of other authors
( [5], [6] ). However, most turbulence simulations consider
driven turbulence rather than decaying turbulence since steady
turbulence is often assumed in theoretical work. In the labo-
ratory, driven turbulence is due to an input flow, or to some
sort of moving mechanical device, but the simulation of such
a mechanism has been considered too difficult to implement.
Instead, the turbulence has been initiated and maintained by
stochastic forces ( [13]. In the present paper we exploit the
flexibility of SPH and consider turbulence driven by cylindrical
stirrers moving on Lissajous figures.

A key feature of a cylindrical stirrer is that it leaves a
wake of vortices and these vortices subsequently intereact
with themselves and with the moving cylinder. The resulting
turbulence is driven at a length scale comparable to the length
scale of the vortices which is the diameter of the cylinder. In
order to be confident that our algorithm generates the vortices
correctly we tested it by simulating a cylinder in a steady
flow and a cylinder attached to a spring in a channel flow. In
particular, our results for the oscillating cylinder are in good
agreement with those of [21] and [7].

In this paper the spectrum and correlation functions for the
fluid in a square container with no-slip walls are calculated
both when there is one stirrer and when there are two. In both
cases the spectrum and correlation functions have a similar

form though, as expected the energy and enstrophy are greater
when there are two stirrers than when there is one stirrer.

II. SPH MODEL

We consider a weakly compressible fluid with pressure P a
function of density ⇢. Surface tension is neglected. The reader
is assumed to be familiar with standard SPH as described in
the reviews by [14], [15]. In the following, the labels a and j

are used for SPH fluid and boundary particles respectively, and
⌘ is used when a summation is over both fluid and boundary
particles.The SPH form of continuity equation is

d⇢

a

dt

= ⇢

a

X

⌘

m

⌘

⇢

⌘

(v
a

� v

⌘

) ·r
a

W

a⌘

, (1)

where the mass, position, velocity, density and pressure of
particle a are m

a

, r
a

, v
a

, ⇢
a

, and P

a

, respectively. The sum-
mation is over all particles The function W

a⌘

= W (|r
a⌘

|, h)
is the SPH kernel, |r

a⌘

| is the distance between particle a and
particle ⌘, and h = (h

a

+ h

⌘

)/2 is the average smoothing
length. In the calculations to be described the kernel is the
Wendland function which vanishes at r = 2h according to a
fourth order zero ( [29]). We choose h

⌘

= 1.5�, where � is
the initial particle spacing. The gradient taken with respect to
the coordinates of particle a is denoted by r

a

. The pressure
of fluid particle a is given by

P

a

=
⇢0c

2
s

7

 ✓
⇢

a

⇢0

◆7

� 1

!
, (2)

where ⇢0 is the reference density of the fluid. The speed of
sound c

s

is � times the maximum speed of fluid V

max

which
is calculated at each time step from the velocity field and �

is between 10 and 15. The result is that although the speed
of sound is time varying the Mach number remains constant.
The boundary particles have zero pressure.

The acceleration equation for the SPH particle a is

dv

a

dt

= �
X

⌘

m

⌘

✓
P

a

⇢

2
a

+
P

⌘

⇢

2
⌘

�⇧
a⌘

◆
r

a

W

a⌘

+
X

j

m

j

f

aj

.

(3)
The first summation in (3) is over all particles. The viscosity
is determined by ⇧

a⌘

for which we use the form

⇧
a⌘

= �↵

c̄

⇢̄

a⌘

v

a⌘

· r
a⌘

|r
a⌘

| , (4)
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Abstract—Recent studies of a turbulence model for SPH [1], [2]
show that, for two dimensional turbulence in a square container
with no slip walls, it gives results that are in good agreement with
those from a high accuracy spectral method. A key feature of the
model is that the fluid is advected with a velocity bv obtained by
smoothing the velocity v. The equations of motion are obtained
from a Lagrangian in which the kinetic energy per unit mass is
1
2v ·bv, and the movement of an SPH particle is given by dr/dt =
bv. The linear and angular momentum and a discrete form of the
circulation are conserved. The simulation of turbulent flow in
a square container shows that the velocity correlation function
for low resolution is close to that calculated using a resolution
twice as fine. The reason for the improvement is that the noise in
the velocity field is greatly reduced by the smoothing. However,
the smoothing of the velocity field affects the mixing because the
velocity variations on a short length scale are removed, and there
are clear differences in the flow. Some of the difference can be
attributed to the fact that the turbulent flow is chaotic and the
smoothing makes initial small changes to the advection and these
changes are amplified. However, part of the difference is due to
the effect of smoothing on the small length scale motion. In this
paper we analyse the time variation of the mixing at different
length scales and we show the results obtained by including a
diffusion equation which describes the diffusion of material due
to small velocity fluctuations. This equation takes the same form
as that given by Monaghan [3] in connection with the freezing
of binary solutions. A key feature of the formulation is that the
difference between bv and v determines the velocity fluctuation,
and this determines the coefficient of diffusion.

I. INTRODUCTION

When a laminar flow becomes turbulent mixing occurs. In
particular the linear and angular momentum are mixed and
this changes the stresses in the fluid. Any scalar quantity
the fluid carries is also mixed. The mixing occurs on all
scales but it varies with the length scale with the small scales
being less easily mixed than large scales. If turbulence is
simulated using high resolution, the turbulent flow is found
to eventually involve thin sheets and ribbons that decay by
viscosity. To simulate these structures correctly it is necessary
to resolve down to the Reynolds length `R which is given in
2D by `R = L/R1/2 where L is the macroscopic scale and
the Reynolds number is R = V L/⌫ where V is the large
scale velocity and ⌫ the kinematic viscosity coefficient. These
thin structures are seen in the direct SPH simulations of 2D
turbulence [1], [2], [4]. Unfortunately, in many simulations,
the resolution required to describe the turbulence correctly
cannot be afforded, even with large parallel clusters. In the
case of finite difference calculations the way of escape is to

use a turbulence model where the original fluid equations
are smoothed in space. The method is called Large Eddy
Simulation (LES) and the grid scale is larger than grid spacing
of `R. The use of a coarse grid is partly compensated by
including a sub-grid stress that must be guessed.

It has been shown that a recently proposed turbulence model
for SPH has a number of desirable properties [1]. These
include conservation of linear and angular momentum and
circulation (approximately) together with the ability to recover
the correlation functions of direct numerical simulations while
using a much coarser resolution. The equations of motion
are derived in a similar way to that used in a continuum
Lagrangian turbulence model called the Lagrangian Averaged
Navier-Stokes alpha model (LANS-↵) due to Holm and his
colleagues [5], [6], and for further references see Lunasin
et al. [7]. LANS was originally developed from a lengthy
consideration of turbulent fluctuations. However, the end result
is simple. A smoothed, or regularised, velocity bv is calculated
by a linear operation on the un-smoothed velocity v, and then
the Eulerian equations of motion are determined from a La-
grangian with kinetic energy per unit mass 1

2v·bv. The particles
are moved according to dr/dt = bv, and the combination of v
and bv guarantees that circulation is conserved in the absence
of dissipation. The overall result is that, in driven turbulence
in the absence of viscosity, the energy in small length scales is
redistributed to larger scales. Combined with a viscous term,
the equations give a very satisfactory description of turbulence
(in periodic domains [6], gyres relevant to oceanography [8],
and mixing [9]).

II. GOVERNING EQUATIONS

The smoothed velocity bva and the un-smoothed velocity va

for an SPH liquid particle a are related by [1]:

bva = va + ✏

X

b

mb

M

(vb � vb)K(|ra � rb|, `). (1)

Here mb is the mass of particle b and M is a mass closely
related to the typical mass of a particle and 0  ✏ < 1. The
function K is a smoothing function with typical length scale
`. It is similar to a Gaussian. The integral of K over the space
of the simulation is equal to `

d where d is the number of
dimensions. The reader familiar with SPH will recognise this
smoothing as the XSPH variant of SPH [10]. It can be shown
that, if the velocities are expanded in a Fourier series, the
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Abstract—An in-depth discussion on the use of numerical
di↵usive terms in SPH models has been performed. These terms
are generally added inside the continuity equation in order to
reduce the spurious numerical noise that a↵ects the density and
pressure fields in weakly-compressible SPH schemes. Specific
focus has been given to the theoretical analysis of the di↵usive
term structure and to the choice of the integration scheme
and Courant-Friedrick-Lewy number. The most widespread
formulations, that is, those by Ferrari et al. [1], Molteni &
Colagrossi [2] and Antuono et al. [3], have been studied in details,
highlighting the main benefits and drawbacks.

I. Introduction
In the SPH literature, two principal approaches are adopted

to model liquids: one is based on the smoothing of the Navier-
Stokes equations and on the solution of a Poisson equation for
the pressure field, the other relies on the assumption that the
fluid is weakly-compressible and barotropic.

From a numerical point of view, the main di↵erences
between the weakly-compressible and incompressible ap-
proaches is that the former requires small time steps con-
strained by the speed of sound, while the later needs to solve
an algebraic system with a sparse matrix, allowing for larger
time steps but rather complex for an e�cient parallelization.
Further, weakly-compressible schemes are generally more
suited for free-surface flows since the boundary condition
along the free surface is implicitly satisfied (see, for example,
Colagrossi et al. [4]) and this avoids an explicit detection of
the free surface during the flow evolution. The latter issue
can be critical in 3D simulations of violent flows since the
Poisson equation may strongly depend on the free surface
configuration and small errors in the free-surface detection
can lead to di↵erent flow dynamics.

Unfortunately, the weakly-compressibility schemes have
as a major drawback the generation of spurious numerical
oscillation in the pressure and density fields. Over the years,
di↵erent solutions have been proposed to remove/reduce the
spurious numerical noise that a↵ect the pressure field in
SPH model. Among them, one is to use proper di↵usive
terms. For example, Ferrari et al. [1] used a Rusanov flux
and built a numerical di↵usive term to be added inside the
continuity equation. This helped reduce the numerical noise
inside the density field and, consequently, inside the pressure
field through the state equation (we recall that the fluid is
assumed to be barotropic). The use of a numerical di↵usive

term inside the continuity equation has been also proposed by
Molteni & Colagrossi [2]. Their term gave good results but,
unfortunately, was inconsistent with the hydrostatic solution.
The authors avoided this issue by introducing a threshold
density so that the di↵usive term only worked when the
pressure field exceeded the hydrostatic field. Unfortunately,
this strategy led to a drastic reduction of the di↵usive term
action. To go round this issue, Antuono et al. [3] proposed a
correction to the di↵usive term of Molteni & Colagrossi [2].
This proved to be compatible with the hydrostatic solution
and to properly smooth out the numerical spurious oscillations
from the pressure and density fields.

The aim of the present work is to shed light on the use of
numerical di↵usive terms in SPH. Specifically, we focus on the
di↵usive term of Ferrari et al. [1], Molteni & Colagrossi [2]
and Antuono et al. [3] and show their benefits and drawbacks.

II. SPH scheme with numerical diffusive terms
In this section we study the general structure of a SPH

scheme with a numerical di↵usive term inside the continuity
equation. Specifically, we assume the fluid to be weakly-
compressible and barotropic. Under these hypotheses, the
density variations are small and it is possible to linearize the
state equation in the neighborhood of the reference density
value to get a linear dependence of the pressure on the
density field. Finally, the artificial viscous term by Monaghan
& Gingold [5] is added inside the momentum equation for
stability reasons. In any case, we underline that the theoretical
analysis on the role of the di↵usive term is completely general
and can be applied to SPH schemes with di↵erent features.

Under the hypotheses above, the governing equations for
the SPH scheme at hand are:
8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

D⇢i

Dt
= � ⇢i

X

j

(u j � ui) · riWi j V j + � h c0Di

Dui

Dt
= � 1

⇢i

X

j

(p j + pi)riWi j V j +

+ f i + ↵ h c0
⇢0

⇢i

X

j

⇡i j riWi j V j

Dri

Dt
= ui pi = c2

0 ( ⇢i � ⇢0 )

(1)

where ⇢i, Vi, pi are respectively the density, the volume and
the pressure of the i�particle while ri and ui are its position
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Abstract—This paper shows the potential of a weakly com-
pressible SPH-ALE method to simulate transient flows in hy-
draulic machines. The novelty of the approach is to use the
properties of SPH-ALE in order to simulate rotor-stator in-
teractions without a rotor-stator interface. Due to the ALE
formalism, the particle velocity is a free parameter and can be
chosen independently of the flow velocity. Instead of a rotor-
stator interface, we have blocks of particles with different particle
velocities. To validate the results, the flow field around a static
airfoil and the pressure coefficient on the profile are compared
to the results of an in-house Euler solver which is an inviscid
finite volume code. Results of transient simulations prove the
capability of the method to detect unsteady pressure waves
and emphasize its applicability to study global phenomena in
multistage machines.

I. INTRODUCTION

The simulation of transient flow configurations in hydraulic
pumps is still a challenge for standard numerical methods,
especially off-design conditions as start up and shut down
of units. In particular, mesh based methods face difficulties
at mesh interfaces between rotating and static parts of the
machine. SPH on the contrary is a mesh-less method and
does not have the problem of mesh interfaces. It has also
proved to be advantageous if free surfaces and multiphase flow
exist as for example during the filling process of a hydraulic
machine. This work aims at showing the potential of a weakly
compressible SPH-ALE method for these applications. This is
done on the basis of a 2D testcase of two symmetric NACA
airfoils, where one (the rotor) is moving with a given velocity
and the other one (the stator) is static.

II. THE SPH-ALE FORMALISM

We consider the inviscid compressible Euler equations to-
gether with Tait’s equation of state for weakly-compressible
fluids. Vila proposed in [10] to write a weak form of the
conservation equations in an arbitrarily moving frame of ref-
erence. Discretizing the equations by the SPH operators leads
to the following discrete set of SPH equations in Arbitrary
Lagrange Euler (ALE) formalism,
8
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where (⇢E

ij

, vE

ij

)T is the upwind solution of the moving Rie-
mann problem at the midpoint between pairs of particles i and
j. In order to calculate this solution of the Riemann problems
the field variables are extrapolated at the interface following
the MUSCL procedure. Then a linearized approximate Rie-
mann solver calculates a mean of these extrapolated states
and expresses the corresponding solution analytically. For the
MUSCL procedure, gradients of the field variable are needed,
whose accuracy have an influence on the numerical diffusion
of the scheme. More details on the formalism can be found in
[8]. The frame of reference moves with an arbitrary velocity
v0. This particle velocity can be chosen independently of the
fluid velocity. This property of the SPH-ALE formalism will
be used in the following for the simulations of rotor-stator
systems.

