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Abstract

An Implementation of Smoothed Particle Hydrodynamics For Large Deformation,
History Dependent Geomaterials With Applications to Tectonic Deformation

Hans Frederick Schwaiger

Chair of the Supervisory Committee:
Professor Sean D. Willett

Department of Earth and Space Sciences

The deformation of a wide range of materials in geology can be described by fluid behavior, whether of

mass wasting, cooling lava or crustal flows. These “geophysical flows” can be problematic to model

numerically as they can involve the significant deformation of heterogeneous, history-dependent

material. The large deformation can become increasingly troubling when it is highly localized in

shear bands or on discrete failure plains such as with the brittle deformation along faults in the upper

crust. Traditional, grid-based numerical schemes have difficulty capturing this faulting behavior. An

alternative approach is to use a numerical scheme that does not rely on a grid. In this dissertation, a

mesh-free formulation, based on the Smoothed Particle Hydrodynamics (SPH) method, is developed

for the significant deformation of creeping, visco-plastic material as applied to the brittle failure of

the continental crust in tectonic deformation.

To apply the SPH scheme to creeping, viscous flows, several modifications are needed. The first

modification is an improved treatment of the Laplacian operator, particularly near the surface of the

flow where the standard SPH discretization fails. Secondly, a means of enforcing the incompressibility

constraint is developed. In the course of these efforts, an improved treatment of boundary conditions

is implemented. Finally, to simulate the deformation of crustal material, a Mohr-Coulomb rheology

is added along with modifications to improve the localization of strain. The numerical model is then

applied to two tectonic environments: a doubly-vergent wedge and a symmetric rift.

The SPH model with these modifications performs well for creeping, viscous, incompressible flow

and thermal diffusion. The Mohr-Coulomb implementation performs satisfactorily (convergence is

slow), however, due to the width of the SPH discretization, the shear bands do not result in strain

more localized than with grid-based methods. As such, the SPH method as presented is well suited

for modeling coupled thermo-mechanical flows of history-dependent material, such as the rolling





advance of cooling lava. Brittle deformation can be approximated, however it is not clear that

the influence of the width of the SPH discretization can be overcome efficiently, particularly in

comparison with other mesh-free methods.
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Chapter 1

INTRODUCTION

‘Geophysical flow’ is a term broadly used for describing the deformation and flow of geomaterials

in many natural environments. These range from the faster flows such as landslides or atmospheric

flows to the creeping flows of lava and crustal material [54]. In each of these cases, the essential

mechanics of the problem can be cast in terms of a viscous fluid described by the incompressible

Navier-Stokes equations. Viscous stresses might be negligible, as in the case of atmospheric flows, or

significant as with a landslide. In other cases, such as with creeping flow, the viscous stresses may

be dominant. This viscous model for geophysical flows allows for including plastic behavior through

a non-linear viscosity. This is a useful framework for addressing deformation of crustal material in

which the primary mode of deformation changes from brittle at shallow depths, to ductile at greater

depths. The brittle deformation can be modeled using a frictional plastic rheology through a non-

linear, stress-dependent viscosity whereas the ductile deformation can be modeled with a viscosity

linear in stress (although dependent on temperature).

In many of these examples, the flows can be quite complicated and involve heterogeneous ma-

terials such as multiple fluids interacting, or materials with some sort of dependence on the fluid’s

history. For example, this dependence could be a rheologic dependence of the integrated strain his-

tory with the material either weakening or strengthening with increasing deformation. Alternatively,

the rheology of a material parcel could be dependent on the thermal history of that parcel, in which

case an accurate estimate of the parcel’s path through an evolving temperature field would be needed

to calculate the evolution of the rheology.

The primary geophysical flow with which this thesis is concerned is the visco-plastic flow of

crustal material. For this flow, the accumulated damage on a parcel of material plays a significant

role in the localization of strain. This is important since the brittle deformation of crustal material

which occurs on distinct faults, can be modeled as highly localized shear bands.

This class of flows in which the deformation is large, yet requires an accurate accounting of the

material history, such as the accumulated damage, has provided additional hurdles for traditional

numerical methods. By ‘traditional’, I refer to the many numerical methods that rely on a grid or



2

mesh (Finite Difference, Finite Volume, Finite Element) to efficiently convert the governing partial

differential equations to algebraic equations. Generally, the frame of reference of a numerical method

is chosen to be either fixed in space (Eulerian reference frame) or fixed to the material (Lagrangian

reference frame). An advantage of the Eulerian frame is that since the grid remains fixed, arbitrarily

large deformations can easily be accommodated, however the history of an individual material parcel

is difficult to track. The Lagrangian frame, in contrast, inherently tracks material history since the

grid follows the deformation, however the accuracy of the calculations is often dependent of the

geometry of the grid. As this geometry become more distorted, the accuracy of the numerical

solution suffers and can fail if steps are not taken to prevent the mesh from becoming entangled. As

such, the Lagrangian methods generally are used for small deformations such as elastic behavior or

the onset of plastic failure of elasto-plastic material. As opposed to the failure analysis problems of

mechanical engineering, for geomaterials undergoing plastic failure, it is often the behavior post-yield

that is of interest, leading to the same mesh-entanglement issues.

Grid-based numerical methods can be cast in either of these frames of reference for the simulation

of large deformation flows with the understanding that there will be errors that arise either from

the numerical diffusion of material properties in Eulerian schemes, or interpolation errors from

regridding a severely deformed Lagrangian mesh. To mitigate this problem, an Eulerian mesh

can be used with some mechanism of tracking particle paths and material history. These include

the Arbitrary Lagrangian-Eulerian (ALE) [36] method which advects a Lagrangian grid based on

Eulerian velocities, and the Particle-in-cell (PIC) method [88, 87] which tracks material properties

and histories of particles that communicate their values to an Eulerian grid. Other similar methods

include the Marker-and-cell (MAC) [48] and the Material Point Method (MPM) [129]. All of these

methods rely on an underlying Eulerian grid for solving the continuum equations and to some extent

are susceptible to the associated numerical diffusion.

The geophysical flow of visco-plastic deformation in the upper crust highlights many of these

potential sources of errors when using grid-based methods. Deformation can be large and can

involve inhomogeneous material. The material’s rheology may be dependent on its history. Zones of

highly localized shear deformation (faults) are the primary mode of deformation. Because of these

various features of this class of flow and the difficulty of the grid-based methods in simultaneously

addressing all of them, a method that does not need a grid is an attractive option.
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1.1 Mesh-free numerical modeling

An alternative to grid-based numerical methods such as finite difference and finite element methods

are the mesh-free (particle) methods. As the name suggests, the equations of motion are solved on a

set of particles with no underlying mesh. The particles, essentially, correspond to fluid parcels. The

primary advantage of this approach is that a Lagrangian frame can be chosen (which is advantageous

for tracking history dependent material) without the problems of mesh entanglement, loss of accuracy

due to highly deformed grids, or the computational expense and loss of accuracy due to frequent

regridding.

Mesh-free methods have a long history in the fluid dynamics community starting with Smoothed

Particle Hydrodynamics (SPH) [71, 38] in the mid-1970’s which was developed for inviscid gas dy-

namics. The past ten years have seen a dramatic evolution of the SPH method with applications

to free-surface, shallow-water flows [82], solid mechanics [40], impact problems [56], and fluid–solid

interactions [93]. In order to extend the applicability of SPH to these problems, several improve-

ments needed to be included. For example, in problems where the object has a stress-free surface

(as opposed to problems of gas dynamics) the spatial discretization in the SPH method fails to accu-

rately represent even constant functions in the vicinity of that surface. Various corrections for this

lack of consistency of the method have been introduced often with a rechristening of the method.

For example, the Reproducing Kernel Particle Method (RKPM) [69] uses correction functions that

require that the discretization reproduce polynomials of a given order. The Corrected Smoothed

Particle Hydrodynamics (CSPH) [5] also uses a correction function, but one derived from a Taylor

series expansion. The Corrective Smoothed Particle Method (CSPM) [18] and the related Modified

SPH (MSPH) method [147]) also use a Taylor series expansion, but include higher order terms and

are applicable to discretization of the second derivative. The development of these techniques was

crucial in addressing other required improvements to SPH such as the ability to properly enforce

essential and natural boundary conditions. All these methods mentioned above are collocation meth-

ods, but mesh-free Galerkin methods have also been developed such as the Element Free Galerkin

(EFG) [3] and Meshless Local-Petrov-Galerkin [65] methods.

More recently, these improved mesh-free methods have been applied to the problem of the local-

ization of plastic failure. The RKPM was applied to strain localization by Li and Liu [62]. A variant

of SPH (MSPH) was used in adiabatic shear bands by Batra and Zhang [1]. Rabczuk and Areias

[108] employed the EFG method and Li et al. [64] used a mesh-free Galerkin method. In each of

these studies, an elasto-viscoplastic rheology was used with an emphasis on dynamic problems. As

such, explicit integration was used in each of these examples.
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The work presented in this thesis is the extension of the SPH method to creeping, incompressible

visco-plastic flow with an emphasis on the localization of shear-bands. In addressing this problem,

several modifications to the classic SPH algorithm needed to be developed.

1.1.1 Classic SPH discretization

The classic SPH discretization starts with a function representation as follows.

f(x) =
∫

Ω

f(x′)δ(x− x′) dx′

Ω is the domain and δ is the Dirac delta function.

The SPH spatial discretization involves a two-step approximation. First δ is approximated by a

kernel (W ) of finite width, h.

f(x) =
∫

Ω

f(x′)δ(x− x′) dx′ (1.1)

'
∫

Ω

f(x′)W (x− x′, h) dx′ (1.2)

Next, the integral is approximated by a summation over discrete set of points.

f(x) '
∫

Ω

f(x′)W (x− x′, h) dx′ (1.3)

'
∑

j

f(xj)W (x− xj , h)ϕj

j are the particles in the support domain (within the region of influence of the kernel, W ) and ϕj is

the discrete volume element equal to the ratio of the particle’s mass to its density (mj/ρj).

Problems can arise in both steps of this approximation. If the point of interest is near a boundary,

then the kernel might be truncated by the boundary. If measures are not taken into account for this

insufficiency of the support domain, the first approximation will lead to increased errors. Secondly,

if there is an insufficient number of particles in the support domain, then the second step of the

approximation will flounder.

The SPH approximation of first derivative arises from applying an integration by parts to the

integral approximation. Assuming that the kernel is identically zero beyond some fixed radius, the

boundary term of the integration by parts can be neglected.

f(x),α '
∫

Ω

f(x′)W,α dx′ (1.4)
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The Greek indices refer to coordinates and comma denotes partial differentiation. Second derivatives

can be similarly approximated by applying a second integration by parts.

f(x),αβ '
∫

Ω

f(x′)W,αβ dx′ (1.5)

Each of these integral approximations can then be approximated by a summation over a set of

neighboring particles as before, but each of these approximations can suffer from the same boundary

and kernel deficiency issues as do the function approximations. Most of the correction methods

have been developed to improve function and gradient approximations. To calculate solutions for

creeping flow, an accurate evaluation of the Laplacian is needed which currently requires expensive

corrections.

Additionally, incompressibility is approximated in the classic SPH algorithm by allowing a slight

compressibility through an equation of state with a high speed of sound, then explicitly integrating

density via the continuity equation. For creeping flow problems, this approach is not practical since

the high viscosity makes an explicit integration scheme very inefficient.

These problems must be addressed in order to apply SPH to creeping flow problems.

1.2 Outline of thesis

This thesis is organized as follows. In chapter 2, to highlight a class of geophysical flows ripe for

a mesh-free solution, the classic SPH implementation of free-surface, viscous flow is applied to the

high velocity impact of two fluids of differing density and viscosity. In this case, the viscous fluid is

a landslide and the less viscous fluid is water. Calculations of the resulting wave height and run-up

are constrained by laboratory data and published field observations.

Chapter 3 presents a formulation of SPH for diffusive initial, boundary value problems with

free-surfaces. Issues that need to be addressed are:

• Implementing general linear boundary conditions (Dirichlet, Neumann, Mixed) at both walls

and surfaces

• The deficiency of the Laplacian calculation near surface boundaries

• Casting the initial-boundary value problem implicitly and using iterative solvers

Chapter 4 presents a formulation of SPH to creeping, viscous, incompressible flows. This for-

mulation relies heavily on the developments of chapter 3, but also focuses on efficient methods for

imposing the incompressibility constraint.
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Chapter 5 applies the developments of chapters 3 and 4 to two idealized tectonic settings: sym-

metric divergence (rift) and asymmetric convergence (doubly-vergent wedge). Linear viscous and

visco-plastic cases are shown. The primary issues addressed in this chapter are:

• Implementing a Mohr-Coulomb rheology for creeping flow

• Development of shear-bands via strain softening

• Improving the localization of the shear-bands through modifying the kernel width and adap-

tively refining the particle distribution

Finally, some concluding remarks are given in chapter 6.
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Chapter 2

APPLICATION OF SPH TO TSUNAMIGENIC LANDSLIDES

A version of this chapter entitled “Lagrangian hydrocode simulations of the 1958 Lituya Bay
tsunamigenic rockslide” was submitted to Geochemistry, Geophysics, Geosystems. Bretwood
Higman was the co-author.

The interaction of debris flows, whether subaqueous or subaerial, with bodies of water can produce

tsunamis with a locally devastating impact. When debris flows begin above the water surface, the

impact can produce a large air cavity, significantly increasing the effective volume of water displaced

and complicating efforts to model the resulting tsunami. Because grid-based, Eulerian numerical

methods have an inherent difficulty tracking material boundaries, we have implemented a particle-

based, Lagrangian model (Smoothed Particle Hydrodynamics). We treat the debris flow as an

incompressible, viscous fluid and the body of water as inviscid. We use this model to simulate the

1958 Lituya Bay rockslide and resulting tsunami. Our simulation results compare favorably with

field observations as well as a scaled laboratory experiment and numerical studies.

