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ABSTRACT 

 

 

KEYWORDS: Mesh free Particle Methods, Smoothed Particle Hydrodynamics, 

Incompressible Flow, Navier Stokes Equation, Wave-structure interaction, 

nonlinear water waves, Numerical simulation. 

 

Free surface waves are one of the numerous magisterial manifestations of nature: be it in 

the form of oscillating harmonic modes of the free surface of water in a moving pot, 

interacting ripples in a pond due to rain or the foaming waves lashing over coasts. The 

evolution of free surface waves closely depends on: i) the initial conditions and ii) the 

boundary conditions to which it is subjected. It is the latter that often brings complicacies 

while seeking for exact and closed form solutions for the governing equations (i.e., 

Navier- Stokes Equations). It requires a numerical tool to solve through computer 

programs to get approximate solutions. The Smoothed Particle Hydrodynamics (SPH) 

method is one of many numerical tools which can be adopted for solving Navier-Stokes 

equations. During seventies and eighties, significant contributions were made in the 

Finite Element and Boundary Element Method and subsequently, these have been applied 

to simulate nonlinear water waves with moderate steepness. Similarly, numerous 

developments have incurred in Smoothed Particle Hydrodynamics methods for free 

surface flow problems in the last decade. The present study is thus focused on developing 

a numerical model based on Smoothed Particle Hydrodynamics for simulating nonlinear 

water waves, including violent cases for which traditional mesh based method like Finite 

Element or Finite Volume methods are known to have difficulties. 

 Initial applications of Smoothed Particle Hydrodynamics method to simulate free 

surface flow problems showed its' capability as a method for dealing with highly 

nonlinear event like wave breaking. However, from engineering point of view, the real 

effectiveness of a numerical method remains in the fact whether it can give acceptable 

solution for a useful flow quantity (say, pressure). The time evolution of pressure was 

found to be fluctuating unrealistically with the traditional weakly compressible (e.g., 
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Weakly Compressible SPH, WCSPH) approach. Therefore, numerous solutions were 

proposed to rectify and improve the prediction. Present study adopts few notable 

techniques in order to investigate the performances for a given problem. This includes: a) 

δ- SPH (Molteni and Colagrossi, 2009) in the framework of weakly compressible SPH; 

and, b) Incompressible SPH (ISPH) (Cummins and Rudman, 1999; Lo and Shao, 2002). 

It is explored that the effectiveness of the chosen method is related to the Reynolds 

number of the flow. Moreover, among the numerous parameters which are required to 

tune for enhancing the numerical stability, smoothing length (h) and XSPH factor (ε) are 

identified as the most important parameters. Suitable ranges of these parameters have 

been proposed based on the requirement of the problem i.e., depending on whether non 

violent or violent flow. The ISPH model has been improved by i) adopting XSPH 

smoothing for velocity, ii) Considering higher order source terms in the Pressure Poisson 

Equation and, iii) Utilizing ISPH_DFDI (Hu and Adams, 2007) algorithm to maintain 

uniform particle distribution during the course of simulation.  

 In addition, in contrast to a mesh based method, implementation of boundary 

conditions poses difficulties in Smoothed Particle Hydrodynamics. Present study employs 

innovative techniques for the enforcement of boundary conditions. The Ghost particle 

technique for modelling boundaries satisfies the consistencies of the particle based 

differential operators. Hence, it has been adopted to perform the convergence studies. 

But, it has been found to have difficulty in geometric corners. Therefore, Dummy 

Particles have been adopted with proper formulae to extrapolate flow properties at the 

solid region. In overall, a robust and reliable numerical model has been developed which 

can be equally effective in both violent and non-violent flow simulation. 

 The analysis has been presented in two main parts. For simulation of non violent with 

low to moderate steepness using the present SPH model prediction has been compared 

with solutions from potential flow based analytical and/ or a Finite Element Method 

(FEM) solvers (Sriram, 2008) with nonlinear terms retained in the combined free surface 

boundary condition. Good performance has been achieved for problems such as i) 

Propagation of regular monochromatic wave over fixed depth, and, ii) Non violent 

sloshing in a prismatic tank undergoing external excitation with low amplitude. Whereas, 
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for violent problems, the pressure time history has been compared with experimental data 

and the overall flow has been qualitatively compared. 

 The improved WCSPH and ISPH models developed in this study have been applied to 

perform inter comparison for problems like- i) Wave impact, ii) sloshing and iii) wave 

overtopping over coastal structures under given wave conditions. These studies are 

necessary in order to prescribe a version of SPH model for a general problem where one 

needs both accuracy and fast computation. A number of findings have been obtained 

based on these comparative studies. 

 Finally, the success of the present δ- SPH model has further been highlighted by 

reproducing the experimental work of Anand (2010) where an in depth investigation has 

been carried out in understanding suitability of a given sea wall for a given wave climate. 

 Understanding of violent waves is increasingly becoming vital with respect to the 

recent marine industry trend for utilizing the offshore wave environment (for example, 

harnessing the energy of breaking waves). The developed numerical model can thus be 

employed in order to replicate such extreme wave climate in a computational framework. 

The salient observations and associated experiences gained by applying the same model 

to different problems (like sloshing, wave impact due to dam break, wave overtopping 

over seawalls) showed the efficacy of the numerical method for its generic 

implementation in many other applications. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1. GENERAL 

 
A bright sunny day in a sandy beach with a blue sky and patches of cirrostratus clouds 

like casual strokes from a painter's brush on an empty canvas is probably one of the most 

popular stress busters during a weekend for an urban individual. Many beaches are 

natural or artefacts of some artificial ports enhancing offshore- onshore interactions. It 

takes a significant effort to maintain the smooth accessibility of a beach throughout the 

seasonal changes. Fig. 1.1 presents some snapshots of a beach showing its various 

morphological and man made aspects. Such environment becomes dangerous during 

severe weather condition. Fig. 1.2 shows wave overtopping over a coastline during an 

extreme wave climate. 

 In deep sea, a cargo vessel (Fig. 1.3) carrying oil container may face severe stability 

challenges due to the violent sloshing of the liquid inside the containers in a harsh marine 

environment. For a passenger carrier vessel, the rolling of the ship affects the comfort of 

on board members. A jacket structure installed in an intermediate water depth for 

exploring natural resources is also subjected to extreme marine environment (Fig. 1.4). 

Turbine kept in chambers in order to harness wave energy is supposed to retain stability 

during adverse wave climate ensuring uninterrupted and efficient operation.  

(a) (b) (c) 

Fig. 1.1. Different aspects of a beach: (a) a jetty at Car Nicobar, (b) a geometrically 

shadow zone providing habitats for migrating birds and (c) a recreational place 

(Location: St. Kilda beach, Melbourne, Australia). 
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 Design and development of such entities (e.g., coastal areas, oil containers, ship etc.) 

which are vital for human lives, material and financial resources, cover a significant 

potion of understanding the physics of water waves: their generation, propagation and 

interaction with different structures. 

 

 

 

Fig. 1.2. Wave overtopping over coastline Fig. 1.3. A liquid cargo vessel carrying 

oil container 

source: 

http://seaspout.wordpress.com/2012/07/2

3/alternatives-to-bunker-fuel-lng/ 

 

 

Fig. 1.4. A jacket structure subjected to an 

extreme wave climate 

 

 

 The study of wave structure interaction can be performed either in a physical 

laboratory tank with wave generation facilities or, based on an analytical model seeking 

for exact solutions, or, in a computer program based on a well established numerical 
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method for solving a fluid flow problem subjected to proper boundary conditions. All 

approaches have their own advantages and disadvantages and hence it can be taken as 

one approach as a supplementary to others. Installation of physical tanks with wave 

generation facilities is costly and may not easy to avail for a variety of purposes. The 

prediction from a numerical model can also be used to design complicated experimental 

activity efficiently. The physical phenomenon in a numerical simulation may in turn 

motivate an observer to have specific views on some aspects of the experiment. 

Moreover, the information obtained from the model scale in experiment can be 

effectively correlated with real scale using numerical simulation. On the other hand, an 

analytical model (e.g., the airy wave theory) is useful for understanding the basic wave 

mechanics for small wave steepness (ratio of wave height to wave length). Analytical 

model capable of dealing with highly steep waves are also available (e.g., Chalikov and 

Sheinin, 2005). The resulting expression for estimating wave forces on different 

structures may be complicated while going for a closed from solution. Situation may be 

further difficult if the structure is considered as floating with its all degrees of freedom 

including free surface effect. Therefore, approximate solutions are sought for practical 

purposes. Even though, these solutions are subjected to a number of assumptions which 

may not remain valid in some cases. So, researchers have put effort in developing 

numerical models which solves the governing equations of the flow with provision for 

adopting certain initial or boundary conditions permitted for the governing equations. 

This makes possible to investigate a test involving wave structure interaction under a 

number of cases and provides useful information for designing an object which is 

supposed to face non linear water waves. 

 The numerical models can be broadly categorized into two divisions:  

(a) models based on Fully Nonlinear Potential flow Theory (FNPT): It differs from 

the Airy wave theory in terms of the higher order terms contained in the combined 

dynamic and kinematic free surface boundary conditions, which are non linear in nature. 

In this approach, it is possible to express the flow by the Laplace equation in terms of 

velocity potential. FNPT model are most suitable while the flow may be safely 

considered to be irrotational (i.e., non breaking, mildly steep waves). 
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(b) Full set of Navier- Stokes (NS) equations: It is essential if other details of the flow 

(like viscosity, turbulence, effect of wind on waves etc.) apart from flow quantities such 

as velocity and pressure are required. Thus, NS model facilitates detail analysis of the 

fluid flow.  

 

1.2. NUMERICAL MODELS FOR STEEP NONLINEAR WAVES 

With the increase in trend of utilising offshore region for different purposes (like 

harnessing wave energy), the necessity to understand the flow behaviour of violent waves 

is becoming important. A number of numerical models dealing with steep nonlinear 

waves is made available. For any such numerical model, a challenge is to capture the 

plunging breaking of a wave (Fig. 1.5).  

 
 

Fig. 1.5. Plunging breaking wave with swirling (Source: http:// www.pdphoto.org). 
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 Physically this phenomenon may be caused by several reasons and is extremely 

complex involving several flow features like fluid fragmentation, jet evolution, air 

entrapment, fluid coalescence, turbulence, momentum and energy transfer between air 

and water through a deformable interface and so on. It is indeed a significant success for 

a numerical model if it can simulate the onset of such wave breaking due to similar initial 

and boundary conditions as in a physical case. 

 Past studies focused on numerical simulation of such steep non linear water waves 

have adopted numerical methods like Finite Element Method (FEM), Finite Difference 

method (FDM), Boundary Element Method (BEM) or Finite Volume Method (FVM). 

Few of these studies have been summarized in Table 1.1. There has been a significant 

progress achieved in understanding the complex flow behaviour of violent waves. 

 

Table 1.1. Few numerical models used for simulation of steep nonlinear water waves. 

Method Description Application 

BEM (Grilli and 

Subramanya, 1996) 

solves Laplace equation Solitary wave shoaling and 

breaking over gentle slope 

FDM (Constraint 

Interpolation Profile (CIP)) 

(Kishev et al., 2006) 

solves NS with two phases violent sloshing inside a 

container 

FEM (Yan and Ma, 2010) solves Laplace equation 

using FNPT 

3D Over turning waves over 

varying bathymetry 

FVM (Xie, 2014) solves NS with two phases effect of wind on solitary 

wave breaking 

 

 The presence of time evolving free surface in the computational domain makes the 

problem as a unique flow problem in the case of nonlinear water wave simulation. In 

most of the above mentioned studies, major focus has been paid in order to capture this 

free surface as accurate and efficient as possible. For example, Yan and Ma (2010) used 

QALE- FEM technique to deal with movements of the nodes at the free surface. Xie 

(2014) used the Volume of Fluid (VOF) technique to track the dynamic air water 

interface. One needs to exercise very careful choices while implementing these 
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techniques by ensuring minimum effect of spurious losses of energy. Remeshing of the 

domain becomes inevitable to maintain the mesh quality on which the solution of the 

numerical model depends greatly. Sriram et al. (2006a) investigated a few of these 

techniques to find which among these yields minimum energy loss for a given mildly 

steep wave. Also, the influence of those techniques are not significant if it is expected to 

model waves with low steepness in deep water depths. Thus the model lacks its 

robustness for general purpose use while one tries to use this model for wave propagation 

from deep to shallower region. Because, it may be difficult to know a priori when to use 

special technique to deal with increasing steepness. 

 A second alternative for the above problems with mesh based numerical 

methodologies is to adopt meshfree or particle based description of the domain. A 

particle with associated flow properties like mass, volume, pressure, velocity represents a 

fluid portion. The kinematic free surface boundary condition is intrinsically satisfied. Due 

to the absence of mesh connectivity, it easily adopts the flow pattern without having 

much numerical issues. In this way, it appears to be possible to develop a robust 

numerical model for simulating nonlinear water waves irrespective of their steepness.  

 

1.3. PARTICLE METHODS FOR NONLINEAR WATER WAVES 

Some of the popular particle methods used for simulation of nonlinear water waves are: 

Smoothed Particle Hydrodynamics (SPH, Dalrymple and Rogers, 2006); Corrected 

Incompressible Smoothed Particle Hydrodynamics (CISPH, Khayyer et al., 2008); 

Moving Particle Semi (MPS) implicit method (Koshizuka et al., 1998); Meshless Local 

Petrov Galerkin (MLPG) method (Ma and Zhou, 2009); Particle Finite Elemet Method 

(PFEM) (Idelsohn et al., 2004) etc. Generally speaking, in order to achieve qualitatively 

correct results, one needs to use sufficient number of particles. Also, in contrast to a grid/ 

mesh based numerical model (like FEM), most of these particle based numerical model 

do not have the flexibility to use non uniform initial spacing for a given length. But, for 

most of the problems in nonlinear water waves, the length through which the wave has to 

propagate to capture a physical process is comparatively higher than the initial water 

depth. This leads to a quite large number of particles to be used even in the description of 

wave propagation of waves with small steepness in deep water region (i.e., d/ L >0.5, d 
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and L are water depth and wave length, respectively). Thus it is quite slow in 

computation compared to a grid based model.  But, even with this time consuming tasks, 

the user does not need to adopt any further action to maintain numerical stability if the 

steepness of the wave increases during propagation. Therefore, particle based methods 

have the potential to form a robust numerical model. Regarding the issues with 

computational times, it should be noted that now a days many computing architectures 

are being utilized (like GPU computing) for performing faster computation. In fact, 

efficient and optimal computation of the existing particle based numerical model for large 

scale problems (flooding of a beach due to a tsunami wave, green water overtopping over 

a TLP etc.) are a major research topic. 

 Yet, it is only in recent times, researchers have started exploring the convergence 

properties of kernel function based differential operators and the effect of choice of input 

parameters in particle models. Although, the numerical tests used to check the theoretical 

findings are much simpler (e.g., in many cases restricted to one dimension) than a non 

linear water wave problem, still the findings from theoretical analysis has brought some 

facts which inspires further research. Some of these questions have been of particular 

interest in this present study. It reports the development of an independent particle based 

numerical model for simulating non linear water waves. Chapter 2 conducts a literature 

survey to set a definite objective for the study. Chapter 3 discusses the basic principles 

upon which the developed numerical model is situated and provides validation and 

quantification of error for the numerical solution of a benchmark case in nonlinear water 

wave problem. Chapter 4 presents some techniques adopted to enhance the model 

performance. Then the next two chapters are devoted to application of the developed 

numerical model to two important problems in non linear water waves: sloshing in a 

prismatic tank (Chapter 5) and wave overtopping on a seawall (Chapter 6). The length 

and time scale pertaining to these two problems differ significantly and hence, successful 

simulation from the same numerical model for both of these problems reflects its 

robustness. The thesis summarizes with conclusions and future prospective of the present 

work. 
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1.4. SUMMARY 

In this chapter, the importances of studying non linear water waves have been 

highlighted. Specific emphasize has been made on highly steep violent water waves. 

Some of the successful numerical models simulating violent breaking waves have been 

highlighted. Particle based numerical methods have been selected for simulating non 

linear water waves. Similar to any numerical method, particle method also contains 

certain pitfalls which should be addressed for the development of the numerical model.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1. GENERAL 

On 1977, a numerical technique came into light dealing with evolution of gas clouds in 

the background of interstellar medium by two independent studies: Lucy (1977) and 

Gingold and Monaghan (1977). While the work of Lucy (1977) is regarded as 

revolutionary for the idea of estimating a physical property based on smoothing which 

has been nurtured using the concept of Monte- Carlo method of Hammersley and 

Handscomb (1964), the study by Gingold and Monaghan (1977) is undoubtedly 

ingenious for the original  mathematical development of the technique. Lucy (1977) 

presented the scheme in a contemporary way which might well be appreciated by people 

working with finite difference codes. Whereas, Gingold and Monaghan (1977) showed 

the new technique which basically does explicit numerical integration on a system of 

particles interacting within themselves with respect to Newton's Law of motion, played a 

potential competitor with finite difference scheme. Later, Monaghan and his co workers 

(e.g., Durisen et al., 1986) studied the performance of this newborn technique along with 

finite difference codes on similar problems and noted advantages and disadvantages. 

Since then, this technique has been maturing into a numerical method, called Smoothed 

Particle Hydrodynamics (SPH) dealing with complex physical problems found in 

celestial objects, industry and everyday life. The name SPH was coined by Gingold and 

Monaghan (1977). 

 Since then SPH was proposed, it has sailed through a number of stages in terms of 

method development and diverse applications. So, a survey made on these developments 

can hardly be claimed as complete. However, hovering over these numerous fields where 

SPH has been applied, one can get a definite trace of gradual development for an 

emerging numerical technique. With this aim, the purpose of the present chapter is 

focused.  Although the central theme of the present study is non linear free surface flow, 

to highlight a coherent outlining of the salient developments of the numerical model, it is 
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found to be necessary to consider other fields like astrophysics and solid mechanics. 

Notably, SPH has got its unique numerical form while applying in various problems in 

astrophysics. As far as a standard systematic stability analysis is considered, SPH has 

gone through the critical and subtle tests while studying problems in solid mechanics. 

Most of the techniques to enforce essential boundary conditions in SPH have been 

proposed while solving fluid flow problems. These show development of SPH including 

fluid flow with either a free surface or an interface with another media (i.e., a multiphase 

flow). The latter section discusses more recent applications (e.g., microfluidics, flow of 

Non Newtonian fluids etc.) of SPH. A brief discussion has been given highlighting the 

gradual development of numerous particle methods like SPH and their off springs.  

 

2.2. SPH: ASTROPHYSICAL PROBLEM 

With the works of Chandrasekhar (part of which was compiled in the books authored by 

him, such as, on Stellar structures (Chandrasekhar, 1939) and on ellipsoidal figures 

(Chandrasekhar, 1969)) among others, astrophysicists in 70's were able to discuss on pure 

theoretical grounds about the physical parameters that have to work on while analysing 

the stability or a particular shape of a known star. In general, the equations which 

describe the evolution of stellar structures are integro- differential type combining a range 

of ideas from a diverse fields of physics (such as, relativity, thermodynamics, 

electromagnetics and so on) and may be complicated while seeking for an exact solution. 

Scientists were equally interested to know the key parameters that play a major role in the 

development of a particular stellar structure from a given state of known mass 

distribution. The age of computing architecture has also been progressing at a faster rate 

towards its extreme usage in solving problems in astrophysics. With the advent of SPH, 

people interested in studying evolution of star and N body problems got a 

comprehensible and easy to use numerical technique with which they can perform a 

number of numerical experiments on the possible form of gas clouds. A few of these 

important works have been summarized by Benz (1988). An overview of salient 

contributions made towards the development of SPH is given below. 

• Monaghan, Gingold and their co workers (1977 ~ 1990) and Wood (1981, 

1982): During this period, a series of papers emerged from their work for 
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understanding the behaviour of gas clouds in the formation of stars and other 

stellar structures in stable and unstable regime. Those problems can be broadly 

categorized as:  

o Fission of polytropes: The process of fission of a polytrope (i.e., a stellar 

structure where pressure is related with density through a given polytropic 

index) rotating with non uniform and angular velocity damped at specified 

regime was shown to form a system of binary star. While simulating this 

phenomenon using SPH code (Gingold and Monaghan, 1978), it was able 

to successfully capture the characteristic bone shape of the so formed 

binary star system. 

o Collapse of non axisymmetrically rotating gas cloud: A good agreement 

between finite difference and SPH methods in terms of free fall time has 

been achieved by Gingold and Monaghan (1981). But in contrast to the 

former, they obtained merged rod shaped structure in SPH. 

o Study of fission instabilities: An extensive comparison between FDM and 

SPH by Durisen et al. (1986) provides more information. One important 

finding from SPH is that it was able to resolve the density at the inner 

region better than in the outer region with lower resolution. Whereas, in 

FDM, a uniform performance has been evaluated and therefore, at the 

inner region, the fluid properties were less resolved compared to SPH. 

• Miyama et al. (1984): A detailed account was given for the criteria under which 

an initial gas cloud is likely to take the form of diverse structures. The 

occurrences of z- bounce and ω- bounce (i.e., a peak in density in rotational plan 

or in a plane perpendicular to it) along the free fall time scale indicated the 

possible shape of the object at the end of simulation. 

• Benz (1984): One of the unique papers, in which the effect of magnetic field was 

included in the SPH simulation of similar fission processes.  

 

Apart from the above quoted works, there were number of papers appeared in SPH. 

Analysing these works, the following major contributions in the development of SPH 

have been explored from the astrophysics problems. 
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2.2.1. Shock simulation 

Physically, when a discontinuity occurs at a given point in a homogenous space (e.g., 

during an explosion), the energy so released tends to dissipate in the surrounding at a 

rapid rate in the form of a wave. In one dimensional case, it is interpreted as the 

propagation of information from a space of higher potential to lower potential due to 

difference in the given initial condition between these two regions (standard shock tube 

problem, Sod, 1978). Theoretically such exchange of energy between two given energy 

states is treated by shock. In standard SPH which was introduced to simulate fission of a 

rotating gas cloud or collision between two clouds (Lattanzio et al., 1985), it is apparent 

that two interacting particles may cause a shock along their position vector as they stays 

at two energy states and pressures at them are calculated by solving an equation of state. 

This shock so created may lead to artificial oscillation on a calculated numerical value at 

a particle and thereby cause numerical instability. In order to rectify this, following 

techniques were proposed in SPH. 

• Artificial viscosity: By showing an analogy with the well known von Neumann 

and Richtmyer (1950) artificial viscosity, Monaghan and Gingold (1983) 

proposed a similar form for SPH to smooth the shock front and stabilize the 

simulation. This form or some of it is later developments (as mentioned in 

Chapter 3) has been used in most of the SPH models with application in problems 

in other fields. This artificial viscosity possesses some coefficients which should 

be tuned properly depending on the problem. Also, the artificial viscosity may 

bring unwanted numerical diffusion in the solution. However, Balsara (1995) 

proposed entropy preserving artificial viscosity to retain its major advantages. 

• Godunov SPH: An alternate formulation was proposed by Inutsuka (2002) where 

the interaction between two interacting particles is resolved by solving a Riemann 

problem along their position vector. In this approach, there is no need to use 

artificial viscosity. But it may be computationally more expensive compared to 

the former, requiring to solve a matrix of size depending on the dimension of the 

problem, for each interaction in the entire particle system. Also, the basic 

Godunov scheme was found to suffer from significant numerical dissipation. For 

this reason latter it was found useful to incorporate HLLC (Harten Lax and van 
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Leer Contact) and MUSCL (Monotone Upwind Centred Schemes with 

Conservation Laws) to improve Godunov SPH (see e.g., Rafiee, 2011). Apart 

from shock tube problem, the Godunov SPH scheme was equally found to yield 

good results for impact problem in solid mechanics (Parshikov et al., 2000) and 

sloshing (Rafiee et al., 2012). 

 

In a recent paper by Puri and Ramachandran (2014), a comparative study has been 

performed between most of proposed techniques dealing with shocks in SPH for a variety 

of shock tube problems. 

 

2.2.2. Variable smoothing length 

While simulating fission of a star, the length scale varies from a few to several higher 

orders. In order to model, either a huge number of particles have to be employed which 

might be quite prohibitive in some cases, or, a variable smoothing length can be used 

through which more number of neighbouring particles are allowed in the interpolation of 

'property' in the region of interest. Now, this can be achieved in several ways. In one 

approach, one can update the smoothing length particle wise, so as to retain a desired 

range of density (Monaghan, 1992). In another, a separate equation may be solved for the 

time evolution of particle wise smoothing length by preserving conservation of energy 

(Hernquist and Katz, 1989; Benz, 1989; Nelson et al., 1994). For slamming problem, 

Oger et al. (2006) obtained good results using SPH model with variable smoothing 

length. A more recent implementation of variable smoothing length techniques is 

available in GRADSPH code (Vanaverbeke et al., 2009) or in NDSPMHD code 

developed by Price (Price, 2004). 

2.2.3. Nearest Neighbouring Particle Searching (NNPS) strategy 

One of the computationally expensive parts in any SPH model is the identification and 

storage of neighbouring particles to calculate a physical property using interpolation at a 

given particle. The algorithm through which it is done is called Nearest Neighbouring 

Particle Searching (NNPS). In 3D problems in astrophysics, several NNPS have been 

proposed. Few details of these algorithms are presented in Chapter 3. In most of the SPH 

models, the particles are sorted in 'linked- list' based on square cells discretizing the 
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domain (Monaghan and Gingold, 1983; Hockney and Eastwood, 1988). An effective 

approach, particularly with variable smoothing length formulation, is to create a 

hierarchical tree based on successive splitting of the entire domain into octants that 

contain one particle (Hernquist and Katz, 1989). An implementation of Tree search based 

NNPS algorithm is available in SPH code GADGET (Springel et al., 2001) which has 

been used to simulate the formation of giant nebula. 

 

2.3. SPH: SOLID MECHANICS 

Since early nineties, SPH has been extensively being applied to solve solid mechanics 

problems. Authors were mainly interested in studying ballistic impact problems or 

growth of crack using a Lagrangian method like SPH. In doing so, some of the intrinsic 

features of SPH which thought to be advantageous in previously attempted problems in 

astrophysics, now fetched serious doubts on the applicability in solid mechanics 

problems. While dealing with those issues, researchers made several improvements in 

SPH. 

2.3.1. Tension instability: 

In astrophysical problems, where density is varied over large domain, non uniform 

distribution of particle is apparent due to the relation of pressure with density for a 

polytrope. When same kind of equation was used to calculate pressure (i.e., stress in solid 

mechanics), unrealistic accumulation occurred in the presence of tension (a negative 

stress state). The error due to that was not previously studied in problems in astrophysics 

but found to bring unacceptable results in basic problem like deflection of a column. In 

order to rectify that several techniques were proposed. Some of the important corrections 

in the context of solid mechanics problems are as follows: 

• Stress points: Dyka and Ingel (1995) and Dyka et al. (1997) introduced the 

concept of stress points. The derivative through which information is obtained for 

the upgradation of nodes is calculated using these fixed stress points. Using stress 

points, tension instability was effectively reduced for problems like deflection of a 

cantilever beam subjected to dynamic load. 

• Lagrangian kernel: Rabczuk et al. (2004) explored that the tension instability can 

be removed from the solution if one use Lagrangain kernel which is more 
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consistent for linear transformation than Eulerian kernels. Here, SPH model was 

used to carry out simulation of a variety of problems like impact of a rod on a 

beam, defection of a plate, collision between two rubber bands etc. 

• Total Lagrangian formulation of SPH: By investigating the root cause of tension 

instability in SPH, Bonet and Kulasegaram (2001) found that this happens due to 

zero eigen modes of the tangent stiffness matrix. It was noted as a characteristic 

feature of the then used SPH formulation. So, in order to avoid that they proposed 

a new scheme where the gradient of the kernel function was calculated with 

respect to a fixed frame of reference. The success of this approach was 

highlighted by simulating large defection of a column. 

• Moving Least Square SPH (MLSPH): By using a kernel function based on 

Moving Least Square (MLS) interpolation (Dilts, 1999, 2000) of a given order 

and dimension, the prediction from the SPH model was shown to improve for 

similar problems. Moreover, an effective technique was proposed in Dilts (2000) 

to accurately identify the particles at the deforming boundary. 

• Addition of repulsion terms with pressure gradient (Monaghan, 2000): By this 

additional term which partly repels two approaching material particles, tension 

instability was shown to be rectified. 

 

Swegle et al. (1995) found that tension instability is inherent in a kernel based 

approximation when the second derivative of kernel operates on internal stress and yields 

a negative value. Physically speaking, under negative change of internal stress state, the 

kernel based approximation in SPH is unstable. This finding has also been utilized to 

investigate tension instability in another particle method named Moving Particle Semi 

implicit (MPS) by Khayyer and Gotoh (2011). 