III. FLOW AROUND A STATIC NACA AIRFOIL

Before simulating rotor-stator systems, the flow around a
two-dimensional symmetric airfoil developed by the National
Advisory Committee for Aeronautics (NACA) was computed
and validated. The solid geometry of the 4-digit NACA profile
is described by

y =
t

0.2
c


0.2969

r
x

c
� 0.1260

x

c
� 0.3516

⇣x

c

⌘2

+ 0.2843
⇣x

c

⌘3
� 0.1015

⇣x

c

⌘4
�

, (1)

where c denotes the chord length and t the maximum thickness
as a fraction of the chord (see [1], p. 113-114). Figure 1
shows the geometry set up of the simulation. Non-reflecting
boundary at infinity conditions inspired by [5] are applied to
the inlet situated on the left hand side and the outlet on the
right hand side with v1 = (0.1, 0)T m/s and p1 = 0. In the
z-direction periodicity is applied. A chord length c = 0.1m
was chosen and the thickness t is 20% of the chord length. The
blade channel distance is one chord length. All simulations are
in Eulerian mode; that means that particles do not move. In
consequence, an initial particle distribution was needed which
was obtained by Bouscasse’s packing algorithm [2]. This
algorithm minimizes r�

i

=
P

j2Di
!

j

rW
ij

and yields a
regular particle distribution. The term r�

i

plays an important
role in the accuracy of the SPH scheme. It should be zero in
order to reproduce correctly the gradients of a constant field.
Since particles do not move, this regular initial distribution
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Abstract—The present paper reports the development of Finite
Particle Method (FPM) in the framework of 3D impinging jet
simulations. The FPM kernel has been proposed recently in the
literature to improve the consistency of standard SPH. Moreover,
a new particle shifting method is proposed to mitigate the particle
clustering issue. The influence of particle spacing, maximum CFL
number and different particle shifting methods are investigated
in the case of a water jet impinging perpendicularly on a flat
plate. The results are compared to available measurements and
grid-based CFD simulations.

I. INTRODUCTION

The Smoothed Particle Hydrodynamics (SPH) method is
well adapted to simulate free surface flows. Indeed, the La-
grangian approach of the SPH enables to simulate complex
free surface flows such as in the case of an impinging jet on a
flat plate. This test case has been often used in 2D to validate
SPH simulations with the analytical solution of Taylor e.g. [1],
[2] and [3]. The validation of the simulations is important to
validate the SPH solver before extending the fluid analysis to
more complex flows. For instance, the simulations of a Pelton
turbine [4] and [5] which require an accurate solver to compute
the instantaneous torque in the buckets.
The standard SPH method described by Monaghan [6]

suffers from a lack of accuracy compared to the grid-based
numerical simulations. However, recent studies summarized
by Liu and Liu [7] have proposed new developments, which
improve the accuracy of the particle-based methods. In the
present study, the FPM kernel from Fang et al. [8] is used to
improve the consistency of standard SPH. The numerical oscil-
lations are reduced by the mass equation correction proposed
by Fatehi and Manzari [9]. Finally, the temporal integration
scheme of Molteni and Colagrossi [10] is implemented to
increase the overall accuracy and stability of the simulations.
During the SPH simulations, the contraction of the stream-

lines as well as the tensile instability described by Monaghan
[11] result in the clustering of particles. This particles cluster-
ing increases the spatial discretization error, which decreases
the overall accuracy of the simulation. In the present study, a
particle shifting method is applied at the end of each time step
to restore a better particles distribution. The shifting methods

of Xu et al. [12] and Jahanbakhsh et al. [1] are investigated in
the case of the simulations of the impinging jet. Moreover, a
new particle shifting strategy which combines the benefits of
these two methods is proposed.
The FPM simulations of the 3D impinging jet on a flat

plate are performed with the code SPHEROS developed by
Jahanbakhsh et al. [13]. The accuracy of these simulations
are validated with the numerical simulations and experimental
results from Kvicinsky et al. [14]; the numerical simulations
being based on the grid-based volume of fluid method imple-
mented in the commercial software ANSYS-CFX R©.

II. GOVERNING EQUATION
A. Restoring Consistency
The standard SPH formulation of a function (1) and its

derivatives (2) is based on a kernel approximation and a
decomposition of the continuous matter into N particles.

f (i) =
N
∑

j

f (j)W (ij)V (j) (1)

f (i)
α = −

N
∑

j

f (j)W (ij)
α V (j) (2)

Each particle i (or j) has a mass m, a density ρ and a
volume V . The position of the particle is defined by the vector
X whose components of the Cartesian coordinate system are
Xα (or Xβ) with α = [X,Y, Z]. The approximated function
f and the kernel W are expressed as (4) and (5) to simplify
the notation. In the present work, the quintic Wendland kernel
(6) used by Fatehi and Manzari [9] is chosen. This kernel is
used with a constant smoothing length h = 2.6Xref where
Xref is the reference particle spacing.

V (i) =
m(i)

ρ(i)
and X(ij)

α = X(i)
α −X(j)

α (3)

f (i) = f
(

X
(i)
)

and f (i)
α =

∂f (i)

∂Xα
(4)

W (ij) = W
(

X
(ij), h

)

and W (ij)
α =

∂W (ij)

∂Xα
(5)
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Abstract—We present our recent advances for particle method
simulations of continuum and discrete systems. For continuum
systems, the approach is based on a Lagrangian formulation of
the governing conservation laws, combined with the remeshing
of distorted particles on a regularized grid to ensure accuracy
and convergence. The remeshing step detracts from the grid-
free character of the method, but enables advances such as
fast computations of derivatives, fast grid solvers for elliptical
equations and the use of multiresolution techniques. In a discrete
setting, the approach relies on interacting particles to simulate
complex system behavior through the formulation of determin-
istic or stochastic discrete rules of interaction that underly the
system.

In fluid dynamics, as an example of the continuum approach,
we use remeshed particles to solve the incompressible Navier-
Stokes equations in velocity-vorticity formulation. The accuracy
and efficiency of our results for high Reynolds number vortical
flows are validated in a comparison with a pseudo-spectral
method. Combining the remeshed particle method with a volume
penalization technique to handle no-slip boundary conditions on
arbitrary geometries allows us to solve fluid-structure problems,
including the simulation of single and multiple three-dimensional
self-propelled swimmers in viscous flows.

We also discuss recent advances in particle methods for
the simulation of biological systems at the mesoscopic and the
macroscale level. We present results from remeshed particle
method simulations of reaction-diffusion on deforming surfaces,
tumor growth and angiogenesis. For cell biology systems a
subgrid-scale modeling approach based on discrete particles,
the Subcellular Element Model, is used. Here each cell is
modeled using a collection of soft particles which can be seen
as a coarse-grained representation of a cell’s cytoskeleton. The
particles interact according to intra-cellular and inter-cellular
potentials which, together with the internal Brownian dynamics
and empirical rules on cell growth, division and migration,
determine the system’s behavior.

Finally, we demonstrate how we exploit scale-separations in
physical systems by integrating our remeshed particle methods
in a wavelet-based multi-resolution framework. We will report
on the implementation details of the approach and show the per-
formance improvements obtained for problems of flow-structure
interaction.

I. INTRODUCTION

Simulations of interacting particles is a unique, deceivingly
simple, yet robust and accurate method for exploring physical
systems ranging from cellular ion channels to galaxy for-
mation [1]. Particle methods formulate physical systems as
interactions between evolving particles. They were the first
method used to describe the simulation of physical processes

(in the 1930’s hand made calculations by Rosenhead of the
evolution of a vortex sheet [2]) and they have been advocated
for efficient simulations of multiphysics phenomena in several
fields of science ranging from astrophysics to fluid and solid
mechanics (see the review papers [3]–[6] and references
therein).

Particle methods are unique, in that they can be used to
simulate phenomena ranging from the atomistic scale (as in
Molecular Dynamics) to the mesoscale (as in kinetic models
of complex physics) and the macroscale (as in fluid, solid
mechanics and astrophysics). In addition they can be readily
formulated to describe discrete and continuous processes as
well as deterministic and stochastic models. In recent years
starting from the development of particle methods for the
simulation of three-dimensional vortical flows [7], these tech-
niques have been extended to the simulation of continuous and
discrete processes in biological systems [8].

For continuum simulations, where particles interact and
adapt according to a convection velocity field, the non-uniform
distortion of the computational elements prevents the conver-
gence of the method [9], [10]. Hence particles evolve while
conserving moments of the field they aim to discretize, albeit
inconsistently with the equations that govern their evolution.
This observation is often overlooked in simulations using
particles but we consider that particle distortion and the
ensuing inaccuracy of the method are inherently linked to
the Lagrangian description of particle methods. In order to
correct for this inaccuracy, we advocate particle regularization
by remeshing the particles periodically on grid nodes [11].
Remeshing detracts from the grid-free character of particles
but enables advances such as grid-based derivative operators,
fast Poisson solvers and multiresolution.

In this work we present an overview of the developments
in particle methods for multiphysics simulations. The paper
is structured as follows. In section II we recapitulate the
fundamental equations and ideas behind the methods. Sec-
tion III will discuss a number of applications of the continuum
methods, particularly related to fluid dynamics and biology,
and an application of the discrete method from the field of
cell biology. Section IV will discuss recent developments
to combine the Lagrangian adaptivity of particle methods
with wavelet-based multi-resolution representations of multi-
scale physical systems, and their implementation on modern

221



Use of SPHERA Code To Investigate Local Scouring 
Effects Induced By Fluvial Structures Downstream a 

Barrage 

Giordano Agate, Roberto Guandalini 

Environment and Sustainable Development Dept. 
RSE  – Ricerche Sistema Energetico SpA 

Milan (Italy) 
giordano.agate@rse-web.it;roberto.guandalini@rse-web.it 

Sauro Manenti, Stefano Sibilla, Mario Gallati 

Hydraulics and Environmental Eng. Dept. 
University of Pavia 

Pavia (Italy) 
sauro.manenti@unipv.it; stefano.sibilla@unipv.it 

 
 

Abstract— The paper reports the development and application 
of the SPHERA code (SPH based) towards the simulation of 
the local scouring problems induced by fluvial structures. The 
study is motivated by the traditional difficulties of SPH 
approaches to mimic the sediment transport and local 
scouring downstream a barrage. In the frame of the Italian 
Energetic System Research Projects a work devoted to 
develop innovative numerical models, based both on a classic 
CFD and on a new SPH approaches, has been carried out with 
the goal of improving the accuracy of the results and to 
support very detailed analyses. The paper shows the 
application of the two models to simulate the local scouring 
effects induced by a barrage, comparing the accuracy of the 
results with experimental measurements and discussing 
advantages and limits of each model. The results allow to 
conclude that both the CFD model and SPH innovative model 
can be applied successfully to investigate local scouring 
problems when fixed structures are involved and they can be 
used in conjunction with the physical models to investigate 
safety aspect and to support optimization design of fluvial 
structures. 

I. INTRODUCTION 

In the proximity of the structures built on rivers, as 
barrage, pile of bridge, intake works, etc., the fluent water 
erosion action can induce a local scour in the riverbed. This 
action depends from the combined effect of the properties of 
the bed material (dimension, type of sediment) and from the 
hydraulic characteristics of the current (velocity, turbulence) 
induced by the presence of the hydraulic works. 

In the frame of the structures that are of interest of 
electric system, the river barrages of hydroelectric plants, 
can lead an erosion process at a local scale in the riverbed 
downstream the barrages. It is to note that these effects can 
be amplified by other generalize erosion phenomena at a 
scale of the river (maneuver of regulation of the riverbed). If 
the local erosion action of the riverbed is not reduced, it can 
lead to a partial excavation around the foundation of the 
civil works and at the base of the river banks, with the 
consequence to put in danger the static stability of the 
structures and of the bank. For this reason both for the new 
works and for the existing ones, it is important to analyze 

this problem in order to take action to adjust and to protect 
the hydraulic works and/or the riverbed. 

II. THE PHYSICAL MODELLING APPROACH 

The evaluation of the erosion of the riverbed importance 
and the evaluation of the action needed to oppose it (i.e. 
layout modification of the hydraulic work or covering the 
riverbed), can be faced with the support of scaled physical 
models. These models are right for comparing different 
solutions and for highlight the configuration that minimize 
the riverbed erosion. The Figure 1 shows the experimental 
facilities that reproduce a real barrage in a river at a scale of 
1:35.6 considered in the study as reference. 

The sediment in the riverbed, placed downstream the 
middle outlet of the barrage, is composed of mono-granular 
sand with d50=500 µm and ρs=2650 kg/m3. The barrage has 
five outlet, but only the middle one is opened. Upstream the 
barrage a pump system puts into the model a constant flow 
rate of 100 l/s (0.1 m3/s). The experimental measurements 
are: 

1. flow rate at inlet; 

2. water level upstream and downstream the barrage 
in different points; 

3. the bathymetry measured at the end of simulation 
and after removal of water. 

The tests have pointed out that the water current modify 
the bathymetry causing two print excavated on the bed 
extended along the water flow current direction and 
separated from a zone with less erosion/deposition. It is to 
note that the erosion activity induced by water excavates the 
bed downstream the barrage in proximity of piles. The 
considered test takes 30 minutes of simulation. 

III. THE NUMERICAL MODELLING APPROACHES 

The numerical models, compared to the physical one, 
allow to study the problems without operation of scale and 
to analyse a great number of layout and/or boundary 
conditions, but the development and the validation of the 
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Abstract—The paper reports on the applicability of Smoothed-
Particle-Hydrodynamics (SPH) for simulations of ship propeller
induced scours in shallow water settings such as harbour basins.
Respective erosions represent unpleasant phenomena, especially if
they occur close to quay walls, and generate cost intensive counter
measures. These measures are usually based on a rather weak
background knowledge. SPH simulations can help to analyse the
erosional processes and to understand the interaction between
ship, water, soil and structure. In the present research, a body-
force propulsor model based on open water characteristics is used
to represent the ship’s propeller. Vessel motions are captured
by a 6DOF motion solver. The evolution of the liquid and
granular phase particles is obtained from an SPH-integration of
the continuity and momentum equations. The fluid is considered
to be Newtonian and the viscosity of the soil-phase is modelled
in line with the Mohr-Coulomb yield stress criterion. Water and
soil particles interacting in a suspension layer are assigned to a
viscosity that is derived from a Chézy-relation between the shear
stress and the local flow velocity. A variable particle resolution
strategy is applied to handle large domains, in which the areas
around the ship hull demand a fine resolution. A complex full-
scale application example included refers to the starting sequence
of a container ship propeller.