2.1 Introduction

In contrast to submarine landslides, subaerial landslides, can attain high velocities before impacting

the water and generating waves. These subaerial landslide events can lead to significant damage as,

for example, with the 1963 breech of the Vaiont Reservoir in Italy resulting in the destruction of the

town of Longarone and the deaths of 2000 people [125] They can also produce a wave height and run-

up significantly greater than other tsunamigenic mechanisms as, for example, the 1958 Lituya Bay

rockslide [81] which produced the highest measured run-up (524 m) for any historic tsunami. The

high-velocity impact can generate a large air cavity [98]. As a result, to numerically investigate the

near-field wave characteristics of these subaerial landslides, the full Navier-Stokes equations should

be used [74, 73]. Since the impact process involves the interaction of three phases (slide material,

air, and water), the numerical method must be capable of tracking the large deformation of these

material interfaces. For Eulerian, grid-based methods (as are typically used for fluid modeling), these

material interfaces can be subjected to a numerical diffusion. Techniques such as adaptive mesh

refining (AMR) [74] and the level-set method [105, 128], have successfully been used to mitigate the
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effects of numerical diffusion and improve the tracking of material interfaces.

In this study, we test the feasibility of using Smoothed Particle Hydrodynamics (SPH), a mesh-

free Lagrangian hydrocode, in studying this landslide-impact process. In contrast to grid-based

Eulerian methods, in the SPH method, material is represented as a system of particles that follow

deformation. As a result, the tracking of material interfaces (as well as material history) is an

inherent feature of the numerical method. The particular event we model is the 1958 Lituya Bay

rockslide.

2.2 Lituya Bay Rockslide

Lituya Bay (Figure 2.1) is a T-shaped bay in southeast Alaska with Gilbert Inlet to the north

and Crillon Inlet to the south forming the branches of the ‘T’. On the evening of 9 July, 1958, a

magnitude 7.7 earthquake occurred along the Fairweather Fault. Within a few minutes, a rockslide

was triggered on the northeast side of Gilbert Inlet. Although the slide itself was not witnessed,

observers anchored at the western end of the bay reported waves emanating from Gilbert Inlet as

well as “a big wall of water going over the point” (the spur southwest of Gilbert Inlet) [81].

The slide area is sketched in Figure 2.1 and was described by Miller [81] as a “prism of rock that

is roughly triangular in cross section.” The slide had a maximum thickness of approximately 92 m,

a total volume of 30.6 x 106m3 and a center of mass at an elevation of 610 m.

2.2.1 Previous Models

Some of the early laboratory work on tsunamigenic landslides [see Slingerland and Voight [125] and

references therein] found slide thickness to be an important parameter in characterizing far-field

waves. This has provided some guidance in specifying source terms for modeling the subsequent

tsunami, however large discrepancies in the near-field run-up may remain. For example, in the case

of Lituya Bay, a tsunami model using a depth-integrated, shallow water tsunami-propagation code

(SWAN) and using an instantaneous water displacement of the landslide volume, found that the

run-up immediately opposite the slide was underestimated by an order of magnitude [72].

Fritz et al. [35] simulated the impact event and subsequent run-up using a Froude-similar scaled

laboratory model (Figure 2.3b). The rockslide was simulated by a granular material driven by a

pneumatic acceleration mechanism so that the impact characteristics could be controlled. Using a

two-dimensional simplified cross-section, Fritz et al. measured run-up values (526 m) in agreement

with observations. In their experiments, a large air cavity was generated by the impact (Figure

2.3b).
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Figure 2.1: Lituya Bay, Alaska.

Mader and Gittings [74] subsequently numerically modeled the impact process using the same

initial geometry as described by Fritz et al. [35] using a full Navier-Stokes AMR Eulerian com-

pressible hydrodynamics code (SAGE). The numerical results also showed an air cavity formation

and produced a run-up consistent with observation (580 m). Quecedo et al. [105] also modeled the

Lituya rockslide with the same initial geometry using an Eulerian mesh and a characteristic based

Galerkin (CBG) solver. They tracked material interfaces by advecting an indicator function. Their

results are similar to that of Mader and Gittings [74].

Eulerian grid-based numerical methods are fast, but they have an inherent difficulty tracking ma-

terial interfaces. Lagrangian grid-based methods can track these material interfaces, however, large

deformation flows require frequent remeshing which also leads to a diffusion of the material inter-

face. Mesh-free (particle) methods can be computationally more expensive since they often require

a greater number of neighboring points (larger support region) to accurately calculate gradients,

however they inherently track material histories and interfaces in large deformation flows. Recently,

the near-field effects of impact-generated waves has been addressed using mesh-free, Lagrangian
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methods [85, 39, 97].

2.3 Numerical Methodology

The mesh-free method we employ is Smoothed Particle Hydrodynamics (SPH) which, for free-surface

flows, is described by Monaghan [82]. Colagrossi and Landrini [21] outline several modifications for

multi-phase flows that become important when density contrasts become large. However, we found

that for flows with a density contrast of 2.7 (as encountered in the present simulations), these

modifications did not significantly alter wave height and run-up. All results presented here are

generated by the formulations of Monaghan [82].

The SPH implementation of free-surface flows employs an artificial viscosity term which is ac-

tivated by and is proportional to velocity convergence. This term behaves as a bulk viscosity and

dampens spurious pressure oscillations. We use an artificial viscosity parameter of α = 0.1 (for

details, see [82]); lower values resulted in a more turbulent flow. Viscous shear stresses are calcu-

lated using a term developed by Morris et al. [89]. The results presented in this paper are from

simulations with a Newtonian viscosity, however other rheologies have been successfully included in

SPH simulations through a nonlinear viscosity (e.g. Mohr-Coulomb [94], Bingham [113], Bi-linear

[120], Voellmy [77]).

It is unlikely that rockslides such as at Lituya Bay behave as a fluid with a Newtonian viscosity.

However, this assumption allows maximal wave height and run-up values to be constrained while

providing a mechanism to limit the transfer of gravitational potential energy to wave energy.

2.4 Comparison With Previous Models

2.4.1 Run-up on a steep slope

As an initial test of the reliability of this numerical method in predicting run-up on steep slopes,

simulation results of the run-up of a solitary wave on a slope of 45◦ were compared with laboratory

data (Figure 2.2). In these simulations, a surface profile and velocity field of the solitary wave were

initialized as described in Monaghan and Kos [83]. Five cases were run with wave heights (H) in

increments of 10m from H = 30 m to 60m. In each case, D = 100m. Normalized run-up values are

plotted in Figure 2.2b and compare favorably with experimental data.

2.4.2 Lituya Bay landslide impact models

Using the boundary and water geometry as described by Fritz et al. [35] and a triangular rockslide

geometry with the thickness, elevation and mass described by Miller [81] (See Figure 2.3a), we
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Figure 2.2: Simulation of the run-up of a solitary wave on a slope of 45◦. Data in (b) are from Hall
and Watts [47]

modeled the rockslide as a viscous fluid and obtained results with rockslide and water profiles which

compare favorably with the laboratory results of Fritz et al. [35] (Figure 2.3b,c,d) for times greater

than approximately 13 s after impact. Simulation results for earlier times differ due to differences

in initial conditions. In the laboratory simulation, the mass and length of the slide were taken

from observations of Miller [81], however the thickness of the slide was increased since the granular

material used had a lower bulk density. This granular material was assigned an impact velocity

assuming the material fell freely from the initial center of mass of the slide. In the SPH simulation,

the mass, initial thickness, and density of the slide were all taken from Miller [81]. Additionally,

since the material was allowed to slide from its initial position, the velocity of each fluid particle was

different as it arrived at the impact point.

Increased viscous dissipation within the rockslide reduced the energy available to be transferred

to the water (Figure 2.3e), resulting in a lower wave height. Differences can also be seen in the

structure of the air cavity region for different viscosities. This is due primarily to changes in the

shape of the front of the rockslide at impact. Increased shear stress at the base of the slide causes the

front to develop a blunter profile. This effect can be seen in Figure 2.3f, where the time-dependent

thickness of the slide near the point of impact is compared for different viscosities with data from

the laboratory model of Fritz et al. [35]. The profiles of the SPH solutions of the viscous slides differ

significantly from the measured profile of the granular material due to the different initial geometry
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Figure 2.3: Comparison of SPH solution with laboratory model of Fritz et al. [35]. The initial
configuration is shown in (a). The photograph in (b) shows the laboratory results of Fritz et al. [35]
at 12.9 s after impact. The SPH solutions presented are for (c) a rockslide viscosity of µ = 103.5 Pa s
and (d) a rockslide viscosity of µ = 104.5 Pa s both at 12.9 s after impact. Water is treated as inviscid
in each case and time is given as seconds after impact. In each of the graphs on the right, curves are
plotted for SPH simulations with different rockslide viscosities (darker lines corresponding to higher
viscosities). In (e), the total mechanical energy (kinetic and gravitational potential with respect to
−122 m) per unit width is plotted. Plots (f)-(h) are comparisons of the SPH simulations with three
time-series data sets of the laboratory model [35]: the profile of the impacting slide (measured as
thickness of the slide at 67 m elevation), wave height at 885m, and wave run-up.
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Table 2.1: Comparison of run-up (R) and wave height (Hwave) for Lituya models.

Wave Height (Hwave) Run-up (R)
Field [81] ? 524 m
Lab. [35] 154 m 526 m
AMR [74] 250 m 580 m
CBG [105] 227 m 600 m
SPH (invisc.) 213 m 671 m
SPH (µ = 104Pa s) 156 m 531 m

and velocity structure at impact.

Despite these markedly different impacting profiles, the wave height at 885 m from the shore

(Figure 2.3g) and the run-up (Figure 2.3h) are similar to that measured in the laboratory by Fritz et

al. [35] and observed in the field [81]. The case of an inviscid rockslide produced a maximum wave

height of 214 m at the wave gauge and a run-up of 662 m. This is to be compared with numerical

results of [74] (250m and 580 m) and of Quecedo et al. [105] (227m and 600m). In each of the

numerical cases (SPH, AMR, CBG), both wave height and run-up values are greater than that

measured by Fritz et al. [35] (154 m and 526 m for the wave height and run-up, respectively). Using

a rockslide with a viscosity of µ = 104.5 Pa s produces results much closer to the laboratory model

with a wave height of 156m and a run-up of 530m. These values are summarized in Table 2.1 This

value of viscosity effectively incorporates both the dissipation of energy through deformation as well

as the energy lost through turbulence in the impact process. As can be seen in Figure 2.3e, there

is a slight increase in the dissipation of mechanical energy prior to impact (t = 0) with increasing

viscosity, however, the rate of energy dissipation is greatest after impact, but before the collapse of

the air cavity. After the collapse of the air cavity, the bulk of the remaining total energy is in a large

solitary wave with little dissipation of energy.

Hunt [52] noted that for waves generated by landslides in reservoirs, the primary factors which

characterize far-field waves are the reservoir geometry and the volume of water displaced. Since it

is possible that including a more detailed geometry of Gilbert Inlet than the simplified cross-section

of Figure 2.3a might effect run-up values, models were also run using topography and bathymetry

from Miller [81] along the transect A–A’ (Figure 2.1). Including this geometry and using an initial

slide geometry consistent with Miller’s estimate of total mass, center of mass, maximal thickness

and upper and lower scarp lines, did not significantly effect run-up values.
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2.5 Discussion

As noted above, the viscosity used in this model should be interpreted as a proxy for the dissipation

of mechanical energy within the slide. The mechanism of energy dissipation by internal deformation

within the slide may be more accurately modeled by including plasticity using a non-linear viscosity,

however the energy transfer from the impact is poorly constrained. Law and Brebner [61] estimate

that 2–28% of the kinetic energy of the slide is transferred to wave energy, a fraction that is likely

dependent on the structure of the splash zone. The structure of this region is, in part, dependent on

the shape of the front of the impacting slide. This uncertainty is an issue with any numerical method,

however with this caveat, SPH is a viable method for constraining maximal run-up values. As with

the grid-based numerical methods, data from SPH simulations can be coupled to a shallow-water

tsunami propagation code to more efficiently model far-field inundation from landslide generated

waves.

Although it was not investigated in this study, the Lagrangian nature of the method eases the

inclusion of additional energy dissipation mechanisms at material interfaces.

2.6 Appendix: Numerical Parameters

For completeness, the problem-dependent parameters necessary to reproduce these simulations are

given here. For details of the algorithm, see Monaghan [82]. In all simulations presented, the

smoothing kernel (W ) used was the cubic-spline kernel with a characteristic width of h = 1.2s where

s is the initial particle spacing. For most of the simulations presented, s = 7.5 m. The simulations

of low-amplitude solitary waves required a finer resolution (s = 5 m and 3.5 m for H = 20 and 10m

respectively). Pressure is determined through an equation of state:

P =
ρ0

γ
c2s

[(
ρ

ρ0

)γ

− 1
]

where ρ0 is the reference density of the material and cs is the speed of sound, which, for shallow

water flows, is given by cs =
√

200gH where H is the characteristic depth of the flow. In all the

simulations presented, we used γ = 7 and H = 50 m.

Solid wall boundaries are imposed through the use of boundary particles that impart a central

force to fluid particles according to the Lennard-Jones description:

alj = D
[(r0

r

)p1

−
(r0
r

)p2
] r
r2

where r is the position of the fluid particle relative to the boundary particle. We take D to be gH,
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p1 = 4, p2 = 2, and r0 = s. The boundary particles were positioned with a spacing of approximately

0.5s. These boundary particles are included in the SPH summation for the viscous term but not the

pressure gradient term.

Acknowledgments

Figure 2.1 was generated using software GMT [139]
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Chapter 3

AN IMPLICIT CORRECTED SPH FORMULATION FOR THERMAL
DIFFUSION WITH LINEAR FREE-SURFACE BOUNDARY

CONDITIONS

A version of this chapter with the same title was submitted to International Journal for
Numerical Methods in Engineering.

The Smoothed Particle Hydrodynamics (SPH) method has proven useful for modeling large de-

formation of fluids including fluids with stress-free surfaces. Because of the Lagrangian nature of

the method, it is well suited to address the thermal evolution of these free-surface flows. Boundary

conditions at the interface of the fluid with a solid wall are usually enforced through the use of

boundary particles. However, applying conditions at surfaces, in particular gradient boundary con-

ditions, can be problematic with traditional SPH formulations due to the degradation of the gradient

approximation in these regions. Compounding this difficulty is that traditional approximations of

the Laplacian operator suffer a similar degradation near surfaces. A new SPH formulation of the

Laplacian operator is presented which improves the accuracy near surface boundaries. This new

form is based on a gradient approximation commonly used in thermal, viscous, and pressure projec-

tion problems, but includes higher order terms in the appropriate Taylor series. Comparisons with

other approximations of second-order derivatives are given. The discretization is tested by solving

steady-state and transient problems of thermal diffusion using the Backward Euler method with a

GMRES solver. Boundary conditions are imposed through an augmented matrix.