 Many more solutions are proposed to remove tension instability. Even in fluid flow 

problem in fluid flow with moderate Re, tension instability may not be overlooked. So, 

while SPH was subsequently being applied in fluid flow problems, several other 

techniques were proposed to avoid tension instability in the context of fluid flow 

problems. Some of them are mentioned in few sections later. 
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2.3.2. Other particle methods 

One of the major outcomes of the application of SPH on solid mechanics problems is that 

a number of new particle methods are proposed. For example, Reproducing kernel 

particle method (RKPM) (Liu et al., 1995). Several Galerkin based particle or meshfree 

methods were also came into light: Element Free Galerkin (EFG) method (Belytschko et 

al., 1994); Mehless Local Petrov Galerkin Method (MLPG, Atluri and Zhu, 1998) etc. A 

detailed account of these developments is available in the book on meshfree method by 

Liu (2002). Overall contributions are made in the general development of particle based 

meshfree methods to solve complex problems along with SPH. 

 

2.4. SPH: FLUID FLOW 

The earliest successful application of SPH to solve incompressible flow with free surface 

was by Monaghan (1994). Apart from showing the capability of SPH in simulating 

violent free surface flow problems, he introduced some useful techniques which are still 

being used in a number of SPH models. For example,  

a) XSPH smoothing of velocity: A technique through which particle positions are 

updated with a velocity that is not obtained directly from solving the momentum 

equation, but a smoothed one. It retains uniform particle distribution and may alleviate 

onset of tension instability;  

b) Optimum time step: Since, pressure is solved from an explicit equation of state, the 

time step is rather small due to sound speed restriction. So, an artificial sound speed is 

required which is much smaller than the original one to yield a practical time step. A 

thumb rule that was proposed by him to adopt numerical sound speed as at least one order 

higher of magnitude (i.e., ten times) of maximum expected flow velocity;  

c) Time integration scheme: a predictor corrector time stepping was used as time 

integrator and,  

d) Repelling boundary particle to mimic a solid boundary: Using a Lennard Jones type 

repulsion force, no slip boundary condition was replicated to give realistic flow 

evolution, etc. 
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 Qualitatively, description of fluid flow problems would be obtained using the above 

techniques. Also it appeared to be easy to grasp and implement. However, a qualitative 

prediction requires much more attention in terms of adopting staratgies in dealing with 

many issues starting from physical to numerical. These pose a number of important 

questions that need to be addressed while using the basic SPH technique in fluid flow 

problems. Most of these contributions emerge towards the development of SPH in the last 

two decades. 

2.4.1. Pressure fluctuation 

Since the standard SPH technique tries to solve Euler equation, naturally one is interested 

in looking at the predicted pressure which is one of the important physical quantities in 

any engineering problems in fluid flow. But, while investigating for pressure, it is noted 

that it suffers unrealistic fluctuations and it is difficult to extract useful information. 

Many authors have been working on reducing the pressure fluctuaions. Some of the 

salient contributions are discussed here. 

• Spatial Pressure fluctuation control: Colagrossi and Landrini (2003) noted that 

to control the fluctuation of pressure, one needs to have a smooth density, since in 

SPH model, pressure is obtained directly from density. Density is calculated from 

particle positions which are non uniform during the course of the simulation. 

Naturally, standard kernel which is inconsistent for such distribution of particles 

brings noise in density field. So, a higher order interpolating kernel (previously 

used by Dilts as mentioned above) was adopted to have better conservation 

between mass, density and occupied area for a particle. Moreover, they optimized 

the correction by periodically applying it throughout the time steps, since 

calculation of MLS interpolating kernel is computationally expensive. 

Improvements were shown for pressure calculation in classical 2D dam break 

flow. They were equally trying to simulate multiphase flow with low density ratio 

with the SPH model. This approach was found to be useful because near the 

interface or its vicinity pressure field has to be regular to avoid spurious diffusion. 

• Calculation of pressure time history: The problem of slamming is an important 

problem in marine engineering and has long been known to be difficult due to a 

number of issues like involvement of violent free surface fragmentation, acoustic 
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waves, deformation of structure etc. In this paper, Oger et al. (2006) had moved a 

step towards answering these questions using SPH. For estimating pressure time 

history at a given location along the hull, they proposed particle sampling 

technique. 

• δ- SPH: By adding a higher order source term in the continuity equation (from 

which density is obtained by time integration) Molteni and Colagrossi (2009) 

tried to smooth the pressure signal. The proposed diffusive term is proportional to 

the smoothing length and converges to the continuity equation, when the 

smoothing length decreases with increase in the number of particles. Through 

many studies in last decade, they were able to get successful simulation for a 

variety of fluid flow problems: stable pressure during jet impinging on a flat plate 

(Antuono et al., 2010); impact of wave on structures due to dam break (Marrone 

et al., 2011a); accurate propagation of gravity waves in a rectangular basin and 

wave focusing (Antuono et al., 2011); sloshing (Antuono et al., 2012); and trailing 

waves due to a propagating ship (Marrone et al., 2012). More recent applications 

include viscous flow around bluff bodies (Marrone et al., 2013) and non linear 

responses of floating bodies (Bouscasse et al., 2013a). 

• K2_SPH: By employing a higher order gradient estimation using kernel function, 

Hu et al. (2011) found improved pressure from SPH. Since, many of the other 

physical parameters like wave elevation is related with pressure, a noise free and 

accurate pressure is essential. This would also make it possible to evaluate non 

violent water waves comparable with analytical solution.  

• Incompressible SPH (Cummins and Rudman, 1999): By treating water as 

strictly incompressible in contrast to the original weakly compressible approach 

of Monaghan (1994), and thereby solving pressure from projection based Pressure 

Poisson Equation (PPE), improvement was obtained over standard SPH for 

required physical quantities for benchmark problems like 2D lid driven cavity and 

Rayleigh- Taylor instability. Lo and Shao (2002) applied similar technique to free 

surface flow problems. Till then, a lot of works has been devoted for 

understanding the suitability of the models, ISPH and WCSPH for pressure (e.g., 

Lee et al., 2008; Hughes and Graham, 2010).  
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• ISPH with explicit calculation of pressure from PPE: Hosseini et al. (2007) 

calculated the pressure from PPE explicitly. An important extension of this work 

was achieved by Rafiee and Thiagarajan (2009) who were successful in 

simulating Fluid Structure Interaction (FSI) problem involving fluid interaction 

with an elastic structure using this explicit incompressible SPH. Number of 

validations of this technique are made by Barcaloro et al. (2012). 

• Godunov SPH: Although this technique was proposed to better deal with shocks, 

it was apparent that improvement might be possible for pressure in fluid flow 

problems also. Rogers et al. (2010) found good results for pressures on a caisson 

breakwater using that technique. Clear evidences of improved prediction of 

pressure in GSPH compared to both WCSPH and ISPH were provided by Rafiee 

et al. (2012). 

• SPH with Arbitrary Lagrangian Eulerian (ALE) scheme: Koukouvinis et al. 

(2013) formulated a novel ALE scheme for SPH and found its improvement for 

pressure for a variety of fluid flow problems like jet impinging on a flat plate, 

Taylor Green vortices and slamming of wedge shaped structure during its entry 

into water etc.  

Although most of the above mentioned techniques aimed at improving the prediction of 

pressure, it has also brought significant improvement for other measurable quantities (like 

velocity, wave elevation) and facilitated quantifiable validation of the SPH simulation. 

Thus these have contributed for overall development of the SPH as an effective 

numerical method.  

2.4.2. Treatment of boundary conditions 

A number of techniques to implement required boundary conditions in SPH has been 

proposed by many authors in the past while solving fluid flow problems. The repulsion 

force based approach in Monaghan (1994) is one of them. Among other techniques, few 

are given here. 

• Ghost Particles (Libersky et al., 1993; Colagrossi and Landrini, 2003): The 

required boundary condition (e.g., free slip) is enforced at the solid boundary by 

providing full compact support near the boundary using ghost particles. This has 

proven to be a powerful technique for boundary modeling in domain with simple 
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geometry. But, it has problems with complex geometries. Delorme et al. (2009) 

obtained good results for sloshing due to roll excitation using this technique. 

• Dummy particles (Takeda et al., 1994): A fixed layer of particles are placed in 

order to mimic a solid boundary. The problem with ghost particles in case of 

complex geometrical shapes can be partly solved by using this technique. Yet, one 

needs to extrapolate the required properties at the dummy particle location 

carefully to have proper implementation of the boundary conditions. Many studies 

investigated the effectiveness of this technique. Issa et al. (2010) extended this 

technique to investigate a proper turbulence model in SPH scheme. On the other 

hand, Adami et al. (2012) proposed a formula for accurate calculation of pressure 

at the dummy particles based on local force balance. They also validated the 

technique for benchmark cases. 

• Fixed Ghost Particles (Marrone et al., 2011a): Another approach is based on 

fixed layer of ghost particles which are set around the solid boundary and each of 

them is associated with an interpolation node in the fluid region. Then at each 

time step, the fluid properties are calculated in these interpolation nodes using 

higher order kernel function. Using this technique, they were also able to 

successfully simulate wave pattern generated by a passing ship with a complex 

hull shape (Marrone et al., 2011b).  

 A rigorous mathematical analysis of the mostly used dummy particle techniques has 

been provided by Macia et al. (2011). It was found that most of the techniques are not 

truly continuous when a systematic convergence test is carried out with respect to the 

particle based differential operator. Therefore, they proposed consistent formulae for 

conducting accurate extrapolation in the solid region and later, it has been found to give 

accurate results for flow over bluff bodies in Marrone et al. (2013). 

• Multiple Boundary Tangent (MBT) technique: Yildiz et al. (2009) and Shadloo 

et al. (2011) were able to get accurate simulation of flow around bodies using 

traditional ghost particle approach by proposing effective techniques to position 

ghost particles and fix their properties based on local normal. Shadloo et al. 

(2011) have uniquely validated flow past a complex shaped aerofoil using SPH. 
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• Semi analytic Boundary condition: After the initial proposal of this technique by 

Kulasegaram et al. (2004), there has been a long pause for the adoption of this 

novel technique for more general fluid flow problems. Some preliminary attempts 

were taken by Di Monaco et al. (2011). Complicacies due to calculation of the 

normalized integrating factor for a given geometrical shape may be a reason for 

such a delay. Recently, Ferrand et al. (2013) took an effective initiative towards 

the development of this technique. Substantial progresses have been achieved to 

generalize this technique (e.g., 3D problems) as reported in Mayrhofer et al. 

(2013, 2014). 

• Fatehi and Manzari (2012) proposed a novel technique to calculate pressure at the 

wall particle by considering accurate gradient near the wall. They were able to 

simulate a deformable boundary using this technique.  

2.4.3. Multiphase flow 

Monaghan and Kocharyan (1995) provided multiphase simulation of gas and dust using 

SPH. This may occur during a volcanic eruption. From then onwards, the effectiveness of 

the SPH methods in simulating multiphase flow has been shown by many authors, in 

particular, modelling the interface between two media. 

•  Hu and Adams (2007) provided multiphase simulation using a projection based 

ISPH method. 

• Das and Das (2009) showed the evolution of a bubble originating from a 

submerged orifice. 

• Grenier et al. (2009) proposed an Hamiltonian SPH method to simulate gravity 

current between two fluids with density ratio up to O(10). 

• Repalle et al. (2011) showed comparison between Level- Set and SPH simulations 

for a bubble evolution problem. 

• Monaghan and Rafiee (2013) gave an accurate, easy to use and efficient SPH 

scheme for simulating multiphase problems. 

• Grenier et al. (2013) provided simulation of bubbly flows with multiple bubbles. 

The evolution and interaction were discussed. 

• Zainali et al. (2013) conducted numerous multiphase simulations with ISPH 

method. 
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2.4.4. Viscous term 

Both artificial viscosity and physical viscosity in Navier Stokes equation cause 

dissipation of energy. Now, how far the dissipation caused by the artificial viscosity is 

close to the physical is a matter of research. Yet, while solving fluid flow problems where 

the viscosity plays a significant role, a number of approximate forms were proposed for 

the viscous part. 

• Cummins and Rudman (1999) used a form in which Laplacian of the velocity was 

approximated retaining first order derivative of kernel. Similar form was adopted 

in Lo and Shao (2002) for ISPH model. 

• Morris et al. (1997) employed a new viscous form for studying flow around 

cylinder in 2D for low Re. 

• Cleary (1998) proposed another form for heat conduction problem in which an 

empirical coefficient is required for calibration. Delorme et al. (2009) adopted this 

form simulating sloshing problem.  

• Takeda et al. (1994) used a different form for the viscous part. 

• Macia et al. (2012) compared the effectiveness of different viscous forms. 

Detail theoretical aspects and the discussions of energy dissipation associated with 

viscous terms used in SPH or in general in the Lagrangian models and Navier- Stokes 

equation can be found in Violeau (2009). Here it was found that in order to develop a 

proper viscous term, the chosen kernel function shall follow some conditions. Using 

viscous from of Monaghan and Gingold (1983), Colagrossi et al. (2013) found that, by 

prescribing proper number of neighbouring particles, it is possible to describe energy 

dissipation with sufficient accuracy comparable to an analytical decay for gravity waves.  

 

2.5. OTHER PARTICLE BASED METHODS  

Similar to the case in solid mechanics, few new methods or methods that are proposed in 

solid mechanics, have been finding their places along with SPH in solving fluid flow 

problems. Some of the most important techniques are: 

• Moving Particle Semi Implicit (MPS) method: Originally proposed by 

Koshizuka and Oka (1996), this technique has been proven to be a robust 

numerical method for free surface flow related problems, similar to SPH. The 
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development of this method has been achieved through the series of work by 

Khayyer and Gotoh (Khayyer and Gotoh, 2009a, 2011, 2013). Other salient study 

include Shakibaeinia and Zin (2010), Lee et al. (2010, 2011), Kim et al. (2011) 

and Zhang and Wan (2012). A systematic convergence analysis of the MPS 

method has recently been carried out by Souto Iglesias et al. (2013). 

• Meshless Local Petrov Galerkin (MLPG) method: Ma (2005a) extended this 

technique for non linear water wave problems. Further improvements have been 

achieved by fast gradient estimation in MLPG_R (Ma, 2005b), accurate detection 

of free surface particles (Ma and Zhou, 2009), wave breaking in 3D problems 

(Zhou and Ma, 2010), Improved MLPG_R to deal with wave interaction with a 

flexible elastic stricture (Sriram and Ma, 2012) and Hybrid coupling with FNPT 

based FEM solver (Sriram et al., 2012). 

• Particle Finite Element Method (PFEM) (Onate et al., 1996): This method has 

proven to be effective in Hydroelastic problem (Idelsohn et al., 2008), wave 

interactions with submerged movable bodies (Onate et al., 2006), breaking waves 

(Idelsohn et al., 2004) and landing of capsule in water (Ryzhakov et al., 2013). 

• Finite Volume Particle Method (FVPM): Hietel et al. (2000) and Nestor et al. 

(2009) have succeeded the application of FVPM for benchmark problems. This 

method has recently been applied for free surface flow problem by Guo et al. 

(2012). 

• Constraint Particle Method (CPM): Koh et al. (2012) proposed this technique 

for solving free surface flow problems. Later, Koh et al. (2013) used this 

technique to study the effect of floating baffle on sloshing. 

 

 Other important applications of SPH in various fields of science and engineering 

include Geophysics (Tartakovsky et al., 2007; Vacondio et al., 2013), flow of Non 

Newtonian fluids (Ellero and Tanner, 2005), microfluidics (Weib et al., 2013) and so on.  

 

2.6. MOTIVATION 

Based on the survey as discussed above, it is apparent that with the works on SPH in 

recent years, there is a great potential to develop an accurate, robust and multipurpose 
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numerical model based on SPH for simulating a variety of problems in non linear water 

waves. With the availability of proper boundary modeling techniques, it is plausible that 

qualitatively correct results would be obtained for violent wave structure interaction 

problems. Sophisticated techniques for controlling pressure fluctuation would ensure 

reliable solution for pressure from simulation for violent cases which might be difficult to 

achieve through a grid based solver. But the applications of SPH models for non violent 

water waves are rather scanty where traditional grid based methods (like FDM and FEM) 

have been proven to be highly accurate and efficient. On the other hand, grid based 

solvers are known to posses difficulties in simulating violent breaking waves. This has 

motivated the initiation of the study which aims at filling this long lasting void by 

considering the following two aspects: a) Perform simulation of non violent water waves 

to validate and quantify the error with respect to a reference solution obtained from an 

analytical model or grid based solver and, b) Follow the exercises on violent waves with 

the same model to test how far qualitatively accurate solutions can be obtained.  

In order to achieve that goal, one has to face a number of questions as follows: 

• What formulation has to be adopted for the pressure gradient? Whether it is ISPH, 

or WCSPH or their improved versions. 

• What technique should be implemented for modeling boundary? Can it be 

achieved by combing several approaches? What is the technique through which 

the model would be able to cope up with any kind of boundary shape prescribed 

by the user like in commercial CFD software? 

• Whether SPH is intrinsically inapplicable for studying non violent cases where 

one can go for exact quantification of errors by validation, or is it possible to do 

that? If so, how far the model differs from the basic techniques and what aspects?  

• What are the parameters that need calibration for achieving an acceptable 

solution? How to make an optimum choice of these values? 

• Whether a version of the developed model can be equally applicable for both 

violent and non violent cases or not? Or, it can be done by some change in some 

input parameters in the same model assuring easy adoption for general purpose 

use? 
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2.7. OBJECTIVE AND SCOPE 

The salient objective of the present study is thus development of a robust SPH based 

numerical solver for non linear water waves. 

The scope of the study is framed to address the challenges in the model development. 

• To tune parameters that control the numerical stability of SPH. 

• To implement proper boundary conditions for both fixed and moving surfaces. 

• To explore techniques to enhance the computational efficiency of the model. 

• To develop improved versions of SPH for specific problems depending on the flow 

conditions. 

• Testing wide range of applications such as sloshing, wave impact and wave 

overtopping. 

 Naturally, the research leading to answering those questions may possibly lead to the 

following contributions: a) For SPH, a number of improvements may be obtained in 

terms of numerical stability, boundary conditions and time integrators, and, b) A unique 

numerical model can be casted which will be able to simulate both violent and non 

violent water waves literally without any constraints. It is the subject matter of the 

following subsequent chapters which attempt to serve the above research scopes.  
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CHAPTER 3 

 

THE NUMERICAL MODEL 

 

 
 

3.1. GENERAL 

This chapter presents the governing equations and the numerical tools required to 

transform the Partial Differential Equation (PDE) form to Ordinary Differential Equation 

(ODE) form. This facilitates to design a suitable scheme which can be marched in time 

domain with an aim to reproduce a dynamical system. The mass and momentum 

conservation (i.e. continuity and Navier- Stokes equations) equations are described. It is 

followed by the approximation of these equations in SPH based on the theory of integral 

interpolations. The success of such an interpolation depends on the chosen kernel or 

weighting function and its' properties. Therefore, few popular kernel functions are briefly 

highlighted. Three major differential operators namely: gradient, divergence and 

Laplacian of a given function are derived using the kernel function. It leads to the 

formation of the ODEs to be solved in SPH. Finally, an attempt is made to discuss issues 

related with errors brought into the system due to such a transformation. 

 

3.2. MATHEMATICAL FORMULATION 

Fig. 3.1 depicts adopted governing equations and the associated boundary conditions for 

the unknown variables (namely, pressure p and velocity v) to be solved in the domain 

(Dm) with the boundary Γ (
s f

= ∪Γ Γ Γ ). Here Ad and Q are appropriate differential 

operators and as and q are the external forces or sources acting over the domain (Dm) and 

along the boundary Γ respectively. Uext and pe are the prescribed value of velocity and 

pressure respectively along Γ. In the present study only one phase (i.e., water) is 

considered. Hence, pe is set as 0. The entire domain (Dm) along boundary (Γ) is 

discretized with particles with known initial quantities including that of unknowns that 

are to be solved in time. Assuming a strong form formulation, the unknown variables are 

represented in terms of the variables calculated through a kernel function from a finite 
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domain for a particle i. Then these smoothed variables are substituted in the actual 

governing equations. The detail procedure of these methodologies is provided in the 

following sections. 
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Fig. 3.1. Mathematical formulation of the problem in the given domain.  

 

3.3. GOVERNING EQUATIONS  

At macroscopic level, the flow of a Newtonian fluid can be described with sufficient 

accuracy by considering the following well known continuity and Navier- Stokes 

equations. 

 

( ). 0
D

Dt
+ ∇ =v

ρ
ρ  (3.1) 
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Here, ρ, ν (=µ/ρ), p and v represent fluid density, kinematic viscosity, pressure and 

velocity respectively. Bf is a body force term. For the fluid flow problems considered in 

the present study Bf is g (0, -9.8), the acceleration due to gravity. In SPH, a point or a 

fluid portion is followed in time. Therefore the governing equations are expressed in a 

Lagrangian frame. Hence, these equations are in non conservative form (Anderson, 
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1995). If the assumption of incompressible fluid is made, Eqn. (3.1) gives divergence free 

velocity field. Depending on the Reynolds number (Re) of the flow, there is a mode of 

dominance in between pressure gradient ( p∇ ) and viscous nature ( 2∇ vν ) in Eqn. (3.2). 

SPH transforms these equations into an equivalent strong form formulation, where the 

approximation for a primitive field variable (like ρ) is directly substituted into the 

governing equation, instead of invoking the minimization of the difference between a 

predicted variable and its exact value, as generally done in Finite Element Method (FEM) 

with weak or Galerkin based formulation. The details of the SPH approximation of a field 

variable and its subsequent higher order derivatives (say, Laplacian) based on the theory 

of integral interpolation are provided in the next section. 

 

3.4. APPROXIMATION OF A FIELD FUNCTION  

While dealing with observables, physicist Paul Adrien Maurice Dirac anticipated the 

necessity to use a weighting function which would help to yield a better behaviour in the 

vicinity of an improper function (Dirac, 1930). With this purpose, he wrote: 

 

"..the process of multiplying a function of x with δ(x-a) and integrating over 

all x is equivalent to the process of substituting a for x." 

 

( ) ( ) ( )f x x a dx f a

∞

−∞

− =∫ δ  (3.3) 

 

This weighting function δ(x-a) is named as 'delta (δ)- function'. Latter, it became known 

as Dirac- delta function. It holds the following two properties: 

( )
1      

0     

x a
x a

x a

=
− = 

≠
δ  (3.4) 

The Dirac- delta function has been extensively used in various fields (e.g., signal 

processing). In a particle based numerical method like SPH, it gives a way to construct a 

field variable and its derivatives at a given point from the knowledge of its surrounding 

neighbours. Those neighbours which take part in interpolating a property at this given 

point and their discrete contribution in this process are controlled by the Dirac delta 
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function. While working with interpolating points movable in space, it is necessary to 

construct a function which shall approximate a Dirac delta function. Such a function in 

SPH is interpreted as kernel function, W(x). Theoretically, the neighbours should be 

selected from an infinite domain. However, it is possible to design the kernel function in 

such a way that, it tends to zero as the distance increases in between the point and its 

neighbour. Therefore, in SPH, a function at a point 'a' is approximated as: 

( ) ( ) ( )f a f x W x a dx
Ω

= −∫  (3.5) 

where, the summation is taken over a number of neighbouring points selected from the 

sub- domain, Ω (area in two- dimension (2D); volume in three- dimension (3D)) which is 

called a support domain. Now let us assume that the entire domain is represented by 

particles with known coordinates and masses. Then the integral in Eqn. (3.5) can be 

substituted by a summation taken over Ω: 

( ) ( ) ( ) ( ) ( )
1 1

N N
j

i j j i j j j i

j j j

m
f x f x W x x dV f x W x x

= =

= − = −∑ ∑
ρ

 (3.6) 

where, dVj, mj and ρj are the volume, mass and density of the j
th

 particle respectively. 

There are N number of neighbours in Ω for i
th

 particle. The use of kernel function in SPH 

makes possible to express a field variable and its derivatives without a grid or mesh. The 

idea of this integral interpolation is depicted in Fig. 3.2. Generally, the support domain 

(Ω) is defined by a circle (in 2D) with a radius kh. k is a scale factor and h is called 

smoothing length. 

 

3.4.1. Approximation of Gradient 

In SPH, the gradient of a function using kernel function is given by: 

( ) ( ) ( )i j j i jf x f x W x x dx
Ω

 ∇ ≈ ∇ − ∫  (3.7) 

which is obtained by simply substituting  f(x) in Eqn. (3.5) by ( )jf x∇ . We have, 

( ) ( ) ( ) ( ) ( ) ( )j j i j j i j j if x W x x f x W x x f x W x x     ∇ − = ∇ − − ∇ −       (3.8) 

substituting Eqn. (1.8) into Eqn. (1.7), we get, 

( ) ( ) ( ) ( ) ( )i j j i j j j i jf x f x W x x dx f x W x x dx
Ω Ω

   ∇ = ∇ − − ∇ −   ∫ ∫  (3.9) 
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The first term in Eqn. (3.9) can be converted into an integral over the boundary of Ω (i.e., 

Γ) by using Gauss divergence theorem. Hence, 

( ) ( ) ( ) ( ) ( )i j j i j j j i jf x f x W x x ds f x W x x dx
Γ Ω

   ∇ = − − ∇ −   ∫ ∫.n  (3.10) 
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Fig. 3.2. Idea of integral interpolation for representing a function in SPH using kernel 

function. 

 

For a particle inside the domain with full compact support, the first term in Eqn. (3.10) 

can be neglected. But, near the edge of the domain (like free surface) it has sufficient 

contribution. Calculating boundary surface integral in SPH requires identification of 

particles along the edge and then calculation of associated normals. This makes the 

computation more complex (Colagrossi et al., 2009). Therefore, most of the SPH models 

avoid this task. However, recently, some researchers have made significant progress in 

enforcing necessary boundary conditions through a semi analytic approach (Mayrhofer et 

al., 2013). In their model, the calculation of surface integral is included. There are other 

ways through which it can be satisfied in a less rigorous way (Details in Chapter 4). This 

chapter adopts the standard form for gradient of a function. Following Eqn. (3.10), 

( ) ( ) ( )i j j i jf x f x W x x dx
Ω

 ∇ = ∇ − ∫  (3.11) 
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Here, the gradient of the kernel is calculated at i
th
 particle with respect to the position of 

the j
th

 particle. Details of the approximation of a field variable and its subsequent higher 

order derivatives in SPH can be found in the book by Liu and Liu (2003). 

 

3.5. TRANSFORMATION OF THE GOVERNING EQUATIONS 

This section presents the derivation of the ODEs from the governing equations using the 

principles of SPH approximations as discussed above. Initially, the momentum equation 

(Eqn. 3.2) is considered. It consists of several differential operators. The techniques used 

to model those operators is then utilized to deal with the continuity equation (Eqn. (3.1)). 

Now, the momentum equation is described term by term. 

3.5.1. Pressure gradient 

Using the expression of representing the gradient of a function using kernel function 

(Eqn. 3.11), the pressure gradient in SPH may be written as: 

1 1 1

N N N
j j j

i j ij j j ij ij

j j jj j

m p m
p p W dV p W W

= = =

∇ = ∇ = ∇ = ∇∑ ∑ ∑
ρ ρ

 (3.12) 

where, ijW∇  is the gradient of kernel calculated at i
th
 particle with respect to the position 

of the j
th
 particle. Therefore, the rate of change of velocity of i

th
 particle due to pressure 

gradient with respect to the j
th
 particle is 

j j

ij

i j

p m
W∇

ρ ρ
which is not necessarily equal to 

i i
ji

j i

p m
W∇

ρ ρ
, the rate of change of velocity of j

th
 particle due to i

th 
particle, because, 

 and ji ij i jW W p p∇ = −∇ ≠ . Hence, the direct approximation of pressure gradient using 

SPH kernel function does not conserve linear momentum. Non conservation of 

momentum may have serious stability issues for the numerical model and may yield 

unphysical pressure distribution. For this reason, Monaghan (1992) adopted a technique 

that includes density within the pressure gradient. Hence, 

2

2

1 1 1 1 1

1
,  

p p
p p p p p

p p
r p

     ∂
∇ = ∇ + ∇ = ∇ + ∇ = ∇ − ∇     

∂     

 
∇ = ∇ + ∇ 

 

ρ ρ
ρ ρ ρ ρ ρ ρ ρ ρ

ο ρ
ρ ρ ρ

 (3.13) 
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Now, the rate of change of velocity at i
th
 particle due to j

th
 particle considering pressure 

gradient alone is: 
2 2 2

j j j ji i
ij j ij j ij

j j i j i j

p m m pp p
W W m W

 
∇ + ∇ = + ∇  

 
ρ

ρ ρ ρ ρ ρ ρ
, which is purely 

symmetric in form. Therefore considering all the neighbours: 

2 2
1

N
ji

j ij

j i ji

ppp
m W

=

  ∇
= + ∇       
∑

ρ ρ ρ
 (3.14) 

This form conserves linear momentum. Apart from the gradient of the kernel, all the 

other variables are scalar in above equation. Hence, the direction of pressure gradient is 

same as that of kernel gradient. The resulting force due to pressure gradient is collinear 

with that of position vector of i
th
 particle with respect to the j

th
. Therefore, Eqn. (3.14) 

also conserves angular momentum (see e.g., Khayyer, 2008). Most of the SPH models 

use this form. 