I. INTRODUCTION

The interaction of water, soil and structures poses problems
to different areas of marine and hydraulic engineering. In the
field of port-engineering, erosions of the harbour bottom, es-
pecially close to quay walls, represent unpleasant phenomena.
In particular, scours may significantly weaken the structural
support of wharf constructions and generate costly counter
measures. The formation of such erosional phenomena usually
follows from flows induced by the ships’ manoeuvering and
propulsion devices as illustrated in Fig. 1. Our research aims
at the development of a numerical SPH-based procedure
which is capable of accurately predicting the scour formation
process. While previous studies [15], [17], [19] focused on
the impact of transverse thrusters, the present work is devoted
to simulations of propeller flow induced erosion. The latter is
not only a typical problem in harbours but generally occurs
in waterways that provide restricted water depths. Figure 2
shows a large scour generated by a ship propeller in an inland
water way during in-situ experiments performed by Felkel and
Steinweller [2]. The picture outlines that scours can reach sig-
nificant depths and may seriously damage the channel/harbour
bed. As it can handle the transient dynamics of multiple

Fig. 1. Scours close to quay wall caused by ship propeller (left) and transverse
thruster (right). Picture from [10].

interacting continua featuring large relative motions, the SPH
method forms an ideal candidate to simulate the respective
complex phenomena.

The paper outlines the application of the massively-parallel
hydrodynamic SPH-code GADGET-H2O [16] to study the
erosional mechanisms induced by starting ship propellers. The
GADGET-H2O-procedure is a modification of Springel’s [13]
cosmological TreeSPH-Code GADGET-2. GADGET-H2O is
seen to provide linear speed up for several hundred CPU-cores
when applied to hydrodynamic flow simulations [16] using
many ten-million particles. Concerning the physical modelling,
fluids are assumed to be Newtonian and turbulence is modelled
by means of an LES approach. The soil model considers the
granular material as a fluid with a variable viscosity which is
evaluated in line with the Mohr-Coulomb yield-stress criterium
for cohesive or cohesionless materials. Water/soil suspensions
are taken into account by a concentration based approach to
mimic the stresses inside a fictitious suspension layer which
is derived from a Chézy-relation between the shear stresses
and the local flow velocity as proposed e.g. by Fraccarollo
and Chapart [3]. The employed motion modeller for floating
bodies is based on unit-quaternions and does not exhibit a
limitation of the rotative motion as displayed by traditional
Eulerian-Angles techniques. The ship propeller is modelled
by a semi-empirical actuator disk propeller model. In addition
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Abstract—The present study aims to provide further under-
standing of the dynamics of the ship bow waves. From a physical
point of view, it is important to understand how the bow wave
breaking process develops and how it modifies the wake field. To
tackle the problem the ship bow is modeled with simple wedge
geometries moving through the water in stationary forward
motion at different speeds. For this geometry, experimental
measurements are available in the literature (see Waniewski [4]).
The problem has been simulated using the �� SPH model and
an in depth analysis of the 3D wave pattern has been done for
different bow shapes and for different Froude numbers. The
latter has been chosen to get overturning bow waves generating
intense splash-up cycles. A preliminary 2D+t analysis has been
performed to identify the main characteristic lengths of the
bow wave plunging jet. In order to be able to carry intensive
computations an SPH hybrid MPI-OpenMP programming model
has been used. The physical characteristics of the bow breaking
wave are investigated and the outcomes are compared with both
experimental and numerical results from Finite Volume Level
Set (FVM-LS) calculations.

I. INTRODUCTION

A. State of the art
Bow wave dynamics have been for a long time a subject of

theoretical and analytical research in the naval hydrodynamic
field (Ogilvie (1972) [1], Noblesse (1991) [2]). All along the
years, impressive progress have been made in the numerical
simulation of these kind of flows (see e.g. Miyata [3], Wyatt
[6], Iafrati [7]). At present, some of the most used numerical
models for free-surface flows are Finite Volume schemes with
level-set or volume of fluid algorithms. These solvers are able
to deal with 3D breaking wave phenomena and, specifically,
they can simulate the evolution of bow waves dynamics (see
e.g. Carrica [8] and Di Mascio [9] [10]).

Recently, SPH method has been used to study the dynamics
of breaking waves proving to be a reliable numerical method
for this kind of phenomena (see e.g. [12], [13]). Colagrossi et
al. [14] proposed a 2D+t SPH model that has been proved
to provide a good qualitative description of the breaking
phenomenon. A further inspection of this model has been
provided in [15] where the minimum discretization required
to catch the breaking inception has been determined.

In [16], a 3D SPH solver was described and tested in
order to model the 3D wave pattern generated by a ship in
steady-state forward motion, and a first attempt was done on
a simplified geometry. The subject is further developed in
the present paper. To avoid complexities linked to the use of
a variable-h SPH scheme a constant discretization was used
for the whole fluid domain. Further, the domain has to be

large enough to avoid wave reflections at the boundaries. As a
consequence, the number of particles used in the simulations
is of the order 107. For this reason, the hybrid MPI-OpenMP
programming model, developed in [16], has been adopted.

B. Scaling of the experimental data from model test
The bow wave dynamics has been historically studied using

simplified geometry as a wedge. Several experimental cam-
paigns on wedges have been made by Miyata [3], Waniewski
[4] and Karion [5] while a numerical study have been done in
Broglia [11].

Generally, for this kind of flows, viscosity and surface
tension effects can play a significant role. Therefore, together
with the Froude number, Reynolds and Bond (or Weber)
numbers should be taken into account when scaling exper-
imental results from model test. The experimental results
performed by Waniewski [4] clearly show that measurements
of different model scales in Froude analogy present non-
negligible discrepancies. In particular, the analysis confirms
a substantial influence of the Froude number on the patterned
morphology and highlights the importance of surface tension
for small-scale bow ships (e.g. small-scale models tested) in
inhibiting the plunging jet formation and evolution.

In such kind of analysis the Froude number is generally
defined respect the ship draft H and therefore it reads as
FnH = U/

p
gH where U is the forward ship speed and g

the gravity acceleration. Reynolds number and Bond number
are defined as Re = U L/⌫ and Bo = ⇢gL2

j/�, where L is
the typical ship length (here the extension of the bow region),
⌫ the kinematic viscosity, ⇢ the density of fresh water, Lj is
the characteristic curvature radius of the plunging and � the
water surface tension. Regarding the Bond number, Lj is of
the same order of H in the problem studied in this work.

Miyata [3] noted that the wave system generated by a
traveling wedge is quite similar to the Free Surface Shock
Waves characteristic of shallow water regime. In particular,
he shows that the wave system in an open channel flow with
a current in supercritical regime (FnH > 1) is quite similar to
the one generated by the bow of a ship. Following this analogy,
Waniewski [4] shows that the ratio between the model draft
and the water depth has no significant effect on the bow wave
profile. The bow waves profiles on a wedge model towed in
a tank (where the water depth is by far larger than the wedge
draft) are similar to those obtained in a stationary open-channel
where the wedge is fixed to the bottom and, therefore, the
water depth coincides with the wedge draft.
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Abstract–This paper describes a novel methodology, using 
the open source SPH code SPHysics, that is capable of 
simulating a Wigley hull in a wave tank.  To achieve this 
capability a number of modifications made and new features 
added.  These are a Wigley hull geometry modelled as a 
floating body, a new inflow condition based on the Airy wave 
theory and a two-part outflow condition that acts as a non-
reflecting open boundary.  To verify the capability of the new 
methods a series of test cases have been conducted.  These are 
2D and 3D wave tank simulations to test the inflow and outflow 
conditions and finally a Wigley hull is simulated in a wave tank 
to test all of the new methods simultaneously. 

 

I. INTRODUCTION 
The methods most frequently used to conduct computer 

simulations of ship motion are the older, more mature 
methods; including Strip Theory and Reynolds Averaged 
Navier-Stokes (RANS).  However other methods are 
becoming more popular, including SPH.  In this paper we 
use the open source SPH code SPHysics [1] to simulate a 
Wigley hull subjected to head waves in a wave tank.  
Firstly a number of modifications and new methodologies 
have been introduced to allow SPHysics to model the 
simulation correctly.  Secondly a number of test cases have 
been conducted.  This work follows on from the results 
presented in [2]. 

The first set of test cases discussed involve testing the 
inflow and outflow conditions to ensure that the waves 
generated can propagate correctly and then can leave the 
computational domain without any unphysical wave 
reflection.  The second  set of test cases bring all of the new 
features together to simulate a ships' hull in a wave tank; 
for this a source of validation data is required.  The results 
from a number of Wigley hull wave tank experiments have 
been detailed in [3,4].  In these experiments the Wigley hull 
is subject to regular head waves where the wavelength, 
wave amplitude and Froude number (Fn) are varied.  [3,4] 
give the results from a number of different experiments 
where the hull is either restrained or free to heave and 
pitch. 

II. FORMULATIONS AND METHODOLOGY 
The latest version of serial SPHysics (V2.2.001) does 

not have all the features required to simulate a ship's hull in 
a wave tank.  To enable the simulations to be conducted a 

number of modifications to the code have been made and 
new features have been added. 

A new inflow condition has been implemented that is 
based on the Airy wave theory that allows a mean flow 
speed, wavelength and wave amplitude to be prescribed.  A 
novel outflow condition has been created to compliment the 
inflow condition, this is split into two parts.  The first part 
uses a sponge layer to damp out waves so that any wave 
that is reflected off the outflow boundary will be damped 
out before it reaches the main domain.  The second part 
uses a density based system to regulate outflow to ensure 
that the average mass flux across the boundary remains 
constant.  Finally the floating body feature in SPHysics has 
been modified so that it can model a more complex 
geometry such as a Wigley hull. 

A.  SPHysics 
A full account of the features available in SPHysics 

version 2.2.001 can be found in [5], in this section only the 
original formulations that have been altered for this project 
will be discussed. 

The repulsive boundary condition used in SPHysics 
models a solid boundary by using a series of boundary 
particles which impart a repulsive force on any fluid 
particle that approaches the boundary.  The force is defined 
by a delta function and is further modified by a fluid depth 
and particle velocity correction factor. 

The wavemakers included in SPHysics use moving 
walls that act like pistons or paddles and are designed to 
generate waves in a static volume of fluid.  This is not 
appropriate for wave tank tests where there is a free stream 
flow velocity, such as in [3,4].  Therefore a new 
wavemaker method that can include a free stream velocity 
has been developed. 

B. Altered and Novel Methodlogies 
In this section the alterations and additions made to the 

original code will be discussed. 

The delta function used by the repulsive boundary 
condition can result in very large forces being applied to 
fluid particles if the particle is very close to the boundary.  
This can cause problems during a simulation and may 
require an decrease in the time step to maintain stability.  
The distance between the fluid particle and the boundary 
particle is normalized by the smoothing distance such that: 
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Abstract—The SPH-flow code developed by Ecole Centrale de
Nantes and HydrOcean relies on SPH methods to model complex
free surface problems involving fast dynamics, such as the water
entry of 3D complex geometry objects. SPH methods suffer from
high computational costs, which increase dramatically in 3D
engineering applications. To increase the use of SPH methods
in industrial studies, large simulations must be solved in a
reasonable restitution time. Such simulations involve hundreds
of millions of particles and, therefore, require important compu-
tational resources and an efficient parallelization.

The parallelization strategies adopted in this work takes
advantage of a domain decomposition method, classically used
in mesh-based methods. They solve the two main bottlenecks
of SPH codes by introducing a spatial distribution of particles
based on a sampled Orthogonal Recursive Bisection (ORB) and
non-blocking MPI communications after identifying border and
inner particles.

Very good results have been obtained up to 32192 cores with
3 billions particles, and industrial studies have been performed
up to 100 million particles.

I. INTRODUCTION

The objective of the present work is to improve the perfor-
mance of the HPC code SPH-flow developed jointly by Ecole
Centrale de Nantes and HydrOcean, to make it efficient in
research as well as in industrial contexts. For this purpose,
the underlying objective is to keep the presence of all the
main existing SPH formulations in this code, in order to
ensure the accuracy of the results and their applicability
in the industrial field. The implemented methods are for
example the standard SPH scheme [11], but also the �-SPH
scheme [10], or the Vila scheme [15] based on Rieman solver.
Similarly the renormalized scheme, the ability to resolve 2-
D or 3-D multifuids flow [6], the Fluid-Structure interaction
(FSI) based on coupling SPH with a finite element code [5],
advanced boundary conditions [3], [7], [9] and viscosity [8]
are maintained in this HPC code. It is important to keep all of
these schemes in mind, since it guides the algorithmic choices
made in this paper.

The presented work has been developped into SPH-flow
code but could be easily reused elsewhere. The main diffi-
culties of the implemented models of this work arise from
variable kernel supports of the particles, from interaction lists
that are built for several time steps in Verlet list framework,
and from boundaries that could be defined by ghost particles
or with surfacic terms.

In Section II, the main aspects of the parallelisation of SPH
methods are introduced. The main phases of SPH methods
will be presented, relying on the load balance of the particles
throughout processes, the parallel computation of the flux
terms and the time advance procedures. In Section III, parallel
results will be shown. Several tests have been performed:
strong scalability tests where the problem size is fixed while
the number of processes increases, and weak scalability tests
where the problem size is fixed per process. Finally, industrial
test cases involving massively parallel SPH simulations will
be presented in Section IV.

II. OVERVIEW OF THE PARALLELISATION OF SPH
METHODS

Generally parallel SPH methods rely on three main steps
1) definition of the domain of each processes and distribu-

tion the particles accordingly to the domain decomposi-
tion.

2) positioning of the particles in a grid and eventually build
the interaction list.

3) computation of the flux terms and perform the time
advance.

When the discrete SPH model is defined with constant or
pseudo constant kernel support size (namely constant-H), steps
1 and 2 could be implemented as finite difference methods. It
means that an underlying regular grid is built and particles are
then placed in its cells. Then the domain decomposition could
be performed on the data structure defined by these cells.

But in SPH-flow, the SPH models could be solved using
variable-H, which introduces much more difficulties. The next
two subsections will describe a load balance procedure and
flux computations with overlapping communications. Both
approaches are compatibles with variable-H SPH formulations
(for more details see Section IV).

A. Load balance procedure
To parallelize explicit codes, such as SPH methods, the basic

approach is to spread the discrete points, here the particles,
among the processes. Hence the computation of fluxes can
be performed in parallel whilst the neighbour particles are
exchanged.

This method is mainly called domain decomposition. The
whole computational domain is divided into subdomains. Each
subdomain is affected to a single process. To obtain good

259



New OpenMP-MPI-CUDA implementation            
for parallel SPH simulations                                     

on heterogeneous CPU-GPU clusters 

Jose M. Domínguez, Alejandro J.C. Crespo,      
Moncho Gómez-Gesteira 

Environmental Physics Laboratory (EPHYSLAB) 
Universidade de Vigo 

Ourense, Spain 
jmdominguez@uvigo.es 

Daniel Valdez-Balderas, Benedict D. Rogers 
Modelling and Simulation Centre (MaSC),  

School of Mechanical, Aerospace and Civil Engineering 
(MACE) 

University of Manchester 
Manchester (U.K.) 