3.1 Introduction

Smoothed Particle Hydrodynamics (SPH) [84] was developed approximately 30 years ago to model

inviscid fluid dynamics in astrophysical problems. SPH is a mesh-free, Lagrangian method in which

the “particles” correspond to small parcels of fluid. “Smoothed” refers to the procedure for cal-

culating state variables, such as density, in which the function value at a point is determined as a

weighted average of values in a local region. One advantage of this formulation is that numerical

effort is concentrated in regions of higher fluid density. In regions where density approaches zero, the

distribution of particles becomes sparse and the averaging kernel used in determining neighboring
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particles’ contributions loses part of its support region. This loss of support results in a numerical

approximation that also approaches zero. For fluids with diffuse boundaries such as in gas dynamics,

the particle deficiency near boundaries does not pose serious problems and in fact is presented as an

automatic incorporation of the correct temperature and density boundary condition [71]. The suc-

cess of SPH in modeling gas dynamics has led to its application in many branches of fluid and solid

mechanics, most notably free-surface flows [82], elastoplasticity [17] and impact dynamics [56]. For

these problems, however, care must be taken to ensure that variables whose values do not approach

zero at boundaries are accurately represented.

For the purposes of this chapter, the governing equation is that of thermal diffusion given by

∂T

∂t
=

1
ρcp

∇·
(
k∇T

)
(3.1)

where T is the temperature, t is time, cp is the specific heat, k is the thermal conductivity. This

chapter only focuses on the problem of solving thermal diffusion in a static pool of fluid. The work

of this chapter is intended to supplement a more complicated thermo-mechanical problem involving

deformation. In the mechanical problem, the boundaries of the fluid are those formed at the walls

of the container as well as possibly a free-surface. ‘Free-surface’ refers to the stress-free condition

at the surface where σ · n = 0 where n is the unit normal to the surface. This is a mechanical

boundary condition and has no effect on the thermal problem. However, boundary conditions for

any variable such as temperature, velocity, or pressure, are generally treated differently at boundaries

defined by the walls of a container and those defined by the stress-free mechanical condition. This is

because it is straight-forward to fill walls with ghost particles that can be used to enforce whatever

boundary condition is needed at the walls. The free-surface mechanical boundary condition results in

a configuration of particles that locally appears like a half-space. There are no supplemental particles

to enforce boundary conditions for any of temperature, velocity, or pressure in these locations. In

fact, traditionally in SPH, no boundary conditions are even enforced at these surfaces. This chapter

aims to remedy this deficiency by a more careful treatment of boundary conditions in the vicinity

of these surfaces. Note, ‘surface’ or ‘free-surface’ is suggestive of a mechanical boundary condition

and is not meant to have any implications for the type (Dirichlet, Neumann, or mixed) of boundary

condition in the thermal problem. Throughout this chapter, any use of the term ‘surface’ or ‘free-

surface’ should be interpreted only to have implications on the local geometry of the particles,

namely, the particle configuration that locally (on the scale of the kernel width) appear like a half-

space. This chapter describes a method of improving the accuracy in the vicinity of these surfaces

and imposing boundary conditions on these surfaces.
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The standard SPH spatial discretization of a function f arises from the following sequence of

approximations:

f(x) =
∫

Ω

f(x′)δ(x− x′) dx′ '
∫

Ω

f(x′)W (x− x′, h) dx′ (3.2)

'
∑

j

f(xj)W (x− xj , h)ϕj

where δ is the Dirac delta function, W is the kernel which approximates δ but with finite char-

acteristic width (h), ϕj is the discrete volume element equal to the ratio of the particle’s mass to

its density (mj/ρj), and Ω is the domain. The subscript j in the equation above, as well as all

Latin indices throughout this paper, correspond to particle numbers; Greek indices correspond to

coordinate numbers. The standard form of spatial derivative of a function f can be determined from

integrating Eq. 3.2 by parts. If the kernel has compact support (i.e., is identically zero beyond a

fixed radius) the boundary term from the integration by parts can be neglected, resulting in the

following approximations:

f(x),α '
∫

Ω

f(x′)W,α dx′ f(x),αβ '
∫

Ω

f(x′)W,αβ dx′ (3.3)

where the comma denotes partial differentiation with respect to the given coordinate. The second-

order derivative results from a second integration by parts. Usually, to ensure that constant functions

have an identically zero discrete gradient and curvature [15], the identities (A),α = (1 ·A),α−(1,α) ·A

and (A),αβ = (1 ·A),αβ − (1,αβ) ·A are invoked resulting in

f(x),α '
∫

Ω

(
f(x′)− f(x)

)
W,α dx′ f(x),αβ '

∫
Ω

(
f(x′)− f(x)

)
W,αβ dx′ (3.4)

The assumption that the boundary terms from the integration by parts is zero in Eq.s 3.4 is only valid

in regions where the kernel has full support. For particles near surfaces, the neglect of these terms

leads to significant errors. Several authors have addressed these errors through various correction

methods, some by calculating the boundary integrals [14], others by applying correction transforma-

tions in the derivative approximations [58, 2]. Approximations can also be corrected by basing SPH

discretization on higher order Taylor series approximations [18, 16, 17, 67, 147] or by generating

correction terms which require that the discrete equations reproduce linear fields [112, 7, 5, 6] or

polynomials up to a given order [69, 68]. These methods are particularly successful in correcting

the approximations of function gradients near boundaries, however, corrections to the second-order

derivatives require significantly more work, particularly the Taylor series approximations, which
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involve calculating all second-order derivatives.

Correction terms have also been generated for the Laplacian discretization based on Eq. 3.3

by requiring that the discrete Laplacian be zero for constant and linear functions, and constant for

quadratic functions [5]. Approximations using second-order derivatives of the kernel, however, as in

Eq.’s 3.3 or 3.4, are often noisy and sensitive to particle disorder, particularly for spline kernels of

lower-order [9]. To avoid the use of these second-order kernel derivatives, Brookshaw [9] introduced

an approximation of the Laplacian that only requires first-order derivatives, given by:

∇·
(
τ∇fi

)
=

∑
j

ϕj(τj + τi)(fj − fi)
(xj − xi),α ·∇W,α

|xj − xi|2
(3.5)

where the repeated index α denotes summation over that coordinate. Brookshaw introduced this

form of the Laplacian operator in the context of thermal conduction (in which τ is the thermal

conductivity and f is the temperature) where it continues to be successfully used, though in a

slightly modified form [20, 57]. Morris et al. [89] successfully employed the Brookshaw form of the

Laplacian in modeling viscous diffusion, although Watkins et al. [137] noted that this form is sensitive

to perturbations in velocity. This form continues to be commonly used in viscous flow simulations

[55] and is often coupled [99, 120, 115] with an analogous form of a pressure Poisson equation [23].

Second-order derivatives can often be avoided entirely if the PDE is cast in weak form [58] or in

a variational formulation [5, 6] in which case only the gradient correction is needed. Nevertheless,

the Brookshaw formulation of the Laplacian is widely used. In this work, a correction term to

the Brookshaw formulation is introduced (based on a Taylor series expansion) which significantly

improves the accuracy of this Laplacian operator near boundaries.

This paper is organized as follows. In section 3.2, the correction term to Eq. 3.5 is derived

and its performance reproducing a variety of test functions demonstrated. Section 3.3 describes the

implementation of boundary conditions at both solid-wall boundaries and surfaces. In section 3.4,

the corrected form is applied to both steady-state and transient thermal conduction problems.

3.2 Corrected SPH Discretization of the Laplacian

3.2.1 Taylor Series Approximation

The corrected forms of f and ∇f used in this paper are those outlined by Chen et al. [18] and are

derived from the Taylor series expansion about the point xi.

f(x) = f(xi) + f,α(xi)[x− xi]α +
1
2
f,αβ(xi)[x− xi]α[x− xi]β + · · · (3.6)
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Again, the Greek indices correspond to coordinate direction, the Latin index corresponds to the

particle index, and the comma denotes partial differentiation.

The corrected form of f(xi) is found by multiplying the Taylor series by W (x − xi, h) and

integrating over the region Ω:

f(xi)
∫

Ω

W dx =
∫

Ω

Wf(x)−
∫

Ω

Wf,α(xi)[x− xi]α dx+ · · · (3.7)

f(xi) ' 1
V

∫
Ω

Wf(x) dx (3.8)

where V =
∫
Ω
W dx is the kernel volume.

For the corrected form of ∇f(xi), Eq. 3.6 is multiplied by ∇W and integrated:

f,α(xi)
∫

Ω

[(∆x)αW,β ] dx =
∫

Ω

[(f(x)− f(xi))W,β ] dx+ · · · (3.9)

where ∆x = x− xi. By defining

Cαβ =
[∫

Ω

[(∆x)αW,β ] dx
]−1

(3.10)

Eq. 3.9 can be rewritten as:

f,α(xi) '
∫

Ω

[(f(x)− f(xi))Cαβ∇Wβ ] dx (3.11)

To calculate the second derivatives of f , Chen et al. [18] multiplied Eq. 3.6 by W,γδ and solved

for f,αβ . The Taylor series approximation can be written as

1
2
f,αβ

∫
Ω

(∆x)α(∆x)βW,γδ dx '
∫

Ω

(f(x)− f(xi))W,γδ dx− f,α

∫
Ω

(∆x)αW,γδ dx (3.12)

where f,α in the second term on the right-hand-side of Eq. 3.12 is calculated from Eq. 3.11. Although

the integrand on the left-hand-side of Eq. 3.12 is a fourth-order tensor, it is symmetric in the pairs

i, j and α, β. Eq. 3.12 can therefore be written in discrete form as

BηξFξ = Φη (3.13)
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where

Bηξ = (1− δαβ)
N∑

j=1

ϕj(xj − xi)α(xj − xi)βW,γδ

Φη =
N∑

j=1

ϕj(f(xj)− f(xi))W,γδ − f,α(xi)
N∑

j=1

ϕj(f(xj)(xj − xi)αW,γδ

and δαβ is the Kronecker delta. Since the Hessian (f,αβ) is symmetric, the number of independent

variables in Fξ = f,αβ is 3 and 6 for 2- and 3-dimensional problems respectively with ξ and η

each mapping to αβ pairs according to : 1 ↔ 11, 2 ↔ 22, 3 ↔ 33, 4 ↔ 12, 5 ↔ 23, 6 ↔ 13

[18]. In 2-dimensional problems, a 3-by-3 matrix (Bηξ) must be inverted at each particle, while a

3-dimensional problem requires inverting a 6-by-6 matrix to solve for all independent f,αβ . In recent

papers [147, 67], it has been noted that the approximation of the Hessian can be further improved

if the values of the function and its gradient (f and f,α) are simultaneously solved.

In many problems, second derivatives appear only in the form of the Laplacian operator. In these

cases, the full Hessian is not required, only its trace. The Brookshaw form of the Laplacian only

requires first derivatives [9] and is derived by multiplying Eq. 3.6 by (∆x)αW,α

|∆x|2 and integrating [57].

f,βγ(xi)
∫

Ω

(∆x)αW,α

|∆x|2
(∆x)β (∆x)γ dx = 2

∫
Ω

(f(x)− f(xi))
(∆x)αW,α

|∆x|2
dx

−2
∫

Ω

(∆x)αW,α

|∆x|2
f,β(xi) (∆x)β dx+ · · · (3.14)

For a one-dimensional problem, the integral on the left-hand-side of Eq. 3.14 is a scalar and can

simply be moved to the right-hand-side. For multi-dimensional problems, the integral is a matrix

coupled to f,βγ through an inner product. However, setting

Γβγ =
∫

Ω

(∆x)αW,α

|∆x|2
(∆x)β (∆x)γ dx

' δβγ (If the support domain is entire and the kernel symmetric.)

then

∇2f(xi) = tr [f,αβ(xi)]

' Γαβf,αβ(xi) (3.15)

' 2
∫

Ω

(f(x)− f(xi))
(∆x)αW,α

|∆x|2
dx− 2

∫
Ω

W,αf,α(xi) dx (3.16)
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The inhomogeneous form of the Laplacian can be derived by repeated use of Eq. 3.16 in the following

identity.

∇·
(
τ∇f

)
=

1
2

[
∇2(τf)− f∇2τ + τ∇2f

]
(3.17)

Neglecting the second term on the right-hand-side (RHS) of Eq. 3.16 results in the Laplacian

operator given by Brookshaw in Eq. 3.5. The second term on the RHS is the correction which gives

a modest improvement over just the first term (Figures 3.1-3.4). If the gradient of f in the correction

term is calculated using Eq. 3.11, the error is further reduced at the boundary.

An underlying assumption in this approximation is that Γβγ ' δβγ throughout the domain,

including regions near the boundaries. In fact, Γβγ deviates from δβγ in these regions. Unfortunately,

since Γαβ and f,αβ are coupled through a tensor inner product, it is difficult to isolate f,αβ . However,

denoting the RHS of Eq. 3.16 as L, and using the identity A : B= tr
[
ABT

]
, along with the fact

that both Γαβ and f,αβ are symmetric, Eq. 3.16 can be expressed as:

Γαβf,αβ = L (3.18)

f,βγ =
L
n
Γ−1

βγ + Γ−1
βαWαγ (3.19)

∇2f = tr [f,βγ ] = LΓ−1
αα

n
+

(
Γ−1

αβ : Wαβ

)
(3.20)

where n is the number of dimensions and W is a tensor with zero trace. Converting the tensor-inner

product of Eq. 3.18 to the tensor product so that Γαβ can be inverted in Eq. 3.19 is essentially

converting a scalar equation to a consistent matrix equation and therefore involves accounting for

the additional unknowns through the matrix W. Isolating f,βγ and extracting the trace modifies

the original estimate of the Laplacian by a multiplicative factor Γ−1
αα/n, however an additive factor

remains associated with the unknowns in W.