 It is equally important to note that there are numerous ways available to derive an 

approximate SPH form for pressure gradient conserving linear and angular momentum. 

For example, Eqn. (3.14) can also be derived by writing a Lagrangian for a particle and 

then following the steps to get the equation of motions (see e.g., Rafiee, 2011). First law 

of Thermodynamics has to be considered in that case (mathematically, which has same 

effect as considering the density inside the gradient operator). Although Eqn. (3.14) is 

symmetric, most of the used standard kernel functions are not even first order consistent 

(i.e., they may not always able to give zero while taking gradient of a constant). That can 

be corrected by employing a Moving Least Square (MLS) kernel function. In such case, 

direct form of pressure gradient (i.e., Eqn. (3.12)) has to be considered. A Hamiltonian 

form may be preferred if the SPH model is expected to simulate a multiphase flow (see 

e.g., Grenier et al., 2009). 

3.5.2. Viscous stress  

Calculation of viscous term in Navier- Stokes equation (Eqn. 3.2) requires estimation of 

the Laplacian of velocity. Applying the SPH rule similar to pressure gradient to express 

velocity gradient would lead to a form involving second order derivatives on kernel 

function. Higher order derivatives of kernel are more susceptible to error due to particle 

distribution than lower order derivatives. For this reason, it is customary to use a hybrid 

with an equivalent Finite Difference form where first derivative of kernel function can be 
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retained to represent the Laplacian operator (Brookshaw, 1985; Morris et al., 1997; 

Cummins and Rudman, 1999). Let the gradient of 
∇

ρ

v
 be expressed as: 

2 2

2 2

1 1 s
s

dVd d d d d
V

dx dx dx dx dx dx

   ∇
∇ = + = +   
   ρ ρ ρ

v v v v v
 (3.15) 

where, Vs =1/ρ, specific volume. Eqn. (3.15) has been abbreviated in one dimension for 

the sake of simplicity in derivation. Taking a Taylor series expansion around particle i 

towards j
th
 particle to express Vs and v yields: 

( )
( )

2
2

2
...

2

j is s
s j si j i

x xdV d V
V V x x

dx dx

−
= + − + +  (3.16) 

( )
( )

2
2

2
...

2

j i

j i j i

x xd d
x x

dx dx

−
= + − + +

v v
v v  (3.17) 

Ignoring higher order derivatives and combining Eqns. (3.16) and (3.17), 

( )( )
( )

2

s j si j is

j i

V VdV d

dx dx x x

− −
=

−

v vv
 (3.18) 

Now, using Eqn. (3.16) and Eqn. (3.18), the first term in the right hand side of Eqn. 

(3.15) is expressed as: 

( )s j sis
j i j

j i j

V VdV d W
dx

dx dx x x x

− ∂
= −

− ∂∫
v

v v  (3.19) 

From Eqn. (3.17), 
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22

j i j j i j

j i j j

d x x d

x x dx dx

− −
= +

−

v v v v
 (3.20) 

Multiplying both sides with kernel gradient and integrating over the support domain: 

2

22
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d x x dW W W
dx dx dx
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 (3.21) 

Due to the property of the chosen kernel function, 
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d dW
dx

dx x dx
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 (3.22) 
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The first line in Eqn (3.23) is obtained by integrating by parts. Since, ( ) 0j i jx x Wdx− =∫ , 

( ) ( )j i j j i j

j j

W
W x x dx x x dx

x x

∂ ∂
− = − −

∂ ∂∫ ∫  (3.24) 

Hence, 
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 (3.25) 

Substituting, Eqn. (3.25) and Eqn. (3.22) into Eqn. (3.21),  
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j j i
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j j i j

d W
dx
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− ∂
=
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v v v

 (3.26) 

Substituting Eqn. (3.26) and Eqn. (3.19) into Eqn. (3.15), the representation of Laplacian 

operator working on velocity in one dimension is given as: 
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s j i j si j

j i j j i j

s j si
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 (3.27) 

Generalizing for 2D and representing the above integral as summation over neighbouring 

particles, the viscous part of Eqn. (3.2) can be represented as: 

( )
( ) ( )

( )2 2
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4 .N
j i j ij ij

i j

ji i j ij

m W

=

+ ∇ ∇
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µ
ρ ρ ρ ζ

rv
v v

r
 (3.28) 

where, rij=ri-rj, ζ is a small number O(0.1h
2
) to maintain stability when rij→0 while two 

particles come too close. This particular form conserves linear momentum, yet 

conservation of angular momentum is not guarantied (see e.g., Khayyer, 2008). 

Originally developed in Morris et al. (1997), in this formula, significance of such errors 

can be problem dependent for low or moderate Reynolds numbers (as observed in 

Colagrossi et al., 2009). To ensure conservation of angular momentum, one needs to 

employ a further correction on kernel gradient (Bonet and Lok, 1999). However, for                                                                                                                                                                                                                                           
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the fluid media considered (i.e., water), coefficient of kinematic viscosity is noticeably 

low (O(10
-6

)). So, non conservation of angular momentum due to viscous stress part with 

standard kernel gradient may not have significant influence in numerical simulation, 

unless one artificially increases the viscosity coefficient. In this case, there is a risk of 

varying the Re of flow with different flow physics. 

 Hence, considering the pressure gradient and viscous stress parts approximations in 

SPH using Eqn. (3.14) and Eqn. (3.28), respectively, Eqn. (3.2) can be written as: 

( )
( ) ( )

( )22 2 2
2

1 1

4 .N N
j i jj ij iji

j i i j

j ji i j
i j ij
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= − + ∇ + −      + + 
∑ ∑
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rv
v v + g

r
 (3.29) 

This is an ODE. It can solved in time based on an appropriate time integrator (like, fourth 

order Runge- Kutta Method (RK4)). The key task is to calculate pressure discretely at 

individual particles (pi). In the SPH context, there are two distinct approaches to carry out 

this, viz. weakly compressible and incompressible. The choice of a particular approach 

controls the selection of a time integrator. Both approaches have been considered in the 

present study. The details of these two approaches are given in the following sections. 

 

3.6. WEAKLY COMPRESSIBLE SPH (WCSPH) 

SPH was formulated to simulate gas dynamics problems in Astrophysics. It was found to 

be convenient to calculate pressure through an equation of state for a compressible fluid. 

While it was applied to simulate wave motion, Monaghan (1994) considered the same 

approach for calculating pressure and proposed to treat water as slightly compressible. 

The resulting scheme was fully explicit and this idea brought remarkable ease for 

modelling free surface flow problems. The following equation of state (Batchelor, 1974) 

was adopted. 

2

1s i
i

o

c
p

  
 = − 
   

γ

ορ ρ

γ ρ
 (3.30) 

 Here, γ is an adiabatic factor and taken as 7 for water. ρ0 is the reference density for 

water (1000kg/m
3
). ρi is the density of the i

th
 particle. The primary purpose of this 

equation was to describe propagation of sound waves in water. To adopt a practical time 
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step during simulation, it is necessary to impose a restriction on sound speed, cs 

(Monaghan, 1994). 

2
0 2

2

0

b

s

v
M

c

−
δ = = =

ρ ρ
ρ

ρ
 (3.31) 

i.e., change in variation of density is proportional to square of Mach (M) number. By 

choosing cs as ten times of fluid bulk velocity (vb), it is postulated that the density 

variation due to compressibility assumption for water is O(0.01% to 0.1%). So, the sound 

speed (cs) in water is no longer representing an actual sound wave; but, it is acting like a 

sort of 'numerical sound speed' and contributes in the overall stability (i.e., time step) of 

the numerical model.  

 However, to maintain numerical stability further, several other additional tools are 

required to be employed in the context of WCSPH. The details are further discussed 

below. 

3.6.1. Artificial viscosity 

WCSPH has problems with shocks. Generally, it takes place when two particles with two 

different energy states (defined by their densities) interact with each other. It was 

specified by Monaghan and Gingold (1983) to simulate shocks in Astrophysics problems. 

A separate term (Π) is added with the pressure gradient part in Eqn. (3.29).  
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 (3.32) 

where α' and β are empirical coefficients chosen in the range from 0.0 to 0.1. ci and cj are 

the numerical sound speed associated with i
th
 and j

th
 particles. κ= 0.01h. Although it 

brings some improvements, it is known to cause spurious dissipation. This dissipation can 

be controlled in water wave simulation by choosing a sufficient number of particles or 

resolution (Antuono et al., 2011). A better approach may be Godunov scheme adopting 

Riemann solver (Inutsuka, 2002; Parshikov et al., 2000; Rafiee et al., 2012) or SPH- ALE 

formulation (Koukouvinis et al., 2013). However, the above schemes are computationally 

expensive. 
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3.6.2. Tension instability 

Tension instability is a general problem in particle methods where the behaviour of 

particles becomes unrealistic with the change of internal stress states. The direct 

consequence of tension instability is particle clustering and breakdown of simulation. 

Many researchers (Swegle et al., 1995; Monaghan, 2000; Bonet and Kulasegaram, 2001; 

Khayyer and Gotoh, 2011) have extensively studied tension instability in SPH/MPS and 

proposed different measures. In the present study, XSPH technique (Monaghan, 1989) is 

adopted. Here, the particles are moved with a corrected velocity (vi)c which is obtained by 

averaging over its neighbourhood. 

( )
1

N
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i i ji ijc
j ij

m
W

=

= + ∑ε
ρ

v v v  (3.33) 

ε, known as XSPH factor, is a parameter in the range of 0- 0.5. However, for simulating 

blast waves, higher values may be used (Liu and Liu, 2003). The XSPH technique may 

not avoid tension instability fully, yet, it gives scope to maintain stability during 

simulation in an easy manner.  

3.6.3. Pressure calculations 

To calculate pressure from Eqn. (3.30), one needs density before hand. In WCSPH, 

density at a particle can be calculated in two different ways, i.e., either by taking a direct 

summation over the neighbouring particles, 
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j j jj

m
W dV W m W

= = =

= = =∑ ∑ ∑ρ ρ ρ
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or, from the continuity Eqn. (3.1), 
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.
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j ij i ij

ji

d
m W
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= 

 
∑

ρ
v ∇∇∇∇  (3.35) 

Both of the above techniques have advantages and disadvantages. The summation density 

approach (Eqn. 3.34) is more susceptible to error compared to continuity density 

approach (Eqn. 3.35) near the boundary of the domain. That can be corrected by applying 

a Shepard or MLS (Moving Least Square) correction in Eqn. (3.34). For the free surface 

flow problems, Eqn. (3.35) is generally preferred. 

 Looking closely on Eqn. (3.30), it can be understood that it is very stiff in nature. That 

is, a slight change in density (0.01%- 0.1%) from its desired value may have large 
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variation in pressure. So, predicted pressure may be fluctuating unrealistically. This is a 

more serious drawback, if one needs to simulate problems requiring to run for long 

physical time, i.e., O(20- 50s). In this case, instability in pressure may affect the 

simulation. For this reason, Colagrossi and Landrini (2003) proposed to periodically filter 

the density at certain time steps by applying a MLS kernel function.  
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Due to inversion of matrix A for each particle, the computational cost marginally 

increases. But it was found to bring significant improvement in pressure distribution. 

Still, for longer time simulation, it was not that much effective. To enhance the stability 

for pressure, Molteni and Colagrossi (2009) proposed to add an additional diffusive term 

in the continuity Eqn. (3.35). This technique was further improved in Antuono et al. 

(2010) with a conservative and consistent diffusive term for the free surface flow 

problems. 
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where, the diffusive term in the above equation is given by: 
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With the addition of the diffusive term in the continuity equation approximation (Eqn. 

3.38), the above mentioned scheme is referred as δ- SPH. δ is a dimensionless coefficient 

and takes a value in the range of 0- 0.2. In the present study, δ is taken as 0.1. 

 

3.7. INCOMPRESSIBLE SPH (ISPH) 

Another alternative for solving pressure in SPH is by adopting classical time marching 

procedure for numerically solving Navier- Stokes equation (Chorin, 1968). The required 

differential operator to solve Pressure- Poisson Equation (PPE) has been proposed by 

Cummins and Rudman (1999). The first application of this scheme for free surface flow 

was shown by Lo and Shao (2002). Various other techniques have been proposed to 

enforce incompressibility in SPH by many researchers (e.g., Hu and Adams, 2007; 

Lastiwaka et al., 2005; Ellero et al., 2007). The detailed procedure for solving pressure 

with an incompressible assumption and with a two step projection correction approach is 

as follows. 

Step I. Update particle positions without considering the pressure gradient terms. 
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 (3.40) 

where '* ' represents an intermediate step between time step t and t+∆t. The velocity with 

which the particle positions need to be updated from time step t to t+∆t is calculated as, 

* **

* **,  

t t

t tor v v

+∆

+∆

= + ∆

= − ∆

v v v

v
 (3.41) 

where, v* is calculated as shown in Eqn. (3.40). ∆v** is to be calculated based on pressure 

gradient part. That is,  
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**
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1
t tp t+∆∆ = − ∇ ∆

ρ
v  (3.42) 

Substituting ∆v** from Eqn. (3.42) to Eqn. (3.41) results in a Helmoltz- Hodge 

decomposition, where a vector is split up into a divergence free (vt+∆t) and gradient of a 

scalar (
*

1
t tp t+∆∇ ∆

ρ
) components. From the requirement of continuity Eqn. (3.1), one can 

write, 
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Substituting ∆v** from Eqn. (3.42) into Eqn. (3.43), 
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Step II. Solve PPE to obtain velocity correction based on pressure gradient 

By applying SPH approximation for a Laplacian operator as discussed in section 3.4.2.for 

viscous part and substituting the average density, (ρi+ ρj)/2, the left hand side of Eqn. 

(3.44) is discretized as, 
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where, pij= pi-pj. Applying Eqn. (3.45) into Eqn. (3.44), a simultaneous linear algebraic 

system of the equations of the form AX=B of size n × n, n being the total number of 

particles, can be obtained. The above PPE in the matrix form can be efficiently solved by 

using iterative based solver like Conjugate- Gradient (CG) method. Details of the 

solution of large matrices based on iteration based method like CG are provided in 

Appendix A. Once pressure is calculated from Eqn. (3.45), velocity correction is obtained 

from Eqn. (3.42). The final velocity for time step t+∆t is obtained from Eqn. (3.41). 

Then, the particle coordinates are updated from time step t to t+∆t. 

2

t t t
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Due to the absence of sound speed restriction in ISPH, a larger time step can be adopted 

compared to WCSPH. Although, solving PPE consumes additional CPU time, if higher 

order time integrators (like RK4) is adopted for WCSPH (as followed in the present 

study), the computational expenses of WCSPH and ISPH can be made to be almost 

similar order. This gives a chance to make the comparison between WCSPH and ISPH to 

be more direct compared to using same time integrator (like predictor corrector) in both 

WCSPH and ISPH. 

 

3.8. BOUNDARY CONDITIONS 

In order to have a unique solution for the governing equations, the numerical model shall 

contain some properly defined and adopted boundary conditions for the field variables 

(i.e., p and v). For the problems pertaining to non linear wave structure interaction as 

considered in the present study, one might have: a) Solid boundary: free slip or no slip 

for velocity and Neumann boundary condition for pressure; b) Free surface: Drichilet 

boundary condition for pressure (It needs pressure is equal to atmospheric pressure or 

zero for a single phase model, as considered in the present study). Since, Re number is 

moderately high for the problems considered, the physical effects (like formation of 

boundary layer and associated energy dissipation near the solid boundary) due to the 

viscous part in momentum Eqn. (3.29) are less significant than pressure gradient part. 

The choice of free slip or no slip condition for velocity adjacent to the solid boundary is 

controlled by specific interest. In SPH method, reliable solution has been achieved by 

enforcing no slip while modelling Laplacian operator (i.e., the viscous part) and free slip 

for the divergence operator (for solving density in Eqn. 3.35 or Eqn. 3.38 and to solve 

pressure from Eqn. 3.30) while modelling solid boundary. This pressure is used for 

calculating pressure gradient (Marrone et al., 2013). Since, the current interest is focused 

on the pressure gradient, free slip boundary condition for velocity at the solid boundary 

has been used. It is given by, 
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where, vb and vp are particle velocities at the boundary and at the neighbourhood of the 

boundary, respectively. Suffix 't' denotes velocity component along the tangent at the 

particle on the boundary. 'n' is the unit normal pointing outwards from the origin of vb. 

Following condition is imposed to satisfy Neumann boundary condition for pressure at 

the solid boundary.  

0
p

n

∂
=

∂
 (3.48) 

This is a general condition when there are no body force components. Whereas, for 

surface gravity wave problems, the above condition is modified as 
1

0
p d

n n

∂ ∂
+ =

∂ ∂ρ
g . This 

can be obtained from Bernouli’s equation imposing free slip condition for the dynamic 

part. For solving PPE using ISPH, a Drichilet boundary condition, p=0 is applied on the 

particles located at the free surface. For doing this, particles at the free surface have to be 

captured. Enforcement of this condition in WCSPH is not straightforward due to its own 

explicit nature of decoupling between velocity and pressure.  

 Difficulty arises in enforcing these essential boundary conditions in SPH due to 

truncation of support domain of the kernel function near the solid boundary. In such 

cases, one can provide the full support domain by mirroring the fluid properties near the 

boundary on other side of the boundary. The resulting particles so created are known as 

'Ghost particles' (Colagrossi and Landrini, 2003). With Ghost particles, it is possible to 

satisfy free slip and Neumann conditions properly. But if there is sharp change in the 

geometry of the boundary, complicacy arises. That can be overcome by using a fixed 

layer of particles called 'Dummy particles' (Koshizuka et al., 1998) around the solid 

boundary. However, in that case utmost care has to be undertaken to extrapolate fluid 

field properties (i.e., v and p) at Dummy particle location, for the proper enforcement of 

the essential boundary conditions (Eqns. 3.47 and 3.48). Details of these implementations 

have been provided in Chapter 4 which enhances the present model development. 

 

3.9. KERNEL FUNCTION 

The accuracy of SPH simulation depends on the choice of the kernel function, W(x). 

There are a large number of kernel functions available in SPH literature suitable for 
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specific applications. For any adopted kernel function with a finite support domain kh 

(i.e., beyond which it has zero value), it shall satisfy the following three important 

properties: 

( ', ) ' 1W x x h dx
Ω

− =∫  (3.49) 

'
( ', ) ( ', )

x x x x
W x x h W x x h

= =
− = −  (3.50) 

( , ) ( , )
x x x x

W x x h W x x h
′= =

′ ′ ′ ′− = − −  (3.51) 

The first property denotes that when all the weighting contributions for interpolations of a 

field variable in the neighbourhood of a particular particle is summed up, it shall give 

unity. For the second property, the kernel function should be symmetric in form when 

centred at the particle where properties have to be calculated by taking interpolation in its 

neighbourhood. Since, in SPH the particles move in time, satisfaction of second property 

(Eqn. (3.50)) is more difficult than the first one (Eqn. (3.49)). These conditions are also 

got affected due to the presence of a boundary. Using the MLS kernel function or 

Shepard correction, Eqn. (3.49) can be better satisfied. For example, in Shepard 

correction, the density in summation density approach can be corrected as, 

1
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ρ

ρ

 (3.52) 

This works equally good for both interior and near the boundary. 

 Fig. 3.3 shows three popular kernel functions with their higher order derivatives for B- 

Spline (Monaghan and Lattanzio, 1985), Renormalized Gaussian (Colagrossi and 

Landrini, 2003) and Wedland kernel (Wedland, 1995). Here, αd denotes a normalizing 

factor which can be calculated by taking an integration over the support domain for the 

given dimension of the problem and setting it equal to 1 (i.e., by enforcing first kernel 

property, Eqn. 3.49). The value of αd in 2D for B- Spline, Renormalized Gaussian and 

Wedland kernel are 15/7πh
2
, {πh

2
(1-C1)}

-1
 where, C1=C0(1+k

2
); C0=e

-k2
; k2=k

2 
and 

7/64πh
2
, respectively. All the kernel functions have the characteristic Dirac δ form, They 

have a maximum at the centre and symmetric with respect to the centre line. Expressing 

the gradient of a function through kernel gradient unavoidably contain errors. These 
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errors get modified further when the laplacian of the same function is expressed by taking 

higher order derivatives of the kernel. For this reason, for calculating Laplacian, a hybrid 

form with finite difference has been used keeping the first derivative of kernel function 

and avoiding the second derivative (as discussed in section 3.4.2). This helps to maintain 

accumulation of errors within limit while substituting exact derivatives with kernel based 

differential operators. Compared to B- Spline, Renormalized Gaussian and Wedland have 

smoother second derivatives. For the present all SPH models, the maximum order of 

kernel function is up to first order.  

-2 0 2

-2

-1

0

1

2

R

α
d
(W

,d
W

/d
R

,d
2
W

/d
R

2
)

B- Spline

W

dW/dR

d2W/dR2

-2 0 2

-2

-1

0

1

2

R

Renormalized Gaussian

-2 0 2

-20

-10

0

10

20

R

Wedland

 

Fig. 3.3. Different kernel functions and their higher order derivatives. R= |x-x'|/h.  

  

 It should be noted that the symmetric form for kernel and anti- symmetric form for its' 

first derivative (Fig. 3.3) are true only for uniform particle spacing. The necessary 

conditions (Eqn. 3.50 and Eqn. 3.51) that the kernel function must obey are not valid 

either when particles start moving during simulation or, near the boundary. This 
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particular feature of SPH makes a systematic error analysis rather difficult than a grid 

based numerical method. 

3.10. ERROR ESTIMATION 

A comprehensive error analysis has been made by Quinlan et al. (2006) for estimating the 

gradient of a function in SPH. It is learnt that the truncation error in SPH estimation for a 

gradient is composed of two parts: error due to smoothing (i.e., expressing the exact 

derivative by taking integral interpolation for kernel gradient over the support domain, 

Eqn. 3.7) (TE1) and error due to discretizing (substituting the integral of summation over 

neighbours (TE2)). TE1 is O(h
2
). But, TE2 can vary depending on whether particles are 

uniformly distributed (during a fluid flow problem with slow dynamics and with 

sufficient number of particles) or non uniformly distributed (e.g., violent waves). For this 

reason, in order to develop a robust SPH model dealing with both non violent and violent 

cases, it is required to conduct separate convergence studies. The rule proposed by 

Quinlan et al. (2006) for the convergence study in SPH is by varying both initial particle 

spacing and smoothing length. This has been adopted in the present study. 

 However, in the context of ISPH or MPS, there is another aspect in this regard, which 

should also be investigated; yet has been less reported in literature. Due to the presence of 

∆t
2
 in source term of PPE (right hand side of Eqn. 3.44), the time step decreases due to 

CFL criterion, as one increase resolution or number of particles in the domain. Hence, the 

convergence is expected for an optimum ∆x/∆t (∆x is the initial uniform particle 

spacing). This has been performed by Ma and Zhou (2009) with Meshless Local Petrov 

Galerkin (MPLG) method. 

 Hence, the convergence study has to be done by varying ∆x, h (for WCSPH based 

schemes) and ∆x/∆t (for ISPH). 

 

3.11. NEAREST NEIGHBOUR PARTICLE SEARCHING (NNPS)  

One of the major computationally expensive modules in a SPH based model is to find 

and store neighbouring particles for all the particles. Allocating a fixed number of 

neighbours and then finding and storing neighbours individually for all the particles may 

become impractical for large number of particles. For this reason, the properties of the 

kernel function as given in Eqn. (3.50) and Eqn. (3.51) are utilized. Using these, an 
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interaction in between a target particle and its neighbour is counted only once. The 

required output of the Nearest Neighbour Particle Searching (NNPS) algorithm is 

basically five arrays. The maximum size of these arrays is a combination on how two 

particles can form a group of pairs (i.e., nC2). The first array stores the first member in an 

interacting pair, second array stores the second member (similar to a typical argument of 

kernel function W(x-x'), x corresponds to the first and x' the second), third array with the 

kernel function for this interaction (i.e., W(x-x')) fourth and fifth with the first derivative 

with respect to the x and z. While all these members are inserted in their arrays, a counter 

(NIAC) keeps on counting how many times kernel and its derivative are calculated. The 

output of NNPS also contains this counter. Now, whenever a SPH summation is required, 

simply a loop is applied over NIAC instead of nC2 operations for these five arrays as 

shown in the following pseudo code. 

 

DO IK=1, NIAC    ! loop over all the pairs 

!collect members in the current pair  

I=PAIR_I(IK)         

J=PAIR_J(IK) 

! calculate volume of the members 

VOL(I)=MASS(I)/RHO(I) 

VOL(J)=MASS(J)/RHO(J) 

! field function and its x and z derivatives 

!for member i 

f(I) = f(I) + W(IK)*VOL(J) 

fx(I) = fx(I) + Wx(IK)*VOL(J) 

fz(I) = fz(I) + Wz(IK)*VOL(J) 

!for member j 

f(J) = f(J) + W(IK)*VOL(I) 

fx(J) = fx(J) - Wx(IK)*VOL(I) 

fz(J) = fz(J) - Wz(IK)*VOL(I) 

 

END DO 

 

i 

j 

other interacting pairs  

present interacting pair 
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Once these four arrays are formed, SPH summation can be performed in very efficient 

way using this above technique. Therefore, the program (i.e., NNPS) which gives output 

for NIAC and these four arrays should be made as computationally cheap as possible so 

as to have an overall efficient model. In SPH, there are various ways to perform this task. 

The two techniques that are used in the present study are detailed below. 

 

3.11.1. Directly evaluating the pairs 

In this technique, for all i={1,2,3….,n}, j is checked for j={1,2,3,….n}, j≠i, to find 

neighbouring particles for all the particles. This operation is of O(n
2
). Therefore, it is not 

computationally efficient. For higher number of particles, this approach is impractical. 

3.11.2. Linked List Particle searching method 

In this technique (Monaghan and Gingold, 1983; Hockney and Eastwood, 1988), initially 

a grid with squares of kh × kh is laid in the domain. Then all the particles are sorted inside 

those squares. In other words, an array of the same size N is formed which stores the 

particle indices based on their locations in these squares. This array is called a Linked- 

List, where particles are linked with respect to either inside a particular square or its 

adjacent squares. For a given particle, in order to identify the neighbouring particles, 

search is made only inside the square where the particle lies and in its surrounding eight 

cells. This is done by using the linked list. The grid has to be recreated in each time step 

based on the maximum reach of the free surface. This technique has the number of 

operations, roughly O(n). This technique is adopted for most of the SPH runs performed 

in the present study.  

 Apart from linked- list, there is another efficient algorithm available for NNPS named 

tree search. This is more efficient in 3D calculations with the number of operations 

O(nlogn). This has been adopted in many SPH codes (like GADGET, Springel et al., 

2001). 

 

3.12. ALGORITHM OF THE NUMERICAL MODELS 

In summary, the flow charts of the basic SPH models (WCSPH and ISPH) as described in 

previous sections are provided in Fig. 3.4. Many of the steps are similar. However, the 
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approach adopted for solving pressure make the choice of the time integrator different. 

Therefore, these two algorithms have to be developed through separate models. 
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Fig. 3.4. Flow charts of (a) WCSPH and (b) ISPH algorithms. 

 

3.13. VALIDATION 

An independent numerical model whether it has been developed based on well 

established numerical method or a new novel formulation, has to be validated using 

various problems with known exact solutions. These kinds of reference problems are 

called benchmark problems. Even if the model is based on established methods, still it is 

required to perform this test in order to prove that the algorithm has been implemented 

properly. This requirement is more prolonged for the SPH models because a number of 

different numerical techniques have been adopted in order to develop a robust model. The 
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subsequent sections discuss performances of the SPH models developed in the present 

study for the non linear wave propagation problem, i.e., the wave generation and 

propagation in a Numerical Wave Tank (NWT). It is also equally important to 

systematically quantify the error yielded by the numerical model while predicting against 

an exact solution for a given benchmark problem. This facilitates for the numerical model 

to be acceptable as a deterministic model. 

 The next section begins with describing the NWT problem and the exact analytical 

solution for this problem adopted from Eatock Taylor et al. (1994). This analytical model 

along with the numerical model based on Fully Nonlinear Potential Theory using Finite 

Element Method (FEM) (Sriram, 2008) has been used to validate the present SPH model. 