 
 

Abstract—A massively parallel SPH scheme using 
heterogeneous clusters of CPUs-GPUs is developed. The new 
implementation has been carried out starting from the single-
GPU DualSPHysics code that has been proven to be powerful, 
stable and accurate. A combination of different parallel 
programming languages is merged to exploit not only the 
different cores of one device (CPU or GPU) but also the 
combination of different machines. The communication 
among devices is carried out through a new MPI 
implementation. The proposed implementation tries to 
address some of the well-known drawbacks of MPI by 
including a dynamic load balancing and the overlapping 
between data communications and computation tasks. The 
efficiency and scalability obtained with the new DualSPHysics 
code are analysed for different numbers of particles and 
different number of GPUs. Last, an application with more 
than 170 million particles is performed to show the capability 
of the code to handle simulations that could only be carried 
out using big CPU cluster machines or supercomputers.   

 

I. INTRODUCTION 
One of the main drawbacks of the SPH method is its 

high computational cost when real engineering problems 
must be studied using a huge number of particles. It is 
imperative to develop parallel implementations of SPH 
capable of combining the resources of multiple machines 
allowing simulations of millions of particles at a reasonable 
runtime. The use of graphic processing units (GPUs) has 
become an affordable option to accelerate SPH with a very 
low economic cost (compared to traditional CPU clusters). 
However, the use of a single GPU card is not enough when 
several million particles are involved since the execution 
times are high and the available memory space is 
insufficient. Therefore, for large simulations is essential to 
gather the performance of multiple GPUs. 

This work presents different parallelisation approaches 
to accelerate the SPH codes. On the one hand, Open Multi-
Processing (OpenMP) and Compute Unified Device 
Architecture (CUDA) programming frameworks are 
implemented to take advantage of the different cores of one 

CPU and one GPU respectively. And on the other hand, a 
new parallel implementation using the Message Passing 
Interface (MPI) is used to combine different machines 
(CPUs and/or GPUs) making possible the execution of SPH 
on heterogeneous clusters.  

These parallel implementations are available at the 
open-source code DualSPHysics (www.dual.sphysics.org) 
that is based on the SPH code named SPHysics [1]. The 
single GPU code has been shown to achieve speedups of up 
to two orders of magnitude compared to the CPU code [2]. 
Thus, the new MPI implementation was designed starting 
from the already optimised DualSPHysics code for CPU and 
GPU [3]. 

The efficiency and performance of the new OpenMP-
MPI-CUDA implementation are presented and analysed in 
this work. This new heterogeneous version allows a more 
efficient use of different machines with both multi-core 
CPUs and/or different GPU cards. The simulation of 
hundreds of millions particles are now possible in small 
clusters of CPUs and GPUs.  

 

II. PARALLEL IMPLEMENTATIONS 
This section describes the different parallel 

implementations applied to the DualSPHysics code. All of 
them consist of dividing the execution time among the 
different processing units and adapting to the specific 
features of each hardware. 

The implementation of the SPH method consists of the 
iteration of three main steps: generation of a neighbour list, 
calculation of forces by computing particle interactions and 
updating all physical magnitudes of the particles of the 
system. The most expensive step is the force computation 
since it takes more than 90% of the total runtime using 
DualSPHysics on a single CPU . Therefore, all efforts will 
be mostly focused on accelerating the particle interaction 
stage.  

266

http://www.dual.sphysics.org/


A journey from single-GPU
to optimized multi-GPU SPH with CUDA

E. Rustico, G. Bilotta, G. Gallo
Dipartimento di Matematica e Informatica
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A. Hérault
Conservatoire des Arts et Métiers
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Abstract—We present an optimized multi-GPU version of
GPUSPH, a CUDA implementation of fluid-dynamics models
based on the Smoothed Particle Hydrodynamics (SPH) numer-
ical method. SPH is a well-known Lagrangian model for the
simulation of free-surface fluid flows; it exposes a high degree
of parallelism and has already been successfully ported to GPU.
We extend the GPU-based simulator to exploit multiple GPUs
simultaneously, to obtain a gain in speed and overcome the
memory limitations of using a single device. The computational
domain is spatially split with minimal overlap and shared volume
slices are updated at every iteration of the simulation. Data
transfers are asynchronous with computations, thus completely
covering the overhead introduced by slice exchange. A simple yet
effective load balancing policy preserves the performance in case
of unbalanced simulations due to asymmetric fluid topologies.
The obtained speedup factor closely follows the ideal one and it
is possible to run simulations with a higher number of particles
than would fit on a single device. efficiency of the parallelization.

I. INTRODUCTION

The numerical simulation of fluid flows is an important topic
of research with applications in a number of fields, ranging
from mechanical engineering to astrophysics, from special
effects to civil protection.

A variety of computational fluid-dynamics (CFD) mod-
els are available, some specialized for specific phenomena
(shocks, thermal evolution, fluid/solid interaction, etc) or for
fluids with specific rheological characteristics (gasses, water,
mud, oil, petrol, lava, etc). The Smoothed Particle Hydro-
dynamics (SPH) model, initial developed by Ginghold and
Monaghan [1] and Lucy [2], has seen a growing interest in
recent years, thanks to its flexibility and the possibility of
application to a wide variety of problems.

The flexibility of SPH comes at the cost of higher compu-
tational costs compared to other methods (e.g. mesh methods
like finite differences or finite volumes). However, since it
exposes a high degree of parallelism, its implementation

on parallel high-performance computing (HPC) platforms is
conceptually straightforward, significantly reducing execution
times for simulations.

Among the many possible parallel HPC solutions, an ap-
proach that has emerged lately is the use of GPUs (Graphic
Processing Units), hardware initially developed for fast ren-
dering of dynamic three-dimensional scenes, as numerical
processor for computationally-intensive, highly parallel tasks.

Although initial attempts to exploit the computational power
of GPUs go back to the introduction of the first programmable
shaders in 2001, the break-through for GPGPU (General-
purpose Programming on GPU) was the introduction in 2007
of CUDA, a hardware and software architecture released by
NVIDIA with explicit support for computing on GPUs [3].

While typically running a lower clock rates, a single GPU
features a large number of compute units (for more recent
cards, in the order of thousands of cores per GPU) and much
higher memory bandwidth than what is found on standard
desktop or server motherboards.

Although serial execution does not gain much from GPU
execution, its large multi-core structure makes it the ideal
computing platform for algorithms that exhibit a high level
of parallelism on a fine data granularity, such as SPH. For
such problems, a well-tuned GPU implementation can easily
achieve two orders of magnitude in speed-up of standard
single-core CPU implementations.

The cost-effectiveness and the ease of utilization of modern
GPUs have led to a widespread usage of GPU computing
even outside the commercial and academic world, leading to
what some to claim to be the GPU Computing Era [4]. It
should be mentioned, however, that some have criticized the
enthusiasm for GPGPU as being ‘excessive’, showing that a
well-tuned CPU implementation, optimized for execution on
recent multi-core processors, often reduces the flaunted 100⇥
speedup reported by many works [5].
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Abstract—We present the parallelisation of a Finite Volume
Particle Method code using MPI, employing overlapped com-
putation and communication. We pay particular attention to
the difficulties that may be encountered in developing and
implementing a parallelisation strategy, and discuss the chosen
solutions.

I. INTRODUCTION

The Finite Volume Particle Method (FVPM) is a mesh-
free method in which particles represent discrete overlapping
volumes of fluid. Interactions between particles are based
on flux functions weighted by the overlap between particle
supports [1]. FVPM allows simple and accurate treatment of
boundaries and has attractive conservation and consistency
properties.

A principal drawback of the FVPM method is its high com-
putational cost, even relative to SPH, another costly method.
The processing capabilities of a single CPU are not sufficient
for realistic simulations of large problems, hence the necessity
for parallelisation. We chose MPI for the parallelisation due
to its versatility in use on both shared memory and distributed
memory systems.

II. DOMAIN DECOMPOSITION

The aim of domain decomposition is to divide and balance
the computational cost between available processes as uni-
formly as possible, while minimising inter-partition commu-
nication costs and keeping the cost of the decomposition itself
low.

Assuming a uniform distribution of particles, computational
cost is roughly proportional to the area of each partition,
while communication costs are proportional to the length
of the boundaries between them. A better approximation
that does not assume uniform particle distribution relates the
computational load to the number of particles in a partition,
and communication costs to the number of particles within
interaction distance of partition borders. This model is still just
an approximation. Other factors remain, that are measurable
but hard to balance against, such as differences in the number
of neighbours per particle (significant especially when dealing
with non-uniform distributions), the presence and complexity
of geometric boundaries or differences in particle types.

In the current implementation, the square-celled search grid
is partitioned into a rectangular tiling, with as many tiles
as processes. For simplicity, we chose a Cartesian tiling,
although the implementation is in principle able to handle
any arrangement of rectangular partitions. This simple space
decomposition is sufficient for particle distributions that are
approximately uniform and constant.

The number of tiles in the x, y (and z) directions are
chosen such that the tiles’ aspect ratio is closest to 1, in
order to minimise boundary lengths. Because the number
of tiles is equal to the number of processes, the Cartesian
grid arrangement means that poor tile aspect ratios may be
obtained for certain numbers of processes, such as prime
numbers, or those with few and uneven factors. A more
versatile partitioning method can be implemented without any
fundamental change to the rest of the parallelisation.

The neighbour search algorithm used can handle grid cells
with calibrated pitches, unconstrained by maximum smoothing
lengths. The grid resolution can therefore be made fine enough
for accurate balancing of loads between processes even in the
presence of particles with large occasional smoothing lengths,
as might occur in variable smoothing length simulations.

III. DATA DEPENDENCIES

Particles that interact with those of another partition form
a border region around the inside of a partition’s boundary. It
is necessary to identify which particles belong to this region
for two reasons:

• to prepare them for sending to all the necessary neigh-
bouring partitions

• to avoid making any calculations on such particles until
information about particles from other partitions has fully
arrived (if overlapped communication and calculation is
desired)

The second point implies that calculations performed on
particles must happen in two stages: firstly on particles in
the inner region, away from boundaries, and secondly (after
communications have finalised) over particles in the border
region.

A few complications appear which are specific to FVPM.
The first is that in order to reconstruct function values at
particle-particle interfaces, FVPM uses gradients calculated
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Abstract—Traditionally model tests play an important role in
estimating hydrodynamic loads during so called green water
events (i.e. when ocean waves break onto a ship decks or deck
house). In order to predict the correct loads it is important that
the characteristics of the incoming wave are realistic [1], [2].
In this work we present an approach to modeling green water
events using SPH based on a complex velocity inlet boundary
condition. In naval hydrodynamics practical engineering tools
have been developed based on both experimental data and
nonlinear random wave modeling including 3D linear diffraction
theory which allows for estimation of the realistic waveforms for
green water events. We use one such tool, KINEMA2 [1], for
the purpose of prescribing the spatial and temporal variation of
the wave as it breaks along the deck perimeter. This approach
greatly reduces the number of degrees of freedom (SPH particles)
needed to solve the problem, thus rendering the analysis feasible
on a laptop computer. We compare SPH results for the resulting
water elevation and velocity on deck with CFD and experimental
time series from model test.

I. INTRODUCTION
Severe storms have gained more attention in recent years.

Improved metocean data have lead to new insight into severe
wave conditions for marine design. Green water on deck and
slamming on bow flares may be critical to FPSO integrity (
[4]). This has also been confirmed from observation through
model test studies ( [5], [6])

A complete technical description of this strongly nonlinear
processes is quite complex and it is hard to model properly by
”classical” (panel methods based on potential theory) analysis
methods. Therefore, there exists an industrial demand for fast
and accurate numerical tools to estimate the hydrodynamic
loads during e.g. green water events. In the last decade, several
efforts have been made to overcome this problem ( [3], [7] and
[1]). These methods (WaveLand [3], KINEMA2 [1]) group the
green water events into three different phases (Fig. 1):

1) Relative wave elevation and kinematics at bulwark loca-
tions

2) Green water shipping and propagation on deck
3) Slamming loads on vertical structure on deck

The first problem is solved by combining nonlinear wave kine-
matics and local steepness in the time domain with the actual
linear ship motion and linear ship-induced wave diffraction in

all above mentioned methods. In [7] the water propagation
across the deck is modeled by a shallow-water approach
based on- and extended from [8] using a Finite Differential
scheme. This method gives very accurate description of the
wave propagation but depends highly on the quality of the
Finite Differential mesh used which makes this method not
robust and simple enough for an engineering-type method. To
overcome this lack of robustness [1] implement a new and
even simpler analytical prediction, which are established based
upon classical hydraulic theory ( [9]). The approach is adjusted
to take into account special effects such as dynamical wave
input conditions and incident water velocities. This method is
accurate and robust enough as a simplified tool for engineering
design analysis purposes. It has its shortcomings to handle
with complex geometry on the deck.

Methods with fully nonlinear descriptions of the hydrody-
namics, such as BEM ( [10]) and Reynolds-Averaged Navier-
Stokes Equations (RANSE) - Volume Of Fluid (VOF) methods
( [7]) are able to handle complex geometry but there are not
fast and robust enough.

The model tests indicated that the incident free-surface par-
ticle velocity in critical waves may have the same magnitude as
the velocity that may be released after 20m from a pure dam-
breaking effect around the bulwark. This observation opens
for the following simplified numerical models for simulations
of the flow field on the deck:

- a 3D dam-break model, initially surrounding the forecas-
tle deck of a ship

- a relative wave, with dynamic height and velocity sur-
rounding the forecastle deck of a ship as boundary
conditions

However, it was shown [3] that the incident water velocity is
seen to be an important parameter in addition to the incident
amplitude and therefore the 3D dam-break may be a too coarse
assumption. This kind of simulation can be accomplished by
the Smoothed-particle hydrodynamics (SPH) method in a very
effective, robust and accurate way [11].

In this paper a development version of SCORE is used.
SCORE is a SPH-simulator developed by Score Development
Team in SINTEF.
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Abstract—Our purpose is to provide SPH with a technique 
allowing absorbing inlet/outlet boundary conditions (BC), i.e. 
avoiding numerical wave reflection at open boundaries. We 
base our model on the inviscid 2–D Navier–Stokes equations, 
written in conservative form as propagation equations for 
appropriate Riemann invariants. We then use the latter to 
correct the boundary conditions in such a way that the proper 
velocity and density are prescribed. We use the SPH 
renormalized discrete interpolation to approximate the 
invariants coming from the interior of the fluid domain, while 
the invariants coming from the outside are simply prescribed 
by the user. This process is similar as in Lastiwka et al. [3], 
but extended to 2D conditions applied to laminar or turbulent 
flow (here with a k–εεεε turbulent closure and consistent wall BC 
as presented by Ferrand et al., 2010). We propose two 
validations: a laminar steady flow in a closed pipe and a 
turbulent steady flow in an open channel. 