Note that the crux of the difficulty here is that Eq. 3.20 is an attempt to circumvent the

calculation of cross-derivative terms when in fact these terms do affect the estimate of the Laplacian

when Γαβ has non-zero off-diagonal elements. The structure of W can be seen from Eq. 3.19 and

is given by Wαβ = Γαγf,γβ − δαβL/n. If Γαγ = δαγ , these unknown cross-derivative terms are the

off-diagonal terms of W, but they do not effect the Laplacian since W has a trace of zero. When Γαγ

significantly differs from δαγ , then the cross-derivative terms are expected to play a more significant

role and possibly degrade the approximation. A safer approach is to use the CSPM method [18], or

variant thereof such as the MSPH approach [147], and calculate the full Hessian. However, this is

computationally expensive as it requires inverting larger matrices, particularly in three-dimensional

problems. In section 3.2.3 the performance of several of these approximations in the vicinity of
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boundaries is shown.

3.2.2 Discrete Equations

The discrete form of the operators outlined in the previous section is tabulated below.

〈f(xi)〉 ' 1
V

∑
j

ϕjfjW (3.21)

〈∇f(xi)〉 '
∑

j

ϕj (f(xj)− f(xi))CαβW,β (3.22)

〈
∇2f(xi)

〉
'

Γ−1
ββ

n

2
∑

j

ϕj (f(xj)− f(xi))
(xij)αW,α

|xij |2

−2f,α(xi) ·
[ ∑

j

ϕjW,α

] (3.23)

〈
∇·

(
τ∇f(xi)

)〉
'

Γ−1
ββ

n

∑
j

ϕj (τj + τi) (f(xj)− f(xi))
(xij)αW,α

|xij |2

−
[(
τif(xi)

)
,α
− f(xi)τi,α + τif,α(xi)

]
·
[ ∑

j

ϕjW,α

] (3.24)

In these equations, xij = xj−xi and ϕj = mj/ρj . The gradients in the second terms of the Laplacian

discretization are previously determined from Eq. 3.22. Without the correction term and assuming

Γαβ = δαβ , the Laplacian term reduces to the form commonly used in the literature for thermal

[20, 57], viscous [89, 99, 120], and pressure projection [23, 115, 120] problems:

1
ρ

[
∇·

(
k∇T

)]
=

1
ρi

∑
j

2 〈k〉 (Tj − Ti)
(xij)αW,α

|xij |2
ϕj (3.25)

1
ρ

[
∇·

(
µ∇v

)]
=

1
ρi

∑
j

2 〈µ〉 (vj − vi)α

(xij)β W,β

|xij |2
ϕj (3.26)

[
∇·

(1
ρ
∇P

)]
=

∑
j

2
〈1
ρ

〉
(Pj − Pi)

(xij)αW,α

|xij |2
ϕj (3.27)

where 〈〉 term is an average “conductivity”. The Taylor series suggests the average should be the

arithmetic average, which is the form used by Morris et al. [89] for viscous diffusion. Cleary and

Monaghan [20] use a different form in thermal conduction which guarantees continuity of heat flux.

Cummins and Rudman [23] and Shao and Lo [120] each choose yet different forms for pressure

Poisson equations.
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3.2.3 Patch Tests

To quantify the accuracy of the proposed correction, the ability of the discretization to reproduce the

Laplacian was tested for several functions. In all of the following tests, a two-dimensional domain was

used with results displayed along the cross-section y = 2.5. In each test, the following discretizations

are compared: Standard SPH (SSPH) given by Eq. 3.4 [15], Corrective Smoothed Particle Method

(CSPM) given by Eq. 3.13 [18], gradient (Brookshaw) form of Laplacian (SPH1) given by Eq. 3.5,

two-term gradient form of the Laplacian using Eq. 3.23 but with an uncorrected second term (SPH2);

two-term gradient form of the Laplacian with a corrected second term (CSPH2), and finally the full

form given by Eq. 3.23 including the correction from Γ−1
αβ . The motivation for displaying such a

variety of methods is to demonstrate the incremental improvement for each additional correction.

For example, including an uncorrected second term in Eq. 3.23 and assuming Γαβ = δαβ leads to a

modest improvement while remaining a relatively simple addition to one’s program. Modifying one’s

program to calculate corrected gradients is not trivial and requires significant additional numerical

effort (inverting an n-by-n matrix at each particle, where n is the number of dimensions) and storage

costs, but the improvement is dramatic. Including the correction from Γ−1
αβ requires yet another n-

by-n matrix inversion.

The first class of test functions used is of the form (xm + ym). Plots of the Laplacian approxi-

mations and the relative errors for the case m = 3 are shown in Figure 3.1. The domain for these

cases is a unit square (2 < x < 3, 2 < y < 3) with an array of 50-by-50 particles (average spacing

= s = 0.02, h = 1.2 s). A quintic spline kernel was used [89].

The CSPM formulation has the greatest accuracy at the boundary and is accurate to machine

ε in the interior. The forms of Eq. 3.23 with a corrected gradient also performed nearly as well

as CSPM, with CSPH2Γ also accurate to machine ε in the interior. A close-up of the right edge

of the error plot is shown in Figure 3.2 along with test functions with exponents from m = 2 . . . 6.

For these functions, the CSPM and CSPH2Γ are uniformly more accurate although the difference

decreases with increasing exponent.

For the functions in Figures 3.1 and 3.2, f,αβ has non-zero terms only along the diagonal, so

it might be expected that the CSPH2 forms would not deteriorate much from the neglect of the

cross-derivatives. To examine the effect of the cross-derivative terms, the same suite of tests was run

with the function (xy)m. The results are shown in Figure 3.3. The behavior of each discretization is

similar to that shown in Figure 3.2. Both CSPH2 forms perform nearly as well as the CSPM form

at the boundary. The CSPH2Γ and CSPM forms also perform with greater accuracy than all other

forms in the interior except in the case with the highest exponent.
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Figure 3.1: Cross section of test patch at y = 2.5. Several SPH approximations of ∇2(x3 + y3) are
shown. The Standard (SSPH) form is given by Eq. 3.4, while the CSPM [18] form is given by Eq.
3.13 and the commonly-used Brookshaw form (SPH1) is given by the first term of Eq. 3.23. New
approximations to consider are the SPH2 form (Eq. 3.23 with both terms), the CSPH2 form (SPH2
with the gradient in the second term corrected using Eq. 3.22), and the CSPH2Γ form (Eq. 3.23).
In this case the CSPH2, CSPH2Γ and CSPM forms have comparable accuracy at the boundaries,
but the CSPH2Γ and CSPM are accurate in the interior to machine ε.
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Figure 3.2: The relative errors along y = 2.5 for each of the discretizations used in Fig. 3.1 is shown
here only at the right boundary for the suite of functions ∇2(xm + ym) where m = 2 . . . 6.
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Figure 3.3: Relative errors for (xy)m on a same array as in Fig. 3.2 along y = 2.5.
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Figure 3.4: Relative errors for (xy)m on a array rotated 45◦ along x = y.

An additional concern is that, although Γαβ deviates from δαβ near boundaries, it acquires no off-

diagonal terms due to the alignment of the array of particles and the boundaries with the coordinate

axes. To test the accuracy of the new approximations when Γαβ has off-diagonal terms, a array with

particles rotated 45◦ was used with the test function (xy)m. The results along the cross-section x = y

are shown in Figure 3.4. The CSPM formulation performs consistently well for lower exponents. For

higher exponents, the CSPH2 form has the lowest error near the boundaries. The CSPH2Γ form is

clearly degraded in the vicinity of the boundary, though for lower-order functions it is still a reliable

improvement over the one-term gradient approximation.

3.2.4 Convergence Tests

In section 3.2.3, the behavior of several Laplacian discretizations in the vicinity of boundaries was

reported, however the performance of these discretizations in regions of full kernel support remains

to be quantified. The tests of the previous section employed a regularly spaced array of particles

with s = 0.02. To test the convergence properties of these discretizations, several other regularly

spaced rectangular arrays were used with particle spacings of s = 0.1, 0.075, 0.05, 0.025, 0.01, and

0.0075. For the tests in this section, the same domain was employed as in section 3.2.3 with the

same suite of Laplacian discretization applied to four test functions, f = xm + ym, m = 2, 6 and
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f = xmym, m = 2, 6. The quintic spline kernel was used in all cases with h = 1.2s. The accuracy of

the approximations were quantified by calculating the integral of the relative error given by:

Relative Error =

[∑
i

(
∇2f0 −∇2fi

∇2f0

)2

ϕi

]0.5

(3.28)

where ∇2f0 is the true Laplacian of f and ∇2fi is the approximation of the Laplacian at particle

i. The domain of integration is the region 2.25 < x < 2.75, 2.25 < y < 2.75. This subdomain was

chosen so as to remove the effects of the boundary on the error calculation. Additionally, to check

the convergence properties of these discretization when the particle spacing is not uniform, the same

tests were run using the same particle arrays, but with particle positions given random perturbations

of −0.4s < δ < 0.4s in both x and y. The results are shown in Figure 3.5.

The CSPM and CSPH2Γ forms show second-order convergence for regularly spaced arrays. Un-

corrected forms of the Laplacian do not reliably improve with increasing resolution on these ordered

arrays. This lack of convergence for uncorrected approximations was also observed by Belytschko

et al. [2] in problems of linear elastostatics. Moreover, the addition of the perturbations to particle

positions dramatically affects the convergence properties. The corrected forms (CSPM, CSPH2, and

CSPH2Γ) no longer converge, but remain at a fairly constant relative error despite increasing resolu-

tion. Uncorrected forms can actually diverge with increasing resolution. Similar divergence behavior

was observed by Quinlan et al. [106, 107] in one-dimensional tests of uncorrected approximations

of functions and gradients with irregularly spaced particles. Although this divergence behavior is

troubling, there is ample evidence of successful applications of SPH using the Brookshaw approxi-

mation on disordered particles. For the purposes of this study, it suffices to note that each correction

term incrementally reduces the relative error of the Brookshaw approximation. As expected, the

relative error of the CSPM approximation is less than all Brookshaw formulations as well as the

SSPH approximation, but requires inverting larger matrices.

3.3 Boundary Conditions

When the fluid interacts with solid walls, boundary conditions are usually imposed through additional

particles along the walls [66]. These are typically either a single layer of particles that defines that

wall [82, 20], or a cloud of ghost particles that extend into the boundary [130, 112, 23], thereby

ensuring that the interior fluid particles will have full kernel support. For the surface of a fluid,

the stress-free boundary condition is usually not explicitly enforced (a notable exception is [120])

and a general method of imposing conditions on these surface boundaries is not well developed.
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Figure 3.5: Relative errors of the various Laplacian discretization applied to four test functions for
both regularly spaced and disordered arrays. All plots in the left column share the same scale, as
do all plots in the right column. For f = x2 + y2 on a ordered array, the CSPM and CSPH2Γ forms
are accurate to machine-ε and do not appear in the upper-left plot.
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The method used in the steady-state and transient tests of section 3.4 for implementing boundary

conditions on these two types of boundaries is described below.

3.3.1 Solid Wall Boundaries

Boundary conditions are enforced at solid-wall boundaries through ghost particles as shown in Figure

3.6. These ghost particles are positioned as described by Cummins and Rudman [23]. The ghost

particles are generated by projecting the position of each of the interior particles across the boundary.

Only interior particles within a kernel half-width of a boundary need to be considered. In this way,

each ghost particle is linked with a source particle in the interior. This produces a layer of ghost

particles with a thickness equal to the half-width of the kernel. Homogeneous Neumann conditions

are enforced by assigning each ghost particle the value of its source particle which effectively creates

a line of symmetry at the boundary. For homogeneous Dirichlet conditions, each ghost particle is

assigned the negated value of its source particle in the interior. This forces an interpolated value

of zero on the boundary. For inhomogeneous boundary conditions, each ghost particle is treated as

an unknown, subject to the restriction that the ghost particle satisfies the boundary condition. For

inhomogeneous Dirichlet conditions, the restriction is that the average value of the ghost particle and

its source equals the required condition at the wall. This forces the linear interpolation of interior

values to the correct boundary value. For inhomogeneous Neumann conditions, the restriction is

that ∇fg·n equals the imposed value, where n is the unit normal to the boundary and ∇fg is

calculated using Eq. 3.22. Since each of the ghost particles will have less than full kernel support

(large circle in Figure 3.6a), the use of the corrected gradient is critical and improves convergence

of the iterative solver.

Ghost particles in the wedge-shaped region shown in Figure 3.6b are positioned by projecting

the interior particles through the point joining the two boundary walls. The boundary conditions

that are enforced for these particles depends on the position within the wedge. If the boundary

conditions on the walls B1 and B2 are of the same type (i.e. both Dirichlet), then the condition

enforced at the ghost particle is interpolated and given by

Bg =
β

γ
B1 +

α

γ
B2 (3.29)

If walls B1 and B2 are of different types, the ghost particle is assigned the conditions of the closer

wall.
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Figure 3.6: Treatment of boundaries: Ghost particles (black) are positioned by projecting interior
particles across the boundary. Gradient boundary conditions determine the value at the ghost
particles by requiring that the gradient at each ghost particle satisfy the boundary condition (inset
(a)). Conditions at ghost particles near corners (inset (b)) are interpolated between adjacent walls.
Inset (c) shows contours of kernel volume near surfaces and the surface normal.
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3.3.2 Surface Boundaries

Particles with a kernel volume (V =
∑

j ϕjW ) less than a given threshold are identified as surface

boundary particles. The value of the threshold that ensures a boundary one-particle thick depends

on the kernel used and the initial geometry. For a quintic spline kernel and a rectangular initial

geometry, a threshold value of 0.79 will result in a thin surface boundary layer. This method of

identifying surfaces is the same as used by Shao and Lo [120], but with a lower threshold.

To apply gradient boundary conditions on the surface, a surface normal needs to be defined.

The normalized gradient of the kernel support volume (∇V) is a suitable vector for this purpose,

although there is some deviation from the true normal in the vicinity of corners as can be seen in

Figure 3.6c.