Inter comparison has also been performed in between Weakly Compressible SPH 

(WCSPH) and Incompressible SPH (ISPH) with the reference solutions. Lastly, a 

detailed convergence study has been performed for the present SPH schemes. 

 

3.14. NUMERICAL WAVE TANK (NWT) 

In order to understand the dynamical behaviour of an object either floating (like ship, 

semi- submersibles, floating platforms for extracting oil and natural resources etc.) or 

fixed (like breakwater, coastal defence structures), it is required to investigate its 

response in a marine environment subjected to different wave conditions. Findings from 

such studies form a major part in designing coastal or marine structures. In a physical 

model test, this is achieved by conducting experiment in a large tank partially filled with 

water where nonlinear water waves can be artificially generated by moving a paddle 

periodically at one end of the tank. In the simplest case, the wave maker or paddle 

undergoes a sinusoidal motion with a given frequency and amplitude so as to generate a 

regular monochromatic wave (i.e., a wave that can be described by a single frequency- 

amplitude pair) in the tank. Following linear wave theory, it is possible to have 

relationship between stroke (S) of the oscillating piston type wavemaker and the desired 

wave height (H) for a given wave period (T) (Dean and Dalrymple, 1984). 
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where, kp is the wave number of the required progressive wave.  

 Installation of a tank with such wave generation system requires substantial technical 

expertise with financial support. Moreover, placement of the object that is to be studied 

along with necessary instruments in wave tank is a critical task. Since eighties, 

hydrodynamists have been spending lot of effort in developing programs through which 

such tests can be reproduced in computers. These programs are developed based on well 

established numerical methods for solving partial differential equations with given 

boundary conditions. This kind of a program or numerical model is called a Numerical 

Wave Tank (NWT). 

 The domain that is adopted for solving the NWT problem in 2D is shown in Fig. 3.5. 

It consists of a tank of length Lx with constant water depth d. The bottom and the right 

wall are fixed. 

 

wavemaker

Progressive wave with given 

height (H) and period (T)

Lx

d

 

Fig.3.5. Schematic diagram of a 2D NWT problem. 

 

 The left wall simulates a moving paddle or the wavemaker. Depending on the choice 

of the input to the wavemaker, a number of different waves (e.g., regular wave, random 

wave, solitary wave etc.) can be generated in a NWT. Hence, the wave generation and its 

evolution along tank length without the presence of any object have been considered. If 

the model is capable of describing the wave generation and propagation properly, then it 

is understood that it has the potential to study with more complex physics (i.e, inclusion 

of floating object, breakwater, beach, sea wall etc.). Thus, an attempt to solve this 
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problem is a first step towards the development of robust numerical model for solving 

problems in nonlinear water waves. 

 

3.14.1. Analytical model for predicting wave elevation in NWT 

The solution from the analytical model which is taken as reference for the numerical 

model, is adopted from Eatock Taylor et al. (1994).  
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where, β
2
 = |g|kptanh(kpd) and ω = 2π/T. This solution is composed of two parts: the first 

part represents the transient part where any point on the initial calm free surface takes 

some finite time to adopt characteristic nonlinear wave form. Whereas, the second part 

describes a steady state situation. In the limit, when t→ ∞ (i.e., physically, after a long 

time interval), the above solution asymptotes towards a steady state solution of the form 

A0 cos(kpx-ωt) with amplitude A0 = ω/(|g|k0).  

 As a Navier- Stokes solver, capturing of the steady state part of the above solution is 

rather demanding for the present numerical model. However, this can be achieved either 

by incorporating a damping zone adjacent to the right wall restricting wave reflection 

from there, or, by using sufficiently long tank length (Lx) depending on location of the 

probe where one wants to measure wave elevation (η) avoiding any possible effect of 

wave reflection from right wall. Although few SPH/ Particle based Lagrangian models 

have incorporated damping zones (Lastiwka et al., 2009; Lind et al., 2012; Li et al, 2012; 

Molteni et al., 2013), its' effectiveness in long time simulation is still a research topic. On 

the other hand, the elapsed CPU time increases rapidly with increase in number of 

particles (due to increase in Lx). For most of the problems discussed in the present 

convergence study, the time series in the transient part alone has been considered. Good 

convergence for this part also denotes effectiveness of the adopted boundary modelling 

technique and overall stability of the model. Hence, for the NWT problem, the solution of 

the present numerical model has been reported within the limit of the transient part only. 
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3.14.2. The FEM model 

Apart from the above analytical model (Eqn. 3.54), a different numerical model has also 

been used for the purpose of validation. In contrast to the present numerical model 

solving Navier- Stokes equation using SPH, this numerical model solves Laplace 

equation assuming irrotational, inviscid flow using FEM. This model is highly accurate 

when compared to analytical model (Eqn. 3.54) or experiment (specifically, in deep or 

intermediate water depth regions). It is also computationally cheap and most of the 2D 

cases, jobs can be performed in desktop PCs with normal ratings. Details of this 

numerical model can be found in Sriram (2008). 

 

3.15. INTERCOMPARISON BETWEEN WCSPH AND ISPH 

The regular wave propagation in a NWT is considered. Initial water depth (d) is 1m. The 

amplitude (ah=S/2) and angular frequency (ω) of the motion of the wavemaker is 0.1m 

and 3.13 rad/s respectively.  

(a) WCSPH (b) ISPH

x(m) x(m)

z(
m

)

 

Note: Green dot represents the analytical solution. 

 

Fig. 3.6. Comparison of the predicted free surface at different time instants between SPH 

and analytical model (a) WCSPH; (b) ISPH.  

 

Both WCSPH and ISPH models have been extended. Fig. 3.6 shows the model prediction 

at different time instant. The prediction has been compared with the analytical model 

(Eqn. 3.54). Both SPH models use same initial particle spacing (around 0.01m). The SPH 
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models correctly describe the regular wave propagation. However, there are noticeable 

differences between WCSPH and ISPH prediction. These issues have to be resolved by 

investigating the effect of resolution depending on the schemes. This is described in a 

latter section. Due to employment of a higher order time integration scheme (RK4) in 

WCSPH, the time step size has been found to be higher than that of ISPH, according to 

CFL criterion. For the same reason, although a single ISPH step is known to be 

computationally expensive, requiring solving PPE; this cost have been found to be nearly 

same as that of WCSPH where within each time step, the calculations need to be reported 

for three times for RK4.  

 Figs. 3.7 (a) and (b) show spatial distribution of normalized total pressure with respect 

to the maximum pressure at different time instants for a resolution of about 20. It is found 

that even at a coarser resolution, the pressure from ISPH is better than WCSPH in terms 

of the spatial distribution or total pressure along the depth.  
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(a) WCSPH (b) ISPH 

 

Fig. 3.7. Spatial distribution pressure predicted by (a) WCSPH and (b) ISPH at different 

time instants. The colour bar is of total pressure normalized with respect to the 

maximum pressure in the domain. 

 

The improvement in the prediction by WCSPH and ISPH with respect to change in 

resolution is presented in Fig. 3.8. Mathematically, the resolution property has been 

defined as the ratio of a characteristic length (e.g., initial water depth, d) to the initial 

particle spacing (dzp). Comparison of present WCSPH and ISPH models with FEM has 

been shown for wave elevation (η) measured at 12 m from the mean position of the 

wavemaker. The number of nodes used in FEM model in x and z coordinates are 400 and 

16, respectively. The motion of the wavemaker is prescribed as, X(t)= ahsin(ωt) with 

ah=0.1 m and ω=3.13 rad/s. Very fine resolution is required for both WCSPH and ISPH 

models to obtain better agreement with FEM. Although a perfect match has yet not been 
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obtained with finest resolution used (e.g., 80 in both WCSPH and ISPH), the transient 

part of the solution has been recovered well. But the computational expenses are large 

due to the employment of more number of particles. So, the number of particles have to 

be optimized based on the required property under investigation (like wave elevation, 

pressure etc.). 

 

Fig. 3.8. Comparison of the time history of the free surface elevation between FEM and 

SPH models with different resolution. Time scale is normalized as tn= tω. S 

(=2ah) is the stroke of the wave maker. 

 

Given the fact that none of the SPH schemes has been able to give converged solution for 

this NWT problem, the convergence study then further been extended by varying h/dzp 

ratio in addition to the simultaneous variation in d/h. Theoretically, for the chosen 

particle based representation of differential operators (e.g., gradient) using kernel 

function, it is required to do the convergence study in SPH by varying both h/dzp and d/h 

simultaneously, as proposed by Quinlan et al. (2006). While performing such 

investigations, it has been found that it is possible to get almost a perfect match between 
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WCSPH and FEM prediction for the NWT problem studied above. Fig. 3.9 shows such a 

comparison with h/dzp=2 and d/h=50. It should be noted that for all of the above cases 

(e.g., in Fig. 3.6), h/dzp= 1.33 has been chosen. For the chosen renormalized Gaussian 

function as kernel function, this has been a standard choice. Yet, for these combinations 

of h/dzp and d/h, much favourable solution has been obtained in WCSPH. Although, for 

solving non violent cases like propagation of moderately steep non linear water waves, 

SPH is relatively less popular compared to that of violent wave structure interactions, it is 

made clear that with proper selection of smoothing length (h) and resolution, it is possible 

to get good prediction from SPH.  

 

3.16. CONVERGENCE STUDY FOR WCSPH SCHEME 

This section provides detailed convergence study by varying both h/dzp and d/h for the 

above NWT problem using WCSPH scheme. Although attempt has been adopted to do 

the same for ISPH, it could not be completed for the constraint of the serial code. With 

the increase of h, the size of the coefficient matrix in PPE also increases (while using 

ISPH). Thus, the elapsed CPU time becomes prohibitive with the simultaneous increase 

in resolution. This restricts relatively lower range of h/dzp and d/h to cover for 

convergence study.  

 The test cases selected for three h/dzp ratios (1.0, 1.33, 2.0) with d/h varying from 10 

to 60 are summarized in Table 3.1. It should be noted that these test cases have been 

selected given with the restriction of the present serial code in terms of total number of 

particles used for simulation. The serial code can be executed with upto 10
5
 number of 

particles. 
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Fig. 3.9. Comparison between WCSPH and FEM for the free surface elevation measured 

at a given location. 

 

The details of the utilized computational resources based on the number of particles are 

provided in Table 3.2.  

 Fig. 3.10 shows the convergence results for the present WCSPH scheme. For all these 

simulation, ghost particles have been used to model the boundaries. In this way, apart 

from free surface, the problem associated with truncation of support domain of the kernel 

function near the boundary has been avoided. In general this gives scope to obtain 

consistent findings for the present convergence test with that of Quinlan et al. (2006). 

 In these cases, the error has been quantified based on L2 error. The adopted procedure 

for calculating L2 error is as follows. For each case, at each time step, L2 error is 

calculated based on the differences between the predicted free surface profile (η) from 

Eqn. (3.54) and that from SPH.  



 59 

( ) ( )
2

2

1

1
( ) , ,

fm

i ianalytical SPH
if

L t x t x t
m =

 = −
 ∑ η η  (3.55) 

 

where, mf is the number of free surface particles at a given time step in SPH. Then the L2 

error has been calculated by taking a time average of these discrete L2 errors with respect 

to time.  

2 2

1
  ( )

e

s

t

e s t

L error norm L t dt
t t

=
− ∫  (3.56) 

 

where, ts and te denote start and end time of the simulation respectively. Fig. 3.8 presents 

the convergence of SPH scheme. The convergence is considered to be achieved when the 

difference between the L2 errors from two successive test run is approximately near 10
-05

. 

The rate of convergence is faster with increase of h/dzp. It is of similar nature on the 

findings of Colagrossi et al. (2013) who studied the standing wave problem with periodic 

boundary conditions on two sides and ghost particles at the bottom of the domain. 

 Although higher h/dzp values have favourable convergence properties, its practical 

value may be optimized based on the other requirements of the problem.  
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Fig. 3.10. Convergence of the present WCSPH scheme in terms of L2 error. 

 

3.17. SUMMARY 

In this chapter, the fundamental principles of SPH approximation have been explained. 

The differential operators that are used in the governing equations have been derived 

using kernel functions. The choice of the boundary conditions for the present problems 

has been highlighted. Few kernel functions and their properties have been reported. It is 

found that special techniques are required to restore the consistency of the kernel 

functions. The detailed strategy for solving pressure gradient in momentum equation has 

been provided for WCSPH, where flow is assumed as weakly compressible to simplify 

pressure calculations and for ISPH by retaining true incompressibility for water. A 

discussion has been provided for the error estimation of both WCSPH and ISPH. The 

numerical strategy required to develop an efficient SPH model in terms of neighbouring 

particle searching has also been discussed. These lay the foundation for developing a 

SPH model for solving particular problems in nonlinear water waves.  

 The propagation of moderately steep (H/L= 0.044) nonlinear water waves have been 

simulated with WCSPH and ISPH schemes. Even though the prediction is limited within 
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the transient part of the solution, very fine resolution is required in both the schemes in 

order to get converged solution. For the selected (d/L) and wave steepness, the dissipation 

due to wave propagation has not been considered. But given with proper scale 

consideration, evidences are available in literature (Babanin and Chalikov, 2012) that non 

breaking steep waves can trigger turbulence with considerable dissipation. Since, the 

present SPH models are formulated from Navier- Stokes equation, it has the potential to 

study such phenomenon with viscous dissipation. A work in this direction has already 

been indicated by Colagrossi et al. (2013) where WCSPH has been found to correctly 

predict viscous dissipation when compared to the analytical solution of a Linearized 

Navier- Stokes equation for the standing wave evolution in a rectangular domain. 

 

 

 

 

 

Table 3.1. Details of the test cases adopted for the convergence study.  

h/dzp=1.0  

d/h 10 20 50 60 70 

Nz 5 10 25 30 35 

Np 1495 5990 37, 475 53,970 73,465 

h/dzp=1.33  

d/h 15 20 30 50 60 

Nz 10 13 20 33 40 

Np 1495 10,127 23,980 65,802 95, 960 

h/dzp=2.0  

d/h 10 20 25 30 50 

Nz 10 20 25 30 50 

Np 5990 23,980 37,475 53,970 1,49,950 

Note: Nz is the number of particles set along water depth (d) and Np is the total number of 

fluid particles. 
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Table 3.2. Computational resources used for NWT problems depending on total number 

of particles (n). 

 

n<20,000 20,000<n<50,000 50,000<n<100,000 

Desktop PC 

2.6 GHz Pentium® Dual- 

Core CPU 

HP Z600 workstation 

(intel® xenon® multi 

processor (Nos.11)) 

VIRGO super cluster in 

High Performance 

Computing facility at IIT 

Madras 

elapsed CPU time for running 10s of physical time 

4 to 6 hrs. (Aprrox.) 10 to 12 hrs. (Aprrox.) 60 to 72 hrs. (Aprrox.) 
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CHAPTER 4 

 

DEVELOPMENT OF THE NUMERICAL MODEL 

 

 

4.1. GENERAL 

SPH, an emerging numerical tool, has been undergoing a vast development with its wider 

application in numerous fields, apart from free surface flow problems. The main purpose 

of the present study is the development of robust SPH algorithms, applicable for free 

surface flow problems including interaction with fixed ocean structures. This has been 

proven by applying SPH methods for different problems and then investigating the ways 

through which prediction can be enhanced. This chapter presents the salient 

developments in terms of applications in a number of free surface flow problems. For 

most of these cases, the benchmark problem of 2D dam break flow has been revisited to 

show the various stages of improvements brought into different versions of WCSPH and 

ISPH as part of the model development. Other test cases involve solitary wave evolution 

as it propagates over constant and varying depths and wave impact over a fixed seahead. 

The numerical prediction is then compared with experimental measurements and/or 

analytical/ other numerical prediction as available in the literatures. 

 

4.2. IMPROVED WCSPH MODEL 

The improved version of the WCSPH model consists of higher order source terms in 

continuity equation (δ- SPH, as mentioned in Chapter 3 in Eqn. 3.38). In the initial 

versions of the WCSPH models, free slip boundary condition for velocity has been 

implemented using ghost particles. The term 'ghost' denotes repeated appearances and 

disappearances in the stages of calculation at a given time step based on the requirement 

of satisfaction of boundary conditions in the numerical model. The details of the ghost 

particle implementation in case of solid edge boundary are shown in Fig. 4.1. The 

adopted ghost particle technique is applied in accordance with the free slip boundary 
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conditions which are explained in section 3.6. At each and every time step (or, in 

individual RK4 sub time steps), all the fluid particles which are within the range of the  
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Fig. 4.1. Details of boundary conditions near the solid edge representing a concave angle  

   using ghost particles. 

 

support domain (i.e., kh) from the boundary, are reflected on the other side with respect 

to the boundary. In order to satisfy free slip boundary condition for velocity at the 

boundary, following velocity field is prescribed at the ghost particles to approximate Eqn. 

(3.47). 

2

t

n

t

g

n n

g b

v v

v v v

=

= −
 (4.1) 

 

where, superscripts t and n represent tangential and normal components of measured 

velocity with respect to the plane of reflection at the boundary. vg, v and vb are the 
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velocity of the ghost particle, fluid particle and boundary respectively. For example, 

while solving continuity equation (Eqn. 3.35) for a fluid particle 'pv' near the vertical 

edge or fluid particle 'ph' near the horizontal edge with a ghost particle 'ng' with its 

prescribed velocity in accordance with the neighbouring fluid particle 'np' is considered. 

Whereas, for a fluid particle 'pc' near the corner, an additional ghost particle 'ng2' is 

accounted in addition to ng1 and ng3 corresponding to vertical and horizontal edges, 

respectively. Velocity at ng2 is prescribed so as to have a continuous transition in the 

velocity field while summation is taken over neighbours for pc both in interior fluid and 

corner ghost regions. Apart from velocity, other hydrodynamic variables (such as p, ρ) 

are prescribed at the ghost particles. 

0

1

02

0

.

1

g

g fg

g

s

m m

p p

p

c

=

= +

 
= + 
 

γ

ρ

γ
ρ ρ

ρ

r g  

(4.2) 

where, rfg is the position vector of the fluid particle relative to the ghost particle. The 

density (ρg) of the ghost particle is calculated from Eqn. (3.30) with known pressure. The 

pressure (pg) at ghost particle is defined so as to satisfy Neumann boundary condition 

(Eqn. 3.48) for pressure at the solid boundary. In overall, this ghost particle technique 

provides full support domain for the fluid particles near the solid boundary and maintains 

the consistency of the scheme. It also helps to satisfy the above essential boundary 

conditions at the discrete level. Ghost particle technique is preferred if the boundary of 

the domain is relatively simpler (like a rectangle). 

 Two test cases are considered to study the performance of the above mentioned 

WCSPH scheme while the boundary is modelled with ghost particles. The first test case 

is the benchmark problem of 2D dam break flow and the second test case is the evolution 

of a solitary wave over constant depth. 

4.2.1. 2D Dam Break flow 

The successive evolution of a large water column due to sudden release of the reservoir 

gate is the matter of study in the context of dam break flow. The large water column 

initially retained behind the gate rapidly takes the form of bore upon release and makes 

impact over the structures situated around the reservoir. Although this happens within a 



 66 

very short span of time, it gives a fair scope for detailed study of several important 

hydrodynamic aspects of a free surface flow problem with fluid structure interaction. The 

schematic of the 2D dam break flow is shown in Fig. 4.2. H and B are the height and 

breadth of the water column, respectively.  

 

Sudden release of the reservoir gate

H

B

Lx  

Fig. 4.2. Schematic diagram of the 2D Dam Break problem. 

 

In reality, the gate is released within a finite span of time. But in the numerical model, it 

is assumed that the gate is released instantaneously, i.e., the problem is simplified by 

restricting the study of the flow only after the release of the gate without considering the 

speed at which the gate is withdrawn. This speed is known to have significant effect on 

the resulting flow evolution. In any case, consideration of sudden release causes 

maximum impact on the front structure and hence, for practical design purpose, this 

assumption is appropriate.  

 Fig. 4.3 shows an inter comparison of numerical simulation from the basic ISPH, 

WCSPH and δ- SPH at different instants of time for the dam break problem. Here, the 

length of the domain (Lx), height (H) and breadth (B) of the water column are 0.4m, 0.2m 

and 0.1m, respectively. The initial particle spacing is kept same (around 0.0025m) in all 

the SPH models. α' and β have been kept as zero while representing artificial viscosity 
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(Eqn. 3.32) in order to maintain Re same in all SPH models. The colour bar represents 

the total pressure. The predicted pressure distribution in standard ISPH and WCSPH has 

been found to contain noise. All the models capture the point of impact at the toe of right 

fixed wall around t= 0.3s. There is noticeable improvement in pressure distribution 

predicted by δ- SPH compared to standard WCSPH and ISPH.  

 

Fig. 4.3. Inter comparison of the flow evolution for the 2D Dam Break problem in 

between ISPH, WCSPH and δ- SPH models. The colour bar is total pressure 

(Pa).  

  

 The time history of the bore front evolution is compared in Fig. 4.4 with Moving 

Particle Semi- implicit method (MPS) (Lee et al., 2010) and Volume of Fluid (VOF) 

method (Hirt and Nichols, 1981). It is also compared with experimental measurements of 

Martin and Mouce (1952). The WCSPH prediction is found to be closer to experiment 

compared to ISPH and δ- SPH. Whereas, the simulation from ISPH is in close agreement 

with MPS and VOF compared to WCSPH and δ- SPH. This may be due to similarity in 

treating the fluid as truly incompressible as in both MPS and VOF in contrast to WCSPH.  
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Fig. 4.4. Comparison of the time history of the bore front evolution (xb) predicted from 

SPH models with past studies. tn = t√(2|g|/B). 

 

 Another case study on Dam Break problem has been considered where the time 

history of pressure measured at a given location on the right wall is available from 

experiment (Zhou et al., 1999). In this case, H= 0.6m, B=1.2m and Lx=3.22m. For this 

given dimension, the bore undergoes a high swell up on the right wall at 1.2s, as shown in 

Fig. 4.5. Subsequently, due to the effect of gravity, the swelling bore starts to recess and 

form a plunging bore (Fig. 4.5, at 1.4s). While this plunging bore touches the upcoming 

free surface of the fluid towards the right wall, a strong secondary impact occurs and 

consequently, a strong jet is formed (Fig. 4.5, at 1.9s). Physically, the secondary impact is 

also enhanced by the burst of the air tube entrapped beneath the plunging bore. Fig. 4.6 

gives closer view on the spatial distribution of total pressure (in kPa) around primary (at 

1.2s) and secondary impact events (at 1.65s). Due to the presence of the diffusive terms, 

realistic spatial distribution of pressure has been obtained with δ- SPH. Moreover, it 

successfully captures physical processes featuring wave breaking, flow separation and 
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cavity formation which might be more difficult to capture through a grid based numerical 

model. 

 

Fig. 4.5. Particle snapshots at different time instants for the dam break flow. 

 

 The inter comparison of the pressure time history at 0.16m above the base on the right 

wall is provided in Fig. 4.7. Compared to standard WCSPH and ISPH, δ- SPH gives least 

fluctuating pressure time history. In experiment the size of the pressure probe used was 

0.09m (see e.g., Marrone et al., 2011a). Whereas, in simulation the pressure is recorded 

precisely at the location where the probe is located. This may be the reason behind the 

noticeable global mismatch of the SPH models with experiment. But, the first pressure 

peak observed in experiment around tn = 2.5 is not properly captured through the present 

δ- SPH. The time of first pressure peak is well captured in standard WCSPH and ISPH. 

The prediction from WCSPH is closer to experimental measurement than ISPH. 

Whereas, for the secondary pressure peak around tn = 6 in the experiment, there is no 

evidence from the WCSPH prediction. ISPH model shows a peak around tn = 7 which 
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might be in accordance with the experiment. The pressure rise time and duration of the 

secondary impact has been relatively best captured in δ- SPH, but with noticeable phase 

shift.  
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Fig. 4.6. Zoomed view of Spatial distribution of total pressure field at t = 1.2s and t 

=1.65s. The colour bar is pressure in kPa. 

 

It should be noted that the pressure peak around tn =7 in experiment starts developing in 

the process of cavity formation before the closing of the cavity. Whereas, in simulation 

this peak occurs after the cavity closes. This may be the reason for the slight phase shift. 

The trend in the pressure time history by δ- SPH near the secondary impact is close to 

that of experiment. The overshoot near tn = 7 by δ- SPH is caused due to the sudden 

collapse of the plunging bore. This kind of overshoot has also been reported by the single 

phase WCSPH model in Colagrossi and Landrini (2003). 

 After the first impact with the front vertical wall, the particle distribution becomes 

scattered specifically in WCSPH and ISPH. Then, at these instances, the interpolated 
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values for field variable (like density, pressure) and their gradients using kernel function 

contain error. The accuracy in estimating kernel gradient depends on particle distribution. 

Thereore, the predicted pressure at the given location suffers from spurious oscillation in 

WCSPH and ISPH. Whereas, in δ- SPH, these oscillations are damped by using diffusive 

terms in Eqn. (3.38). This is achieved by applying the gradient correction while 

calculating density gradients (Eqn. (3.39)). This gradient correction assures conservation 

of angular momentum (Bonet and Lok, 1999). Hence, the prediction from δ- SPH 

contains less fluctuation compared to WCSPH and ISPH. 

 

4.2.2. Solitary wave propagation over a constant depth 

Having shown the capability of the improved WCSPH (i.e., δ- SPH) in simulating violent 

wave structure interaction due to dam break flow, its robustness is further highlighted by 

studying the solitary wave propagation over a constant water depth. The complete 

understanding of tsunami waves, its generation and propagation are still yet to be 

revealed. However, there exists some common features between a tsunami and a solitary 

wave. Therefore, some times, in numerical modelling, a tsunami wave is represented by a 

solitary wave due to its known physical characteristics. 
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Fig. 4.7. Inter comparison of the pressure time history at 0.16m above the base of the 

right wall due to dam break flow. tn = t√(|g|/H). 

 

 It is well known that in a numerical flume, a solitary wave can well be generated either 

by specifying the initial conditions (free surface, η and horizontal component of the water 

particle velocity, u) or by paddle movement prescribed by the first order wave theory 

(Goring, 1979). The wave generation schemes of prescribing either as free surface initial 

condition or left wall boundary condition have been considered in the SPH formulation. 

In the case of solitary wave propagation over the constant depth, its interaction with a 

front vertical wall has been investigated in terms of run-up and run-down. 

 Following Monaghan and Kos (1999) and Lo and Shao (2002), a solitary wave 

generated by prescribing the initial conditions has been studied by the present SPH 

model. The solitary wave profile, η at any time t can be described by: 

( )32( , ) sec
34

a
x t a h x c t

w
d

 
= − 

  
η  (4.3) 
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and the horizontal component of water particle velocity as 

| |
u

d
=η

g
 (4.4) 

where, d is the initial water depth, a is the incident wave amplitude, and, cw is the wave 

celerity. Initially, the particles are placed in a tank by removing the particles above the 

given profile of solitary wave crest on the left wall at t = 0 (Eqn. 4.3). Below the solitary 

wave crest, the velocities of the particles are prescribed by setting the vertical component 

as zero and the horizontal component (u) following Eqn. (4.4). The domain used for the 

SPH model is shown in Fig. 4.8. The length of the domain (Lx) is 40m and the initial 

water depth (d) is 1m. The amplitude of the solitary wave (a) is 0.2m, which leads to a 

steepness (a/d) of 0.2. The solitary wave profiles at the time instants, 2.34s, 3.26s and 5s 

have been compared with the Boussinesq model (Eqn. 4.3) as shown in Fig. 4.9. The 

present SPH model predicts the solitary wave profile well with the Boussinesq model 

simulation.  

 

Lx

d

a

 

Fig. 4.8. Schematic diagram of the computational domain used for the simulation of a 

solitary wave by SPH model. 

 

 Further, SPH model has been applied to investigate the solitary wave run-up and run-

down as it interacts with the front vertical wall. Fig. 4.10 shows the comparison between 

the prediction made from SPH model and from the ISPH model (Lo and Shao, 2002) as 

well as experiment (Camfield and Street, 1968). The present SPH model predicts the 

maximum run- up fairly well similar to the ISPH model. Here, the tank length (Lx) is 2m 

and the water depth (d) is 0.2m. 
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Fig. 4.9. Comparison for the solitary wave profile at t = 2.34s, t= 3.26s and t= 5s between 

Boussinesq model and the present SPH. 

 

 About 6,000 particles were employed in the computation. While interacting with the 

front vertical wall, the amplitude of the solitary wave increases and induces maximum 

run- up. The entire process has been simulated well by the present SPH model. Here, the 

computed wave celerity is found to be 1.778 m/s and the theoretical wave celerity is 

1.771 m/s. 