I. INTRODUCTION 
The question of inflow/outflow boundary conditions is 

SPH is crucial when one wants to simulate a local flow with 
open boundaries. Most authors use a crude technique where 
the velocity of particles is simply prescribed according to 
the desired distribution, the water depth being regulated 
through the pressure profile (see e.g. [1] and [2] for open-
channel flows). However, this technique is known to yield 
spurious waves which can alter the computed fields or even 
result in a blowing up. Recently, a more sophisticated 
approach was proposed by Lastiwka et al. (see [3] and [4]) 
based on Riemann invariants for 1-D flows, avoiding 
artificial waves. The fields prescribed near the open 
boundaries are then a combination of velocity and density 
(the so-called Riemann invariants) in agreement with the 
physical information travelling across the boundaries. This 
‘absorbing boundary conditions’ technique was successfully 
applied in [3] to laminar flows around rigid bodies. Here we 
extend this method to 2D turbulent flows combined with 
recent improvements in solid boundary conditions [6] and 
apply it to a closed pipe and a free-surface channel.  

II. THEORY 

A.  Governing equations 
We consider a turbulent weakly compressible free-

surface flow. The velocity vector, density, pressure, 
turbulent kinetic energy and energy dissipation rate are 
denoted by u, ρ, p, k and ε, respectively. Velocities and 
pressure are Reynolds-averaged, and the effects of turbulent 
fluctuations are modelled through the concept of eddy 
viscosity µT, estimated from the k–ε model [5]. 

The Lagrangian form of the Reynolds-averaged Navier–
Stokes (RANS) and k–ε equations read 
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where g is the gravitational acceleration. In these equations, 
the modified pressure p~  and production of turbulent energy 
P are given by 
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c0 being the speed of sound at the reference density ρ0, ξ = 
7, and S the (mean) rate-of-strain tensor. Lastly, the 
dynamic viscosities are given by 
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Abstract—The implementation of boundary conditions is one
of the points where Smoothed Particle Hydrodynamics SPH
methodology still has room to improve. In the SPH framework,
different methodologies have been used to impose these boundary
conditions. Namely, by using boundary forces-type models [1],
[2]; by modifying the kernel structure in the boundaries neighbor-
hood [3]; by creating virtual particles inside the solid boundary
domain through mirroring techniques [4] and by adding normal-
ized boundary integrals [5]. The latter being the main focus of the
present work. In this paper a consistent implementation of clas-
sical boundary conditions in the presence of typical discretized
and smoothed differential operators is analyzed. The calculation
of gradients, divergences and Laplacians are important steps that
must be consistently performed in explicit SPH formulations such
as weakly compressible SPH (WCSPH). When the divergence
free condition is enforced in the incompressible version of the
SPH equations (ISPH), the solution of the Poisson equation
plays a crucial role in pressure field calculations. This analysis
studies the convergence of typical problems where differential
operators are involved and the discretization SPH parameters
tend to the continuum. In this paper we show: first, the lack of
consistency of the SPH solutions if boundary conditions are not
appropriately implemented, and consequently, the inconsistency
of the calculated pressure field in the ISPH formulation. Second,
it is also shown that the inclusion of the boundary integrals is
an effective way of satisfying boundary conditions and obtaining
a consistent formulation of the SPH methodology without using
ghost or extra particles. As a continuation of the work presented
in [6], rows of fixed dummy particles were used to impose
the no slip boundary condition and severe inconsistencies near
the boundaries were found when a second-order differential
operator was applied. Nonetheless, when the boundary integral
methodology is applied, the expected analytical result is recovered
when both h and dx/h simultaneously tend to zero.

I. INTRODUCTION

The SPH scheme is a Lagrangian model based on a smooth-
ing of the spatial differential operators of the fluid-dynamics
equations and on their subsequent discretization through a
finite number of fluid particles. The smoothing procedure is
performed at the continuum level using a compact support
kernel function whose characteristic length is the smoothing
length h. The resolution of the discrete SPH scheme is a
function of the smoothing length h and the mean particle
distance dx. In this framework, the (continuous) equations of
fluid-dynamics should be recovered as both h and dx/h simul-

taneously tend to zero [7]. The SPH simulations in engineering
usually involve solid boundary conditions (BC) for both the
velocity and pressure fields. In the SPH framework, these
conditions have been implemented in the past in a different
number of ways: by using boundary forces-type models [1];
by modifying the structure of the kernel in the neighborhood
of the boundaries [3]; by creating virtual particles inside
the solid boundary domain through mirroring techniques; by
renormalizing the boundary terms that explicitly appear in
the integral SPH formulation [5], [17]. This latter approach
is the main focus of the present work. In an incompressible
fluid, density is not altered by pressure changes and the
only local condition to obtain mass conservation is to have
a divergence free velocity field. When incompressible fluids
are simulated, different formulations depending on how the
density and the incompressibility constrain are treated, can
be found in SPH literature. On one hand, the WCSPH uses
an explicit formulation where the pressure gradient together
with the divergence and Laplacian of the velocity field are
calculated applying discrete and smoothed versions of these
operators to a discretized field. Physically, the pressure plays
a thermodynamic derived role through the state equation. An
interesting discussion about the influence of the truncation of
differential operators close to the boundaries can be found in
[8].

On the other hand, in the ISPH [9] and the MPS [10]
approximations, the zero divergence condition is enforced
solving a Poisson equation for the pressure field in every time
increment. Here, the pressure acts as a Lagrange multiplier to
satisfy the incompressible hypothesis. In this incompressible
formulation, pressure moves as a wave that propagates with
an infinite sound speed. Although no real fluid is completely
incompressible, it is generally accepted that the incompressible
assumption is a good approximation when the Mach number
M = v/c < 0.3 where v is the characteristic fluid speed
and c is the speed of sound. Many techniques presented in
literature [11]–[14] solving the incompressible Navier-Stokes
system of mass and momentum conservation are based on
projection methods. This technique is often referenced in
literature as ’fractional step’, ’semi-implicit’ or ’pressure-
Poisson equation’ method. The projection method decouples
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Abstract—When simulating an incompressible fluid, traditional
weakly compressible SPH techniques have disadvantages includ-
ing noisy pressure predictions and high computational costs. As
an alternative, incompressible SPH simulations can be achieved
by employing a projection method to enforce a divergence
free velocity field. Such techniques are receiving considerable
interest in the literature due to the potential for noise free
pressure predictions, with acceptable computational costs. The
method does however suffer from stability issues when particles
bunch together or are stretched apart from one another, which
is generally the case if particles are restricted to following
streamlines, as is dictated by the Navier-Stokes equations. To
overcome this issue, particles can be shifted away from one
another, across streamlines, according to some algorithm whose
job it is to determine a suitable displacement vector. The primitive
variables are then corrected to account for their change in
position via interpolation.

Here, we follow on from earlier work in the authors’ group and
employ Ficks’s law to shift the particles. We present validation
cases involving cylinder and wedge slamming into initially calm
water. We also consider cylinder exit from initially calm water.
These cases are particularly relevant to the design of ships and
wave energy extraction devices. The results we present show
effectively noise free pressures and very high accuracy. To our
knowledge, this is the first time such accuracy has been achieved
via SPH techniques for such complex cases.

I. INTRODUCTION

SPH is a particularly attractive tool in simulating flows in-
volving free-surface deformation due to the Lagrangian nature
of the discretisation. Free surface tracking is not required and
hence arbitrarily complex free-surface deformations can be
handled with relative ease. For this reason, SPH has received
considerable attention in simulating complex hydrodynamic
problems. In virtually all such cases, the working fluid (i.e.
water) can be considered as incompressible without loss of
rigour.

Traditional methods of simulating incompressible fluid flow
via SPH have tended to use weakly compressible SPH formu-
lations (WCSPH). In the weakly compressible approach, the
pressure is treated as a thermodynamic variable and is set via
an artificial equation of state. The sound speed is set to be

sufficiently high so as to limit density variations to within a
small fraction of the actual fluid density (i.e. by reducing the
Mach number). In practice, this high sound speed places a
severe limitation on the maximum permissible time-step size
via the CFL constraint. In addition, for a WCSPH simulation,
sound waves tend to reflect from solid surfaces, and hence it
is generally necessary to place tank walls far away from areas
of interest so as to not introduce spurious interference (this is
particularly true given the high sound speed). The combination
of a large domain size and small time step can impose a severe
penalty in terms of computational costs. The predicted pressure
field in a WCSPH simulation also tends to be noisy since
a small perturbation in the local density will yield a large
variation in the local pressure.

To overcome these limitations of a WCSPH formulation,
a truly incompressible approach can be adopted. Chorin [1]
describes a projection method for the numerical solution
of the incompressible Navier-Stokes equations. The method
decouples the momentum and continuity equations and is used
to enforce a divergence free velocity field, thereby satisfying
the continuity condition for an incompressible fluid. Cum-
mings and Rudman [2] apply the Chorin projection method to
SPH. The method initially solves the discritised Navier-Stokes
momentum equations with a null pressure gradient in order to
generate an intermediate velocity field. A Poisson equation
for the pressure is then derived such that the divergence of the
intermediate velocity field is balanced by the divergence of the
pressure gradient term. The final velocity field at the end of the
time step is therefore divergence free. Cummings and Rudman
demonstrate their method for internal test-cases involving
vortex spin-down and Rayleigh-Taylor instability. It is found
that satisfactory agreement with finite difference simulations
can be attained. They do however note error accumulation
in the density field, becoming manifest via particle clumping
and/or stretching. This anisotropic particle distribution tends to
lead to instability in the algorithm, often prohibiting a solution
from being obtained at all [3].

Shao and Lo [4] propose an alternative formulation in
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Abstract—In this paper a concept is introduced for the
stabilization of the interface between two fluids. It is shown
that the change in pressure gradient across the interface
between two fluids leads to a force imbalance, which is
attributed to the SPH particle approximation. To stabilize the
interface a pressure gradient correction is proposed. For this
purpose the pressure gradient is related to (gravitational and
fluid) accelerations. This leads to a quasi-buoyancy correction
for stagnant flows, which is extended to accelerating flows.
The approach results in a simple density correction, where no
parameters or coefficients are involved, which is included as
extra term in the SPH momentum equation.

The concept for the stabilization of the interface is explored in
three case studies. The first case is the stagnant flow in a tank.
Simulation shows that the interface remains stable up to
density ratios of 1000 (typically for water and air). The second
case is the Rayleigh Taylor instability, where a reasonable
agreement with a level-set model is achieved. The third case is
an air flow across a water surface up to density ratios of 100,
artificial wave speeds of water higher than that of air, and
high air velocities.

It is demonstrated that the quasi-buoyancy correction may be
used to stabilize the interface up to high density ratios and
more realistic wave speed ratios.

I. INTRODUCTION
Many fluid flows involve more than one fluid. In the

case of liquid-gas flows the density ratio may be very high.
For water-air flow under atmospheric conditions the density
ratio is about 800.

Several multi-fluid models are available in the literature
for incompressible fluids (e.g. Cummins and Rudman, 1999;
Hu and Adams, 2007 and 2008; Xu et al., 2008) as well as
for weakly compressible fluids. This paper focuses on
weakly compressible SPH only. The most important multi-
fluid models in literature and their main features are
described below.

Ritchie and Thomas (2001) suggest a summation of the
particle averaged pressure (not density), to deal with large
density gradients. However, the method is based on specific
energy and does not satisfy mass conservation.

Colagrossi and Landrini (2003) used a density
renormalization at intermediate time steps, a large artificial
surface tension and high wave speed for the low dense fluid,
and a smoothing of the velocity field. Apart from these
unphysical aspects, very small time steps are required.

Flebbe er al. (1994) introduced the “particle number
density” in astrophysics. Ott and Schnetter (2003) and Hu
and Adams (2006) applied it to estimate the density for
multi-fluids. Colagrossi et al (2008) applied it to develop an
equation of motion for multi-fluids. The main restriction of
this method is that the particle volume (V) and the change of
volume ('V/V) due to compression must remain the same
for different fluids. The latter means that the choice of the
wave speed ratio is rather limited, usually resulting in a
higher wave speed for the low dense fluid. For water and
air, with a density ratio of 1000, a wave speed ratio of 1/14
would be required. Another restriction is that the method,
usually based on the standard SPH summation density,
cannot be applied to free surface flows.

Grenier et al. (2009) use a density renormalization with
a variant of the Sheppard correction, in which the particle
volume is obtained from the continuity equation. In addition
they use a repulsive force between particles of different
fluids, similar to that suggested by Monaghan (2000), to
stabilize the interface.

Monaghan (2011) uses the continuity equation in a form
suited to multi-fluid flows. He also uses a repulsive force to
stabilize the interface between two fluids, similar to that
used by Grenier et al. (2009). The concept is applied to high
density ratios up to 1000. However, the wave speed of the
low dense fluid (read: gas) is still a factor 5 to 7 higher than
that of the high dense fluid (read: liquid).

The application of the above multi-fluid models for
weakly compressible SPH is limited by density ratios and/or
wave speed ratios. None of these models deal with the
particle instability, due to the change of the pressure
gradient across the interface, except Grenier et al. (2009)
and Monaghan (2011). In this paper we aim for water-air
applications with density ratios up to about 1000, and more
physically realistic wave speed ratios. For this purpose a
novel model based on a pressure gradient correction is
introduced.
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Abstract—The projection-based incompressible smoothed par-
ticle hydrodynamics (ISPH) method has been shown to be
accurate and stable for a range of internal and free-surface
flows [1], [2]. Although single-phase ISPH provides valuable
predictions, many of the flows of greatest interest to engineers,
such as wave breaking and wave impact problems, are inherently
multiphase. It is well known that the air phase can play a
significant role in such problems, either through its entrainment
in the water or through its role as an air cushion that dissipates
wave impact pressures [3]. While water can be accurately
modelled as incompressible, the air phase must be modelled as
compressible for a complete description of the physics. With this
in mind, a novel multiphase SPH method has been developed
to model two-phase fluid systems where one phase is strictly
incompressible, and the other phase is compressible. The ISPH
and standard compressible SPH formulations are employed, and
are fully coupled in a physically and mathematically consistent
manner. The method permits physically realistic density ratios
(1000:1) and, unlike many multiphase SPH methods, uses values
of the speed of sound appropriate to each phase. The method is
validated against known analytical solutions for multiphase flows,
such as standing gravity waves, before being applied to some
popular test cases and the problems of interest. To the authors’
knowledge, this is the first multiphase SPH method that couples
both the incompressible and compressible formulations. It is an
important step in the development of a modelling tool capable
of completely describing wave breaking, impact and slamming
phenomena.

I. INTRODUCTION

Many of the flows of greatest interest to civil and coastal
engineering, such as wave breaking and impact problems,
are inherently multiphase. In the vast majority of cases,
the density and viscosity of air is such that its influence
on the water phase is assumed negligible in comparison,
and the problem is treated wholly as a free-surface flow.
In many cases this assumption is justified and can provide
very accurate descriptions of flows which, in actuality, are
multiphase [4]. However, there are also a substantial number
of situations where one cannot neglect the air phase [3], [5].
For wave breaking, wave impact and slamming problems,
the air phase can play a significant role in the dynamics -
either through its entrainment as small air bubbles (millimetre
length scale), or through the entrapment of large air pockets

(wave-height length scale). Undeniably, to obtain a complete
description of such problems, the air phase needs to be
retained and modelled. To a high degree of accuracy, as
the fluid velocities of the problems in question tend not
to exceed the speed of sound in water, the water phase is
incompressible. In the air phase however, where the speed of
sound is an order of magnitude less than in water, the Mach
number for these flows is not negligible and compressible
effects can be important. It is then necessary that, while the
water phase can be treated as incompressible, the air phase
be modelled as compressible.