With this formulation, surface particles are treated as ghost particles in that they are only

required to satisfy the boundary conditions, not the differential equation. In order to ensure that

the boundary condition is imposed at the correct location, it is advantageous to use a low kernel

volume threshold in order to identify a thin surface boundary. Note that with this formulation,

the calculation of the Laplacian at the edge of the domain is avoided in exchange for calculating a

gradient value. An alternative method, in an approach parallel to that suggested by Chen et al. [18],

would be to calculate the Laplacian at the surface particle via Eq. 3.23 and directly insert gradient

boundary conditions into the correction term rather than calculate f,α via Eq. 3.22.

A point to note with this formulation of gradient boundary conditions, is that since only the

component of the gradient normal to the boundary is constrained, this formulation allows arbitrary

gradients to develop tangent to the boundary. These spurious modes did not arise, however, in the

test cases of steady-state and transient conduction using Eq. 5.2.

3.4 Numerical Tests

To test the proposed Laplacian discretization (Eq. 5.2) with the implementation of boundary con-

ditions as described in section 3.3, numerical results of steady-state and transient thermal diffusion

in a square plate is compared with analytical solutions. The governing equation is

∂T

∂t
=

1
ρcp

∇·
(
k∇T

)
+ r (3.30)
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(a) (b)

Figure 3.7: For the steady-state thermal problems of section 3.4.1, particles are positioned as shown
in (a). For the transient problem of section 3.4.2, particles are positioned as shown in (b).

where T is the temperature, t is time, cp is the specific heat, k is the thermal conductivity, and r is

a heat source or sink. The general form of mixed boundary conditions is given by

αT + (1− α)
∂T

∂n
= B (3.31)

α = 1 corresponds to Dirichlet conditions, α = 0 corresponds to Neumann conditions and B is the

inhomogeneous term.

All simulations are solved on a unit square with the same geometry as for the patch tests (non-

rotated), but with solid-wall and surface boundaries as shown in Figure 3.7.

3.4.1 Steady-state thermal diffusion

Two steady-state cases were run (Figures 3.8 and 3.11). The first case tests the implementation of

Dirichlet conditions at walls and surfaces. The second case tests Neumann conditions. In each case,

a Poisson equation was solved, written in matrix form as A

B

 Ti

Tg

 =

 r

B

 (3.32)

where Ti and Tg are the unknown temperature values at the interior and ghost particles, and

A =
[ 1
ρcp

∇·
(
k∇

)]
B = α+ (1− α)n̂·∇
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r is included for generality, although the following test cases contained no heat sources or sinks. Also

for generality, the inhomogeneous form of the Laplacian (Eq. 5.2) was used though the material

properties were homogeneous. Eq. 3.32 is a large, sparse linear system which can be solved using

standard matrix solving routines. Since the matrix in Eq. 3.32 is not symmetric, the GMRES solver

from SPARSKIT [114] was used.

Inhomogeneous Dirichlet test case

For the general case of inhomogeneous Dirichlet conditions on a rectangle of width a and height b,

the steady-state solution can be expressed using Fourier series:

T (x, y) =
∑

n=odd

[
4f1

nπ sinh
(

nπb
a

)]
sin

(nπ
a
x
)

sinh
(nπ
a

(b− y)
)

+
∑

n=odd

[
4f2

nπ sinh
(

nπa
b

)]
sin

(nπ
b
y
)

sinh
(nπ
b
x
)

+
∑

n=odd

[
4f3

nπ sinh
(

nπb
a

)]
sin

(nπ
a
x
)

sinh
(nπ
a
y
)

+
∑

n=odd

[
4f4

nπ sinh
(

nπa
b

)]
sin

(nπ
b
y
)

sinh
(nπ
b

(a− x)
)

(3.33)

where f1 is the boundary condition at y = 0, f2 at x = a, f3 at y = b, and f4 at x = 0. In the present

case, a = b = 1− s/2 where s = the initial particle spacing and f1...4 is given in the upper-left plot

of Figure 3.8. Since the material properties are assumed to be homogeneous, they do not affect the

steady-state solution and do not appear in Eq. 3.33. Contours of the series solution and numerical

solution (using Eq. 5.2) are shown in Figure 3.8 along with several representative transects.

Figure 3.9 compares the convergence rates of the various discretizations and Figure 3.10 shows

the relative error of the converged solutions. The convergence criterion used was ||residual|| <=

10−5 ∗ ||RHS|| + 10−8, where RHS is the right-hand-side of Eq. 3.32. The four forms based on

the Brookshaw approximation of the Laplacian all converged at a similar rate and also produced

converged solutions with similar errors. The two forms based on second-order derivatives of the

kernel (CSPM and SSPH forms) also shared convergence properties as well as similar errors in the

vicinity of the surface.



35

Poisson Test 1
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Figure 3.8: Test of inhomogeneous Dirichlet boundary conditions on solid wall boundaries and
surfaces using the CSPH2Γ approximation. The transects shown in the lower plot are illustrated in
the upper-left plot.
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case described in Figure 3.8.
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Figure 3.10: A comparison of the relative error of the converged solution along the line x = 0.5 for
the different discretizations for the Dirichlet case.
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Poisson Test 2
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Figure 3.11: Test of inhomogeneous Neumann boundary conditions on solid wall boundaries and
surfaces using the CSPH2Γ approximation. The transects shown in the lower plot are illustrated in
the upper-left plot.

Inhomogeneous Neumann

The general steady-state solution for a Dirichlet condition along the base of the plate and Neumann

conditions elsewhere is given by

T (x, y) = f1 + f3y +
∞∑

n=1

2f2 cosh
(√
λnx

)
− 2f4 cosh

(√
λn(a− x)

)
bλn sinh

(√
λna

) sin
(√

λny
)
, λn =

(2n− 1)π
2b

In the present case, a = b = 1− s/2 and f1...4 is given in the upper-left plot of Figure 3.11. Results

of the numerical solution are compared with the series solution in Figure 3.11.

Figure 3.12 compares the convergence rates of the various discretizations and Figure 3.13 shows

the relative error of the converged solutions. The convergence criterion used was ||residual|| <=

10−5∗||RHS||+10−8, where RHS is the right-hand-side of Eq. 3.32. For each discretization, enforcing

a Neumann boundary condition reduces the convergence rate significantly compared to the Dirichlet

case. As in the Dirichlet case, the four formulations based on the Brookshaw approximation of the

Laplacian converge initially at a similar rate, although the lack of the corrected form of the gradient
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Figure 3.12: A comparison of the convergence rates for the different discretizations for the Neumann
case.
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Figure 3.13: A comparison of the relative error of the converged solution along the line x = 0.5 for
the different discretizations for the Neumann case.
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in the SPH1 and SPH2 forms slows convergence and ultimately leads to the failure of the SPH1

form in returning an accurate solution (Figure 3.13). The CSPH2 and CSPH2Γ both continue to

converge at a slow rate, yet returned a smooth solution. The SSPH and CSPM methods converge

slightly faster than the Brookshaw forms, however the SSPH solution produces inaccurate results.

The CSPM solution does not contain oscillatory behavior as strong as in the Dirichlet case.

Particle Disorder

Throughout this study, the quintic spline kernel was used. This kernel has a slightly wider support

region than the commonly-used cubic spline kernel and therefore involves a greater number of in-

teracting pairs, increasing both the computational and storage burden. The primary motivation for

using this higher-order kernel is that smoother kernels mitigate the sensitivity of Laplacian calcula-

tions on particle disorder [9]. To determine the sensitivity of this formulation to particle disorder,

the Neumann test case described above was run on two arrays, the regular array shown in Figure

3.7 and one with particle positions given random perturbations of −0.4s < δ < 0.4s in both x and

y. Tests were conducted for both Eq. 5.2 and the CSPM method (Eq. 3.13 [18]) using both the

quintic spline kernel (Figure 3.14) and the cubic spline kernel (Figure 3.15).

In all cases, the addition of particle disorder slows the convergence of the iterative solver. In

fact, with the convergence criterion used above, the iterative solver used as many iterations as was

allowed for all disorder cases. The maximum number of iterations was restricted to 75% of the

number of unknowns. The relative error from the CSPM method is greater using the disordered

array. Surprisingly, this increase is more pronounced when using the quintic spline kernel.

The convergence rate for the CSPH2Γ form (Eq 5.2) is initially unaffected by the particle disorder,

although, the rate decreases after several hundred iterations. The relative error is slightly affected

by both the particle disorder or the use of a lower-order kernel.

3.4.2 Transient Diffusion (Cooling of an infinite slab)

To test the ability of the proposed discretization and implementation of boundary conditions in rep-

resenting transient behavior, the cooling of an infinite slab of thickness b from an initial temperature

of T = 750◦ to steady-state was modeled. The domain used consists of the same domain as in

previous test, but with boundaries as shown in Figure 3.7(b) with a fixed temperature at the base

and adiabatic (∂T/∂n = 0) side-walls. The equations are integrated in time using the Backward
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Figure 3.14: Effects of particle disorder on the steady-state Neumann test case with a quintic spline
kernel. Results from the CSPM method are shown in the top row, CSPH2Γ on the bottom. Contour
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Euler method resulting in the following linear system:

 A

B

 Ti

Tg

(n+1)

=

 Ti + (∆t)r

B

(n)

(3.34)

where

A = 1−∆t
[ 1
ρcp

∇·
(
k∇

)]
B = α+ (1− α)n̂·∇

Tests were run for the three types of linear boundary conditions at the surface: Dirichlet, Neumann,

and mixed. In each of these cases, homogeneous material properties (ρ = 103 kg/m3, cp = 103 J/(kg

K), and k = 105 J/(s m K) ) were used with no heat sources or sinks. The general solution for all

three cases is given by

ut = κuyy u(0, t) = u1 u(y, 0) = u0

u(y, t) = uss(y) +
∞∑

n=1

Bne
−tλn

√
κ sin

(√
λny

)
(3.35)

where κ = k
ρcp

= 10−1 m2/s, u1 = 1000◦, u0 = 750◦, and uss is the steady-state solution. The

particular values for the surface boundary condition were chosen so that the uss was the same (a

linear temperature profile from 1000◦ to 500◦), although the rate of cooling depends on λn which

differs among the cases.

Dirichlet For the case of a fixed surface temperature, the boundary condition, eigenvalues and

coefficients are given by

u(b, t) = u2 = 500◦ uss(y) = u1 −
u1 − u2

b
y

λn =
(nπ
b

)2

Bn =
2

b
√
λn

((
u2 − u0

)(
− 1

)n + u0 − u1

)
Neumann For the case of a fixed surface heat flux, the boundary condition, eigenvalues and

coefficients are given by

uy(b, t) = f2 = −500◦/m uss(y) = u1 + f2y

λn =
(

(2n− 1)π
2b

)2

Bn =
2

b
√
λn

(
u0 − u1 −

f2√
λn

(
− 1

)n−1
)
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Figure 3.16: Test of the three types of linear boundary conditions the surface at t = 0.15 s. The
base (x = 0) is held at T = 1000◦ and the initial temperature is 750◦.

Mixed For the case of heat flux governed by Newton’s Law of cooling, the boundary condition is

mixed with α = 1/2. The boundary condition, eigenvalues and coefficients are given by

u(b, t) + uy(b, t) = 0 uss(y) = u1 −
u1

b+ 1
y

λn = − tan(λnb) '
(2n− 1)π

2b
kn =

√
2

b+ cos2(b
√
λn)

Bn = k2
n

[(u1 − u0√
λn

)(
cos(b

√
λn)− 1

)
+

( 2u1

b+ 1

) sin(b
√
λn)√

λn

]

where kn is a normalizing factor for the eigenfunction sin(
√
λny). In all cases, a time-step of ∆t =

10−3 s was used and a stopping criterion for the iterative solver of ||residual|| <= 10−8||RHS||+10−11

where RHS refers to the right-hand-side of Eq. 3.34. The numerical results are compared with the

above series solutions for each of the three boundary conditions at a t = 0.15 s in Figure 3.16.



43

3.5 Concluding Remarks

Several methods have been proposed to address the difficulties involved in calculating second-order

derivatives with SPH [5, 9, 15, 18, 20, 147, 67]. In contrast with the present formulation, many of

these methods achieve a high accuracy through fully calculating the Hessian [18, 147, 67] or requiring

that the discrete equations exactly reproduce quadratic functions [5]. The primary attraction of the

present method is that it provides a simple correction term to a Laplacian discretization commonly

used for thermal, viscous, and pressure projection problems which can be incrementally improved.

If the computational and programming overhead of calculating corrected gradients is avoided, this

correction term is a trivial addition and improves the accuracy near boundaries in each of the test

cases. Including gradient corrections further improves the Laplacian approximation near boundaries,

although this requires an n-by-n matrix inversion for each particle and significant additional storage.

Finally, a scaling term can be used which reduced the relative errors in approximating the Laplacian

for most of the test functions on a square patch although it did not lead to significant reduction

in relative error for the steady-state thermal test cases. Additionally, this scaling term appears

to be sensitive to the particle distribution and requires an additional n-by-n matrix inversion. The

discretization was tested for transient heat conduction using a variety of surface boundary conditions.

Convergence rates are slower with particle disorder, however the CSPH2Γ solution remains robust.

It is possible that these rates may be improved with preconditioning or alternate implementations of

boundary conditions [18] [136]. Although the converged solution of Eq. 5.2 with gradient boundary

conditions does not appear to be influenced by spurious boundary modes, further work is needed to

ensure that this boundary implementation can be used with other Laplacian discretizations.

The primary application for this improved thermal problem as presented will be in modeling the

deformation of strongly coupled thermo-mechanical fluids such as the advancing lobe of cooling lava.

Within the context of visco-plastic modeling of geomaterials, the developments of this chapter

will be applied to more accurate calculations of ∇2p. Much more discussion can be found in chapter

5, however, the central idea is that for frictional (pressure dependent) material, an accurate and

smooth pressure solution is crucial for the non-linear solution to converge. An uncorrected Laplacian

can result in too much noise in the pressure solution, particularly for disordered particles, which

can corrupt the convergence of the non-linear solver. Essentially, a smooth velocity field with an

oscillatory pressure field will result in a distribution of plastic failure that mimics the oscillatory

pressure field. The corrected Laplacian term greatly mitigates this effect.
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Chapter 4

A GENERALIZED QUASI-COMPRESSIBILITY SPH MODEL FOR
INCOMPRESSIBLE VISCOUS FREE-SURFACE FLOW

We present a Smoothed Particle Hydrodynamics (SPH) formulation of incompressible viscous

free-surface flow. This formulation is a generalization of the quasi-compressibility methods (artificial

compressibility, penalty, pressure stabilization, pressure correction) in which pressure is evolved

through a perturbed continuity equation. The performance of both explicit and implicit formulations

is compared with the standard explicit formulation based on an equation of state. SPH numerical

results of several test cases are compared with analytical solutions and results from other numerical

methods.