 The two-dimensional solitary wave has also been simulated by the prescribed paddle 

movement at one end of the domain. length of the flume (Lx) is 40m. The initial water 

depth (d) is 1m. In this case, the left boundary of the domain is used as a wave maker 

with an initial still water condition. The required motion of the wave maker has been 

given by Goring (1979). 

}{( ) tanh ( ) tanh
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p
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Here, kp = √(3a/4d) and cw = √{(d+a)|g|}. The above set of equation is implicit in nature 

for the time series of piston displacement xp(t). Hence, an iterative technique (like 

Newton Raphson method) is required to solve for xp(t). In the present study, a basic 

iteration technique is applied to solve Eqn (4.5). The MATLAB code is provided in 

Appendix B. Once xp(t) is obtained, it can be used as an input to the paddle so as to 

generate a solitary wave from the still water condition.  
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Fig. 4.10. Comparison of maximum run-up (R/d) due to solitary wave under different 

incident wave amplitudes (a/d). 

 

The comparison of the solitary wave profile generated by the moving paddle following 

Eqn. (4.5) with Boussinesq theory (Eqn. 4.3) at two different time instants (t= 5s and t= 

7s has been provided in Fig. 4.11. The accurate enforcement of boundary conditions 

(Eqn. 4.1 and Eqn. 4.2) using ghost particles has resulted in close agreement between the 
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present SPH and Boussineq model. Hence, the present SPH model has the potential to use 

as a general purpose Numerical Wave Flume (NWF) code. 

 

 

Fig. 4.11. Comparison between the present SPH and Boussinesq theory for the solitary 

wave generated by paddle movement. 

 

 When a solitary wave propagates over a step, indicating a sudden change in the water 

depth, the crest gradually deforms into second, third and other component of waves due 

to wave transmission in the presence of the uneven bottom topography. The number of 

components thus generated may result into several waves as the principal solitary wave 

travels long distances without dissipation. This physical phenomenon has shown an 

importance in understanding the propagation of a tsunami wave over a continental shelf. 

During this process, it splits into few more component waves and consequently, few 

waves lashes over nearby ports/ coastal structures. Hence the study of solitary wave split 

up over uneven water depths is equally important as that of constant depths. The domain 

required to perform such kind of simulation consists of a step staring at a certain distance 
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from the origin. Standard ghost particle technique poses difficulties in modelling the 

corner of the step. This is explained in the following. 

 Let us consider the fluid region near the solid corner in terms of particles as shown in 

Fig. 4.12. As per the rule of mirroring described earlier, three specific zones namely, 

zone A, zone B and zone C have to be reflected behind the solid corner. For a particle 

'Bp' in zone B, a particle 'Cp' from zone C and particle 'Ap' from zone A are considered as 

they appear in the range of the support domain (as shown in dotted circle) of 'Bp'. 

 

zone A

zone B

zone C

Bp Cp

Ap

Ghost of Cp

Ghost of Bp

Ghost of Ap

Ghost of Cp

Ghost of Bp

Ghost of Ap

 

Fig. 4.12. Problem associated with reflecting fluid properties in the solid corner using 

ghost particle technique. 

 

 If the previous rule is applied to prescribe velocity for the ghost particles of 'Ap', 'Bp' 

and 'Cp', a discontinuous velocity field in the ghost region would occur in the support 

domain of 'Bp'. This is seen in Fig. 5.12 as one traverse from zone A to zone C or vice 

versa. Moreover, there is a possible chance of overlap in ghost particle locations (as 

happened in the present case for ghost particles of 'Ap' and 'Bp'). Hence, the challenge in 

implementing traditional ghost particle technique to model such corner is two fold: 

retaining a smooth velocity field in the ghost region near the corner considering reflection 

of fluid properties from zone B and avoiding overlap in ghost mass. In the present 

improved WCSPH model, this is achieved in the following ways described in the next 

section. 
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4.2.3. An efficient ghost particle technique for solid corners 

Solution for velocity 

The solution for the problem of discontinuous velocity field is adopted from Le Touze et 

al. (2006), where velocity for the ghost particle reflected from zone B is prescribed based 

on the following two cases: 

Case A: The particle is supposed to hit inside the sub domain kh × kh (Fig. 4.13a) 

In this case, the fluid particle 'Bp' and its ghost particle share the same impact point. In 

other words, they shall hit the shared point at the same time. This common impact point 

can be found using the coordinate and velocity of 'Bp'. Once this impact point is known, 

the magnitude of velocity of the ghost particle can be calculated based on condition A 

(i.e., the fluid and its ghost particle hit the same point within distance kh from the corner 

point). Next, the direction of the velocity can be found from the triangle as shown in the 

Fig. 4.13a. 

 

kh

kh

Bp

zone A

zone B
zone C

 

Fig. 4.13a. Condition for obtaining the velocity of the ghost particle for fluid particle Bp 

for case A. 

 

 

 

 



 79 

 

Case B: The particle is supposed to hit outside the sub domain kh × kh (Fig. 4.13 b) 

In this case, the ghost particle of Bp poses the same velocity as that of Bp. Here, the 

reflected velocity from zone B maintains a continuous velocity field at the ghost region in 

the corner after the velocity of the ghost particles from zone A and zone C are prescribed 

as in usual way. However, another correction is required to avoid excessive ghost mass. 

If two ghost particles are overlapped, error accumulates while taking interpolation for any 

fluid particles with part of its support domain in ghost region. 

 

kh
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Fig. 4.13b. Condition for obtaining the velocity of the ghost particle for fluid particle Bp 

for case B. 

 

Solution for Mass 

 From the past works on SPH, primarily there exists few approaches through which this 

problem of excess ghost mass can be dealt with. One is the Multiple Boundary Tangent 

(MBT) technique proposed by Yildiz et al. (2009); using fixed ghost particles proposed 

by Marrone et al. (2011a); using generalized wall boundary conditions of Adami et al. 

(2012); restricting the interactions between fluid particle and ghost particles at the corner 

zone by using a local plane of symmetry at the corner zone (Liu et al., 2013) etc. In the 

present study, a simple and computationally efficient correction is adopted.  
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 In 2D SPH, the mass of a particle represents the area that it occupies. Therefore, when 

the mass of ghost particle (mg) is calculated from Eqn. (4.2), the area associated with the 

fluid particle gets projected on the prescribed position of the ghost particle. In the case of 

fluid corner (Fig. 4.1), ng2 is considered in addition so as to have a filled up support 

domain for the kernel function for all the fluid particles (like pc) near the corner. Now, if 

the masses of the ghost particles are calculated by the same approach for the case of solid 

corners (Fig. 4.12), a singularity arises in terms of area. For fluid corners, while 

following the rule of mirroring, the area of the fluid particles near the corner gets 

projected into three separate and distinct zones whereas, for the case of solid corners, the 

area associated with the fluid particles from zones A, B and C is projected and then 

overlapped into a single zone, i.e., the corner area. Naturally, an accumulation of masses 

occurs in a single zone. 

 Therefore, the solution of the problem of excess ghost mass lies in an accurate 

estimation of the masses of the ghost particles staying in the corner zone for the case of 

solid corners. Once, the positions of the ghost particles in that zone are fixed, the mass of 

each of these ghost particles should be calculated from the actual area that each of them 

represents. This can be done by calculating the particle number density (ni=ΣWij ) after 

centering the kernel function at the position of the ghost particle for which mass is to be 

calculated. The accuracy of that approximation largely suffers when there is lack of 

neighbours/ improper particle distribution, because then it has to be carried out in the 

ongoing simulation process. Alternately, the average area (aavg) that a ghost particle 

posses in that corner can be calculated by (kh)
2
 /Ngc ,where, (kh)

2 
 is the area of the corner 

zone and Ngc is the number of ghost particles appearing in the corner zone. Then, the 

mass of each of the ghost particles is calculated by αmρgaavg where, ρg is the pre-

computed density of the ghost particle and αm is a tuning factor. The proper value of αm is 

to be set by numerical trials. Fig. 4.14 reports the performance of the model for two αm 

parameters. The optimum performance is achieved for αm = 0.4. This value has been 

adopted for all the cases where solitary wave propagation over a step is simulated. 

 The effectiveness of the adopted correction on modelling solid corner zones using 

ghost particles is provided in Fig. 4.15, where the vortex created due to the propagation 

of solitary wave crest over a step is highlighted.  
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 With these improvements, the WCSPH model is now be applied to study evolution of 

solitary waves as it crosses over a step, replicating a continental self. 

4.2.4. Solitary wave split up 

Fig. 4.16 presents the schematic diagram of the domain following the similar case study 

by Seabra-Santos et al. (1987). The location of the probes (3m, 6m, 9m and 12m from the 

left wall boundary) to measure the free surface elevation with time is also shown in the 

same figure.  

 

 

     (a) αm = 0.4           (b) αm = 0.7      

Fig. 4.14. Effect of the choice of the αm parameter for avoiding flow separation due to 

excess ghost mass. 

 

 Figs. 4.17 a-f presents the particle configuration at different instant of time while the 

solitary wave propagates over the vertical step. The initial single soliton disintegrates into 

few more solitons after passing over the step to propagate over a lesser water depth. The 

enlarged view of the particle configuration under the wave crests is also shown. The 

enlarged view of the particle snap shots depicts the process of the splitting up of a solitary 
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wave during the wave transmission. Nearly 63,000 particles were used in the simulation 

(excluding boundary particles). It took about 20 days to run for 15s simulation in VEGA 

super cluster with RK4 time integrator (i.e., four times evaluation of the same SPH 

procedure per time step).  

 
Fig. 4.15. The vortex field created during the crossing of the solitary wave crest above the 

step. 

 
12m9m6m3m 12m9m6m3m

16m

0.2m

0.0365m

0.1m

 

Fig. 4.16. Schematic diagram of the problem domain used for the analysis of the solitary 

wave split-up problem. 



 83 

 Figs. 4.18 a-d show the time histories of the water surface elevation recorded at four 

probe locations from the SPH model and compared with the experimental measurements 

and finite-difference method prediction by Seabra- Santos et al. (1987). The SPH model 

successfully captures the increase in solitary wave amplitude before splitting- up into 

multiple solitons. However, the differences both in terms of wave amplitude and phase 

have been found to be significant at 9m and 12m (probes 3 and 4) from the initial soliton 

origin when compared to the numerical prediction by Seabra- Santos et al. (1987). 

Similar observation was noted by Li et al. (2012) while adopting SPH model. However, 

the comparison between the experimental measurements is found to be good. Since the 

step was modelled by a half sinusoidal wave in order to avoid numerical instabilities in 

the finite difference method, the finite difference simulation deviates significantly from 

the experiment. In SPH, the vertical step can be modelled without any approximation. On 

comparison with Li et al. (2012), the amplitude of the split-up second soliton is found to 

be less. It has to be noted that the locations of the probes 3 and 4 are relatively closer to 

the opposite wall of the numerical wave flume and hence, the wave reflection from the 

wall might have influenced the prediction. Li et al. (2012) incorporated wave absorbing 

schemes in order to minimize reflection. However, the present model predicts smoother 

free surface profile than the SPH prediction by Li et al. (2012).    

 Although the above proposed technique to resolve the problem of excess ghost mass 

was quite successful while modelling solid corners, it was found to be not much effective 

for solid corners apart from right angles. The major problem was to tune the αm parameter 

for each problem depending on the geometry of the given domain. For the development 

of a robust SPH model, a more general approach is required. That has been possible by 

combining two well established techniques for modelling boundaries with complex 

geometrical shapes in SPH: the first one is the calculation of pressure at the ghost region 

by employing a local force balance (Adami et al., 2012) and, the second one is the 

accurate extrapolation of velocity at the ghost region in order to enforce free slip (Macia 

et al., 2011; Marrone et al., 2013). In both of these techniques, a fixed layer of ghost 

particles are set uniformly around the periphery of the given boundary at the beginning of 

the simulation and their relative position remains fixed. These fixed ghost particles are 
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also referred as dummy particles. Naturally, this technique does not have problem of 

excess ghost mass. 

 

 

Fig. 4.17. Particle configurations at different instant of time while the solitary wave 

passes over the step: (a) t=1s, (b) enlarged view of the zone inside the rectangle 

as shown in (a), (c) t=6.97s, (d) enlarged view of the zone inside the rectangle as 

shown in (c), (e) t=9.15s, (f) enlarged view of the zone inside the rectangle as 

shown in (e). 

 

 Fig. 4.19 shows a general boundary and dummy particle set up. In order to avoid 

spurious penetration of fluid particles inside the solid boundary, the pressures on the 

dummy particles are calculated by the following formula proposed by Adami et al. 

(2012). 
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where, aw is the acceleration of the moving boundary. The summation is taken over the 

fluid particles (symbol 'f'). This formula can be derived by considering the momentum 

conservation equation in between a fluid and dummy particle. In this technique, it is not 

required to calculate the normal at the local boundary plane (as required in repulsion 

force based techniques). Application of first order Shepard correction on kernel gives 

accurate interpolation. Higher order MLS kernel function can also be used (Marrone et 

al., 2011a). However, the case studies (discussed in few sections latter) that was 

conducted using Eqn. (4.7), were found to give equally acceptable results. 

 

Fig. 4.18. Comparison of the time histories of the free surface elevation at various probe 

locations: (a) Probe 1 @ 3m, (b) Probe 2 @ 6m, (c) Probe 3 @ 9m, (d) Probe 4 

@ 12m. 

 

 The velocity at the dummy particles is calculated using the following formula adopted 

from Marrone et al. (2013) 
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where, the velocity components, distances dg and dp as shown in Fig. 4.19. ζ is a small 

parameter which is kept to avoid penetration if a fluid particle comes very close to the 

boundary. The prescribed value of ζ is 0.25. ∆p is the initial particle distance. Eqn. (4.8) 

is an enhanced version of formula proposed by Takeda et al. (1994), who performed the 

simulation of flow past a cylinder in 2D using dummy particles to model the boundary of 

the cylinder.  
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Fig. 4.19. Dummy particle set up near the boundary.  
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4.2.5. Performance of the improved WCSPH model with generalized boundary 

modelling technique 

4.2.5.1. Simulation of dam break flow 

The performance of the WCSPH model including boundary effect is tested with the 

benchmark dam break problem. The domain is same as discussed in the first dam break 

problem in subsection 4.2.1. This problem has been addressed using the present SPH 

model with both Ghost Particle (δ- SPH- GP) and Dummy Particle (δ- SPH-DP) 

approaches. A comparison of the position of the bore front traced with respect to time is 

shown in Fig. 4.20. The solution has been found to be recovered with the boundary 

modelling technique described in Eqn. (4.7) and Eqn. (4.8) using dummy particles. The 

difference between the experiment and numerical prediction may be due to the bottom 

wall stress which has not been intentionally incorporated into the SPH models. 
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Fig. 4.20. Comparison of the instantaneous bore front position between the present SPH 

models with two different boundary modelling techniques. 
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While analysing the elapsed CPU time for running 1.5s of physical time for this case, 

both SPH models have been run in coarse (npx × npz = 25 ×50, npx, npz being number of 

particles along X and Z coordinates respectively) and finer (50 × 100) resolution. The 

average time step has been 8.0×10
-4

 s. The computations were performed in a 2.6GHz 

intel® Dual- Core, 2GB Ram Desktop PC.  

 

Table 4.1: Details of the elapsed CPU time for running dam break case by the present 

SPH models 

SPH model resolution elapsed CPU 

time (s) 

resolution elapsed CPU time (s) 

δ- SPH- GP 25 ×50 331.2500 50 × 100 5514.594 

δ- SPH-DP 25 ×50 227.9219 50 × 100 3782.125 

 

The elapsed CPU time for these two SPH models is presented in Table 4.1. It has been 

found that irrespective of the increase in resolution, the computation cost reduced by 30 

% in δ- SPH-DP compared to δ- SPH- GP. 

4.2.5.2. Simulation of dam break with an obstacle 

The performance of the improved WCSPH model with the boundaries modelled using 

dummy particles, has further been investigated by introducing a complicated geometrical 

shape into the domain of the dam break problem. The resulting domain is shown in Fig. 

4.21 and has been adopted from Marrone et al. (2011a). Fig. 4.22 shows the comparison 

of the predicted free surface profile from the present WCSPH model with that of Marrone 

et al. (2011a). The present WCSPH model provides free surface profile which is very 

close to that of Marrone et al. (2011a) at different time instants. The evolution of 

resulting strong jet due to impact of the incoming bore (tn= 3.53) with the obstacle is also 

predicted satisfactorily. 
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Fig. 4.21. Schematic of the domain used for simulating the case of Dam Break with 

obstacle. 

 

Fig. 4.22. Comparison of the free surface profile for the Dam Break with obstacle case as 

predicted by the present SPH model with that of Marrone et al. (2011a) (blue 

dots). tn = √(t|g|/H). 
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4.2.5.3. Simulation of solitary wave breaking over a mildly sloping beach 

The next test case to highlight the robustness of the present improved WCSPH model is 

the gradual breaking of solitary wave crest as it propagates over a mildly sloping beach. 

The domain used is shown in Fig. 4.23. The left boundary of the domain is moved to 

generate solitary wave of desired height. This problem has been investigated by Li and 

Raichlen (2003) through laboratory experiments. They provided photographs with close 

shots near the solitary wave as it breaks over the slope. The height of the solitary wave at 

offshore region is 0.057m. For the given slope (1:15) and wave height, as the solitary 

wave gradually propagates over the slope, its' steepness increases due to the effect of 

shoaling. At the last stage, a bore is formed which breaks as a plunging breaking wave.  

 

0.2m

15

1

1.425 m 6 m
 

Fig. 4.23. Schematic of the domain used for simulating solitary wave breaking over 

slope. 

  

 Similar problem has been simulated by a number of researchers using different 

numerical methods: Boundary Element Method (BEM) (Grilli et al., 1997; Fochesato and 

Dias, 2006), Finite Element Method (FEM) (Yan and Ma, 2010), Meshless Local Petrov 

Galerkin Method (MLPG) (Ma and Zhou, 2009), Finite Volume Method (FVM) (Xie 

,2012), Corrected ISPH (Khayyer et al., 2008) and WCSPH with turbulence model (Issa 

et al., 2010). Experience from the present study has shown that the correct reproduction 

of the plunging breaking may not be obtained with the SPH model if the boundary is 

modelled using standard ghost particle technique. Small errors due to rounding off exact 

value of sine or cosine functions while positioning the ghost particles at every time step 

to model the slope, have resulted in overall different flow physics (like a spilling 
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breaking instead of a plunging breaking), even after using very fine resolutions (high 

number of fluid particles). The required performance from the WCSPH model has been 

obtained by using dummy particles to model boundaries and accurate interpolation of the 

flow properties by using Eqns. (4.7- 4.8). 

 A qualitative comparison of the present SPH model prediction with that of 

experimental snapshots (Li and Raichlen, 2003) is shown in Fig. 4.24. Although the 

present WCSPH model reproduces the formation of plunging jet prior to breaking, 

formation of cavity (i.e., a void for the present single phase model) and post breaking jet, 

the overall shape of the breaking wave could not be captured well. However, the 

evolution of the wave after the first breaking depends on turbulence effect (as can be seen 

in the experimental photographs). The effect of choosing a particular turbulence scheme 

in reproducing the jet at the post breaking stages using SPH has been reported by Issa et 

al. (2010).  

 

Fig. 4.24. Experimental photographs and snapshots at different time instants from SPH 

simulation of solitary wave breaking. 
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4.3. IMPROVED ISPH MODEL 

The major improvement in the present ISPH model has been achieved by enhancing its 

stability through different ways. The boundary is modelled by using wall particle and a 

fixed layer (depending on the radius of the support domain) of particles called dummy 

particles. The Pressure Poisson Equation (PPE) is solved on the wall particles. The 

pressure of the wall particle is transferred to the dummy particle which is next to the wall 

particle in the normal direction. In this way, Neumann boundary condition for pressure 

(Eqn. 3.48) is enforced. Moreover, the dummy particles are involved in calculating 

density of the wall particle in order to keep the density consistent with the nearby fluid 

particle. For most of the cases ghost particles are not used in ISPH model. However, Liu 

et al. (2013) has shown improvement in the performance of the ISPH model using Ghost 

Particles instead of using Dummy particles. In the present ISPH model, Dummy Particles 

are used with the enforced velocity by Eqn. (4.8). 

 The corrections adopted in the present ISPH model to enhance the stability are 

described now. 

4.3.1. XSPH smoothing of the velocity field 

The pressure is calculated by solving PPE based on a pressure- velocity coupling 

procedure. So, maintaining an overall smooth velocity ensures a smooth pressure field 

and vice versa. The easiest way of achieving this is by applying XSPH technique (Eqn. 

3.33) which is quite common in WCSPH modeling. The same procedure has been 

adopted in ISPH following Barcaloro et al. (2012). The XSPH technique also helps to 

maintain uniform particle distribution to some extent. There are many other approaches 

available in literature to prevent unrealistic accumulation of particles during simulation: 

Lennard- Jones repulsive force based correction (Shadloo et al., 2011), particle shifting 

methodology based on first order Taylor series expansion for the hydrodynamic variables 

(Xu et al., 2009) etc. The XSPH technique has been used solely in the present study due 

to its conceptual simplicity and ease in implementation. 

4.3.2. Multi- Source term for the PPE 

Khayyer et al. (2009) has shown that using a higher order source term for PPE, the ISPH 

prediction can be improved during impact. However, in this study, a mixture of the two 
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mostly adopted formulation for source term, that is based on velocity divergence and the 

time derivative of particle density are used. The combined source term is rewritten as: 

0 *

2

* 0

1
. (1 ) .t tp

t
+∆

  −
∇ ∇ = α + − ∇ 

∆ 

ρ ρ
α

ρ ρ *v  (4.9) 

Similar approach has been adopted by Ma and Zhou (2009) and Asai et al. (2012). The 

source term in Eqn. (3.44) is obtained by simply setting relaxation factor α as 0.0. The 

value of α is chosen in the range of [0.0- 0.1]. The dam break problem has been 

considered to investigate the effect of α. Fig. 4.25 shows a snapshot of a dam break 

simulation using two values of α. At the time instant when the bore makes impact on the 

structure, the fluid particles are scattered unrealistically when only the single term (Eqn. 

3.44) is used. Whereas, the prediction is improved by using Eqn. (4.9) with α = 0.1. So, 

for studying wave impact problems due to violent wave structure interaction, this 

correction is preferred. 

 

Fig. 4.25. Performance of the ISPH model for two different values of density relaxation 

factor α.  
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4.3.3. Enforcement of ISPH with Divergence Free and Density Invariant 

(ISPH_DFDI, Xu et al., 2009; Hu and Adams, 2007) 

Although the adoption of multi source term in the PPE as discussed above, is an attempt 

to satisfy both divergence free velocity and density invariance, it is to be noted that the 

numerical technique applied to solve the resulting matrix is not a direct one. So, there 

occurs several time steps where these conditions are not satisfied and error is 

accumulated in the density field. As a second step to rectify this issue, the ISPH_DFDI 

approach is applied. It consists of an iterative scheme where at the end of a single ISPH 

step, the particle density is recalculated at the modified particle coordinates and the 

maximum density change is monitored.  
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Here, σi = ΣWij. n represents a given time step and m represents the iteration step within 

the specified time step (n). The iterations continue until the maximum density change 

comes below a certain threshold. Although this requires to solve PPE multiple times in a 

single ISPH time step, it significantly improves the stability of the model. In most of the 

cases, the convergence in terms of variation in the maximum density is achieved in 

iteration steps of 3 to 5. Also, the number of times the Eqn. (4.10) is employed is not 

frequent. So, in overall the computational overhead is insignificant. Although the present 

ISPH model uses multi source terms, when ISPH_DFDI is used, only the first part is 

considered. 

 The effectiveness of the ISPH_DFDI scheme is investigated by studying the problem 

of regular wave propagation in a constant depth Numerical Wave Flume (NWF). The left 

boundary of the domain is moved sinusoidally to generate a regular wave in the domain. 

For this problem, around t = 3.25s, unrealistic particle accumulation occurs near the 

bottom boundary at a distance of 16m from the origin (Fig. 4.26). Due to this the spatial 

distribution of total pressure in the domain becomes spurious (as indicated by the colour 
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bar at  t = 3.25s). At this moment, maximum permitted change in density is violated. 

Therefore, ISPH_DFDI algorithm becomes activated. Within a very short time, it 

stabilizes the pressure field by properly shifting the particles from the hot spot and brings 

the pressure within the desired limit. This is reflected in the subsequent time steps (e.g., t 

= 3.5s, 3.6s, 3.8s). Therefore, ISPH_DFDI may be useful to perform long time simulation 

using the ISPH model. 

 The improved WCSPH and ISPH models so described are then applied to make an 

inter comparison between them for two wave impact problems: dam break with an 

obstacle and breaking wave impact on a vertical wall. 

 

4.4. INTER COMPARISON BETWEEN IMPROVED WCSPH AND ISPH 

4.4.1. Dam break with an obstacle 

The chosen problem domain is same as that adopted in section 4.2.5.2 (Fig. 4.21). The 

pressure time history at the probe location P1 is obtained from WCSPH and ISPH models. 

These pressure time histories have been compared to that of Marrone et al. (2011a) in Fig 

4.27. The δ- SPH prediction from Marrone et al. (2011a) was found to be in close 

agreement with that of a level- set simulation. Taking that as reference, it can be said that 

for this problem, WCSPH performs better than ISPH. The prediction for the primary peak 

is underestimated by almost 40 % in ISPH and 10 % in WCSPH. The pressure time 

history from WCSPH is found to contain less fluctuation than ISPH.  
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Fig. 4.26. Effect of ISPH_DFDI in maintaining stability in the pressure field for the 

problem of regular wave propagation in a NWF. The colourbar is of pressure (in 

Pa). 
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Fig. 4.27. Inter comparison between present WCSPH and ISPH for the pressure time 

history measured at a location on the obstacle facing a breaking dam.  

 

4.4.2. Breaking wave impact 

This test case has been taken from Khayyer and Gotoh (2009a) and the adopted domain is 

shown in Figure 4.28. For the given wave characteristics (wave height and period) and 

seabed conditions, a breaking wave impact has occurred during the first cycle of the wave 

impact. During the simulation, WCSPH and ISPH models record total pressure at the 

specified location. Figure 4.29 shows comparison for the pressure time history at the 

given probe location between WCSPH, ISPH and experimental measurements (Goda and 

Fukumori, 1972). ts=0 denotes the time instant of maximum run up. The total duration of 

impact has been found to be better captured through ISPH. The peak pressure is 

underestimated by 30% in ISPH, whereas, it is overestimated by the same amount in 

WCSPH. However, as far as the ratio of the magnitude of the first peak to the second 

peak is concerned, this has been found to be closer to experiment in WCSPH compared to 

ISPH. Moreover, the amplitude of the pressure fluctuation in the improved ISPH model 
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as used in this study, is significantly less than reported for few versions of the MPS 

model of Khayyer and Gotoh (2009a). But, an overshoot near the second pressure peak is 

observed.  

 

 

 

Fig. 4.28. Domain used for the simulation of slightly breaking wave impact over a fixed 

structure. p2 is the pressure probe. 

 

4.5. SUMMARY 

The accuracy of a numerical model prediction depends on the way the boundary is 

modelled. Although different problems may be governed by the same governing equation 

(e.g., the Navier- Stokes equation), the boundary constraints are the key factors which 

make the dynamics different. In this chapter, the improvement to the WCSPH model has 

been successively developed mostly in terms of the boundary modeling techniques. This 

has been achieved by investigating the current version for different problems and then 

attempting a solution by combining few established techniques. Numerical tests with 

these improved versions have been found to work equally well when compared to the 

existing techniques (like standard ghost particle technique) for simple benchmark 

problem, apart from more complex problems. In this way, a robust and accurate WCSPH 

model has been obtained.  

 When comparing improved WCSPH and ISPH models for the same problem with 

defined input parameters, it has been found that difficulties arise to form a general 
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conclusion about the suitability of a particular scheme for a problem. Both schemes have 

been found to poses similar features; yet their relative outcome changes depending on the 

problem. Therefore the performance of these schemes may be related with the Re of the 

flow. In general, all SPH schemes employed in this study have been able to describe the 

free surface profile, in particular when the motion is violent. 

 

 
Fig. 4.29. Comparison for the pressure time history at pressure probe p2. 
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CHAPTER 5 

SLOSHING 

 

 

 

5.1. GENERAL 

Sloshing is a phenomenon of dynamic evolution of the free surface of the fluid in a 

partially filled container undergoing external excitation. The study of highly nonlinear 

water waves due to sloshing has gained significant attention for its relevance in different 

sectors of industrial application and therefore is regarded as one of the important 

problems in the broad category of fluid- structure interaction. Closed form analytical 

solution for different physical parameters (like wave elevation, pressure etc.) involved in 

sloshing can be found in the works by Ibrahim (2005) and Faltinsen and Timokha (2002). 