In this paper a novel multiphase SPH method (referred
to herein as ICSPH) is presented which can be used to
model such incompressible-compressible multiphase flows.
There are, of course, a multitude of applications for such a
method (such as cavitation erosion and spraying/atomization
modelling in medicine and industry), but, in this paper, the
focus will be on the coastal engineering processes of interest
to the authors. In the water phase, the incompressible Navier-
Stokes equations are solved using the incompressible ISPH
method of Lind et al. [2]. This method follows on from the
work of Xu et al. [1], in which a shifting algorithm was
employed which maintained regular particle distributions at
each time step, preventing instability. The method of Lind et
al. [2] is almost identical but for the employment of a more
general shifting approach based on Fick’s law of diffusion.
Results have shown that incompressible SPH, with shifting,
produces very accurate, almost noise-free, predictions for both
pressures and velocities for a range of internal and free-
surface flows. This method is strictly incompressible in the
sense that a divergence-free velocity field is maintained at
each time step through a projection method. Therefore it
cannot be employed in the air phase where compressible
effects may be important. In the air phase, the conventional
weakly compressible SPH method is employed, which solves
the compressible governing equations, given some functional
(thermodynamic) relationship between density and pressure.
These are two quite distinct numerical approaches which also
have to be (fully) coupled in a way that is mathematically
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Abstract—The SPH module of PAM-CRASH has been 
extended by a model for a mixture of liquid and gas/vapour. 
For this two-phase model it is assumed that both components 
may co-exist in individual particles and that they are advected 
according to a single velocity field. It is furthermore assumed 
that the liquid in the mixture is incompressible and that the 
gas/vapour is an ideal gas at adiabatic conditions. Numerical 
results for wedge impact on aerated water will be discussed. 
Evaporation and condensation phenomena according to a 
cavitation model [1] have also been implemented. For some 
simple test cases the well-known phenomenon of very high 
pressure spikes due to the collapse of cavitation bubbles has 
been observed. Preliminary results for ditching of the NACA-
2929J fuselage model, including cavitation, will be discussed. 

I. INTRODUTION 
Flow of a mixture of two or more types of fluids is of great 

relevance to many industrial applications and natural 
phenomena. Many of the commercially available CFD codes 
are able to simulate flow of multiple species (miscible or 
immiscible) or multiple phases, but may experience problems 
in the case of fluid interfaces having  large deformations such 
as may occur for violent free surface motion or fluid-structure 
interaction. The Smoothed Particle Hydrodynamics (SPH) 
method is well-suited to include such interfaces, but most 
formulations only allow for a single-phase solution. In this 
paper, we consider the extension of SPH to handle multi-phase 
flow. With an appropriate choice for the SPH solution of the 
conservation equations for mass and momentum, SPH is can 
solve flow of immiscible species, i.e. as in PAM-CRASH/SPH 
[2]. For miscible fluids or multi-phase mixtures it is usually 
more appropriate to consider a mixture to be present in the 
discretized volumes (i.e. in individual particles). Obvious 
examples for such a description are wave propagation in 
aerated water and ditching of aircraft. In both cases, it is not 
feasible to perform simulations using particles with a size of the 
(microscopic) bubbles of vapour (or air) in the water. For this 
reason, a two-phase flow model has been implemented in the 
SPH solver of PAM-CRASH. When the pressure drops below 
the vapour pressure, cavitation will be initiated and the density 
of the mixture will reduce. In case cavitation bubbles collapse, 
high pressure spikes are generated. The importance of these 
counteracting effects on ditching has been recognized, but 
experiments are difficult to perform and until recently 
numerical simulation was not possible. Numerical simulations 
and sub-scale testing of ditching has been conducted [3], but 
thus far without using two-phase models. Below a description 

of the two-phase model including cavitation for SPH will be 
presented. Some validation tests and a preliminary ditching 
application will be discussed. 

II. NUMERICAL MODEL 

A.  Basic Mixture Model 
For numerical simulation of the flow of a mixture 

several aspects need to be accounted for. Firstly, the mass of 
each species has to be conserved (and, as a consequence, the 
total mass). Secondly, it has to be decided whether the 
mixture should be transported according to individual 
velocity fields or by a single one. Since for SPH it is 
assumed that particles will be displaced according to a 
unique velocity field it is logical to assume that for a 
mixture (defined by volume fraction within each particle) 
the species move with the same velocity (no-slip condition). 
The alternative of using separate velocities for each species 
may be covered by the exiting option with SPH for different 
material to be treated by disjunct particles within a single 
simulation. Finally, the conditions at which the various 
species co-exist must be defined.  

In the following we will consider only two species (gas 
and liquid), without diffusion or chemical reactions, with a 
single velocity field. We will assume either one phase 
(liquid) to be incompressible or pressure-equilibrium 
between the two materials in a single volume. It will be 
assumed that the gas is adiabatic (or isentropic), there is no 
need to consider internal energies to obtain a solution. 

According to the no-slip model and neglecting diffusion, 
conservation of gas and liquid is defined by: 
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With the following definitions for a two-phase mixture, 
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Abstract—A novel scheme is presented for evaluation of 
density at a phase interface in particle-based simulations of 
multiphase flows characterized by high density ratios. The 
scheme is founded on a Taylor series-based approach and has 
been shown to be efficient in providing mathematically 
consistent and physically sound results. The effectiveness of 
the newly proposed scheme is verified through the simulation 
of a bubble rise in water, oscillating concentric elliptical 
regions and a violent sloshing flow.  

I. INTRODUTION 

Multiphase flows are ubiquitous in a wide range of 

engineering and industrial processes at different length 

scales and flow regimes. Some typical applications of 

multiphase flows include air-water flows such as violent 

aerated wave impacts and sloshing flows, gas-liquid flows 

in pipelines, sediment transport, thermal-hydraulic design 

of nuclear reactors, etc. Multiphase flows are also well-

known to manifest themselves as unsteady processes 

characterized by inherently complicated physics. Hence, 

numerical simulation of multiphase flows has been one of 

the most challenging issues in Computational Fluid 

Dynamics. The challenges in multiphase flow simulations 

include: large/abrupt density/viscosity drop across the 

phase interface, presence of moving and highly deforming 

boundaries, topological transitions such as merging of 

interfaces, etc. 

In the context of particle methods, there have been 

several attempts to propose stable/accurate multiphase 

methods. However, in most cases, researchers have used 

numerical stabilizers (such as artificial viscosity or 

unphysical surface tension terms, e.g. [1]) and/or 

reformulated the original schemes by considering the 

particle volume rather than its mass (e.g. [2, 3]). This 

consideration results in smoothening of density field at the 

phase interface and despite being helpful in dealing with 

the mathematical discontinuity of density, it will result in 

an unphysical density diffusion. Recently Monaghan and 

Rafiee [4] proposed a robust SPH algorithm based on the 

Lagrangian equations and successfully simulated several 

multiphase flows with high density ratios without 

consideration of particle volume instead of mass or use of 

an unphysical surface tension term. Nevertheless, their 

simulations were performed by using a repulsive pressure 

force between particles of different fluids as well as an 

artificial viscosity term. 

This paper aims at introducing a consistent particle 

method for simulation of multiphase flows characterized by 

high density ratios. The developed method is an enhanced 

version of the Moving Particle Semi-implicit (MPS [5]) 

method benefiting from four previously developed schemes 

[6,7,8] as well as a new one, proposed for accurate 

modeling of density at the phase interface. A Taylor series-

based approach is considered for an accurate, consistent 

modeling of density at the phase interface. The 

performance of the developed method is verified through 

the simulation of a bubble rise in water [3], oscillating 

concentric elliptical regions [4] and a violent sloshing flow 

[9].  

II. ACCURATE MODELING OF DENSITY AT THE PHASE 

INTERFACE 

One of the challenging issues in simulation of 

multiphase flows, particularly those characterized by high 

density ratios, corresponds to the mathematical discontinuity 

of density at the phase interface. The simplest approach to 

deal with this discontinuity is to evaluate the calculated 

density at a target particle i based on a simple spatial 

averaging by considering the distribution of the mass of 

neighbouring particles.  

¦
z

 
ji

ijji WmU                        (1) 

As mentioned by several researchers, e.g. [3], application of 

Eq. (1) will simply result in a numerical diffusion and 

accordingly an unphysical smoothening of density. As a 

result, the sharp variation of density at the interface cannot 

be represented correctly. Therefore, the key issue in 

simulation of a multiphase flow is to model the density at 

the phase interface in a mathematically consistent, 

physically sound and computationally efficient manner. 

Here, a Taylor series-based approach is applied for an 

accurate, consistent modeling of density at the phase 

interfaces.  

Mathematically, a relation between the calculated 

densities at neighbouring particles j and target particle i can 
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Abstract—In this paper a novel variable resolution method
using particle splitting and coalescing for the SPH numerical
schemes of the Navier-Stokes equations is presented. The key idea
of the scheme is to dynamically modify the particle sizes by means
of splitting and coalescing individual particles. The SPH scheme
adopted is variationally derived and this guaratees that both mass
and momentum are conserved including particles with different
smoothing lengths. To prevent highly anisotropic distributions of
the particles, a generalized shifting procedure which can address
also domains discretized with variable mass particles is included.
The algorithm has been tested against Poiseuille flow showing that
the error introduced by the splitting and coalescing is negligible.
The capability of the numerical scheme for increasing efficiency
is also shown: the SPHERIC test case of the moving square
in a box has shown that the particle refinement procedure is
able to increase the efficiency while maintaining the same level
of accuracy, as a uniform distribution with the most refined
resolution.

I. INTRODUCTION

In classical Eulerian computational models, adaptive struc-
tured [18] or unstructured grids [9] have been successfully
used to obtain variable resolution and to simulate multiscale
flows while retaining computational efficiency. In meshfree
numerical schemes there have been some early attempts to
introduce variable resolution by either remeshing, and particle
insertion/removal techniques [7], [19], [20], [22]. Recently
dynamic particle refinement which conserves mass and mo-
mentum has been applied to Shallow Water Equations [23],
[24], [26]. This has been obtained by particle splitting and
coalescing procedures which can respectively increase and de-
crease the spatial resolution and this has made the simulations
of real flooding test cases possible [23]–[25].
The same dynamic particle refinement algorithm is applied
in this work to Navier-Stokes equations. Since this procedure
generates particles with different sizes, a consistent SPH
discretization scheme which can accurately discretize the
Navier-Stokes equations in presence of variable smoothing
length is needed. Bonet and Rodrı́guez-Paz [1] proposed
a momentum-conservative weakly compressible formulation
which takes into account variable smoothing length. However,

this is neither accurate in the presence of a free surface
nor computationally efficient due to multiple sub-iterations
required.
A novel, variationally consistent and efficient SPH formulation
is herein derived to address both of these issues. This scheme
assures momentum conservation also in presence of particles
with different smoothing length, and moreover it addresses the
efficiency and accuracy problem highlighted in [1].
Some additional improvement to the formulation is also
introduced to increase the accuracy of the scheme. In the
framework of projection-based incompressible SPH schemes
Xu et al. [27] proposed a particle shifting algoritm which is
able to prevent instabilities due to highly disordered particle
distributions. In this work the algoritm is generalized for
particles with different masses.

This paper is organized as follows: in Section II the
derivation of the particle splitting and coalescing algorithm
is presented. In Section III the variationally consistent SPH
discretizations of Navier-Stokes equations is briefly reported
and the particle shifting algoritm is also described, whereas
the complete derivation of the formulation is presented in
Appendix A. In Section IV the numerical scheme for Navier-
Stokes equations is tested against analytical and reference
solutions.

II. METHODOLOGY

A. Particle splitting
To increase the resolution in certain areas of the domain

one particle is split into M daughter particles. The mass m

k

,
position x

k

, velocity vector v
k

, and the smoothing length h

k

for any of the k = 1...M refined particles has to be defined,
therefore the total number of degrees of freedom is 6 for each
k-th daughter particle. To reduce the degrees of freedom of
the problem, the number of new particles M and their relative
positions are given by using a fixed refinement pattern which
defines the relative position of daughter particles and their
masses. The hexagonal refinement pattern plotted in Figure 1
is adopted in this work since it is a good balance between
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Abstract—Particle methods offer an interesting approach for
simulation of flow around moving bodies in confined ducts, where
conventional methods would suffer extreme mesh distortion.
However, it is difficult to maintain a reliable distribution of
particles while internal flow passages rapidly change in cross-
sectional area, or open and close completely, as in mechanical
heart valve. We present some developments of FVPM to address
this problem. A simple fluid-rigid-body interaction algorithm is
described and validated for flow over an elastically mounted
cylinder with transverse vortex-induced vibration. A hybrid
Lagrangian-ALE particle motion scheme is proposed, with ALE
particles distributed over the moving body and moving with it,
and Lagrangian particles flowing through most of the domain.
This has the advantage of ensuring particle cover near the body
at all times, and also gives an opportunity for refined particle
distribution around the body. Some body-following particles
may pass completely or partially through the domain boundary.
Some special treatment is required for particles that have very
small volume remaining inside the domain to prevent numerical
error from dominating. The hybrid particle motion approach is
demonstrated for flow around a body with prescribed motion
impinging on a wall, and for an idealised two-dimensional
mechanical heart valve.

I. INTRODUCTION

In this paper, we report progress towards the modelling
of flow in devices such as mechanical heart valves, which
involve rigid bodies moving near or impacting on duct walls.
These siutations are prone to the development of unfavourable
particle distribution. To gain a measure of control of particle
distributon in critical regions, a combination of Largangian and
arbitrary Lagrangian-Eulerian (ALE) techniques is proposed.

A mechanical heart valve (MHV) consists of one or more
occluders which prevent unwanted blood flow by responding
passively to pressure gradient. The capability to model flow
through these devices can guide design to enhance bulk hydro-
dynamic characteristics (the pressure drop-flow rate relation-
ship) and device longevity, while minimising blood damage
caused by abnormal magnitude and duration of mechanical
loading on blood cells. Modelling by conventional mesh-
based approaches is difficult, however, because of the large
geometric and topological changes due to motion of the oc-
cluder. Particle methods avoid the need for mesh deformation
and/or remeshing. An additional benefit of particle methods for
haemodynamic applications is the possibility to track histories
of particles representing individual blood cells.