4.1 Introduction

The Smoothed Particle Hydrodynamics (SPH) method (see [84] for a review.) was developed to

model compressible fluid dynamics in self-gravitating, astrophysical flows. The method uses a mesh-

free spatial discretization and solves the fluid equations on interpolation points that are advected

with the fluid. SPH was first applied to incompressible fluid flow by explicitly evolving the mo-

mentum and continuity equations using a stiff equation of state [82]. This method allows a slight

compressibility governed by the sound speed and is commonly used in free-surface flow modeling.

Morris et al. [89] extended SPH to low Reynold’s number flow by including a term in the momentum

equation for the physical viscosity. As an alternate method of enforcing the incompressibility condi-

tion, Cummins and Rudman [23] presented a projection method for SPH. This method involves first

integrating the velocity field, then projecting this field onto the space of divergence-free vectors to

enforce the incompressibility constraint. Larger time steps can be used since there are no restrictions

from a sound speed, but this method requires solving a Poisson equation for pressure. Variations of

this method have appeared recently ([99, 120, 115]) each using a slightly different Poisson equation.

A similar approach was used by Colin et al. [22] who also used a fractional step approach, but solved

for the null divergence velocity field via a Helmholtz–Hodge decomposition. A novel approach to

enforcing incompressibility was presented by Ellero et al. [30] in which they require that the volume

of particles remain constant.
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As an alternative to the pressure projection method and formulations based on coupling pressure to

an evolving density through an equation of state, we investigate an SPH discretization of a mixed

formulation where both velocity and pressure are determined such that the velocity field remains

approximately solenoidal (∇ · v = 0).

In general, the incompressibility condition imposes a global constraint on the divergence of the

velocity that results in an elliptic system of equations which is numerically expensive to solve. Sev-

eral numerical methods are widely used that address this constraint by coupling the pressure and

velocity fields through a perturbed continuity equation. The penalty method [51], for example, re-

laxes the strict enforcement of the divergence-free condition by directly coupling pressure to velocity

divergence. Similarly, the artificial compressibility method [19] relaxes the incompressibility con-

straint by linking a divergence of the velocity to a pressure evolution equation. Other perturbations

based on higher-order derivatives of the pressure have also been used such as the pressure stabi-

lization [60] and pressure correction [123] methods. Hybrid forms of these perturbations have been

employed with modest success with both explicit [109] and implicit [78] solvers although Dukowicz

[28] noted that projection methods can be more efficient if the pressure Poisson equation is solved

with a symmetric solver.

These standard perturbation methods of enforcing a solenoidal vector field have also been em-

ployed in enforcing the ∇ ·B = 0 constraint in magnetohydrodynamics (MHD) [90, 132]. Recently,

an analogous hybrid form has been used to impose this constraint in both grid-based [26] and SPH

implementations [102] through the use of ‘generalized Lagrange multiplier’ coupling the equations.

In the MHD literature, these methods are referred to as ‘divergence cleaning’ since a non-zero ∇·B

only arises from numerical errors; there is no mechanism in the MHD equations to generate a diver-

gence of the magnetic field. This is in contrast with the incompressible Navier-Stokes (N-S) equations

in which the only mechanism to prevent compression is the presence of the Lagrange multiplier in

the form of pressure [131]. Nevertheless, these techniques behave as a mechanism for ‘divergence

cleaning’ of the velocity field.

In this paper, we first outline these methods as they apply to the incompressible transient Navier-

Stokes equations, then discuss the SPH implementation showing the results of patch-test numerical

experiments. Finally, we show the method applied to three test cases: shear flow down an inclined

plane, lid-driven flow in a square cavity, and the collapse of a viscous droplet.



46

4.2 Existing SPH Formulations of Incompressible Flow

The governing equations for mass and momentum conservation for an incompressible, viscous fluid

are given by

Dv
Dt

= −1
ρ
∇p+

1
ρ

∇·
(
µ∇v

)
+ g momentum (4.1)

∇ · v = 0 continuity (4.2)

where v, p, and g are the velocity, pressure, and body acceleration; µ and ρ are the dynamic viscosity

and density; and D
Dt = ∂

∂t + v · ∇ is the material time derivative.

4.2.1 Weakly compressible SPH

The standard SPH formulation for incompressible free-surface flow is outlined in [82] and involves

solving the compressible form of the continuity equation but with an equation of state that only

allows for minor density fluctuations.

1
ρ

Dρ
Dt

= −∇ · v (4.3)

p = D

[(
ρ

ρ0

)γ

− 1
]

(4.4)

where D = c2sρ and cs is the speed of sound. This formulation is sometimes referred to as ‘weakly

compressible’ [23] since cs can be chosen much lower than the true speed of sound, thereby accepting

greater perturbations in density and velocity divergence than are physical. Accepting this error

allows for larger time steps to be used and leads to a more efficient, albeit less accurate, calculation.

Monaghan [82] noted that with this formulation, density perturbations will be approximately 1% if

cs is chosen to be approximately 10 times the typical flow velocity of the problem. In a sense, Eq.

4.3 can be thought of as a perturbed form of Eq. 4.2 where the perturbation is − 1
ρ

Dρ
Dt .

4.2.2 Pressure Projection

Projection methods are commonly used for incompressible flow calculation and are particularly

successful for flow at moderate Reynolds number (Re) [138]. These methods involve two steps for

each time increment. First the momentum equation is integrated to an intermediate velocity while

neglecting the pressure gradient term. The second step uses the divergence of the intermediate

velocity to determine the pressure necessary to maintain incompressibility. This involves solving a

Poisson equation for pressure for which there are fast solvers, particularly for grid-based methods.
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Cummins and Rudman [23] implemented an SPH formulation of a projection method which resulted

in a symmetric system of equations and could therefore take advantage of fast symmetric solvers.

The advantage of this scheme, particularly for moderate Re flows, is that time steps are not

constrained by the CFL condition, whereas a large cs would need to be chosen in the WCSPH

formulation to approximate incompressibility. For viscous flow, the associated time step restriction

from viscous diffusion would still need to be observed in calculating the intermediate velocity.

4.2.3 Constant volume formulation

An alternative approach to enforcing incompressibility, proposed by Ellero et al. [30], is to focus on

constraining the evolution of a volume element of the fluid. This kinematic constraint is imposed

through Lagrange multipliers which behave as a non-thermodynamic pressure.

4.3 Quasi-Compressibility Formulations

The quasi-compressibility methods (also called pseudo-compressibility methods [123]) of approxi-

mating incompressible Stokes flow result from relaxing the strictly divergence-free velocity condition

by a perturbation as follows.

∂v

∂t
=

1
ρ

∇·
(
µ∇v

)
+ g − 1

ρ
∇p (4.5)

D(p) = −∇ · v (4.6)

where D is a linear operator applied to pressure. Note that we are only considering a perturbation to

the Stokes equations and are neglecting the non-linear term of the N-S equations (i.e. ∂/∂t ' D/Dt).

This generalized perturbation is analogous to a coupling of the solenoidal magnetic field constraint

to the MHD equations through ‘generalized Lagrange multipliers’ as proposed by Dedner et al. [26].

Eq.’s 4.5 and 4.6 are in the form analogous to Eq.’s 4 and 5 of Dedner et al. [26]. In applying his

analysis to the Stokes equations (with homogeneous material properties), we first take the divergence

of Eq. 4.5 which leads to
∂

∂t
(∇ · v) = −1

ρ
∇2p (4.7)

Then taking the time derivative of Eq. 4.6 leads to

∂

∂t
D(p) +

∂

∂t
(∇ · v) = 0 (4.8)
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which, combined with Eq. 4.7 gives

∂

∂t
D(p)− 1

ρ
∇2p = 0 (4.9)

Applying the D operator to Eq. 4.7 results in

D
( ∂

∂t
(∇ · v)

)
= −1

ρ
D

(
∇2p

)
(4.10)

and applying the Laplacian to Eq. 4.6 leads to (assuming D and ∇2 commute)

D
(
∇2p

)
+ ∇2

(
∇ · v

)
= 0 (4.11)

which together (assuming ∂
∂t and D commute) result in

∂

∂t

(
D(∇ · v)

)
− 1
ρ
∇2

(
∇ · v

)
= 0 (4.12)

When comparing Eq. 4.12 with Eq. 4.9, we see that in homogeneous media both p and ∇ · v follow

the same evolution equation, regardless of the form of D. This is useful since we can then use Eq.

4.9 to determine the behavior of p as a proxy for how velocity divergence is evolved.

The equation we are primarily interested in solving, however, is the momentum equation with inho-

mogeneous material properties (Eq. 4.1). This modifies Eq. 4.9 to

∂

∂t
D(p)− 1

ρ
∇2p = −Γ (4.13)

where Γ is a parameter that depends on the spatial gradients of the material properties as follows.

Γ =
1
ρ

[
∇·

[
∇·

(
µ∇v

)]
+ ∇ρ ·

(
g − ∂v

∂t

)]

If D is set identically to zero, Eq. 4.13 reduces to the Poisson equation

∇2p = ρΓ (4.14)

which has the numerically difficult elliptic character. Eq. 4.6 then reduces to ∇ · v = 0 and the

incompressibility constraint is strictly enforced.
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4.3.1 Artificial Compressibility D(p) = ε1
∂p
∂t

The artificial compressibility method [19] is a commonly used perturbation in which the form of D

is the time derivative of p. This transforms Eq. 4.13 to a wave equation

∂2p

∂t2
− 1
ε1ρ

(
∇2p− ρΓ

)
= 0 (4.15)

which can easily be solved with explicit solvers since the time step restriction is ∆t ≤ ε1∆x. In this

case, p is evolved via Eq. 4.6 following ∂p
∂t = − 1

ε1
∇ · v. This form arises from using the equation

of state given in Eq. 4.4 with γ = 1 and D = 1
ε1

. In a sense, the equations of this formulation do

not significantly differ from that of the weakly compressible SPH formulation. In one, the pressure

is evolved while in the other, density is evolved. In the incompressible limit, ε1 becomes zero, cs

becomes infinite, and Eq. 4.15 reduces to Eq. 4.14.

Strictly speaking, this scheme is designed to efficiently calculate a steady-state incompressible

flow solution by calculating the evolution of a non-physical transient solution to steady-state.

4.3.2 Penalty D(p) = ε2p

If the operator D(p) is set proportional to p, Eq. 4.13 reduces to a diffusion equation

∂p

∂t
− 1
ε2ρ

(
∇2p− ρΓ

)
= 0 (4.16)

In this case, p (and velocity divergence) will diffuse away from sources with at a rate controlled by

the diffusivity 1
ε2ρ .

An advantage of this formulation is that pressure can be removed from the problem by substi-

tuting p = − 1
ε2

∇ · v into Eq. 4.5. Although this is an attractive step in reducing the number of

variables, we have found that this formulation leads to oscillations in the velocity field and prefer the

mixed formulation of solving Eq. 4.5 coupled with p = − 1
ε2

∇ · v. This mixed formulation produces

smooth velocity fields, although the pressure solution can exhibit oscillations. The diffusive character

of Eq. 4.6 places a restrictive time step criterion on an explicit integration of this formulation.

4.3.3 Pressure Stabilization D(p) = −ε3
(
∇2p− ρΓ

)
This form is motivated by the fact that in the previously mentioned forms of pressure evolution,

p is susceptible to spurious, checkerboard solutions. Solving ∇2p = ρΓ in place of Eq. 4.2 will

suppress these spurious modes by imposing an additional degree of smoothness on p [60]. If D is set
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to −ε3
(
∇2p− ρΓ

)
then Eq. 4.13 reduces to

∂

∂t

(
∇2p− ρΓ

)
+

1
ε3ρ

(
∇2p− ρΓ

)
= 0 (4.17)

which has the solution

∇2p− ρΓ = Ae−
t

ε3ρ where A = (∇2p− ρΓ)
∣∣∣
t=0

(4.18)

This equation describes the decay of excess curvature of p to the Poisson equation consistent with

the momentum equation (∇2p = ρΓ). As ε3 → 0, the rate of decay becomes infinite and Eq. 4.17

reduces to Eq. 4.14. With this form for D, Eq. 4.6 reduces to

(
∇2p− ρΓ

)
− 1
ε3

∇ · v = 0

This technique is referred to as “pressure stabilization” [60] and is of a similar form to the equation

for solving for pressure using the Pressure Projection method [122]

∇2p =
∇ · v

∆t

with the small parameter ε3 taking the value ∆t. As opposed to the Pressure Projection method,

which is a fractional step method, the pressure stabilization approach solves the two equations

simultaneously.

4.3.4 Pressure Correction D(p) = −ε4 ∂
∂t

(
∇2p− ρΓ

)
The pressure correction method [123, 124, 104] is a perturbation that shares some properties with

both the artificial compressibility and pressure stabilization methods. The motivation for proposing

this form is that projection methods based on ∇2p are stable with ε ∼ ∆t while those based on

∂/∂t(∇2p) are stable with ε ∼ (∆t)2 [123]. Using this D, Eq. 4.6 becomes

Φtt +
1
ε4ρ

Φ = 0 (4.19)

where Φ = ∇2p− ρΓ. This is just a simple harmonic oscillator in the term Φ and has the solution

∇2p− ρΓ = A sin
( t
√
ε4ρ

)
+B cos

( t
√
ε4ρ

)
(4.20)
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where A and B are initial and boundary conditions on Φ. With this form for D, Eq. 4.6 reduces to

∂

∂t

(
∇2ψ − ρΓ

)
− 1
ε4
∇ · v = 0

From this form, it is clear that ∇ · v → 0 as ε4 → 0. From Eq. 4.6 we can see that ε4 ∼ t2

ρ and that

it controls the frequency of oscillation of Φ.