Numerous works based on different methods like finite element method (Wu et al., 1998; 

Sriram et al., 2006b), finite difference method (Frandsen, 2004; Kim, 2001; Kishev et al., 

2006) and finite volume method (Löhner et al., 2006) have also been conducted to 

simulate sloshing waves. Efficient and accurate capturing of the free surface in sloshing 

flows have always been a challenging task in both analytical and grid based numerical 

models, irrespective of the fact that whether it solves a potential flow based formulation 

or full set of Navier-Stokes equations. Consequently, mesh-free or particle based methods 

have been preferred to study violent sloshing flows.  

 Smoothed Particle Hydrodynamics (SPH) has been regarded as the most successful 

method in simulating sloshing (Bouscasse et al., 2013b; Colagrossi, 2005; Colagrossi et 

al., 2006; Chen et al., 2013; Delorme et al., 2009; Hu et al., 2011; Rafiee et al., 2011; 

Shao et al., 2012; etc.) along with Incompressible SPH (ISPH) (Bockmann et al., 2012; 

Khayyer and Gotoh, 2009b) and other mesh-free or particle based methods like Moving 

Particle Semi Implicit (MPS) (Khayyer and Gotoh, 2013; Kim et al., 2011); Constraint 

Particle Method (CPM) (Koh et al., 2013) and so on. Stability issues for the violent 

sloshing flows in higher Re numbers have extensively been studied by Rafiee et al. 

(2012) with three versions of SPH, namely, Godunov SPH (GSPH), WCSPH and ISPH. 

But, apart from the work of Hu et al. (2011), the applicability of SPH in simulating non 

violent sloshing waves has rarely been reported. In non violent sloshing flows, the free 
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surface oscillates from lower to higher order harmonics. This particular nonlinearity of 

the problem is more challenging in a particle based model whose consistency properties 

have not been fully revealed yet. However, the applicability of SPH method in capturing 

subtle free surface nonlinearity was probably first demonstrated by Antuono et al. (2011) 

where wave focusing was simulated by δ- SPH. On the other hand, the quantification on 

physical and numerical dissipation associated with SPH simulation of standing wave was 

shown by Colagrossi et al. (2013). Convergence studies were performed there based on 

error analysis in SPH approximation by Quinlan et al. (2006). With these works, δ- SPH 

seems to be a promising technique to study sloshing waves for both non violent and 

violent cases. Present work investigates the performance of δ- SPH for such cases with 

focus on selection of proper range of values for smoothing length and XSPH factor. 

Selection of proper value of smoothing length has been found to be of fundamental 

importance in order to capture the nonlinearity of the free surface correctly. Inter-

comparison has been performed with few other versions (namely, fully incompressible 

SPH (ISPH) and the standard weakly compressible SPH (WCSPH)) for selected cases, 

showing capability of the present δ- SPH in predicting a smoother pressure field similar 

to ISPH than WCSPH. The present model prediction has been validated by making 

comparison with analytical and FEM model for non violent cases and with experiments 

for violent cases. 

 

5.2. MATHEMATICAL FORMULATION 

The sloshing waves are generated in a 2D rectangular tank (Fig. 5.1) through different 

modes of excitation. The origin of the global coordinate (x, z) system lies at the bottom 

left corner of the tank when it is at rest (i.e., at time t= 0). The tank is moved with respect 

to time and the governing equations (Eqn. 3.1 and Eqn. 3.2) are represented with respect 

to the Cartesian coordinate frame of reference.  

5.2.1. Modes of excitation 

The purpose is to understand the formation of the nonlinear water waves due to the 

horizontal movement of the sloshing tank which undergoes either regular or random 

excitation. These two modes of excitation are prescribed as follows. 

 The regular harmonic tank excitation is represented either by cosine or sine variation. 
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where, ah is the amplitude and ωh is the angular frequency of the oscillation. Due to 

sloshing, the oscillating free surface can attain different mode shapes. The frequency of 

these individual modes can be obtained from dispersion relationship from the first order 

linear wave theory. 

tanh( ) with n=1,2,3..2

n n n
k k d= gω  (5.2) 

where, kn is the wave number (kn=nπ/L, L being the tank length) and d is the initial water 

depth inside the container. n denotes the corresponding free surface mode.  
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Fig. 5.1. Sloshing tank with its coordinate frame of reference. 

 

 The Bretschneider spectrum is used to obtain a random tank excitation time series. 

The spectrum distribution is given as, 
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Here, ωp and Hs are the peak excitation frequency and significant wave height, 

respectively. Depending on the knowledge of spectrum, the random time series is 

obtained as, 
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with Ai=√{2S(ωi)dω}, Nω is the number of frequency components and θi is a random 

phase in the range (0, 2π). The spectrum distributes over a small non- zero frequency 

component to a cut- of frequency ωc (ωc= 5ω1, ω1 being the first mode of tank natural 

frequency). Moreover, as per the requirement from the numerical model, the following 

ramp function (R(t)) is multiplied with the input random time series to avoid high 

transitory motion. 
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where, tr is taken as some fraction of the peak excitation period. 

5.2.2. Analytical Solution  

Assuming the inviscid fluid, irrotational flow and the small amplitude of excitation for 

the sloshing, the following basic sloshing flow quantities (i.e., first order velocity 

potential φ, velocity v(u,w) and pressure, p) are obtained from the analytical model of Wu 

(2007) under regular harmonic tank excitation. 
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( )ɺX τ contains the instantaneous tank excitation velocity which can be obtained from 

Eqn. (5.1) by taking derivative with respect to time. The origin of the coordinate system 

in the analytical model is at the middle of the initial free surface when the tank is at rest. 

The above analytical solution is used to validate SPH model prediction for non violent 

sloshing cases. 

5.3. SPH MODEL SET-UP 

Before discussing the performance of the SPH model for various sloshing test cases, it is 

required to analyze the dependence of the performance of the model on different input 

parameters and the choice of the particular scheme.  

5.3.1. Resolution 

As mentioned in the earlier cahpters, nodes/ particles serve both the purpose of 

interpolation and advection of required properties in SPH and an improper resolution 

leads to poor overall approximation. Therefore, the performance of a SPH solver is much 

more sensitive on selection of proper resolution, compared to that of a grid based solver 

like FEM/FDM. The resolution has been selected depending on the following two tests as 

described below. Mathematically, the resolution property has been represented as the 

ratio of the tank length to the adopted initial particle spacing. 

5.3.2. Standing wave problem 

While investigating the applicability of SPH method for long time simulation of non- 

violent gravity waves, the choice of resolution was done by observing the decaying of the 

total kinetic energy of the system by Antuono et al. (2011). In this problem, the initial 

conditions are set to obtain a wave whose evolution can be described from first order 

linear wave theory, without any external forcing as follows. 
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The initial condition for the velocity (v) and pressure (p) field is shown in Fig. 5.2. The 

initial velocity is obtained from Eq. (5.8) at t= 0. The initial free surface is assumed to be 

horizontal, so pressure is purely hydrostatic. Theoretically, the standing wave remains 
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infinitely over time, whereas, due to the presence of artificial viscous terms in momentum 

equation, the waveform decays gradually and completely damps out after certain number 

of wave cycles. Defining, ν= αC0h/8 as numerical kinematic viscosity, the rate of 

decaying of the kinetic energy (Ekt) in the SPH model was measured as (Lighthill, 2001), 

 

 

 

Fig. 5.2. Initial condition set up for the standing wave problem. Lx= 2m, d= 1m. The 

colour bar is of pressure (p) in Pa. 
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where, L is the standing wave length and kn is the corresponding wave number. Eqn. 

(5.11) gives approximate estimation for the decay of the initial standing wave amplitude. 
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It was concluded in particular that when the initial particle spacing is chosen close to the 

amplitude of the wave (a), the kinetic energy decays at a faster rate. Similarly, for non- 

violent sloshing wave that is desired to be simulated within the range of linear waves, the 

amplitude of the wave can be thought of to be linearly proportional to the amplitude of 

the external excitation. Therefore, the same study may reveal the interrelation between 

the amplitude of the sloshing wave which is proportional to the external excitation with 

the resolution needed.   

 For the non- violent sloshing cases, the adopted maximum amplitude of the external 

excitation was 0.1. So, keeping this as fixed and representative through the standing wave 

amplitude, the SPH model has run with different resolution. The comparative study has 

been depicted in Fig. 5.3. It shows that similar to the findings of Antuono et al. (2011), in 

the presence of the viscous terms in SPH scheme, the kinetic energy decays faster with 

lower resolution. For the resolution of 100, this decay has been found to be optimum with 

respect to the analytical solution (Eqn. 5.11). 

5.3.3. Forced excitation 

The resolution can further be decided from the convergence of the sloshing wave 

amplitude for a particular input excitation frequency and amplitude and then investigating 

the convergence with respect to another mesh based FEM solution of a fully non- linear 

potential theory (Sriram, 2008). For this case, following system characteristics has been 

considered: Lx= 1m, d=0.163m, Xt=ahcos(ωht). The excitation amplitude (ah) and 

frequency (ωh) have been taken as 0.03d and ω1
 
, the first mode frequency, respectively. 

Since this is a resonance case (ωh= ω1), the δ- SPH model is required to predict the 

gradual increase in sloshing amplitude as time progresses when the damping effect is 

minimal.  The comparison of the water surface elevation measured at the top left corner 

of the tank is reported for different particle resolutions in Fig. 5.4. Similar to the findings 

of the standing wave tests, increasing the resolution has been found to improve the SPH 

model prediction. Further with an increased resolution, a less noisy time history is 

recovered particularly at the initial stages. The duration of such noisy behaviour depends 

on the duration taken by the interior particles to get settled in a least fluctuating pressure 

field in contrast to a pressure field that is obtained through the δ- SPH scheme 

immediately after the hydrostatic pressure field prescribed at the beginning of the 
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simulation. So, a better resolution yields a saving in physical solution time that is needed 

for the particles to get settled in order to provide smoother prediction. From this test, the 

resolution of almost about 100 has been found to give better prediction. This confirms the 

findings from the standing wave tests. 

 

Fig. 5.3. Evolution of the kinetic energy in standing wave problem for different resolution 

of the SPH model. T is the standing wave period. dzp is the number of particles 

set along z- coordinate. Standing wave amplitude (a)= 0.1, α= 0.01, smoothing 

length(h)= 1.33dzp, dzp= initial particle spacing along z- coordinate. 
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Fig. 5.4. Comparison of time history of the free surface elevation at the top left corner of 

the tank for various resolutions of the SPH model with FEM (Sriram, 2008). 

 

 The convergence study is performed by considering the variation of both smoothing 

length (h) and initial particle spacing (dzp). The convergence of the present δ- SPH model 

for the same sloshing test case with respect to the variation of h is considered. The 

reference solution for non violent sloshing has been adopted from FEM. Fig. 5.5 shows 

the variation of the L2 error with respect to the variation of both d/h and h/dzp. For each 

case, discrete L2 errors have been calculated based on the differences in the free surface 

profile predicted by present δ- SPH with FEM solution. The L2 error has been calculated 

by taking time average of those discrete L2 errors over the entire simulation time. It is 

found that the solution converges at a faster rate with an increase in the particle density. 

Moreover, while higher h/dzp is used, convergence has been achieved with relatively 

lower resolution compared to lower h/dzp. Similar findings were also reported by 



 109

Colagrossi et al. (2013), while studying evolution of standing waves. The computational 

efficiency is closely related with h/dzp. Therefore, the optimum choice of h/dzp is 

required to be found out. Further details are provided in the next section. 

 

 

 

Fig. 5.5. Variation of the L2 error norm with respect to initial particle spacing (d/h) and 

smoothing length (h/dzp). 

 

5.4. SIMULATION OF NON VIOLENT SLOSHING 

5.4.1. Regular excitation 

The sloshing tank with Lx=2m, d=1m, ωh=0.7ω1 and ah=0.05d is considered to analyse δ- 

SPH model prediction with analytical solution of Eqns. (5.6) to (5.8). The comparison for 

the overall velocity field between the analytical and SPH model is shown in Fig. 5.6 at t= 

2s. The time instant is characterized by the onset of run up along the side wall. The 

prediction of the velocity field by δ- SPH model is found to be fairly accurate on 
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comparison with the analytical model. Note, the analytical model solves the no- slip 

boundary conditions for velocity exactly at the two side wall locations (i.e., at x= ±L/2), 

whereas in the δ- SPH model, the velocity at the wall particles is prescribed according to 

the external excitation. Thus, the velocity field at the tank wall locations is not available 

from the δ- SPH model. The dynamic pressure time history measured at the top left 

corner of the tank in the SPH model is compared with that of analytical model as shown 

in Fig. 5.7. The pressure at the wall location is calculated using particle sampling method 

of Oger et al. (2006). The overall pressure field at different time instants for WCSPH, δ- 

SPH along with ISPH is shown in Fig. 5.8. δ- SPH predicts improved and smooth total 

pressure field similar ISPH compared to WCSPH. With the diffusive terms in the 

continuity equations in δ- SPH, unrealistic fluctuations in pressure time history have been 

substantially reduced compared to standard WCSPH.  

 Next, δ- SPH model prediction is compared with FEM (Sriram et al., 2006b) for the 

same sloshing test case. The comparison for the water surface elevation at the top left 

corner of the tank is shown in Fig. 5.9. δ- SPH model successfully captures the higher 

harmonics.  

 The effect of h/dzp is further investigated by checking its effect on the overall velocity 

field and associated smooth harmonic free surface. The sloshing flow velocity field along 

with the predicted free surface has been reported at three different time instants (t= 4s, 

4.5s, 6s) and for three different h/dzp ratios (h/dzp = 1.0, 1.33, 2) in Fig. 5.10. Different 

harmonic waves induce their own velocity fields. In order to capture higher order 

harmonics in the free surface profile, the smoothness of the velocity field has been 

monitored. For h/dzp=1.0, the overall velocity field is noisy and the free surface profile 

does not show any higher order harmonics. Whereas, for relatively higher h/dzp value 

(i.e., 2), the velocity field is substantially improved to obtain a smooth field and predicts 

the higher order harmonics which is comparable with FEM simulation as discussed 

above. The intermediate h/dzp of 1.33, even though contains modest noise in the overall 

velocity field, has been found to be capable of predicting the higher order harmonics. 

Since the computational cost increases with h/dzp, the optimum choice of h/dzp is set by 

testing the velocity field. 
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Fig. 5.6. Overall velocity field predicted at t= 2s using analytical (above) and SPH model 

(below). 

 

 The power spectra of sloshing oscillation for different tank excitation frequencies are 

shown in Fig. 5.11. At least twenty wave cycles are used to generate the spectrum. When 

the excitation frequency (ωh) is less than the first mode natural frequency, the maximum 

spectral peak occurs at the excitation frequency. For excitation frequency equal to the 

first mode natural frequency, the significant peak is observed at the natural frequency due 

to the well known resonance condition. For excitation frequencies greater than the first 

mode natural frequency and less than second modal frequency, primary peak occurs at 

the second mode followed by a secondary peak at the first mode. When the excitation 

frequency is equal to or greater than third mode frequency, ω3 (=1.8 ω1), the third mode 

dominates the sloshing motion. Similar findings were obtained from the study based on 

the FEM model by Sriram et al. (2006b). 
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Fig. 5.7. Comparison for the pressure time history at the top left corner of the sloshing 

tank. 

 

5.4.2. Random excitation 

 The present δ- SPH model has further been applied to simulate the sloshing waves 

under the condition of random horizontal excitation of the tank. The random excitation 

has been generated following Eqn. 5.4. The sloshing tank geometry is similar to the 

earlier test case. For ωp=ω1 and Hs= 0.1d, the time series of tank excitation, simulated 

free surface elevation and dynamic pressure at top left corner of the tank are presented in 

Fig. 5.12. The spectra of the measured water surface elevation at top left corner of the 

tank for various peak excitation frequencies are shown in Fig. 5.13. When the peak 

excitation frequency is less than or equal to the first mode natural frequency, the 

dominant frequency of the sloshing oscillation lies only at the natural frequency of the 

tank. This observation is in contrast with the case of regular tank excitation and in which 

case, a primary peak at the excitation frequency has been observed followed by a 
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secondary peak at the first mode of natural frequency. Whereas, when the peak excitation 

frequency is greater than first mode natural frequency, high frequency waves have been 

found to coexist which make the spectrum wider compared to the case when ωp< ω1. The 

maximum energy concentration occurred only at certain frequencies corresponding to 

higher modes of oscillation when ωp > ω1. This characteristic feature of sloshing 

oscillation can be positively utilized for an efficient operation of the sea going vessels.  

 

5.5. SIMULATION OF VIOLENT SLOSHING 

Meshless method like SPH has been successful in the field of nonlinear water waves, 

particularly when flow separation/ wave breaking takes place. Thus, for the present SPH 

model, it is important to investigate its capability to reproduce violent sloshing. The 

sloshing laboratory experiments conducted at Det Norske Veritas (DNV) (Rognebakke, 

2002) have been considered in the first case. The tank length (L) and initial water depth 

(d) are 1.73m and 0.2m, respectively. The tank height (H) is 1.03m. This is a case defined 

by shallow water effects which is relatively difficult to simulate by analytical/ grid based 

model due to the formation of wave bores/ swelling up along the side walls. For an 

excitation period of 2.6s and amplitude of ah/d= 0.025, δ- SPH simulation of free surface 

elevation at 0.05m from the left wall is compared with experimental measurements (Fig. 

5.14). The capability of the δ- SPH model for long time simulation is achieved. The 

differences between the δ- SPH model prediction and the experimental measurements 

might be due to the difference in the tank excitation time series employed in numerical 

simulation and experiment. The measured tank excitation time history was not available. 

Though the input amplitude and excitation frequency are same for both experiment and δ- 

SPH, no ramp function has been used in δ- SPH model since it is a regular excitation 

case. But, ramp function is required in experiment to establish flow stabilities. 
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Fig. 5.8. Inter comparison for pressure field at different time instants between WCSPH, 

δ- SPH and ISPH. The colour bar is the pressure normalized with respect to the 

maximum pressure. 

  

 A number of unique features as encountered in violent sloshing waves has been 

reported from the experimental findings of Colagrossi (2005) and Colagrossi et al. 

(2006). From the same experimental set- up (tank length (Lx): 1m, tank height (H): 1m, 

width (b): 0.1m, initial water depth (d): 0.35m), different sloshing characteristics can be 

obtained depending on the choice of input excitation frequency and amplitude. From 

these, four frequency- amplitude pairs have been selected for the violent sloshing test for 

the δ- SPH model. The details of these cases are shown in Table 5.1. For the case of 

Violent Sloshing (VS- 3), the free surface state as predicted by the δ- SPH model is 

compared with the experimental photographs (Colagrossi, 2005) in Fig. 5.15. On a side 

wall, a smooth plunging bore was obtained, but prior to the formation of another plunging 

bore at the opposite wall, the nonlinear free surface harmonics interacts in between them 

strongly. It results in the formation of a hydraulic jump at the middle of the tank and 
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thereby leading to complete unstable flow conditions. These further cause complete flow 

separation when the incoming fluid rushes towards the opposite side wall and, while 

swelling up against it resulted in complete flow fragmentation. Since the δ- SPH model 

has been set up in a single phase, it has not been able to capture the highly turbulent flow 

characteristics with bubble formation (specially, left- bottom). However, it captures the 

complete fragmentation and ruptured water column (right- bottom) during run- up. Fig. 

5.16 shows the various sloshing oscillation under different test cases. From the time 

history of the wave elevation at 0.01m from the left wall (Fig. 5.16d) for the case VS- 1, 

the steady-state free surface elevation shows oscillation with three- times excitation 

period, i.e., the sub-harmonics could be identified. This sub-harmonic frequency occurs 

with the wave breaking frequency at the wall on its subsequent oscillation. Once the 

wave breaks, it loses its energy and subsequently, builds up energy on its oscillation 

inside the tank. Every third-wave could build sufficient energy to make the wave breaks. 

Similar observations were made from the experimental study of Colagrossi et al. (2006). 

 Another violent sloshing case has been considered from the experimental study of 

Kashiwagi et al. (2010). In this case, tank length (Lx) is 0.6m; height (H) is 0.3m and, the 

initial water depth (d) is 0.06m. For an excitation period of 1.3s and amplitude of 0.06m, 

a violent sloshing case has occurred. A travelling plunging bore traverses back and forth 

along the tank length and it is followed by run- up along the side walls and associated 

roof impacts. Fig. 5.17 shows inter comparison of the total pressure field between 

WCSPH, δ- SPH and ISPH. The event at t=1.15s is representative of the well known flip- 

through impact. WCSPH has not been able to reproduce the area of impact around the 

breaking point properly, whereas, both δ- SPH and ISPH predict the impact region 

satisfactorily (prediction from ISPH being slightly better). The relative performances are 

found to be similar at t= 1.9s, i.e., characterized by roof impact. Indeed that was a critical 

task for the numerical model to avoid dispersive pressure distribution in such wave 

impact cases as occurred in violent sloshing flows (Macia et al., 2013). The comparison 

of the pressure measured at 0.05m above tank bottom on the right wall is shown in Fig. 

5.18a. The dependence of the predicted pressure with resolution has been shown in Fig. 

5.18b. In contrast to the non violent case where a higher resolution has always yielded a 

better prediction, here more noisy pressure time history has been obtained while adopting 
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d/dzp= 30 compared to d/dzp=24. This might be attributed by the fact that there is a 

possibility of divergence at higher Re due to the inherent particle based representation of 

differential operators in SPH (Colagrossi et al., 2013). Another evidence of this same 

phenomenon was also reported by Zhou (2010), where for studying violent sloshing 

waves, pressure time history could not always be improved in terms of increasing 

resolution. Hence the adopted resolution is assumed to be optimized. The occurrences of 

the maximum impact, the secondary impact and the duration of impact over the cycles 

have been captured well by the SPH model. However, the energy dissipated through the 

wave breaking in the experiment has not been exactly reproduced in SPH model. The 

laboratory measured pressure time history shows an alternate variation in the maximum 

peak over the subsequent cycles. Probably, this happened due to the reduction in 

maximum run up on the side wall immediately after the wave breaking. As energy is 

dissipated due to turbulence in wave breaking, less momentum is available for the 

resulting bore for swelling up along the side wall on the subsequent instant. Whereas, the 

numerical time history shows almost a steady state (i.e., energy is preserved) in terms of 

the maximum wave impact. Incorporation of a turbulence model in this case might 

improve the SPH model performance. 

 A parametric study has been performed to monitor the change in maximum wave 

elevation and maximum impact force (along x- direction) with respect to the wave 

excitation frequencies in the sloshing tank. The tank dimensions are similar to the last 

case study. The tank displacement is given by Xt=ahsin(ωht). For Th/T1=1.02 and 

ah/L=0.05, the force time history along x- direction (Fx) is shown in Fig. 5.19. The force 

has been calculated by integrating the pressure along the tank wall. About twenty steady 

cycles have been considered. The variation in maximum wave elevation (ηmax) recorded 

at a probe located at 0.05m from the right wall and maximum impact force (Fxmax) with 

respect to the input excitation frequencies have been reported in Fig. 5.20. The prediction 

from the δ- SPH model is found to be fairly good compared to that of experiments.  
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Fig. 5.9. Comparison between FEM and δ- SPH for the measured water surface elevation 

at the top left corner of the sloshing tank. 

 

 From the numerical experiments on non- violent as well as violent sloshing cases, it 

has been found that the smoothing length (h) and XSPH correction factor (ε) are the two 

major parameters that need careful calibration in order to maintain the true robust nature 

of SPH model. For non violent cases, the proper choice of h is based on optimization for 

the convergence of the scheme in predicting higher order harmonics. Apart from 

effecting the overall particle approximation by specifying the average number of 

neighbours available for interpolation, the choice of the smoothing length (h) is found to 

posses the main control over the adaptive time step size (dt). For a non- violent case, a 

larger time step size is preferable for the better stability of the RK4 time integrator, 

whereas, for a violent case, a high resolution in time scale (i.e., a smaller dt) is needed to 

follow the dynamics of wave breaking. Hence, the smoothing length has to be reduced 
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intentionally despite of the risk of losing RK4 stability. This compromise has to be 

managed by a proper choice of XSPH velocity correction factor (ε) which ensures that at 

the end of each time step, particle coordinates are updated properly. Fig. 5.21 shows the 

variation of the pressure distribution with respect to the variation in the XSPH factor (ε). 

The adopted range of smoothing length (h) and XSPH correction factor (ε) have been 

reported in Fig. 5.22.  

 There are some overlap zones in between non- violent, moderately to highly violent 

cases in these scales. The proposed range thus can be taken as an average general 

prescription while developing an existing weakly compressible SPH based solvers to a 

robust numerical scheme. 

 

5.6. SUMMARY 

This chapter has made an attempt to investigate the potential of SPH to emerge as a 

unique numerical tool to study sloshing for a variety of d/L and ah/L ratios covering non 

violent and violent phenomenon. Addition of diffusive forcing terms in the continuity 

equation brings the two major improvements in weakly compressible SPH (WCSPH) 

scheme: less fluctuating and more regular pressure field; and, numerical solution for the 

time series of the required quantity with less dominating effect of numerical damping 

(loss in amplitude), recovering the required convergence with respect to the standard 

solution. Yet, it comes with a higher computational cost. For a single time step, the CPU 

cost in δ- SPH model has been found to be four times than standard WCSPH with 

estimation of diffusive terms taking 75% of total cost. OpenMP implementation may 

improve the computational efficiency of the model. The dissipation of energy as 

encountered in violent cases has not been predicted well when compared to experiments. 

Implementation of a particle based turbulence model (for example, the Sub- Particle- 

Scale (SPS) model within MPS framework, Gotoh et al., 2001) may be considered to 

improve the model performance for this case.  
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Fig. 5.10. Variation in the spatial distribution of the overall velocity and associated free 

surface profile with respect to the chosen h/dzp ratio. 
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Fig. 5.11. Power spectra of the measured surface elevation at the top left corner of the 

tank for different excitation frequencies in regular excitation with ah = 0.05d. 
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Fig. 5.12. Sloshing oscillation under random tank excitation. (a) Bretschneider spectrum 

prescribing random excitation; (b) Random tank excitation (horizontal) time 

series; (c) Measured free surface elevation at the top left corner, and (d) Time 

history of dynamic pressure measured at the same location. 
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Fig. 5.13. Power spectra of the measured surface elevation at the top left corner of the 

tank for different random excitation peak frequencies (Hs = 0.1d). 
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Fig. 5.14. Comparison of the free surface elevation at the given location for the DNV 

(Rognebakke, 2002) sloshing case. 

 

 

 

Fig. 5.15. Comparison of free surface fragmentation for the sloshing case VS- 3 between 

SPH model and the experimental photographs. Time increases from left to right 

and from top to bottom. This event repeats after every 3Th. 
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Table 5.1. Test cases considered for the SPH model in order to simulate various kinds of 

sloshing waves. 
 

 

Sloshing 

case 

Th/T1 ah/L Sloshing wave features 

VS- 1 0.95 0.05 Alternate breaking of the plunging bores at the two side 

walls 

VS- 2 0.95 0.07 Alternate breaking with prolonged plunging jet 

VS- 3 0.787 0.1 Irregular behaviour of the wave with highly turbulent 

characteristics 

VS- 4 0.87 0.07 Local splashing jets at the side walls 

Note: Th and T1 are the excitation period and the period of the 1st mode of natural 

sloshing frequency respectively. 
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Fig. 5.16. Different kinds of violent sloshing waves as obtained for the cases as 

mentioned in Table 5.1: (a) case VS- 1, (b) case VS- 2 and (c) case VS- 4; (d) 

time history of wave elevation measured at 0.01m from the left wall for VS-1. 
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Fig. 5.17. Inter comparison of spatial distribution of total pressure field between WCSPH, 

δ- SPH and ISPH at different time instants. The colorbar is of total pressure 

normalized with respect to the maximum pressure. 
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Fig. 5.18. (a) Comparison of pressure time history at the given location between δ- SPH 

model and experiment; (b) Variation in the pressure time history with change in 

resolutions. 
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Fig. 5.19. Time history of horizontal impact force in the sloshing tank for Th/T1=1.02 and 

ah/Lx= 0.05. 
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Fig. 5.20. Comparison of maximum free surface elevation and horizontal impact force 

between SPH and the experiments. 
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Fig. 5.21. Variation in the spatial distribution of the total pressure field in the δ- SPH 

model with respect to the change in XSPH velocity correction factor (ε). The 

colorbar is of pressure normalized with respect to the maximum pressure. 
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Fig. 5.22. Scale of smoothing length (h) and XSPH factor (ε) for its selections for the 

requirement in simulating the sloshing problem. 
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CHAPTER 6 

WAVE INTERACTIONS WITH SEAWALLS AND 

OVERTOPPING 

 

 

6.1. GENERAL 

Wave overtopping is a phenomenon caused by spillage of water waves over coastal 

structures. This is one kind of a catastrophic phenomenon which mostly occurs 

depending on local wave climate and coastal mophology; yet, it takes a considerable 

focus from the bigger community dealing with environmental hydraulic engineering, for 

planning and designing sustainable coastal environments. Prior knowledge and estimation 

of overtopping water volume with respect to various incident wind/ wave conditions, help 

to ensure an efficient designing of coastal structures. 