In the present work we describe progress towards modelling
a MHV using the finite volume particle method (FVPM). In
particular, this paper is concerned with the interaction between
the fluid and the rigid body or bodies that make up the valve
occluder. We begin by briefly reviewing the finite volume
particle method. We then describe the implementation of
couple rigid-body dynamics in FVPM and present validation
for vortex-induced vibration of a cylinder. In section IV, the
concept of body-following particles is introduced and demon-
strated for a simple problem with prescribed body motion.
Finally, this approach is applied to modelling of an idealised
mechanical heart valve in section V.

II. THE FINITE VOLUME PARTICLE METHOD

The finite volume particle method (FVPM) created by Hietel
et al. [1] may be understood as a generalisation of the mesh-
based finite volume method, in which the finite volumes are
allowed to overlap. The finite volumes are advected with an
arbitrary Lagrangian-Eulerian velocity field and referred to as
particles. An infintesimal volume element is considered to be
distributed among the particles that cover it according to the
relative magnitude of the kernel-like weight functions Wi(x)
of the particles i. Following this logic, particle volume can be
defined as

Vi =

∫

Ω

Wi(x)∑
j Wj(x)

dx , (1)

where i and j are particle indices, x is position and Ω is the
spatial domain. The weight functions Wi(x) and Wj(x) are
compactly supported. Therefore, the only non-zero terms in the
sum come from particles j which overlap with the support of i.
This FVPM definition of neighbourhood differs from the SPH
version. Domain boundaries truncate the support of particles,
and must be accounted for in the calculation of volume.

The partition of unity in volume leads to the derivation of a
particle interaction vector which is precisely analogous to the
interface area between finite volume mesh cells. It is defined
as βij = γij − γji, where

γij =

∫

Ω

Wi(x)∇Wj(x)

(
∑

k Wk(x))
2 dx . (2)

The details of FVPM are derived by replacing cell interface
area in the finite volume method with βij . The resulting semi-
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Abstract—This paper is a progress report on the development
of a three-dimensional version of third-generation RSPH. It
focuses on challenges met when transforming the method from
handling two to three dimensions. We will describe how template
particle distributions utilized by the method is generated, and
what the intrinsic discretization errors in using these template
particles are. We show how the discretization errors increase
in three dimensions compared to two dimensions. We discuss
to some detail possible approaches to correcting these errors.
Stability properties are also considered. In the simple case of a
plane Sod shock, we show that corrections can give improved
accuracy and prevent instabilities from occurring. The final
section of this paper is devoted to describing briefly the current
status of free surface handling in three-dimensional RSPH.

I. INTRODUCTION

At SPHERIC 2010, a modified version of the Regularized
SPH (RSPH) method was presented [1]. RSPH was originally
developed as an extension to SPH [5], [6] with the aim of
providing flexible methods for variable resolution in SPH. In
contrast to standard SPH, RSPH is not restricted to resolution
being a function of the initial particle distribution and the
subsequent, time-dependent flow pattern, and RSPH is there-
fore able to maintain high resolution in regions of interest,
for example near shock wave structures, and low resolution
elsewhere [4]. However, the integration of these methods into
existing SPH codes has previously not been straightforward.
This comes from the fact that SPH summations give poor
accuracy when the particle size and/or particle mass is varied
substantially within the interaction range.
The third-generation RSPH method gives the same flexibil-

ity with regards to variable resolution as its predecessors but in
addition, it also has a better integration with conventional SPH
and can therefore be more easily integrated in existing SPH
codes. In previous versions of RSPH, the smoothing length (h)
profile was piecewise constant with steps in h representing a
factor of 2 change in the h-value. This approach was well
suited for constructing global h-profiles and corresponding
particle distributions, but it made it impossible to achieve
acceptable accuracy using SPH summations only. Although
third-generation RSPH, as a first approximation, constructs
global h-profiles in the same manner as previous RSPH
versions, the final global h-profile is piecewise linear rather
than piecewise constant. The generation of the corresponding
particle distribution is made by using a set of template particle
distributions, small building blocks of sub-distributions that
can be put together (and reused) in a consistent manner.

The method presented in 2010 was restricted to two di-
mensions [1]. Although all principles of the method presented
in two dimensions can be reused in three dimensions, the
increased complexity of adding another dimension requires
the method to be reinvestigated. This paper is a progress
report on the development of a three-dimensional version of
third-generation RSPH, and we will focus on the differences
between the two-dimensional (2010) version and the three-
dimensional (2012) version.
The generation and use of template cells is reviewed in

section II. In section III, we discuss the discretization errors
associated with the use of these template cells as indicated
by a series of static tests with variable smoothing length.
Section IV focuses on dynamical tests of a well known
compressible problem, the Sod shock-tube test, both in planar
and spherical symmetry [14], [19]. In [1], a substantial part
of the paper was devoted to how free surfaces could be
accurately handled within the framework of third-generation
RSPH. In section V, we briefly review the current status of
the work on extending the free-surface methods from two to
three dimensions. Finally, a short conclusion is presented in
section VI.

II. GENERATING PARTICLE DISTRIBUTIONS USING
TEMPLATE PARTICLES

The starting point for generating new particle distributions
is a global, piecewise-constant h-profile where the local value
of h is a binary number multiplied by a global minimum h-
value. Assuming a fixed ratio of h to particle spacing, the
grid upon which the h-profile is defined can be grouped
into blocks which fit exactly M particles (in 1D). Using
such a h-profile directly would result in a piecewise uniform
particle distribution. The yellow curve and filled circles in
Fig. 1 indicate how the particle size and particle positions,
respectively, would in this case vary as one move across a
one-dimensional step in h.
In third-generation RSPH, we attempt to modify the global

h-profile so that any transition in h becomes piecewise linear
rather than piecewise constant. The approach is here explained
in the one-dimensional case. Let M , as before, be the number
of particles which would fit uniformly into a h-profile grid
cell if the local h-value is identical to the minimum h-value.
The transition from a smaller particle size, ∆0, to a factor 2
larger particle size, will take place over an interval equal to
3∆0M , and the interval should fit exactly 2M particles. Since
particle 0 and particle 2M − 1 have particle size equal to ∆0
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Abstract. A 3D SPH model has been developed, according to a 
particle approximation, which involves both volume and surface 
discrete elements at boundaries. The model relies on the 
principles of the 2D formulation of Ferrand et al. ([8] and [9]) 
and the spatial reconstruction schemes used in SPH-ALE 
(Arbitrary Lagrangian-Eulerian) modelling. Validations are 
performed on two test cases: a 2D water jet impact over a plate 
and a 3D dam break phenomenon. The results are compared 
with the reference solutions and measurements. Further inter-
comparisons are provided by performing the same simulations 
with the semi-analytic approach (alternative SPH model). 

I. INTRODUCTION 

Smoothed Particle Hydrodynamics (SPH) has been 
successfully developed to model free-surface and multi-phase 
flows, especially under fast and transitory regimes ([17], [19]). 
This mesh-less computational fluid dynamics technique has 
been recently applied even to represent complex and industrial 
phenomena (as in [12]). At the same time some SPH features 
are still deeply investigated, as they limit the accuracy or the 
effectiveness of the technique. They mainly concern the 
boundary treatment, the spatial accuracy and the computational 
effort.  

In SPH modelling the particles are considered as moving 
computational nodes. The derivatives appearing in the 
governing equations of a computational particle (located at x0) 
are evaluated performing a weighted interpolation. This 
involves the particles (“neighbours”) in a sphere of influence 
(kernel support Vh) around x0. The weight is represented by an 
analytical function, called kernel (W, considered hereafter as 
defined in [20]). 

In particular the SPH boundary treatment concerns the role 
of the surface term in the integral SPH approximation (“I”) of a 
derivative (of a generic function f):  
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Ah is the kernel support boundary, whose dimensions are 
related to the smoothing length scale h; n is the unity vector 
locally normal to the boundary. 

In order to model the surface term of (1) in a proper way, 
several SPH techniques have been proposed. They are briefly 
synthesized in the following. 

[10] and [18] formulated repulsive forces, to be introduced 
in the momentum equation, in order to ensure the non-
penetration condition at wall. These forces depend on the 
relative distance of the computational fluid particle and the 
boundary. A similar approach has been developed by [21], 
using the so-called “boundary particles”. 

One of the most common approaches refers to the “ghost 
particles” ([4]). Each kernel support, which remains truncated 
by boundaries, is artificially filled up with virtual (ghost) 
particles in its truncated part. The position of these particles is 
derived by the distribution of the fluid particles inside the 
interior domain, according to symmetry considerations. The 
parameters of the ghost particles are then set, in order to 
impose the desired boundary conditions. A similar approach 
has been derived by [22], using “mirror particles”, which are 
instead fixed and regularly distributed. 

[24] and [5] formulated and validated the semi-analytic 
approach. Thanks to Green’s theorem and the kernel 
properties, the surface term in (1) is replaced by a volume 
integral. This is partitioned in a sum of analytical integrals, all 
over the truncated part of the kernel support. This technique 
represents the integral version of the “ghost particle” technique 
and seems to provide more reliable results under generic 
boundary conditions. 

SPH-ALE models ([6], [14], [15], [16]) probably provide 
the most accurate solution, in order to treat complex and 
moving boundaries. The differential governing equations are 
integrated over a finite volume (the kernel support itself), 
furnishing a weak (global) formulation. As resulting from this 
integration, SPH-ALE models automatically and explicitly 
treat the surface terms. Further the spatial accuracy is improved 
by the use of Godunov fluxes (in analogy to the Finite Volume 
technique) and Riemann solvers (up-flow schemes).   

Recently [8] and [9] have developed a 2D model based on a 
direct modelling of the surface term in (1), solving analytical 
integrals over surface elements. Further, in order to improve 
the spatial accuracy of the SPH approximations ([1] and [2]), 
the governing equations are normalized by an integral version 
of Shepard’s coefficient ([23]). In addition, a thin layer of fluid 
particles is integrated at the very boundary (in the inner 
domain), to strength the boundary term effects. 
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Abstract—A 3D higher order Laplacian model is proposed for 
enhancement and stabilization of pressure calculation by a 
projection-based particle method, namely, the Moving Particle 
Semi-implicit (MPS) method. The Laplacian model is derived by 
meticulously taking the divergence of a commonly applied SPH 
gradient model and is then utilized for discretization of 
Laplacian of pressure corresponding to the Poisson Pressure 
Equation (PPE). The enhancing and stabilizing effect of the 3D 
higher order Laplacian model is shown through simulations of 
designed exponentially excited sinusoidal pressure oscillations 
and a schematic dam break with an obstacle. 

I. INTRODUTION 

The MPS (Moving Particle Semi-implicit) method [1] is a 
projection-based particle method. It is similar to the SPH 
method in that both methods provide approximations to the 
strong form of Partial Differential Equations on the basis of 
integral interpolants. Nevertheless, the (original) MPS is 
characterized by simplified differential operator models 
solely based on a local weighted averaging process without 
taking the gradient of kernel function. Despite its wide-range 
of applicability, the MPS method has a few major drawbacks 
analogous to those corresponding to the SPH method. Non-
conservation of momentum [2], unphysical pressure 
fluctuations [3,4] and numerical instability [5] are among the 
major drawbacks associated with MPS method. 

Through the past years, the authors have been working on 
enhancement of MPS method by revisiting the derivation of 
differential operator models and by proposing more accurate, 
consistent schemes, while trying to maintain the simplicity 
and robustness of the original method. In 2008 [2], the 
authors proposed a Corrected version of MPS method, 
abbreviated as CMPS and characterized by an anti-symmetric 
pressure gradient model. Later, a Higher order Source term, 
abbreviated as HS, was derived [3] for enhancement of 
pressure calculation. 

Another step towards enhancement and stabilization of 
pressure calculation by a projection-based particle method is 
to apply a more accurate Laplacian model for discretization 
of Laplacian of pressure in the PPE. Khayyer and Gotoh [4] 
highlighted the importance of the mathematical consistency 
of the Laplacian model and discretized source term of the 
PPE and derived a 2D Higher order Laplacian model, 
abbreviated as HL, for the MPS method. 

In most cases, the above-mentioned enhanced particle 
methods have been applied to and verified by 2D 
calculations. On the other hand, most hydrodynamic flows 
are essentially three-dimensional. Hence, development of 3D 
accurate particle methods becomes indispensable. In this 
paper and consistent with our previous work [4], a 3D higher 
order Laplacian is derived for further enhancement and 
stabilization of pressure calculation in three-dimensional 
MPS-based simulations.  

The 3D Laplacian model is derived by meticulously 
taking the divergence of a commonly applied SPH-based 
gradient model [6]. It will be shown that the Laplacian model 
derived in a 3D framework differs to that corresponding to a 
2D one and that the same approach can be applied for 
derivation of consistent Laplacian models for 2D and 3D 
SPH simulations. The enhancing effect of the 3D Laplacian 
model will be shown by simulating designed exponentially 
excited pressure oscillations [4,5] and a schematic dam break 
with an obstacle [7]. 

II. DERIVATION OF A 3D LAPLACIAN MODEL 

By considering the Laplacian at a target particle i as the 
divergence of the gradient calculated at that target particle and 
by applying the commonly applied SPH gradient model [6], 
the Laplacian at a target particle i would be formulated as [4]:  
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where jiijij IIII � �  and ijij III ��� � . From Eq. 

(2): 
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Abstract— This paper shows an advanced application of the 

SPHERA code,  an SPH-based numerical model,  to  simulate 

the impulsive dynamics of a cold CO2 jet  injected from the 

bottom of a 2D laboratory tank containing water and a sand 

bed at initial rest conditions. Since the gas induces sediment 

motion and resuspension in the water column, this study aims 

at investigating an innovative technique that could be applied 

to increase the effectiveness of sediment removal at the bottom 

of  an  artificial  reservoir by  means  of  the  combined  use  of 

explosions  and  flushing  maneuvers.  The  experimental  tests 

were simulated by introducing some severe approximations in 

order  to  handle  heterogeneous  materials.  Even  if  some 

improvements  of  the  model  are  required,  the  results  show 

good qualitative agreement with the experimental frames; the 

SPH  model  can  therefore  lead  to  a  first  evaluation  of  the 

scouring effect when gas injection and flushing maneuvers are 

combined.

I. INTRODUTION

This paper illustrates the recent studies belonging to a 
wider research project that aims at the development of an 
innovative  technique  for  improving  the  effectiveness  of 
sediment removal at the bottom of an artificial reservoir by 
means  of  the  combined  use  of  explosions  and  flushing 
maneuvers.

Since  the  use  of  an  explosive  charge  in  a  laboratory 
experiment requires special and expensive safety measures, 
at this stage of investigation its effects are mimed by a cold 
jet of inert gas; this represents a severe simplification since: 
thermodynamic effects are neglected; the involved pressure 
gradients are considerably smaller and the time length-scale 
of the phenomenon is significantly longer with respect to an 
underwater explosion inside non-cohesive material [1].

Despite  these  differences,  the  physics  shows  some 
analogies  (inertial  effects  dominate)  and this  study,  being 
more simple to handle, allows understanding and solving the 
problems encountered  both in  the  experimental  campaign 
and in the numerical  modeling; furthermore it represent a 

first step toward experimental and numerical simulation of 
underwater  explosion  inside  a  non-cohesive  sediment 
deposit [2].