4.3.5 Hybrid Formulations

Each of the above forms of D has strengths and weaknesses. The artificial compressibility method,

for example, leads to a hyperbolic equation for pressure which can be integrated efficiently, however

there is no inherent dissipation mechanism for velocity divergence. The penalty method does have

this dissipation, but requires prohibitively small time steps for explicit solvers. Pressure stabilization

results in a smooth pressure solution, but requires solving a Poisson equation for pressure. There

has been some effort in combining these methods in the hopes of combining their strengths. Several

possible combinations are described below.

Telegraph – Artificial Compressibility/Penalty

The most widely studied of these hybrid formulations is the addition of a damping mechanism

to the artificial compressibility method [8, 145, 110, 109, 111, 28, 78]. For example, the artificial

compressibility method can be combined with the penalty method resulting in a form for D given

by

D(p) = ε1
∂p

∂t
+ ε2p

Convergence behavior of this form was studied by Yanenko et al. [145]. Eq. 4.13 then becomes

∂2p

∂t2
+
ε2
ε1

∂p

∂t
− 1
ε1ρ

(
∇2p− ρΓ

)
= 0

which is the damped wave (telegraph) equation. Taking the Fourier transform of this expression

leads to an equation for a damped harmonic oscillator of the transform [146]. The wave number that

is critically damped in this oscillator can be adjusted by the parameters ε1 and ε2 and is given by:

λ =
ε2
2

√
ρ

ε1
(4.21)

The primary advantage of this formulation is that a mechanism of dissipation can be retained while

casting the equations in hyperbolic form, thereby removing the restrictive time step criterion of the
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penalty method.

Damped Oscillator – Pressure Stabilization/Correction

Similar to the artificial compressibility method, the pressure correction method does not include a

mechanism for the dissipation of velocity divergence. However, similar to the telegraph formulation,

the pressure stabilization method can be combined with the pressure correction method resulting in

a form for D given by

D(p) = −ε3
(
∇2p− ρΓ

)
− ε4

∂

∂t

(
∇2p− ρΓ

)
(4.22)

This results in Eq. 4.13 becoming

Φtt +
ε3
ε4

Φt +
1
ε4ρ

Φ = 0 (4.23)

This is the equation for a damped harmonic oscillator of the quantity Φ = ∇2p − ρΓ. This system

is driven to ∇2p = ρΓ fastest when Eq. 4.23 is critically damped, which occurs when

ε4 =
ρε23
4

(4.24)

Stationary Hybrid – Penalty/Pressure Stabilization

Combining the terms lacking time derivatives leads to: D(p) = ε2p − ε3
(
∇2p− ρΓ

)
This form is

stationary in the sense that there is no t in Eq. 4.6, however the evolution equation (Eq. 4.13) leads

to:

ε2
∂p

∂t
− ε3

∂

∂t

(
∇2p− ρΓ

)
− 1
ρ

(
∇2p− ρΓ

)
= 0 (4.25)

This is a singular perturbation to a diffusion equation which we expect p and ∇ · v to follow after

an initial transition layer. Convergence behavior of this form was also studied by Yanenko et al. [145].

Other hybrid forms have been proposed and studied [104], however we will focus on the above

three.

Parameter Estimation

Each of the ε-terms carries a dimension as can be seen from each particular form of Eq. 4.6. The

dimensions contain various combinations of ∆x and ∆t, but since we want to avoid solutions that are

dependent on the particular resolution and time step, we scale the perturbations by characteristics
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of the flow as follows.

ε1 ∼ (∆t)2

ρ(∆x)2
∼ 1
ρV 2

ε2 ∼ ∆t
ρ(∆x)2

∼ 1
µ

ε3 ∼ ∆t
ρ ∼ µ

V 2ρ2

ε4 ∼ (∆t)2

ρ ∼ ε23ρ

V is a characteristic velocity of the flow.

4.4 SPH Implementation

4.4.1 SPH discretization

The terms of the momentum and continuity equations are discretized as follows:

1
ρ
∇pi =

∑
j

mj

(pj

ρ2
j

+
pi

ρ2
i

)
∇W (4.26)

1
ρ

∇·
(
µi∇vi

)
=

1
ρi

∑
j

mj

ρj
(µj + µi)(vj − vi)

(xj − xi)·∇W

|xj − xi|2
(4.27)

∇ · vi =
∑

j

mj

ρj
(vj − vi) · ∇̃W (4.28)

∇2pi =
∑

j

2
mj

ρj
(pj − pi)

(xj − xi)·∇W

|xj − xi|2
− 2∇̃pi ·

∑
j

mj

ρj
∇̃W

 (4.29)

where ∇̃ is a corrected [18] gradient given by

∇̃Wα = Cαβ∇Wβ

Cαβ =
[∫

[(xj − xi) ⊗∇W ] dx
]−1

'

∑
j

mj

ρj
(x− xi)α ∇Wβ dx

−1

In the above equations, the Latin indices correspond to particles while the Greek indices correspond

to coordinates. This correction matrix arises from examining the Taylor series expansion of f(x)
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and is needed to restore first order accuracy. This leads to a corrected form for the gradient operator

∇fi =
∑

j

mj

ρj
(fj − fi) ∇̃W (4.30)

Although this form of the SPH gradient operator has a higher order of accuracy than Eq. 4.26, it

does not guarantee conservation of momentum. Unfortunately, the form given by Eq. 4.26 cannot

be corrected by using ∇̃W [103]. The kernel gradient in Eq. 4.27 is also not in a position to benefit

from Cαβ . Throughout this study, we use the quintic spline kernel given by:

W (s) =
w0

hn



(3− s)5 − 6(2− s)5 + 15(1− s)5 : 0 ≤ s < 1

(3− s)5 − 6(2− s)5 : 1 ≤ s < 2

(3− s)5 : 2 ≤ s < 3

0 : s > 3

where w0 is given by 1
120 , − 7

478π , − 3
359π in 1, 2, and 3 dimensions respectively.

4.4.2 Time Integration

Eq.’s 4.5 and 4.6 are integrated explicitly for the telegraph perturbation as follows.

v(n+1) = vn + ∆t
[1
ρ

∇·
(
µ∇vn

)
+ g − 1

ρ
∇pn

]
p(n+1) = pn + ∆t

[
− ε2
ε1
pn − 1

ε1
∇ · vn

]
Since in this study, we are primarily focusing on the slow flow of a very viscous fluid, the hybrid

methods were also implemented using an implicit scheme. Although only first order accurate, we

choose the Backward Euler scheme due to its large stability region.

Using the pressure boundary condition (described more fully in Sec. 4.4.4)

∂

∂n
p(n+1) = n̂·

[
(ρg) + ∇·

(
µ∇v(n+1)

)]

the variables v and p are integrated for the implicit telegraph form according to


A B1 B2

C D1 D2

E F1 F2




v

p

pg


(n+1)

=


v + ∆tg

p+ ∆tβ2

η ρΓ

n̂·(ρ·g)


(n)

(4.31)
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where
A = 1−∆t

[
1
ρ ∇·

(
µ∇

)]
B = ∆t

ρ ∇

C = ∆tβ2∇· D = 1 + ∆t ε2
ε1

E = −n̂ ·∇·
(
µ∇

)
F = n̂·∇

Particle positions are then updated according to

x(n+1) = x(n) + ∆tv(n+1)

D takes other forms for the damped oscillator and stationary hybrid methods.

The matrix in Eq. 4.31 is not symmetric and is, in general, sparse. To solve for the vector of

unknowns, we use the GMRES routine from the SPARSKIT package [114].

One of the benefits of Lagrangian fluid schemes such as SPH is that the acceleration term is the

full material time derivative which removes the need to deal with the non-linear advective term.

For the scheme as described above to calculate the correct velocities at the correct positions at the

next time step, the positions would need to be updated throughout the iterative process based on

the current best estimate of v(n+1), a quantity not readily available from the SPARSKIT GMRES

routine [114]. This would require a reassessment of all interacting pairs which would dramatically

increase the computational effort as well as meddle with the structure of A. In the scheme we

employ, the velocities calculated are essentially based on ∂v
∂t , not Dv

Dt , however for slow flows, the

difference is negligible and in the limit of Stokes flow, all accelerations tend to zero. For flows with

a non-negligible advective term, the velocities generated from the iterative solver would have to be

modified to include the v · ∇v term.

4.4.3 Evolution of a velocity divergence source on a periodic patch

These tests show the evolution of velocity divergence errors for various perturbations to the continuity

equation. In all the patch test cases Eq.s 4.5 and 4.6 are solved on a unit square with 6400 particles

placed on a grid with an average spacing of 0.0125 m. The time step was held fixed at 0.0001 s, and

the material properties were constant at ρ = 1.0 kg/m3 and µ = 1.0 Pa s. The stopping criterion

was given by

||residual|| ≤ 10−7 ∗ ||initial residual||+ 10−10
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All particles were initialized with a zero velocity except for the divergence source, a region where the

velocity field has a specified divergence. All particles within a radius of r0 = 0.1 from x0 =(0.3, 0.3)

have a velocity initialized according to

v = −0.01
ro

x0 − x

||x0 − x||

In all cases, the quintic spline kernel was used with a fixed smoothing length of 1.2 times the initial

particle spacing. This kernel uses a broader support region than the widely used cubic spline kernel

which increases the number of interacting particles and therefore the computational cost of each

Matrix-Vector multiplication. However, the quintic spline is known to improve the stability of in-

terpolating higher-order derivatives [89], which generally leads to faster convergence of the iterative

solver resulting in an insignificant difference in the total computational cost. For larger problems,

the cubic spline may be more efficient due to its smaller memory footprint.

The evolution of an initial velocity divergence on a unit square with periodic boundary conditions

can be seen in Fig. 4.1. The shading in this figure corresponds the magnitude of the velocity di-

vergence with each plot scaled according to the minimum and maximum for that time step. This

figure provides a check that the velocity divergence evolves according to Eq. 4.12. We expect, for

example, that since the artificial compressibility method leads to the propagation of pressure waves

(Eq. 4.15), ∇·v should behave similarly. The plots in the top row of Fig. 4.1 demonstrate that when

integrating Eq. 4.6, perturbations in ∇ · v propagate as expected. The penalty method resulted

in a diffusion equation for pressure so we expect that ∇ · v should behave similarly, as we can see

from the second row from the top in Fig. 4.1. With both the pressure stabilization method and the

pressure correction method, there is not a mechanism for the transport of pressure perturbations,

only the decay or oscillation of the quantity ∇2p − ρΓ. As expected, there is no transport of the

quantity ∇ · v in the test patch.

4.4.4 Boundary Conditions

Boundary conditions with SPH generally require some additional attention since the overlapping

“shape functions” from the kernel do not retain the delta property needed for enforcing essential

boundary values [43, 49, 143, 136]. Boundary conditions are usually imposed either through fixed

boundary particles, or through ghost particles which are positioned so that the boundary is a line

of symmetry of the fluid [66]. The ghost particles inherit properties of the corresponding source

particle in the interior. In this study, ghost particles are used to impose boundary conditions.
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Figure 4.1: Periodic patch with a velocity divergence source. The evolution of
∇ · v for each perturbation type can be seen on the right.

Solid Wall Boundary Conditions (Ghost particles)

Ghost particles are placed as shown in Fig. 4.2. Each particle that interacts with a boundary

element is projected across that element (i.e. particle P is projected across element Be2 producing

ghost particle G5). Near concave corners in the boundary, such as near boundary point Bp1, interior

particles must also be mapped through the corners to prevent a ghost particle deficiency in the

wedge-shaped region near G2. In this case, the interior particle N1 produces three ghost particles,

G1, G3, and G2 by projecting the position across boundary elements Be1 and Be2 and through

boundary point Bp1. Near convex corners, such as near boundary point Bp2, the problem is not a

deficiency of ghost particles, but a duplicity. In this case, interior particles are projected only across

elements and the resulting ghost particle accepted only if the position is in the closer half of the

bisection. For example, particle N4 projects across Be3 to G6 and is accepted while N2 projects

across Be2 to G4 which is in the further half and is therefore rejected. Note that particle N3 does

not produce a ghost particle since it does not project orthogonally onto either Be2 or Be3. The

ghost particles are included in the summations when they are within the support domain even if

their source particle is not (i.e. G7 is in the support domain of P while its source N5 is not.).

Velocity Boundary Conditions Although it is cumbersome to map the position of the ghost

particles at each step, an advantage of this arrangement is that it produces a line of symmetry which
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Figure 4.2: Ghost particles are positioned by projecting the interior particles
across boundaries.
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Figure 4.3: Velocity boundary conditions for no-slip (a) and free-slip (b) walls.
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simplifies enforcing free-slip and no-slip boundary conditions. For the no-slip condition all velocities

of the ghost particles are the negated value of the source particle (Fig. 4.3a). This ensures that the

velocity will go to zero at the boundary. For the free-slip condition, the ghost particle inherits the

velocity of the source particle with the component of the velocity perpendicular to the corresponding

boundary negated (Fig. 4.3b). This configuration ensures that the ghost particle will not impede

tangential flow along the boundary while preventing (or discouraging) the interior particle from

crossing the boundary. The normal used for negating the component of the source particle’s velocity

is the same as that used for positioning the ghost particle. For example, in Fig. 4.3b, all three ghost

particles inherit velocity V1, but with components negated with respect to n1, n2, and n3 respectively.

For boundary geometries where a free-slip element joins a no-slip element (such as the viscous

droplet case of section 4.6.2), the ghost particles in the wedge-shaped region are located as in Fig.

4.4b. Ghost particles for which α < β acquire a velocity according to B1 while those for which the

converse is true use B2.

Moving or traction boundaries can be included by simply supplementing the free-slip or no-slip

velocities with that of the boundary.

A point to note with this configuration is that normal velocities are encouraged to tend to zero

at the boundary by imposing a non-zero velocity divergence at the boundary. This essentially means

that solid-wall boundaries are sources of divergence errors. Using a penalty formulation, divergence

errors will diffuse away to zero if ∇ · v = 0 at the boundary. If not, divergence errors can diffuse

into the domain.