 Measuring the volume of water discharged during the wave overtopping is indeed a 

critical task: both in experiment and in computation. However, numerous studies have 

been performed due to the prime importance of wave overtopping in the context of 

coastal engineering. Cox and Ortega (2002) conducted experiments to measure wave 

overtopping due to transient wave on a fixed horizontal deck. Troch et al. (2004) made 

detailed field study to investigate the wave overtopping over rubble mound breakwaters 

at three different shore locations. Umeyama (1993) analytically estimated wave 

overtopping over a vertical wall due to standing waves and made experiments to analyze 

the predictions. Stansby and Feng (2004) carried out PIV measurements on wave 

overtopping over trapezoidal obstacle and found complex vortical structures to take place 

in the form of interacting bores. Goda (2009) derived a set of formula for predicting 

overtopping based on a broad range of available data sets. McCabe et al. (2013) validated 

the overtopping estimated by shallow water and Boussinesq modelling with laboratory 

experiments. Baldock et al. (2012) made an experimental study to investigate wave 

overtopping due to solitary waves. 

 The empirical formulae so obtained from experimental data are frequently used in 

design practice and model set up for other physical model based studies; however, these 

predictions are in general limited within a certain range of data considered. Hence, 
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several numerical studies have also been performed for calculating wave overtopping. 

Stansby (2003) measured wave overtopping due to solitary wave by finite volume based 

shallow water Boussinesq model. Soliman (2003) also adopted the Volume of Fluid 

(SOLA- VOF) method to analyse two- dimensional breaking wave numerical model (2D- 

BWNM) solving Reynolds Averaged Navier- Stokes (RANS) including k- ε turbulence 

modelling. Kobayashi and Wurjanto (1989) and Hu et al. (2000) applied Nonlinear 

Shallow Water Equation (NLSW) for calculating wave overtopping. Li et al. (2004) 

provided numerous VOF solutions for wave overtopping. So, from these studies, it is 

learnt that solving NS is indispensable in order to compute wave overtopping. Most of 

them used Finite Volume based numerical schemes.  

 However, in the last the few decades, another numerical scheme named Smoothed 

Particle Hydrodynamics (SPH) has also been found to be evolving for solving NS to 

simulate nonlinear water waves. The major attraction in SPH, being totally free form 

mesh constraints, gives easy capturing of the complex shape of the free surface which is 

likely to emerge during all the stages of wave breaking, run up and overtopping. 

Currently, two versions of SPH are found to be popular for solving free surface flow 

related problems: the Incompressible SPH (ISPH, Cummins and Rudman, 1999; Lo and 

Shao, 2002) and the Weakly Compressible SPH (e.g., WCSPH, Monaghan, 1994). 

Gomez- Gesteira et al. (2005) simulated green water using WCSPH. Barreiro et al. 

(2013) has shown three dimensional simulation of wave overtopping near real like coastal 

environments and computed force and moment imparted in that process over the coastal 

structures using DualSPHysics, a WCSPH based open source solver. Crespo et al. (2008) 

provided the input to the SPH solver in terms of wave height as provided by a wind- 

wave generation/ propagation model (e.g., SWAN, WAM etc.) and computed the flow 

velocity pattern, overtopping rate for a given bathymetry. However, apart from the work 

of Issa et al. (2010), a rigorous comparison and validation of WCSPH with other 

numerical and experimental studies for wave overtopping were unavailable until Shao 

and his co authors (Shao, 2006; Shao et al., 2006) gave clear evidence of applicability of 

SPH in computing wave overtopping by showing comparison with other studies. But, 

their study was based on an ISPH solver where pressure is calculated by solving a 

Pressure Poisson Equation (PPE) rather than from an explicit equation of state as is 
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generally done in WCSPH. Even for the problem of wave propagation over both a 

sufficiently long time and distance, it was not clear how accurately a WCSPH based 

scheme simulates without much of numerical damping. This critical question has found 

to be first well addressed in Antuono et al. (2011) where the prediction of a WCSPH 

solver was compared with Mixed Eulerian Lagrangian Boundary Element (BEM) 

prediction and experiments. However, their WCSPH based solver utilized a separate term 

in continuity equation to enhance the performance of WCSPH in many aspects. 

Previously named as δ- SPH by Antuono et al. (2010), this model has been found to be 

fairly accurate in simulating various problems in nonlinear water waves like ISPH. 

 Therefore, δ- SPH appears to be preferable numerical scheme to study such wave 

overtopping. Moreover, modelling boundary in SPH with several rapid geometrical 

changes as encountered in a Numerical Wave Flume (NWF) is a delicate task. 

 In this chapter, the process of wave overtopping on different type of seawalls has been 

explored using the developed SPH models. Such wave interaction problems consist of 

wave propagation over irregular bathymetry and in which case, the model has to be 

capable of dealing with complex geometrical shapes/ sharp changes. The model also 

needs to be numerically stable enough to run for sufficiently long time duration in order 

to capture the relevant physical processes under consideration. These have been achieved 

in the present study by taking advantages of the salient aspects of the model development 

as discussed in Chapter 4. The δ- SPH application for the wave propagation problem in 

Antuono et al. (2011) applied a technique named fixed ghost particles to model 

boundaries. However, in this study, a separate technique proposed by Adami et al. (2012) 

has been implemented as discussed in Chapter 4. 

 This chapter is organized as follows. In the beginning, an introduction gives the brief 

summary of the past work carried out on the problem of wave overtopping based on 

laboratory measurements and various numerical techniques. Then the overtopping due to 

regular, random and solitary waves over a vertical sea wall has been investigated with the 

present SPH models. Inter comparison between WCSPH and ISPH has been performed 

for few selected cases. Detailed procedure has been described to calculate the 

overtopping water volume.  A parametric study has been conducted to follow changes in 

overtopping rate due to changes in incident wave parameters and seawall characteristics. 
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This shows the potential of the present SPH model to replace the experimental based 

empirical formulae which have been adopted for designing sustainable coastal structures 

against a harsh sea environment like during wave overtopping. The second part of the 

chapter describes further application of the present SPH scheme in investigating 

hydrodynamic characteristics of curved front sea wall compared with vertical seawall 

under same wave conditions. The available experimental measurements form the basis 

for comparison and further exploration of results. All these reflect the robustness of the 

present SPH models in solving important coastal engineering problems. 

 

6.2. REGULAR WAVES 

The regular wave overtopping on a sloped sea wall is considered. The case study has 

been adopted from Shao et al. (2006) in which wave overtopping was simulated using an 

ISPH model. The computational domain is shown in Fig. 6.1. Shao et al. (2006) 

considered the same domain which ends at 0.5 m from the top of the slope as shown by 

point A. Particles going beyond that point were counted by a counter to measure 

overtopping. No further details of those particles and procedure of measuring water 

discharged were provided. 

 

 

 

 

Fig. 6.1. Computational domain used for the simulation of wave overtopping 
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 In this study, an additional storage tank has been placed after the seawall to store 

overtopping particles/ discharged water. Flexibility of the present boundary modelling 

technique has allowed it. The procedure of calculating overtopping rate is explained here. 

 Initially, the specific time instants of a particular wave train have been captured when 

the particles just start to cross the point, A. This can be detected by the local velocity 

field. This is shown in Fig. 6.2 (a) as initiation of the overtopping. The volume of water 

already contained in the tank is taken as Vb. The discharge has been found to take place 

during certain duration. Then, the time instant of the initiation of the run- down process 

(Fig. 6.2(c)) has been captured. The run down process could be identified from the local 

velocity field. The volume of the water in the tank is recalculated and taken as Ve. 

Therefore, Ve-Vb gives discharged water volume during that particular wave overtopping 

instant. The same procedure has been followed for the subsequent overtopping time 

instants. 

 

Fig. 6.2. Wave overtopping on a sloped sea wall due to 4.73s regular wave. (a) wave run 

up, (b) overtopping (c) and run down.  
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 A number of several case studies have been performed to compare the overtopping 

predicted by the present SPH model with that of Shao et al. (2006). Few more 

predictions, i.e., the experimental and NLSW from Hu et al. (2000) have also been 

included. The details of the case study are given in Table 6.1. The comparison of the 

predicted rate of overtopping is shown in Fig. 6.3. The initial particle spacing is 0.1m. 

The average time step size is 5.5 × 10
-3

 s. All the computations were performed in the 

desktop PC. Adopting 4000- 5000 number of particles, it took around 3.5 CPU hours to 

complete ten wave cycles. Under same conditions, Shao et al. (2006) reported 2 CPU hrs.  

It is observed that the present SPH model prediction matches more closely with that of 

experiment and ISPH prediction of Shao et al. (2006). The maximum difference between 

the two SPH model predictions is about 24% (run no. 8). In overall, it confirms that 

present WCSPH based model is equally applicable as ISPH in estimating wave 

overtopping. Considering all experimental runs, the present model prediction differs on 

average by 25.18% which is much closer to ISPH (18%) than RANS solution (52.63%).  

 A parametric study has been performed to investigate changes in the predicted rate of 

overtopping with respect to seawall crest level and incident wave period (Fig. 6.4). The 

incident wave periods are 3.73s, 4.73s and 5.73s. The seawall crest level varies from 

0.5m to 1.5m.  

 

Table 6.1 Details of the case studies considered for calculating regular wave overtopping. 

Np is the total number of fluid particles used. 

 

Run no. Rc (m) dt(m) ds(m) Ht(m) T(s) Np 

1 0.5 3.0 0.75 0.95 4.73 4743 

2 1.0 3.0 0.75 0.95 4.73 4743 

3 0.5 3.0 1.5 0.95 4.73 4174 

4 1.0 3.0 1.5 0.95 4.73 4174 

5 0.67 4.0 2.0 0.99 6.55 7201 

6 0.5 4.0 0.75 1.08 7.98 8368 

7 1.0 4.5 0.75 1.06 7.98 10556 

8 1.5 4.0 0.75 1.08 7.98 8368 

9 0.5 4.0 1.5 1.08 7.98 7795 

10 1.0 4.0 1.5 1.08 7.98 7795 
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 The trend in the variation looks similar with that of Soliman (2003) for a given wave 

period. This shows good potential of the SPH in estimating wave overtopping to replace 

laboratory based empirical formulae for practical coastal engineering application. 

 

Fig. 6.3. Non- dimensional wave overtopping rate (Qn=Q/√(|g|H0)), H0 is the deep water 

wave height = 1m) as predicted by the present SPH model and comparison with 

other studies. 
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Fig. 6.4. Prediction of wave overtopping for different sea wall crest levels (Rc) and 

incident wave periods.  

 

6.3. RANDOM WAVES 

The numerical investigation on wave overtopping due to random wave incidence on a 

seawall is reported. The schematic diagram of the domain is shown in Fig. 6.5.  

 This domain has been adopted from Soliman (2003) and Shao et al. (2006) where the 

overtopping was studied through other numerical models. In the present study, additional  

 

Hs, Tp

wavemaker

Slope: 1:4

40m

Rc

 

Fig. 6.5. Schematic of the domain adopted for wave overtopping. 
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storage tank has been included to collect the overtopping water. The standard JONSWAP 

spectrum was used to generate the random waves in the flume with a constant water 

depth of 8m from the wavemaker to the foot of the seawall. The slope of the impermeable 

seawall front is 1:4.  Table 6.2 presents the details of various experimental runs. Here, Hs, 

Tp and Rc are the significant wave height, peak wave period and free board, respectively. 

 Fig. 6.6 presents overtopping rate averaged over few wave cycles from the prediction 

of the present SPH models and the ISPH model of Shao et al. (2006). The prediction from 

RANS solution including k- ε turbulence using SOLA- VOF model (Soliman, 2003) is 

also included. Fig. 6.7 shows particle snapshots from the present ISPH model during a 

particular wave cycle of overtopping. Even with the inclusion of storage tank, still few 

particles have been found to escape the given domain in unphysical way. Most of these 

particles escape after the jet enters into the storage tank. Since, there are less number of 

neighbors available for those particles, the velocity of those particles could not been 

calculated correctly. The particles which escaped the tank are still considered to be inside 

the tank while calculating rate of overtopping. 
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Table 6.2. Details of the runs for simulating wave overtopping due to random waves 

 

Run No. Rc (m) Hs (m) Tp (s) 

1 1.0 0.78 3.53 

2 1.0 1.22 4.38 

3 1.0 1.7 5.19 

4 1.5 1.26 4.38 

5 1.5 1.75 5.16 

6 1.5 2.35 6.03 

 

 

 

 

Fig. 6.6. Overtopping rate predicted by the present SPH models and comparison with 

other studies. 
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Fig. 6.7. Particle snapshots from ISPH model for random wave overtopping at different 

instants of time. 

 

 Considering wave overtopping as simulated by present WCSPH and ISPH models, it 

has been found that, in contrast to the wave impact problems as discussed in Chapter 4, 

predictions from these two models are almost similar subjected to same initial conditions. 

Therefore, both models are equally good in overtopping calculations. 

 

6.4. SOLITARY WAVES 

The present SPH models have been applied to reproduce the experimental set up of 

Baldock et al. (2012). The bathymetry in the physical model test consisted of a constant 

depth in front of the wave making boundary, followed by a sloping (slope: 0.107) 

artificial beach. The beach portion composed of two parts: a permanent beach below the 

initial Still Water Level (SWL) and a removable beach portion with the provision for 

placing a storage tank at a desired elevation above the SWL. For each wave climate 
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considered, two sets of experiments were conducted, first to estimate maximum run up 

and second to calculate overtopping water. The same set up was reproduced for the SPH 

models. The details of the model set up are provided in Fig. 6.8. 

 

H

Z

REXP

Paddle movement (Goring, 1979)

d

 

 

Fig. 6.8. Details of the domain considered for the investigation on wave overtopping due 

to solitary wave. Initial water depth is (d)= 0.26 m. 

 

Three test cases are considered and Table 6.3 presents the parameters of experimental 

runs along with the measured maximum run up. REXP and RSPH are the solitary wave run 

up measured in experiment and SPH, respectively. The agreement with experimental 

measurements is relatively better for a higher wave height. For solitary waves with 

smaller heights, very fine resolution may be required for better agreement. A high 

resolution is also essential for resolving the boundary layer close to the wall. Fig. 6.9 

reports the comparison OF the overtopping water volume predicted by SPH with the 

experimental measurements. Similar performance as in the case of maximum run up is 

noticed. 

 

Table 6.3. Wave overtopping parameters due to solitary wave. 

 

Run No. d (m) H (m) Z (m) REXP (m) RSPH (m) 

1 0.26 0.032 0.091 0.1012 0.1244 

2 0.26 0.061 0.091 0.1714 0.15 

3 0.26 0.106 0.091 0.2155 0.2153 
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Fig. 6.9. Comparison of the volume of the overtopping water (per unit width of sea wall 

crest) as predicted by the present WCSPH and experiment (Baldock et al., 

2012). 

 

6.5. VERTICAL AND CURVED SEAWALLS 

A Seawall is one kind of a protecting member employed in coastal zone serving multiple 

purposes. They are also used to prevent wave overtopping in regions where excess water 

may cause severe damages to civil properties (like roads passing next to the beach). 

Understanding the importance of wave overtopping, many studies have been conducted 

to understand the relation between local wave climate and coastal structures to prescribe 

design solutions to prevent wave overtopping (e.g., Kamikubo et al., 2003; Anand, 2010; 

Anand et al., 2011). 
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 The hydrodynamic characteristics of vertical and three specific curved sea walls were 

investigated through physical model tests by Anand (2010). This experimental set up has 

been reproduced in a NWF to show the capability and robustness of the present SPH 

model to simulate wave interaction with structures involving a complex shape (e.g. a 

curved front seawall). The domain used both in experiment and numerical studies is 

shown in Fig. 6.10. In the laboratory, the uniform slope (1:30) was divided into two equal 

portions in order to conduct test with two different sea walls subjected to same wave 

environment at the same time. 

 

 

Fig. 6.10. Schematic of the domain considered for the problem of wave interaction with 

seawalls (from Anand, 2010). 

 

 However, in numerical studies, different sea walls are considered for each given cases 

under same wave conditions separately. The details of the shape and dimensions of the 

seawalls are provided in Fig. 6.11. These are: Vertical Wall (VW); Flaring Shaped 

Seawall (FSS); Galveston Seawall (GS) and Circular cum Parabolic Seawall (CPS). The 

seawalls discretized with particles are shown in Fig. 6.12. The locations of the pressure 

probes mounted on the seawall profiles are provided in Fig. 6.13. These probes are 

referred as: Probe 1 (+1.0m), Probe 2 (+0.88m), Probe 3(+0.76m) and Probe 4(+0.64m). 

The pre-processor reproduces the entire domain (Fig.6.10) considering the required 

seawalls (Fig. 6.12).  
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 Among the various wave conditions considered by Anand (2010), only the condition 

in which the generated regular wave with a height (H) of 0.26 m and a period (T) of 3s 

has been adopted for the present numerical investigation. For the wave interaction with 

VW, the spatial distribution of total pressure at a particular time instant as predicted by 

WCSPH, δ- SPH and ISPH has been compared in Fig. 6.14. Due to the addition of 

diffusive terms in δ- SPH, the pressure field has been found to be improved compared to 

standard WCSPH.  The pressure field in ISPH has also found to be more regular 

compared to WCSPH. 

 

 

Fig. 6.11. Geometrical details of the vertical and curved sea walls (Anand, 2010). 

 

6.5.1. Dynamic pressure  

The comparison between the dynamic pressures measured in experiment (Anand, 2010) 

and present numerical model has been provided in Figs. 6.15 (a) to (d). Very good 

agreement has been achieved while comparing the δ- SPH predicted pressure time history 
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with experimental measurements. This is an improvement obtained in the present study 

compared to past attempts with SPH and similar particle methods (like MPS) while 

comparing pressure time history with experiment. It should also be noted that, by taking 

advantage of the diffusive term in δ- SPH, no spatial filtering has been applied on the 

predicted numerical time history. However, there is a phase lag in between experiment 

and numerical prediction and that has been adjusted with respect to the first pressure 

peak.  
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Fig. 6.12. Adopted seawalls discretized with boundary and dummy particles. 
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Fig. 6.13. Location of the pressure probes mounted along the seawall profile (Anand, 

2010). 

 

Fig. 6.14. Inter comparison for the pressure at 18 s between different SPH schemes. The 

colorbar is of pressure in Pa. 
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In case of VW and FSS, the predicted dynamic pressure time history (specifically Probe 

2, Probe 3 and Probe 4) shows characteristics wave nonlinearity by the way of shallowing 

and  broadening of trough of the signal. At the beginning (upto 5s), there are fluctuations 

recorded in the numerical simulation. It should be noted that, in contrast to some of the δ- 

SPH models (Marrone et al., 2013) or WCSPH model (Monaghan and Rafiee, 2013; 

Fatehi and Manzari, 2011), no relaxation has been applied to initialize the particle set up 

at the beginning of the simulation. However, as the numerical model proceeds further in 

time, predictions improve indicating the limited effect of applying initialization of the 

given particle states in the present case. Besides, it  is found to be necessary to reduce the 

XSPH velocity correction factor in case of CPS (Fig. 6.15(c)) and GS (Fig. 6.15 (d)) to 

capture secondary peaks near the crest and trough in the pressure time history.  
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Fig. 6.15. Comparison of dynamic pressure time history between experiment and present 

δ- SPH due to wave interaction with (a) VW (b) FSS (c) CPS and (d) GS sea 

walls. 

 

 For this reason, there have been more fluctuations observed in these two cases 

compared to VW and FSS. Also there has been overshoot around 27s for CPS and GS. 

These issues should be resolved by further optimizing the XSPH velocity correction 

factor. In overall, these results are quite promising in adopting present SPH model in 

designing and modelling non linear wave structure interaction in practical coastal 

engineering problems. 

 

6.5.2. Wave breaking and velocity field  

From the foregoing discussion, it is seen that FSS kind of seawalls are preferred than VW 

as a measure of effective beach protection. Here, the total pressure field and velocity field 

evolution have been compared for these two kinds of seawalls subjected to same wave 

conditions using δ- SPH scheme. Fig. 6.16 shows the particle snapshots taken at the 



 152

instant when the wave breaks and the resulting spray formation during the violent 

interaction with the front sea wall. The flow dynamics have been compared with the 

photographs taken during experiment by Kamikubo et al. (2003). The plunging wave 

front has been reflected back towards the sea by the FSS both in SPH and experiment, 

whereas, sprays due to wave breaking overtops on the VW. However, several other 

physical parameters have to be considered in design for prescribing a seawall under a 

particular wave climate. Therefore, the velocity field and pressure field at the wave 

breaking stage have been studied for both of FSS and VW. Fig. 6.17 and Fig. 6.18 

present the evolution of the velocity field during wave breaking in case of FSS and VW, 

respectively. From these two velocity fields it can be observed that at the time of 

maximum run up, both the sea wall induces similar maximum velocity fields, whereas, 

while run down, VW induces more severe velocity field compared to FSS. Actually, this 

is caused due to the reduction in the maximum run up occurred in case of FSS compared 

to VW. This was also a point of motivation while designing optimal profile for FSS in 

Anand (2010) in contrast to the original FSS profile proposed in Kamikubo et al. (2000). 
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(a) Present study (b) Experiment (Kamikubo et al., 2003) 

 

Fig. 6.16. Wave breaking in front of FSS and VW. 

 

The increase in the velocity field magnitude in VW compared to FSS during run down 

thus may result in a higher shear stress field adjacent to the VW compared to FSS.  
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Fig. 6.17. Velocity field evolution during wave breaking on FSS. 

 

Total pressure field corresponding to the time instants during which the vortex field 

evolves has been reported in Fig. 6.19 and Fig. 6.20 for FSS and VW, respectively. The 

spatial distribution of pressure shows a higher maximum pressure (almost of the order of 

50%) in case of FSS compared to VW.  The maximum increase in shoreward peak 

pressure is found to be 35% at the still water level, in case of FSS compared to VW from 

the experimental measurement by Anand et al. (2011). Therefore, proper optimization has 

to be carried out based on other aspects (e.g., material property) in order to adopt 

seawalls as beach protection measures. 
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Fig. 6.18. Velocty field evolution during wave breaking on VW. 
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Fig. 6.19. Spatial distribution of total pressure field during wave breaking in case of FSS. 

The colourbar is of pressure (in Kpa). 
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Fig. 6.20. Spatial distribution of total pressure field during wave breaking in case of VW. 

The colourbar is of pressure (in Kpa). 

 

 

6.6. SUMMARY 

In this chapter, SPH models have been applied to investigate numerically the wave 

overtopping over different coastal structures under different wave climate. Both WCSPH 

and ISPH models have been adopted. Adding diffusive term in δ- SPH has improved 

pressure prediction for longer time simulation and good agreement has been achieved at 

given locations along seawall when compared to experiment. Both ISPH and WCSPH 

seem to be equally applicable in predicting overtopping volume of water. 

 Being a mesh free particle method, SPH has emerged as a potential tool to study wave 

overtopping charecterised by strong flow separation. Moreover, solving full set of 

Navier-Stokes equations gives direct access to most of the useful flow properties. This 

has given the scope to investigate the details of the pressure and velocity fields with the 

influence of viscosity at the time of wave breaking. The vortex due to breaking has been 
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found to be more intense for wave interaction with VW compared to FSS. Although SPH 

schemes are computationally expensive, but fast and efficient computation have been 

shown with GPU (Barreiro et al., 2013; Hori et al., 2011 for MPS). 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

 

 

 

7.1. SUMMARY 

A robust numerical model based on SPH method has been developed in the present study. 

The model is capable of simulating a variety of problems in nonlinear water waves. The 

weakly compressible (WCSPH) and incompressible (ISPH) versions of SPH have been 

considered. The major advantage is the possibility of simulation of highly steep waves 

and capturing of wave breaking due to its meshfree characteristics. Flexibility of 

incorporating the prescribed geometry for the solid boundary by the user and options for 

both free slip and no slip boundary conditions for moving/ fixed boundaries are 

additional important features of the present numerical model. The improved WCSPH and 

ISPH models can perform long time simulation and capture relevant physical processes 

(such as prediction of identifying higher order harmonics in the sloshing oscaillation). 

Smooth pressure time histories have been obtained for various wave impact problems.  

 The following section summarizes the SPH model development and the simulation 

results for the considered problems. Salient conclusions from the findings observed from 

different case studies have been provided. This chapter also highlights the scope for 

prospective future extension of the present study. 

 

7.1.1. Improved SPH models 

Many of the successful simulation for the nonlinear water wave problems have been 

obtained from the present improved versions of the SPH models. The present versions of 

the WCSPH model suitable for specific problems are summarized in Table 7.1. Five 

versions of WCSPH have been developed to address problems of different nature. The 

specific problems which are addressed using different versions of WCSPH are listed. 

Characteristic features of few versions are combined into a new form for optimizing the 

advantages to successfully simulate the process under consideration. On the other hand, it 

is equally important to incorporate some improvements in the ISPH model to address 
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problems in which pressure prediction is important. This also helps for comparative study 

with the improved WCSPH model for specific problems. These improvements in ISPH 

are also provided in Table 7.2. 

 

 

Table 7.1. Improved versions of the WCSPH models with their characteristic features 

Version Features Applications 

WCSPH-GP 

Weakly Compressible SPH 

with Ghost Particles. 

• Basic SPH formulation 

with RK4 time integrator. 

• MLS density filtering at 

a given intervals of time 

steps. 

• Classical Ghost Particles 

to enforce free slip along 

the solid boundaries (both 

moving and fixed). 

1. Benchmark Dam Break 

problem. 

2. NWT: for validation 

purposes. 

3. Sloshing in a prismatic 

tank. 

WCSPH-GP-STEP 

WCSPH-GP with provision 

for a STEP. 

• Corrections for formulas 

for assigning correct 

velocity and mass 

properties at the corners. 

1. Solitary wave split up 

over a step replicating a 

continental self. 

2. Breaking wave impact 

over a sea head located on a 

sloping beach. 

δ- SPH-GP 

δ- SPH formulation with 

Ghost Particles 

 

• Solving higher order 

source terms in continuity 

equation: smooth pressure. 

• Higher time step. 

• Long time simulations. 

1. Sloshing with long time 

simulation for capturing sub 

harmonics. 

2. Breaking wave impact 

on a vertical wall. 

δ- SPH-DP 

δ- SPH formulation with 

enhanced Dummy Particle 

• Accurate extrapolation 

of both pressure and 

velocity at the solid region. 

1. Wave impact problem.  
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Technique • Easy adoption of 

geometry of the domain 

defined by the user. 

• Faster computation than 

WCSPH-GP. 

δ- SPH-GP-DP 

δ- SPH with Dummy 

Particles for the fixed 

arbitrary shaped boundaries 

and Ghost Particles for 

wave maker. 

• Accurate wave 

generation as defined by the 

user. 

• Faster computation than 

WCSPH-GP-STEP. 

• Collision model. 

1. Solitary wave breaking 

over a sloping beach. 

2. Wave overtopping. 

3. Wave interactions with 

seawalls with prescribed 

shapes. 

 

Table 7.2. Improved versions of the ISPH models with their characteristic features 

Version Features Applications 

ISPH-MHS 

ISPH with Multi Higher 

Order source terms for the 

PPE. 

• Better stability during 

strong impact. 

• XSPH smoothing of 

velocity. 

• Faster convergence in 

the solution for PPE. 

1. Dame Beak wave impact 

with and without obstacle. 

2. Violent sloshing. 

ISPH-DFDI 

ISPH with uniform particle 

distributions by employing 

both Divergence Free and 

Density Invariant 

conditions. 

• Smooth pressure and 

velocity field. 

• Accurate evolution of 

nonlinear free surface. 

• Stable long time 

simulations. 

1. Wave overtopping. 

2. Wave interactions with 

sea walls. 
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7.2. CONCLUSIONS 

The major findings from the present study are highlighted as follows. 

7.2.1. Model development 

• Ghost Particle techniques are preferred for enforcing free slip conditions along the 

solid boundary for both moving and fixed boundaries, if there are no geometrical 

complexities. In the presence of sharp changes in the boundary, implementation of ghost 

particle technique poses difficulties in terms of particles overlap in the ghost region. Yet, 

one can develop formulae to assign flow properties at singular zones; even though it is 

difficult to make this as general for any defined shape. Therefore, Dummy Particles are 

found to be a better approach for the development of robust numerical model. For the 

benchmark problem, the model has been found to be 30% faster using Dummy Particles 

than Ghost Particles irrespective of resolution used.  