This work consists of two parts:

1) Experimental  Study:  a  laboratory  campaign  was 

carried  out  to  investigate  the  two-dimensional  dynamic 

behavior of underwater non-cohesive sediment layer (sand) 

at initial rest condition and subjected to an impulsive jet of 

carbon dioxide (CO2), with known volume, temperature and 

pressure, from the bottom of the tank;

2) Numerical  Study:  the two-dimensional modeling of 

the sediment removal that can be obtained combining the 

impulsive gas jet with a flushing water flow was examined 

through the SPH technique.

The first stage is illustrated in section II, while section 
III deals with the numerical approach. Section IV contains 
the final conclusions.

II. EXPERIMENTAL STUDY

In this section, the experimental study carried out in the 
hydraulic laboratory of the Civil Engineering Department at 
the University of Pavia is described.

The laboratory facility is briefly described and then the 
experimental  campaign  is  illustrated.  The  use  of  image 
processing for the detection of the interface evolution over 
time is finally discussed.
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Abstract— The application of shallow-water SPH solvers to 
non-linear coastal flows in 2-D shows promising capabilities to 
model complex free surface flows, see e.g. [1, 2].  In the 
present paper the shallow-water SPH numerical model is 
extended to 3-D real flooding events such as tsunamis, 
inundations following a dam break, etc. In case of very large 
spatial field, the domain of interest is restricted in the solver to 
a certain region for accurate depiction and reduction of 
computational costs. Boundary conditions are then carefully 
introduced to permit the input signal to enter the solution 
domain and prevent any non-physical reflections. The 
developed 3-D shallow-water SPH solver is then validated on 
flood inundation test cases of the literature, showing a close 
agreement of the model with results in reference. 

I. INTRODUCTION 
Human beings are regularly hit by major floodings 

resulting from tsunamis, storms or even dam breaks and 
recent deadly events (Tsunami in Japan: 2011, Indonesia: 
2004, New Orleans flooding: 2005, France Xynthia tempest: 
2010) remind us that such hazards are seriously destructive 
to the civilized environment. Despite large human and 
economic costs due to those disasters, potential dangerous 
areas (coastal zones and river plains prone to flooding) are 
still being urbanized as the population grows. The numerical 
simulation of floods is a crucial tool to predict their impact 
on land and cities. The results could be a great help to define 
areas unsuitable for building, to help developing protective 
tools (dam, channels), to build warning alert systems or 
evacuation plans, etc. The realism and accuracy of the 
numerical models are then a primary condition in order to 
obtain better understanding of these phenomena, leading to 
the definition of countermeasures for safer life. 

A 3-D SPH numerical model for shallow water 
equations (SWEs) is presented in this work. The flexibility 
provided by the mesh-free Lagrangian nature of this method 
permits to describe any evolution of the water front on the 
land. This self-adaptability of the method allows more flow 
simulation possibilities than with grid-based methods in 
which the dry-wet front is difficult to track in complex 
geometrical situations. The SPH method is thus especially 
adapted in the case of large scale inundation events, where 
the topographies are composed of dry and wet areas of 
complex shapes.  

Several previous studies dealt with the modeling of 
SWEs within an SPH framework. Chronologically, 
Rodrigez-Paz and Bonnet [3] developed a correction of the 
SPH formulation for it to be adapted to shallow water 
studies. Ata and Soulaimani [4] then improved the stability 
of the model by introducing a new calculation method based 
on a Riemann solver. Panizzo et al. [5] developed a model 
for shallow water equations applied to tsunami floodings. 
Anisotropic kernel and periodic redistribution allowing the 
following of large fluid domain expansions for inundation 
simulations was studied by De Leffe et al. [1]. Vacondio et 
al. [6] also developed a related procedure using particle 
splitting in order to ensure a better performance of the 
method for small depth locations where the smoothing 
length, which is inversely proportional to the water depth, 
becomes too large for preserving a good precision. Finally, 
Zhao et al. [2] developed a Roe solver solution of the SPH-
SWEs permitting to improve the accuracy especially in 
situations involving step-like water beds.  

For large field flow events, such as tsunamis, the 
phenomena of interest are often restricted to a relatively 
small region (e.g. the coast). The non-reflecting boundary 
conditions (NRBCs), allowing waves to enter and leave the 
local computational domain freely and preventing non-
physical reflections to affect the flow field of interest, are 
very important to get a good accuracy at a reasonable 
computational cost. Giles [7] derived NRBCs in various 
conditions, based on the linearized Euler equations, for 
turbo-machinery flows. Vignjevic and Powell [8] produced 
a NRBC by the correction of elastic waves to realize multi-
resolution in SPH. Lastiwka et al. [9] developed the 
characteristic-based NRBC within the SPH framework. 

The present study is the further development of the work 
reported in [1, 2] with the aim of extending the model to 
application to inundation events involving complex realistic 
topographies. Two laboratory benchmark tests were 
reproduced, showing good agreement with experimental 
measurements and computational results by other numerical 
methods. Then a realistic flooding following a dam break 
was simulated to demonstrate the capability of the present 
solver in such complex topographical situations. 
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Abstract— The present paper reports the added-value of using 
SPH in the fluid-structure interaction occurring in the run-up 
and overtopping phenomena for a the rubble mound 
breakwater, where the seaward layer is made of grooved cubic 
blocks. The main goal is the study of the equivalent roughness 
of the outer layer, defined as the ratio of the maximum water 
level (run-up) on the armoured structure to the run-up on a 
smooth similar one. Run-up heights and overtopping rates 
have also been compared with empirical solutions. The 
complex geometry of the blocks and the surrounding gaps 
within breakwaters must be efficiently simulated to obtain a 
detailed description of the flow. Using novel computing 
solutions such as the new graphics processing unit GPU 
technology used in the DualSPHysics code 
(www.dual.sphysics.org), the fluid-structure interaction is 
being modelled with many armour blocks that are 
representative of the real structure. GPU computing enables 
the simulation of millions of particles leading to potentially 
better accuracy of the numerical run-up and overtopping 
estimates to obtain the value for the structure roughness.  

I. INTRODUCTION 
 

Coastal defences are built to protect the world 
population that lives in coastal zones. These structures 
defend not only houses, seawalks, beaches, recreational 
area, but also harbours and ports where the maritime 
shipping plays a key role in the world economy. These 
defences protect infrastructures against storm surge and 
large waves that may cause run-up and overtopping of such 
structures like breakwaters, dikes, seawalls, etc., leading to 
potential damage and flooding of the area behind the 
structure.  

In particular, this work is focused on the design of 
breakwaters such those shown in Figure 1. The study and 
analysis of the better design of a breakwater can be 
modelled physically in laboratory facilities or 
computationally using a numerical model. Many examples 

can be found in the literature [1, 2, 3] examining the 
optimization and design of different breakwaters. 

  

Figure 1.  Picture of the antifers breakwater in Molfetta (Italy) and rubble 
mound breakwater in Muxia (Spain). 

In breakwater design, the wave run-up and overtopping 
rate are key parameters to define the breakwater crest 
height. The resilience of these structures against the waves 
can be represented by means of the slope equivalent 
roughness coefficient. This coefficient depends on the 
armour units layout, shape and size, and hence the porosity 
of the seaward layers. An appropriate value of roughness 
based on detailed experimental and numerical validation can 
lead to a significant reduction of overtopping flows and run-
up height without unnecessary expensive designs. 

Within the European research project CLASH (Crest 
Level Assessment of coastal Structures be full-scale 
monitoring, neural network prediction and Hazard analysis 
on permissible wave overtopping, www.clash-eu.org), field 
measurements were carried out at various locations 
worldwide along with laboratory tests.  One of the main 
goals of CLASH project was the creation of a large database 
containing more than 10,000 test results on wave 
overtopping to develop a generic prediction method for 
overtopping at coastal structures. One of these locations in 
Europe with complete series of field measurements is a 
rubble mound breakwater armoured with antifer blocks at 
Zeebrugge, Belgium. In the proposed work, the Zeebrugge 
breakwater will be used to validate the numerical results.  A 
further objective of the CLASH project also focused on 
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Abstract—The paper presents the simulation of a dam-break flow 

in a channel expansion with a coupled 2-D/3-D SPH 

mathematical model Tis Isat. The model was calibrated and 

validated against the experiments of Martin and Moyce [1]. 

Overall agreement between the Tis Isat model and other 

available models was good while local behaviour at the solid 

boundaries was better [2]. The novelty of the presented approach 

is in the application of a coupled 2-D/3-D SPH model. The 

proposed method is applicable to systems where the flow transits 

from 2-D to 3-D state. The proposed approach significantly 

shortens the computational time of the SPH simulations, while 

the precision of results is still satisfactory. 

A laboratory experiment of the wave after instantaneous collapse 

of a dam [3] was used for calibration. The downstream channel 

slope was 0.087% and the channel width expanded 

instantaneously from 0.4 m to 1.2 m. The results of the coupled 2-

D/3-D mathematical model Tis Isat were compared to 

measurements on this physical model, results of a 1-D finite 

difference model and results of the fully 3-D mathematical model 

Tis Isat. The overall agreement of the results was at least as good 

as achieved with other models. 

 

I. INTRODUCTION 

Numerical models for simulating water flow are an 
increasingly widespread and indispensable tool for analyzing 
engineering problems. Mathematical models can be classified 
into two major groups: Eulerian and Lagrangian models. The 
Eulerian approach divides the computational domain into grid 
cells and the Lagrangian approach keeps track of individual fluid 
elements as they move through an area. Eulerian models are most 
often used to analyze hydrotechnical problems because the 
numerical mesh methods are less demanding on hardware 
capabilities. However, they also have some weaknesses, such as 
numerical diffusion. The disadvantages of mesh methods can be 
completely avoided by using the Lagrangian computational 
model. The Lagrangian approach requires longer computational 
times than the Eulerian approach. This is not surprising because 

the Lagrangian approach uses a large number of particles and 
short time steps. However, computational time can be decreased 
by greater hardware capabilities and new methodologies (e.g. the 
method for coupling 2-D and 3-D models). 

Smoothed particle hydrodynamics (SPH) is one of the most 
successful and popular Lagrangian methods for free surface flow 
simulations. The downside of the SPH method is the longer 
computational time. Reducing the computational time is a 
challenge for the SPH method. It can be reduced by coupling with 
computationally less demanding models. Some authors have 
proposed different techniques for coupling the SPH model with 
mesh methods: e.g. with DEM [5 and 6], with FEM [7, 8, 9 and 
10], and with a 1-D Boussinesq-type wave model [11]. 

In areas where the hydrodynamics can be described as a 
width-averaged flow (e.g. in rectangular channels), less 
demanding 2-D models are often used. Three-dimensional 
models are used for simulations of fluid flow in a changeable 
domain. In this work we propose a simple method for coupling 
two models with different dimensionalities. This option is 
applicable in systems where the flow transits from 2-D to 3-D and 
as far as we know, coupling of models with different 
dimensionalities (2-D and 3-D SPH models) is a new approach in 
the SPH method that is here used for the first time.  

An upgraded version of the model Tis Isat, developed at the 
University of Ljubljana, was used in our research. Tis Isat was in 
relatively good agreement with the experiment of Martin and 
Moyce [1] and with other available models, while the behaviour 
near the boundaries was better [2]. With a simple coupling 
algorithm it is possible to combine both of the Tis Isat models, 2-
D and 3-D. We used the coupled 2D/3D model to simulate water 
flow in a channel with expansion and compared the results with 
measurements and other models. We expected that the new 
coupling procedure would significantly shorten the computational 
time without decreasing the quality of results. 
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Abstract—In this paper are presented comparisons of SPH 
variants on academic test cases classically used to validate 
numerical fluid dynamics software. These comparisons are 
extracted from NextMuSE FP7 project activities which will be 
published more extensively in near future. One of the goals of 
this project was to better understand the SPH method to leave 
the path to its establishment within CFD methods. An important 
work load was thus dedicated to benchmark SPH variants on 
selected test cases. 
A number of results and conclusions of this comparative study 
are presented in this paper. The studied variants are: standard 
weekly-compressible SPH, δ-SPH, Riemann-SPH, incompressible 
SPH, and FVPM. The majority of the test cases also present a 
reference solution, either experimental or computed using a 
mesh-based solver. Test cases include: wave propagation, flow 
past a cylinder, jet impact, floating body, bubble rise, dam break 
on obstacle, etc. 
Conclusions may help SPH practitioners to choose one variant or 
another and shall give detailed understanding necessary to derive 
further improvements of the method. 
 

I. INTRODUCTION 
The ultimate goal of the FP7 European project NextMuSE is to 

make the proof of concept of a new generation of simulation 
environment, interactive and immersive, based on the SPH 
technology (http://nextmuse.cscs.ch). To achieve this objective the 
better understanding and further improvement of the SPH method 
was a key task. To that purpose project participants dedicated an 
important work load to benchmark SPH variants on selected test 
cases. 

Part of the results and conclusions of this comparative study 
are presented in this paper. The studied variants of SPH are the 
ones mostly used in the literature, including the Finite-Volume 
Particle Method (FVPM): standard weekly-compressible SPH, δ-
SPH, Riemann-SPH, explicit incompressible SPH, and FVPM. 

These variants are not recalled here; the reader may refer to the 
different articles on the topic written by the authors of the present 
article in journals and in the present and past issues of the 
SPHERIC workshop proceedings. Many of these papers are listed 
on the NextMuSE website [1]. 

Almost all the test cases chosen present a reference solution, 
either experimental or computed using a mesh-based solver. Test 
cases include: wave propagation, flow past a cylinder, jet impact, 
floating body, bubble rise, dam break on obstacle, etc. Only some 
results could be presented here due to the length of the paper. 

This careful investigation of SPH variants permits to draw 
interesting and contrasted conclusions which may be of help to the 
community of SPH practitioners in its future choices of research. 

II. WAVE PROPAGATION: VERY-SLOW DYNAMICS INVISCID 
TEST CASE 

A.  Test case choice 
This test case concerns the propagation of a regular gravity 

wave in 2D wave basin. It is generated by a paddle wavemaker 
located on the left end. Surface tension effects are negligible. 
This test case involves a problem which, in terms of physics, is 
not at all in the scope of the SPH method application to free-
surface flows which concerns fast dynamics flows with 
strongly-nonlinear free-surface deformations. However, this 
test case is very interesting to validate the method in the sense 
that it enables to monitor numerical dissipation (non-breaking 
ocean waves are quasi-inviscid at standard scale) in a free-
surface problem. Besides, wave propagation can be of interest 
to be able to address violent wave-body interactions. 

Results are compared to the inviscid potential-flow BEM 
(Boundary Element Method) results of [2]. δ-SPH and 
Riemann-SPH variants are compared. Standard WCSPH is not 
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