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Diffuse Interface Models and SPH

• SPH naturally multimaterial

• Difficulties for equilibrium in the vicinity of contact line of materials with hight density
ratio 

• Needs of interface forces such as surface tension

• General framework for mixture models (Baer Nunziato)

• Connection with incompressible limits used as a numericaltool for solving free surface 
flow problems

• Alternative to Standart SPH 

• Originally developped for Sloshing application in space engineering
Models and Numerical tools

2001- 2003 (PhD Thesis of G. Chanteperdrix) : Finite Volume and Riemann solvers

SLOSH 2D code of ONERA 2004-2005 : SLOSH 3D

2003-2006 : Mixture models for SPH (IFP Thesis of PV Cueille)

Hybrid FV SPH version for miscible fluids

Physical and Mathematical Background of the models – Diffuse Interface and Thermodynamics
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MIXTURE MODEL (1)
Dynamic equations
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Momentum 
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viscosity gravity inertia Surface tension
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MIXTURE MODEL(2)

Closure laws
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Capillary forces I
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MIXTURE MODEL(3)
Thermal effects (Boussinesq type model)
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Numerical Tools

Finite Volume scheme based upon Riemann Solvers

Relaxation procedure to achieve mechanical equilibrium

Explicit treatment of Surface tension and viscous effects

Quasi incompressibility or low mach number approach for incompressible fluid

Natural extension to SPH with hybrid ALE formulation
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The mixture is characterized by a total energy  : 

where                  is the internal energy of the fluid i given as a function  of  the density and the specific 
entropy of fluid i
and     a functional which may represent an internal energy related with surface tension and mixture 
energy :

or

• The least action principle states that any motion             minimize the integral of action defined as

where Q is the space – time domain of definition of the motion and 

under the constraints of mass conservation given by:

Lρ1,ρ2,α,∇α,u,s1,,s2 = 1
2
ρ‖u‖2 −∑

i

ρieiρi,si − Gα,∇α,s1,,s2

PHYSICAL BACKGROUND
Least action Principle (1)
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Least action Principle (2)

• Virtual Motions in agreement with mass conservation are given by a space time diffeomorphism of
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Least action Principle (3)

For a given smooth fieldv in Q, we define a familly of diffeomorpishmg(x,v) depending smoothly
on the parameterε
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The Action                                                         is differentiable with respect to ε at ε=0
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Least action Principle (4)

The above computation gives
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Least action Principle (5)

Which are variationnal (or weak) formulation of momentum and energy conservation of the mixture

And we recover the capillary tensor
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We define 2 additionnal families of virtual motion (mechanical equilibrium and thermodynamical equilibrium)
Virtual motion for mechanical equilibrium

unchanged with where are smooth functions such that

Then the non null derivatives are 

Least action principle gives as above
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PHYSICAL BACKGROUND
Least action Principle (6)

)(xiϕρix,six,ux

∑ i
ϕ ix = 0

dα i


d
= ϕ i

α i
|=0 = α i

  #   

d∇xαi


d
|=0 = ∇ϕ i

dα i


d
|=0 = ϕ i

dA
d

|=0 = ∫
Q
∑

i

∂L
∂α i

δα i + ∂L
∂∇α i

δ∇α i dxdt

0

0such that  )R,(

=









∇

∂∇
Φ∂−









∂
Φ∂−

=∈∀

∑∫

∑∞

dxdtp

Q

i
i

i
i

i
i

Q

i
i

d
i

ϕ
α

ϕ
α

ϕϕ C

)()(
j

j
jii

i divPdivp
α

α
αα ∂∇

Φ∂+=
∂∇

Φ∂+
∂

Φ∂− ∑ )(12 αα ∂∇
∂+

∂
∂−=− G

div
G

pp

Mixing Energy effect Surface Tension effect



SPHERIC Lausanne June 2008

14

Virtual motion for thermodynamical equilibrium

The aim is to construct extremum for                                   in agreement with least action principle

which requires extremum for the action A(ε).

Taking unchanged with where are smooth functions. 

We find .Taking

We also have  and requires

Which is possible iff we have a unique thermodynamical temperatureT such that
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PHYSICAL BACKGROUND
Least action Principle (7)
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Least Action Principle. Final model

• The complete model is :

with the additional constraints of mechanical equilibrium :

and thermal equilibrium :

In the isothermal case we recover the model presented above where the capillary tensor is given here 
by 
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PHYSICAL BACKGROUND

Laplace relation and sharp 
interface limit

• Taking

Static equilibrium requires

In the sharp interface limit                            where   is a regularisation of the heaviside function of 
thickness ε

In the special case                            we recover that the pressure jump across the interface layer is given by 
the Laplace relation.

In the more general case                             , the Laplace law is still valid, but the macroscopic surface tension 
coefficient depends also of the thickness of the layer (once we give the coefficient k of the microscopic 
energy)

The case m=1 corresponds with CSF method of Brackbill, m=2 corresponds with a more realistic Physics, 
but requires a correct resolution of interface layer (second gradient or Korteweg point of view)
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ρψ = ρ1e1

ρ1
α ,s1 + ρ2e2

ρ2
α ,s2 − θρ1s1 + ρ2s2  + ϕα + Gθ,‖∇α‖

• Least Action Principle ignore dissipative mechanisms. 2nd principle of Thermodynamics 
( Clausius Duhem inequality) gives information on admissible dissipative process.

• Let                            the balance laws reads

where                  is the free Helmoltz energy and  θ the thermodynamic temperature. In our
case we postulate

We also need a closure equation in order to relate the volume fraction with other unknowns. 
We propose 

where R is an unknown functionnal.

PHYSICAL BACKGROUND
Dissipation and Thermodynamics of Irreversible Process (1)
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is not the standart one
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PHYSICAL BACKGROUND
Dissipation and Thermodynamics of Irreversible Process (2)

• The flow process is determined by  
and we need to define unknown fluxes                            as functional of some set of variables or 

auxiliary variables e.g. :

As a consequence we have necessarily

and with the additional material indifference principlewhich states some rules for dependency of 
unknown fluxes with respect to Λ under a change of referential, we find that w is given by
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Dissipation and Thermodynamics of Irreversible Process (3)

Any admissible process need to satisfy the above requirement.One acceptable choice is the 
following 

with

and ε>0 in order to satisfy the Clausius Duhem inequality :

The above equations states the basis of our numerical models. 

is closely related to the previous notion of 
mechanical equilibrium

Note that phase change phenomena can be included in such an approach. Strong connections 
of physical mechanism with relaxation procedure and energy transfer are one of the main 
characteristic of this approach.  
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Dissipation and Thermodynamics of Irreversible Process (4)

Incompressible Limit and NS Cahn Hilliard formulation for partially miscible fluids

• Instead of we use 

• With 

And a modified C.D. inequality is satisfied

Example of planar interfaces

There is a competition relating TS and mixture energy which characterise the thickness of the interface 
layer. Tipically if 

σ is the macroscopic surface tension coeff. and   ε the thickness of the interface 
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21Applications of the method to miscible Fluids
Lock exchange experiment simulation (1)

• Re = 700  Sc =1   (2D simulation with 40000 points) Dρ/ρ=.027

• Re = 700  Sc =1   (2D simulation with 40000 points) Dρ/ρ=.1
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22Applications of the method to miscible Fluids
Lock exchange experiment simulation (2)

• Re = 10000  Sc =1  (2D simulation with 200000 points)