• In order to have a smooth pressure field, the particle coordinates have to be updated so 

as to retain a uniform particle distribution in overall. This has been achieved by using 

XSPH velocity correction with the value of the correction factor chosen optimally 

depending on the problem. XSPH velocity correction ensures uniform particle 

distribution in both WCSPH and ISPH models with sufficient resolution. However, a 

standard value (say, 0.5) might degrade the solution in the case of a violent flow. In such 

cases, a lower value (say, 0.3) might yield better pressure field. For non violent cases, the 

model has been found to be less sensitive with respect to the chosen value of XSPH 

factor. 

• The role of artificial viscosity can be significantly compensated by XSPH velocity 

correction technique. There are empirical coefficients in the specification of artificial 

viscosity which need calibration and thus difficult to adopt for general purposes. It is 

better to avoid artificial viscosity to retain the original Re of the flow in WCSPH and 

ISPH models. In most of the cases, the viscous part of the Navier Stokes equation has 

been modelled using SPH formulation and artificial viscosity has been avoided. 

• The dissipation of energy has been found to occur in both WCSPH and ISPH models 

even if fine resolutions are adopted. The spurious dissipation has to be controlled by 

properly chosen smoothing length and resolution (i.e., ratio of the characteristic length to 
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the initial particle spacing). In NWT problem, better comparison of the present WCSPH 

model with FEM has been obtained for h/dzp= 2 (h is smoothing length and dzp is the 

initial particle spacing used along the given water depth) than other values. The 

numerical solution from WCSPH has been found to converge at a faster rate with 

increase in h/dzp for NWT and sloshing problems. But, the computational cost has been 

found to increase significantly with increase of h/dzp. Therefore, an optimum value can 

be selected based on the requirement of the problem under consideration. For sloshing 

problem, the evolved free surface harmonics is found to be similar to that with h/dzp =2. 

Therefore, the former value has been adopted as an optimum choice. 

• For violent sloshing problem, the WCSPH solution has been found to diverge with 

increase in resolution. This may be due to the high Re of the flow (O(10
6
)). Therefore, 

the optimum resolution has been found through several numerical experiments for violent 

sloshing. Higher smoothing length (h) gives larger time step in WCSPH. In violent 

sloshing, the simulation of several flow features like wave breaking, flip through, roof 

impacts etc. requires smaller time step. Therefore, a relatively smaller h has been 

preferred in this case. 

• Incorporating diffusive terms in continuity equation (δ- SPH) bring two major 

improvements for WCSPH: a) Pressure time history with less fluctuation and, b) 

Simulation with larger time step which is favourable for long time simulation of non 

violent water waves. In many wave impact problems, a secondary peak is observed along 

with primary peak in the measured pressure time history. It is difficult to extract such 

useful information from standard WCSPH even while applying smoothing on the 

predicted pressure time history. The numerical model successfully captures the secondary 

pressure peaks in wave impact problems as considered in the present study by taking 

advantages of δ- SPH. 

• The preferred choice for improved WCSPH and ISPH models for wave impact 

problem still remains an open question among other issues. However, considering the 

problems considered in the present study, the order of preference can be given based on 

the Re of the flow as: Re(O(10
3
))- WCSPH, ISPH; Re(O(10

4
-10

5
))- ISPH, WCSPH; 

Re(O(10
6
))- WCSPH, ISPH. For wave overtopping problems, both models have been 

proven to be equally applicable. 
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• WCSPH model has been found to be equally preferable as ISPH model for 

overtopping calculation. For regular wave incidence, the overtopping prediction from 

WCSPH differs from experimental measurements by 25.18%, while such variation is 

18% for ISPH model. However, RANS estimate deviates of about 52.63% from 

experimental measurements. 

7.2.2. Significance of the results  

• Being a Navier Stokes solver, the present numerical model gives direct prediction of 

the physical quantities which is important in flow analysis for the design of an object in a 

marine environment. For example, the difference in velocity fields as captured through 

the present SPH model while simulating wave interaction with seawalls can be 

effectively used for selecting profile of the seawall and the materials for construction. 

• A number of free surface harmonics due to sloshing under regular and random 

external excitation has been captured by the present SPH model. This characteristic 

feature of sloshing oscillation can be positively utilized for an efficient operation of the 

sea going vessels. 

• With the rapid progress in computing architecture in recent times, it is apparent that 

very soon it would be possible to perform fast numerical simulation with million of 

particles in a laptop utilizing GPU techniques. With the findings, on convergence 

properties of the SPH scheme for a given problem, optimum choice of input parameters 

and the choice of a SPH scheme can provide necessary input for the development of an 

optimized SPH algorithm dealing with 3D problems in addition to parallelization. 

 

7.3. RECOMMENDATIONS FOR FUTURE WORKS 

The scope of the present work was initiated with some questions as mentioned at the end 

of Chapter 2. Upto the current stage of this study, exploration has been made up to certain 

extent. This leads to the following scope for future work: 

• ISPH model: A major advantage of ISPH model is the absence of the numerical 

sound speed constraints on time step. There is also no evidence reported in literature 

whether there is a shock problem here or not. Instead some collision model has been 

used. In the present study, some improvements have been incorporated in the ISPH 

model; yet, success could not be achieved even with these progresses in some cases. For 
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this reason, inter comparison could not be provided for all the cases where WCSPH based 

models have been applied. Possible scopes for the improvement of the ISPH model 

include: 

o A higher order time integrator: Present ISPH model uses predictor- corrector 

based technique for time marching. It is known that if a higher order time integrator 

(e.g., RK4, Adam Bashforth) is implemented the computational cost per time step 

can be significantly increased; yet from numerical point of view, it would be 

interesting to see how far the model improves by adopting these time integrators 

like RK4. Because, for long time simulation, higher order time integrators are 

generally preferred. 

o Alternate formulation: The projection based strategies proposed by Cummins 

and Rudman (1999) is one way of enforcing incompressibility in SPH for water 

wave problems. However, there are other approaches available in literature (e.g., 

Lastiwaka et al., 2005; Ellero et al., 2007) to enforce incompressibility. Therefore, 

it would be interesting to perform a comparative study for the same benchmark 

problem using these different approaches for incompressibility and then investigate 

their performances. 

o Khayyer et al. (2009) found that using an artificial sound speed in the source 

term of PPE in MPS method (a method similar to ISPH where pressure is obtained 

by solving PPE), the pressure fluctuation can be reduced. On the other hand, the 

quantitative equivalence between MPS and ISPH in terms of particle based 

differential operators has been derived by Souto- Iglesias et al. (2013). Now, 

combining these two works one can form a definite research path understanding 

whether numerical sound speed is important parameter to be considered in ISPH. 

• Provision for floating bodies: A floating body can be incorporated in a particle based 

numerical model easily due to its meshfree characteristics. Koshizuka et al. (1998) 

proposed algorithm for simulating floating bodies in MPS. Shao (2009) extended this 

technique for simulating entry of an object into water using ISPH. Since the developed 

SPH model can provide proper pressure time history on any shape of the solid boundary, 

it is important to extend these techniques for modelling floating bodies. 
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• Modelling turbulence: The present SPH models have been able to simulate wave 

breaking. Now, the next step should be development of the turbulence scheme in order to 

understand energy dissipation due to turbulence while wave breaking. Issa et al. (2010) 

has found that choice of a particular scheme to model turbulence may effect the 

prediction of the free surface profile during wave breaking, particularly in post breaking 

stages. 

• Other problems: With the current status of the numerical models, one can go for 

numerical simulation for the following two important problems in nonlinear water waves: 

o Wave focusing: In deep ocean, freak waves are generated due to directional 

focusing of wave groups and may lead to a breaking wave. Present SPH model can 

be used to study the processes of wave- wave interaction during wave focusing. 

o Topographic focusing: When a wave crest travels over a variable bathymetry, 

wave breaking may occur due to shoaling. Since the present SPH model can adopt 

user defined geometry for the solid boundary, it can be used to simulate wave 

breaking due to such topographic focusing. 

• Extension to 3D: Many of the problems in wave structure interaction require the 

description of the nonlinear water wave in 3D. In such cases, large number of particles 

are required to perform accurate simulation of the complete scenario of wave generation, 

propagation and then interaction with structures. But the present serial version of the 

numerical code can model only upto a limited number of particles. In order to further 

extend the capabilities following approaches can be considered: 

o Hybrid coupling with a potential flow based solver: The stages from the 

generation and then propagation of the nonlinear water wave upto the point of 

breaking can be modelled using a FNPT based model. This model is 

computationally cheap and efficient for the same number of nodes (particles) for a 

NS model. Then from the time the wave starts to overturn and breaks can be 

modelled using present SPH model. One of the requirements for such coupling is 

that the pressure field in the particle based NS model has to be regular and smooth. 

Since the present SPH model has provided smooth pressure field in many cases, it 

has the potential to be used in such coupling. 
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o Parallel program: The computational efficiency of the present serial code can 

be enhanced by using OpenMP methodologies. Implementation of MPI appears to 

be difficult. The efficiency should be improved by adopting GPU computing 

techniques with CUDA programming. 
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APPENDIX A 

ITERATIVE METHODS FOR SOLVING LARGE SPARSE SYSTEM 

OF MATRIX 

 

 

 

A.1. GENERAL 

Incompressible SPH (ISPH) method differs from Weakly Compressible SPH (WCSPH) 

method by the technique adopted to calculate pressure at each particle. These discrete 

pressures are required to calculate pressure gradient while solving momentum equation 

(Eqn. 3.29) obtained by approximating the Navier- Stokes equation (Eqn. 3.2). From 

continuity equation (Eqn. 3.1), it is seen that the velocity field has to be divergence free 

in order to satisfy the incompressibility condition for the working media (i.e., water). 

This leads to a Poisson equation (i.e., an equation of the form 2 F∇ =ϕ , where both of φ 

and F are variables) for pressure (which is generally known as Pressure Poisson Equation 

(PPE)), as explained in section 3.6. To solve PPE, it is required to write it in a matrix 

form AX=B which actually represents a simultaneous linear system of algebraic equation. 

Suppose, there are Np number of fluid particles and Nb number of wetted boundary 

particles. Then the sizes of A, X and B will be n × n, n × 1 and n × 1, respectively. Here, 

n= Np + Nb
1
. A is the coefficient matrix (obtained after expanding Eqn. (3.45) for each 

particle and writing pij as pi- pj), X is the unknown vector (X={p1,p2,p3,….pn}
T
) to be 

solved for pressure and B is the source term (obtained from right hand side of Eqn. (3.44) 

for each particle) of the PPE. In most cases, n is quite large since a sufficient number of 

particles are required to perform proper simulation. For a standard 2D problem, the 

number of neighbouring particles should be in the range of 20 ~50 for a given particle. 

Hence, for any given row in A, there are numerous empty spaces. Therefore, A is 

diagonally dominant and sparse. Solving such a matrix by using direct techniques like 

                                                             

1 Nb may vary in nonlinear water wave problems. Suppose, we need to simulate wave interaction with a 

structure. In such case, Nb increases when there is a wave run up and Nb decreases when there is a wave run 

down. Hence in the ISPH model, provision has to be kept in order to consider the varying size of the PPE in 

time steps. 
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Gauss Elimination, LU decomposition or Back substitution may be very CPU time 

consuming. Hence, an iterative method is preferred for such purpose. 

 In literature pertaining to scientific computing, many iterative methods are available to 

solve a large sparse matrix. However, the choice closely depends on the properties of the 

matrix A. This appendix provides an introduction to the principles of constructing 

iterative schemes and the key factors required to make a choice among the various ones 

for the ISPH method. A brief numerical test has been reported for the comparative study 

on a few iterative techniques/ solvers for a given matrix. 

 The idea presented here is largely based on a comprehensive article by Shewchuk 

(1994) and some open source Conjugate Gradient (CG) solvers.  

 

A.2. ITERATIVE TECHNIQUE  

A.2.1. Principle 

An iterative technique provides solution for system of equations written in the matrix 

form as, 

AX = B (A.1) 

An iterative technique is most useful when it is difficult to get exact solutions for X and, 

an approximate solution is sought. This technique consists of starting with an initial guess 

for X, choosing a proper direction towards the solution based on current X in hand and 

then checking the status of error. The basic flow chart for this loop is shown in Fig. A.1. 

Here, ε is the tolerance criteria imposed on limiting the error. The loop continues until 

convergence is achieved in terms of the tolerance (i.e., the error does not vary 

significantly with increase in later iteration steps) or, the error comes below a threshold 

or, the loop reaches the maximum number of iteration steps permitted. The various 

iterative techniques differ from each other by the technique adopted to choose the 

direction towards the correct X and calculate Xi+1. The method of steepest descent is the 

most fundamental among those techniques. 

 Before discussing the algorithm of steepest descent, it is required to mention the 

interpretation of Eqn. (A.1) in finding minima of a quadratic form. 

 A quadratic form for a vector X can be written as, 
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( )
1

2

Tf X X AX BX c= − +  
(A.2) 

Taking derivative with respect to X on both sides of Eqn. (A.2), f'(X) is obtained as, 

( )f X AX B′ = −  (A.3) 

 

Start with initial 

guess Xi= X0

Start with initial 

guess Xi= X0

Calculate

•Bi from AXi=Bi

•Residual r, ri=B-Bi

•Error e, ei=xi-x

Calculate

•Bi from AXi=Bi

•Residual r, ri=B-Bi

•Error e, ei=xi-x

Choose a direction 

for calculating Xi+1

Choose a direction 

for calculating Xi+1

Calculate Xi+1Calculate Xi+1

e<εe<ε STOPSTOP
yes

no

 

 

Fig. A.1. Flow chart for a solver using iterative technique. 



 171

where, it is assumed that A is symmetric (i.e., A
T
=A). Therefore, the solution of Eqn. 

(A.1) can be interpreted as finding minima of Eqn. (A.2) by setting f'(X) in Eqn. (A.3) as 

zero.  

 

A.2.2. Method of steepest descent 

It starts with an initial guess located over the space defined by Eqn. (A.2). With the 

definition of residual (r) and error (e) shown in Fig. A.1, it can be found that ri=-f'(Xi). 

Therefore, at any iteration step, the residual directs opposite to the gradient calculated at 

Xi over the space of f(X). To calculate X for the next iteration step (i.e., Xi+1), one needs a 

direction (which may be defined by a parameter α) to which one needs to advance 

towards the correct X as, 

1i i i
X X r+ = +α  (A.4) 

It is required to consider the following relationship that holds between the residual at the 

current iteration step (ri) and at the next step (ri+1). 

( )1 1
1 1

T Ti i
i i i

dX dX
f X r r

d d

+ +
+ +

′= = −
α α

 
(A.5) 

In each iteration step f(X) is tried to be minimized. For a given point on f(X) this can be 

achieved by considering the intersection of the planes of f(X) and same given by Eqn. 

(A.4). Now, for a given X, f(X) is minimized when minima is sought by setting 

dXi+1/dα=0 in Eqn. (A.5). Eventually this leads ri and ri+1 to be orthogonal (since, 

r
T

i+1ri=0). Then substituting ri+1 as B- AXi+1 and substituting Xi+1 in terms of Xi from Eqn. 

(A.4) to Eqn. (A.5), we have α as: 

T

i i

T

i i

r r

r Ar
=α  

(A.6) 

This procedure of finding α is known as line search. In summary, the method of steepest 

descent is given by,  

1

,

,

.

i i

T

i i
i T

i i

i i i i

r B AX

r r

r Ar

X X r+

= −

=

= +

α

α

 

 

(A.7) 
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A.2.3. Conjugate Gradient (CG) method 

In the method of steepest descent, there are chances that a particular search direction is 

taken multiple times. Hence, this process can be made more efficient if a number of 

search directions, mutually orthogonal are chosen simultaneously and then for each 

direction, an iterative step is taken. To improve the efficiency further, these directions are 

made A orthogonal. In Conjugate- Gradient (CG) method, this is achieved as 

 

0 0 0

1

1

1 1
1

1 1 1

,

,

,

,

,

.

T

i i
i T

i i

i i i i

i i i i

T

i i
i T

i i

i i i i

d r B AX

r r

d Ad

X X d

r r Ad

r r

r r

d r d

+

+

+ +
+

+ + +

= = −

α =

= + α

= − α

=

= +

β

β

 (A.8) 

 

In most of the cases, the condition number (i.e., the ratio of maximum to minimum eigen 

values) of matrix A is improved by multiplying it with another matrix (P
-1

) so that the 

product has a better condition number and therefore ensure faster convergence. P is 

chosen in such a way that it is easy to invert (like an identity matrix or a matrix 

containing only the diagonal parts of A). P is called a Preconditioner.  

 

A.2.4. Bi- Conjugate Gradient Method 

The CG method requires matrix A to be positive definite. However, due to meshfree 

nature of SPH, in some time steps, it may not be assured that A will remain positive 

definite. Therefore, it is required that the adopted CG method is capable to work with 

square, symmetric but not necessarily positive definite matrix. This can be done by using 

Bi- Conjugate Gradient method. Along with a Preconditioner (P), the resulting algorithm 

is known as Preconditioned Bi- Conjugate Gradient (PBCG) method. Here, we have two 

additional set of vectors z and z , defined by 
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i i

T

i i

Pz r

P z r

= 


= 
 

(A.9) 

vectors r and r are related through the biorthogonality condition, 

. . 0,      <
i j i j

r r r r for j i= =  (A.10) 

 

With these, the PBCG method is obtained by the following recurrence. 
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 (A.11) 

where, vectors d and d are related by biconjugacy condition. 

0,        T

i j i jd Ad d A d for j i= = <  (A.12) 

The Bi- Conjugate gradient method reduces to CG method when A is symmetric and, 

ir =ri and id =di , for all i. 

 

A.2.5. Generalized Minimum Residual Method (GMRES) 

There is another variant of CG is available which can work with symmetric, square and 

non positive definite matrix. In such case, i ir Ar= and i id Ad= for all i. Also, all inner 

products between a general matrix a and vector B, aB is replaced by aAB. The algorithm 

is known as Generalized Minimum Residual Method (GMRES) which acts by 

minimizing function, Φ(X) given by 

21 1
( ) .

2 2
X r r AX BΦ = = −  (A.13) 

through iterations. 
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A.3. NUMERICAL TEST  

A suitable solver is adopted for the ISPH method based on a series of numerical tests on a 

given square, symmetric and positive definite matrices (A). In these tests, following 

solvers have been used: 

• BICGSTAB: In built Bi- Conjugate solver in MATLAB
®
.  

• Gauss: Direct inversion of a given matrix based on Gaussian Elimination by  using '/' 

operator in MATLAB
®
. (source:  http://www.mathworks.in/help/matlab/ref/inv.html). 

• DGMRES : GMRES solver available in FORTRAN library DLAP for solving sparse 

linear systems. DLAP has been developed and released in public domain by SLATEC 

(acronym for Sandia, Los Alamos, Air Force Weapons Laboratory Technical Exchange 

Committee). Details about SLATEC are available in SLATEC user guide (Fong et al., 

1993). 

• DBCG: Bi- Conjugate Gradient solver available in DLAP. 

• linbcg: A PBCG solver detailed by Press et al. (1986). 

 

 These tests consist of two parts: Firstly, a square, symmetric and positive definite 

matrix of a given size is generated in MATLAB
®
 and stored as A. B is taken as a unit 

vector. Secondly, for the same A and B, X is solved by BICGSTAB and Gauss (in 

MATLAB
®
) and linbcg. The purpose of the test is to understand the pattern of the 

solution X varies, as its' size increases (i.e., when the size of A increases). When the size 

is O(1000), DGMRES and DBCG are also applied. Same tests are repeated for multiple 

times for A for a given size in order to ensure that the results are independent of the ways 

in which A is generated in MATLAB
®
. 

 Fig. A.2 reports the comparative studies for the performances of the above mentioned 

solvers. Following observations are noted: 

• When the number of unknowns is O(50-100), the solutions from all the solvers 

matches exactly (Figs. A.2, (a) and (b)). For both of the iterative solvers, BICGSTAB and 

linbcg, convergence is achieved within about twenty iteration steps. There are also no 

significant differences in terms of elapsed CPU time for the iterative methods when 

compared to a direct one like Gauss. 
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• For the number of unknowns in the range [150- 200], the solution from linbcg matches 

more closely to Gauss than BICGSTAB (Figs. A.2, (c) and (d)). 

• When the number of unknowns in the range [250- 800], the solution from the iterative 

methods diverges from the direct one (Figs. A.2. (e) and (f)). Even with the increase in 

the maximum number of iteration steps allowed, no significant changes observed in the 

results. With the further increase in the number of unknowns (Fig. A.2 (g)), i.e., O(1000), 

the elapsed CPU time in direct method like Gauss is very large compared to others. 

Solutions from DGMRES and linbcg match more closely than others. Hence, in ISPH 

model, one of these two solvers is used. 

 

 

(a) (b) 

(c) (d) 

Fig. A2. Performances of the iterative solvers with reference to the direct solver (Contd..) 
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(e) (f) 

 

 

 

 

(g) 

(Contd..) Fig. A.2. Performances of the iterative solvers with reference to the direct 

solver.  
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APPENDIX B 

GENERATION OF SOLITARY WAVE 

 

 

 

In the present study, solitary wave has been generated in the NWF by prescribing a 

displacement to the wavemaker (section 4.2.2). The equations (Eqns. (4.5) and (4.6)) that 

are required to be solved to obtain a piston displacement time series are implicit in form 

(Goring, 1979). These equations can be solved by an iterative technique. This appendix 

lists the MATLAB
®
 code (Table B.1) which solves these equations using a simple 

iterative solver. 

 The output of the code contains piston displacement time history. This becomes input 

to the paddle in the NWF to generate a solitary wave of required height for a given initial 

water depth. 

 Fig. B.1. shows a typical piston displacement (Xp) time history for a target solitary 

wave height of 0.1m in a water depth of 1m. 

 

Fig. B.1. Piston displacement time history to generate a solitary wave of height 0.1m in a 

water depth of 1m. 
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Table B.1. MATLAB
® 

code for generating piston displacement time history 

corresponding to a solitary wave 

 
clc;clc;clc;clc;    
%input target wave height and initial water depth%input target wave height and initial water depth%input target wave height and initial water depth%input target wave height and initial water depth    
H=0.1;h=1.0;H=0.1;h=1.0;H=0.1;h=1.0;H=0.1;h=1.0;    
g=9.8;g=9.8;g=9.8;g=9.8;    
k=((3.0*H)/(4.0*h))^0.5;k=((3.0*H)/(4.0*h))^0.5;k=((3.0*H)/(4.0*h))^0.5;k=((3.0*H)/(4.0*h))^0.5;    
cel=(g*(h+H))^0.5;cel=(g*(h+H))^0.5;cel=(g*(h+H))^0.5;cel=(g*(h+H))^0.5;    
lambda=3.8/k;lambda=3.8/k;lambda=3.8/k;lambda=3.8/k;    
    
%enter end time%enter end time%enter end time%enter end time    
tend=10.0;tend=10.0;tend=10.0;tend=10.0;    
    
tini=0.0;tini=0.0;tini=0.0;tini=0.0;    
dt=0.0dt=0.0dt=0.0dt=0.01;1;1;1;    
nt=int16((tendnt=int16((tendnt=int16((tendnt=int16((tend----tini)/dt) + 1;tini)/dt) + 1;tini)/dt) + 1;tini)/dt) + 1;    
ta(1:nt)=0.0;ta(1:nt)=0.0;ta(1:nt)=0.0;ta(1:nt)=0.0;    
for i=2:ntfor i=2:ntfor i=2:ntfor i=2:nt    
    ta(i)=ta(i    ta(i)=ta(i    ta(i)=ta(i    ta(i)=ta(i----1)+dt;1)+dt;1)+dt;1)+dt;    
endendendend    
    
%initialize working arrays%initialize working arrays%initialize working arrays%initialize working arrays    
Xp(1:nt)=0.0;Xp(1:nt)=0.0;Xp(1:nt)=0.0;Xp(1:nt)=0.0;    
Vp(1:nt)=0.0;Vp(1:nt)=0.0;Vp(1:nt)=0.0;Vp(1:nt)=0.0;    
Xp(1)=0.0;Xp(1)=0.0;Xp(1)=0.0;Xp(1)=0.0;    
Vp(1)=0.0;Vp(1)=0.0;Vp(1)=0.0;Vp(1)=0.0;    
    
%define tolerance and maximum number of iteration steps%define tolerance and maximum number of iteration steps%define tolerance and maximum number of iteration steps%define tolerance and maximum number of iteration steps    
tol=1.00etol=1.00etol=1.00etol=1.00e----10;10;10;10;    
itmax=2000;itmax=2000;itmax=2000;itmax=2000;    
    
x=0.0;x=0.0;x=0.0;x=0.0;    
    
fofofofor i=2:nt              % the time integration loopr i=2:nt              % the time integration loopr i=2:nt              % the time integration loopr i=2:nt              % the time integration loop    
    x=0.00;    x=0.00;    x=0.00;    x=0.00;    
    it=0;    it=0;    it=0;    it=0;    
    chi=(k/h)*(cel*ta(i)    chi=(k/h)*(cel*ta(i)    chi=(k/h)*(cel*ta(i)    chi=(k/h)*(cel*ta(i)----xxxx----lambda);lambda);lambda);lambda);    
    x2=(H/k)*(tanh(chi)+tanh(k*lambda/h));    x2=(H/k)*(tanh(chi)+tanh(k*lambda/h));    x2=(H/k)*(tanh(chi)+tanh(k*lambda/h));    x2=(H/k)*(tanh(chi)+tanh(k*lambda/h));    
    ct=x2    ct=x2    ct=x2    ct=x2----x;x;x;x;    
    while(ct>=tol | it<=itmax)          %iteration loop    while(ct>=tol | it<=itmax)          %iteration loop    while(ct>=tol | it<=itmax)          %iteration loop    while(ct>=tol | it<=itmax)          %iteration loop    
                x1=x;x1=x;x1=x;x1=x;    
    chi=(k/h)*(cel*ta(i)    chi=(k/h)*(cel*ta(i)    chi=(k/h)*(cel*ta(i)    chi=(k/h)*(cel*ta(i)----xxxx1111----lambda);lambda);lambda);lambda);    
                x2=(H/k)*(tanh(chi)+tanh(k*lambda/h));x2=(H/k)*(tanh(chi)+tanh(k*lambda/h));x2=(H/k)*(tanh(chi)+tanh(k*lambda/h));x2=(H/k)*(tanh(chi)+tanh(k*lambda/h));    
                ct=x2ct=x2ct=x2ct=x2----x1;x1;x1;x1;    
    x=x2;    x=x2;    x=x2;    x=x2;    
    it=it+1;    it=it+1;    it=it+1;    it=it+1;    
                endendendend    
    Xp(i)=x2;    Xp(i)=x2;    Xp(i)=x2;    Xp(i)=x2;    
    chi=(k/h)*(cel*ta(i)    chi=(k/h)*(cel*ta(i)    chi=(k/h)*(cel*ta(i)    chi=(k/h)*(cel*ta(i)----Xp(i)Xp(i)Xp(i)Xp(i)----lambda);lambda);lambda);lambda);    
                Vp(i)=(cel*H)/(h*((cosh(chi))^2 + (H/h)));Vp(i)=(cel*H)/(h*((cosh(chi))^2 + (H/h)));Vp(i)=(cel*H)/(h*((cosh(chi))^2 + (H/h)));Vp(i)=(cel*H)/(h*((cosh(chi))^2 + (H/h)));    
    
endendendend    
    
plot(ta,Xp);            %plot displacement time hiplot(ta,Xp);            %plot displacement time hiplot(ta,Xp);            %plot displacement time hiplot(ta,Xp);            %plot displacement time historystorystorystory    
xlabel('t(s)');xlabel('t(s)');xlabel('t(s)');xlabel('t(s)');    
ylabel('Xp(m)');ylabel('Xp(m)');ylabel('Xp(m)');ylabel('Xp(m)');    
    
M(1:nt,1:2)=0.0;M(1:nt,1:2)=0.0;M(1:nt,1:2)=0.0;M(1:nt,1:2)=0.0;    
for i=1:ntfor i=1:ntfor i=1:ntfor i=1:nt    
                M(i,1)=ta(i);M(i,1)=ta(i);M(i,1)=ta(i);M(i,1)=ta(i);    
    M(i,2)=Xp(i);    M(i,2)=Xp(i);    M(i,2)=Xp(i);    M(i,2)=Xp(i);    
endendendend    
dlmwrite('wavmker.txt',M,'delimiter','dlmwrite('wavmker.txt',M,'delimiter','dlmwrite('wavmker.txt',M,'delimiter','dlmwrite('wavmker.txt',M,'delimiter','\\\\t')  %store piston displacement time historyt')  %store piston displacement time historyt')  %store piston displacement time historyt')  %store piston displacement time history    
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