Pressure Boundary Conditions Homogeneous Neumann pressure boundary conditions are some-

times imposed by assigning to each ghost particle the pressure of that ghost particle’s source. This

arrangement leads to the boundary being a line of symmetry of the pressure field and therefore

ensures that ∂p/∂n vanishes on the boundary. The pressure of the ghost particles is no longer an

unknown which leads to faster convergence of the iterative solver. Unfortunately, for flows with body

forces or with large viscous forces, a homogeneous Neumann pressure condition leads to a poor ap-

proximation of flow dynamics [42]. Boundaries will eventually leak particles if there is an insufficient

pressure gradient to oppose the flow in spite of the anti-symmetric velocity of the ghost particles.

For these flows, the pressure boundary condition can be found by taking the dot product of the

momentum equation (Eq. 4.1) with the normal and assuming normal velocities and accelerations go
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to zero on the boundary [96].

∂p

∂n
= n̂·

[
(ρg) + ∇·

(
µ∇v

)]

Since the Laplacian calculation can deteriorate for the ghost particles due to the deficient kernel

support, we neglect the viscous term of the above expression. In the limit of Stokes flow, this neglect

should result in minor errors. Moreover, as noted by Gresho [41], the neglect of this term can lead

to the diffusion of ∇ · v errors from the boundaries into the domain.

With an explicit integration scheme, pressure values for the ghost particles are incremented from

its source particle’s pressure according to its relative position and the pressure gradient. For an

implicit integration scheme, we have found it to be more stable to allow the pressure value to be an

unknown subject to the constraint that the pressure gradient satisfy the boundary condition. Since
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Figure 4.4: Geometry of bounded patch. Solid walls are along the base and
left side. The top and right sides are free-surfaces. (a) illustrates the kernel
deficiency of the ghost particles, (b) diagrams the ghost particles in the corners,
(c) shows the identification of free-surface particles (from the kernel volume)
and the associated surface normal.
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nearly all ghost particles will have a deficient support domain (see Fig. 4.4a), the pressure gradient

equation used for imposing the boundary conditions is the corrected form given in Eq. 4.30.

Free-Surface Boundary Conditions
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Figure 4.5: Bounded patch with a velocity divergence source. The evolution of
∇ · v for each perturbation type can be seen.

Free surfaces are identified by flagging particles whose support domain falls below a threshold

value (0.82 for the quintic kernel) as shown in Fig. 4.4c. A similar identification process was used by

Shao and Lo [120] but with a much higher threshold. We found that this threshold value, however

usually results in an identified surface that is continuous and one particle thick. The boundary

condition we would like to impose on this surface is that it is traction-free. We can approximate this

condition by setting the pressure to zero, however, this allows deviation from the divergence-free

velocity constraint.

Evolution of a velocity divergence source on a bounded patch

To test the effect of these velocity and pressure boundary conditions applied at both solid walls

and surfaces, on the evolution of ∇ · v, the same tests as described in Sec. 4.4.3 were run using a

bounded patch. The boundary configurations is as shown in Fig. 4.4a with solid walls on the left

and bottom sides of the patch and a surface elsewhere. This test is important because although ∇·v
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and p evolve in concert, the boundary conditions applied for v at walls and p at free-surfaces can be

thought of as non-zero boundary conditions on ∇ · v.

From the top row of Fig. 4.5, we see that both the wall and free-surface behave as a reflective

boundary for the waves of ∇ · v. The penalty case is similar in that neither type of boundary

transports ∇ · v out of the domain. Ideally, these boundary should be absorbing to most rapidly

remove ∇ · v from the patch, however they do not behave as sufficient sources of ∇ · v to corrupt

the solution. The pressure stabilization method does lead to large values of ∇ · v that persist near

the boundaries. The pressure correction method also retains the largest ∇ · v near the boundaries.

Instead of setting p = 0, an alternative boundary condition at free-surfaces is to require that

the surface particles remain divergence-free and to assign the pressure necessary to enforce this

constraint. Although, this boundary condition did reduce velocity divergence errors, it also required

approximately 10% more iterations for the solver to converge. In the tests of sections 4.5 and 4.6,

the free-surface boundary condition, p = 0, was used.

4.5 Numerical tests – Transient viscous shear flow

To study the performance of the quasi-compressible SPH formulation for viscous free-surface flow,

the transient flow of a thin sheet of fluid down an inclined plane was chosen as a test problem. A

schematic of this test problem is shown in Fig. 4.6. The density and viscosity of the fluid were set

to ρ = 103 kg/m3 and µ = 10−1 Pa s with a depth of h = 0.6 mm and a slope of 10◦. The transient

and steady-state solutions for this test problem are:

vx[ss] =
ρg sin θ

2µ

(
y2 − 2yh

)
vx(y, t) = vx[ss] +

∞∑
n=1

an sin
(nπy
h

)
exp

[
− µ

ρg sin θ

(nπ
h

)2

t
]

an =
2
h

∫ h

0

−vx[ss] sin
(nπy
h

)
dy (4.32)

=
16gh2ρ sin θ
n3µπ3

(If n is odd.) (4.33)

This is essentially the solution given by Morris et al. [89] for transient Poiseuille flow. The model

set-up consists of an array of 12 by 12 particles with an average spacing of 5 x 10−5 m, a no-slip

boundary along the base and periodic conditions in the downslope direction. Although solving for

the pressure and velocity profiles is really a one-dimensional problem, it is useful to simulate the

flow in two dimensions to see the effect, if any, of particle disorder.
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Figure 4.6: Schematic of the test case for the transient viscous flow down an
inclined plane.

4.5.1 Explicit Integration

As an initial test, the system was evolved to 0.02 s using the WCSPH formulation. The most

restrictive constraint on the time step for this problem is due to the viscosity (∆t = ρh2/8µ =

3.125 x 10−6 s), requiring approximately 6400 time steps. We found that we could increase the time

step slightly 4.5 x 10−6 s and still maintain a stable solution. The speed of sound, which controls

the pressure response to density perturbations and therefore the compressibility, was set so that the

associated time step restriction from the CFL condition was comparable to the viscous restriction.

Pressure and velocity profiles at t = 0.02 s for the WCSPH solution are shown in Fig. 4.7. Despite

the course resolution, the velocity solution matches the analytic solution very well, although the

pressure solution shows some perturbations from the expected linear profile. As mentioned above,

this problem is solved on a 2-dimensional domain to verify that the deformation does not significantly

effect the solution. This was found to be the case. All 144 particles are plotted in Fig. 4.7.
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Figure 4.7: Solution for transient shear flow at t = 0.02 s using explicitly inte-
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For comparison, the pressure and velocity profiles at t = 0.02 s for the explicitly integrated quasi-

compressible telegraph (ε1 = 10−5, ε2 = 10−8) model are shown in Fig. 4.8. The time step for this

formulation is also constrained by the viscosity. The value of ε1 was chosen so that its associated time

step restriction was comparable to that from the viscosity. As with the WCSPH formulation, the

explicit telegraph formulation returns a velocity solutions that compares very well with the analytic

solution. The pressure solution does not show the same perturbations as seen with the WCSPH

solution, but the values are slightly greater than the analytic solution.
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Figure 4.8: Solution for transient shear flow at t = 0.02 s using explicitly inte-
grated telegraph formulation.

To determine how well the telegraph formulation enforces incompressibility, cases were run with

ε1 spanning the range from 10−1 to 10−5.5 and ε2 spanning the range from 100 to 10−8. Since the

time step in each of these cases was set by the viscosity, each case used the same number (4445) of

steps. The degree to which the incompressible transient Stokes equations were satisfied is expressed

with four measures: the relative error of the solution (velocity and pressure), the relative error in

the final thickness of the sheet of fluid, the average velocity divergence, and the maximum velocity

divergence. These measures, as a function of ε1 and ε2, are contoured along the top row of Fig. 4.9.

The expectation is that one perturbation or the other of the hybrid formulation (either ε1 ∂p
∂t

or ε2p) will provide the dominant balance against ∇ · v in Eq. 4.6. If ε2 << ε1, the system will

behave similar to the artificial compressibility method. If ε1 << ε2, then ∇ · v will diffuse as in the

penalty method. If the two ε–terms are of the same order of magnitude, then ∇ · v should evolve

according to the damped wave equation. The top row of Fig. 4.9 shows that there is a transition

from one dominant behavior to the other. For this explicit case in which the time step is constrained

by the viscosity, all points on the ε1–ε2 range require the same computational effort. As such, there
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is no reason to choose any ε1–ε2 pair other than the most restrictive, the pair that results in the

lowest error. For the implicit integration scheme, the different choices of ε1 and ε2 results in differing

numbers of iterations required by the solver.

4.5.2 Implicit Integration

Using an implicit integration scheme removes the restrictive time step criterion associated with the

high viscosity. Additionally, it also removes time step restrictions associated with ε1 and ε2 allowing

for smaller perturbations to Eq. 4.6. The telegraph formulation was run with ε1 over the range 100

to 10−7 and ε2 spanning the range from 100 to 10−8. In these cases, 20 time steps of ∆t = 0.001

were used and a convergence criterion for the iterative solver given as follows.

||residual|| ≤ 10−5 ∗ ||initial residual||+ 10−8

Results for the same four measures of error are contoured in the second row of Fig. 4.9. The

results show the same pattern of error as with the explicit integration. This is to be expected

since the underlying equations are the same. Error results from the other two hybrid formulations

(stationary hybrid and damped oscillator) are also displayed in Fig. 4.9 over a range of their

respective perturbation parameters. In each formulation, there is a transition from one end member

of the hybrid formulation to the other.

Fig. 4.9 shows how well incompressibility is approximated for each hybrid formulation over the

range of ε–values, however it does not show how efficiently the constraint is enforced, or how much

numerical effort is required. For the three implicit hybrid formulations, the total number of iterations

required for the 20 time steps, as a function of the two perturbation parameters, is contoured in

Fig. 4.10. In each of the three hybrid formulations, the total number of iterations required increases

as each of the perturbation terms decrease. This is expected since negligible ε–values leads to the

constraint ∇ · v ' 0 which results in a numerically expensive elliptic system of equations. There is

essentially a trade-off between numerical effort and the enforcement of incompressibility. However,

for this implicitly integrated viscous flow problem, any choice of formulation, whether one of the

hybrid formulations or any of the individual perturbations, results in less numerical effort that the

explicit formulations. Although it is not straight-forward to directly compare the implicit and explicit

schemes, with the convergence criterion given above, the implicit methods require approximately a

third as many calls to the matrix-vector multiply routine as do the explicit methods. This could

possibly be further reduced by preconditioning. There are, however, additional storage requirements

for the implicit formulation.
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Figure 4.9: Various error/∇ · v measures for the hybrid formulations.
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A point to note in Fig. 4.10, is that both the telegraph and damped oscillator formulations

show a simple increase in numerical effort with decreasing ε (any of ε1−4). The stationary hybrid,

in contrast, shows a trough of fewer iterations along ε3 = 10−7. A similar pattern will be seen in

Sec. 4.6 where it is found to be related to the suppression of pressure oscillations. An ε3 too small

allows pressure oscillations to occur while an ε3 too large does not provide an adequate constraint

on ∇ · v. It is not clear to what extent the optimal choice of ε3 is problem dependent.

4.6 Numerical tests – Stokes Flow

In the case of stationary Stokes flow, accelerations are negligible resulting in the following equations.

1
ρ

∇·
(
µ∇v(n+1)

)
− 1
ρ
∇p(n+1) = −g

ε2p
(n+1) − ε3∇2p(n+1) − 1

ε1
∇ · v(n+1) = 0

The continuity equation is perturbed using the stationary hybrid formulation. This scheme is applied

to two test cases: lid-driven shear flow in a square cavity, and the collapse of a viscous droplet.

4.6.1 Lid-driven shear flow in a square cavity at Re = 1

The circulation of fluid in a square cavity with a tangential velocity applied along the top boundary,

is a classic problem in fluid mechanics [27, 100]. We used the boundary conditions, geometry, and

material properties as described by Liu and Liu [66] and shown in Fig. 4.11 which results in a

Reynolds number of Re = 1. 1600 regularly-spaced particles were used with an average spacing of

s = 2.5 x 10−5 m.

The steady-state solution was calculated with the stationary hybrid formulation with ε2 spanning

the range from 100 to 10−8 and ε3 spanning the range from 100 to 10−12. For the case of the most

restrictive perturbation (ε2 = 10−8 and ε3 = 10−12), plots of the velocity along the two mid-lines

and pressure along the top boundary are shown in Fig. 4.12. This choice of ε2 and ε3 results in

essentially the same solution as simply solving the Stokes equations (i.e. ∇ · v = 0). The SPH

solution is plotted with symbols while a solution using a finite difference method with a staggered-

MAC grid [27] is shown as a line. The velocity solution is smooth, but the pressure solution suffers

a checkerboard oscillation.

Fig. 4.13 shows the effect of increasing ε2 and ε3 on the solution and the computational expense.

The total number of iterations required, the maximal velocity divergence and the relative error for
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Figure 4.11: Initial particle positions for the lid-driven flow in a square cavity.
In this problem, v0 = 10−3 m/s, l = 10−3 m, µ = 10−3 Pa s, g = 0 m/s2, and
ρ = 103 kg/m3 resulting in Re = 1.
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the suite of ε2–ε3 values are plotted in Fig. 4.13. The relative error is given by

Relative Error =

[∑
i

(
u0 − u

u0

)2
mi

ρi

]0.5

(4.34)

where u is the SPH solution (in both v and p) and u0 is the true solution. A finite difference solution

on a MAC grid was considered the true solution.
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Figure 4.13: Log of iterations, velocity divergence, and relative error (compared
with MAC solution) for the lid-driven flow test case with the stationary hybrid
perturbation.

A striking feature of all three surface plots in Fig. 4.13 is the prominent trough along ε3 = 10−4.5.

The reduction in the error coupled with the increased convergence rate makes this a desirable choice

for ε3. This benefit is primarily a result of the pressure stabilization (ε3) term smoothing the pressure

solution. If ε3 is very small, ∇2p can be large (i.e. oscillatory p) and still have the ε2p term be the

dominant balance against ∇ · v. If ε3 is too large, then ∇ · v will be far from zero. Results of a case

with perturbation parameters in this trough (ε2 = 10−3 and ε3 = 10−4.5) are shown in Fig. 4.14.

The SPH solution will be more susceptible to pressure oscillations when the particles are regularly

spaced [66]. This is because a regular spacing can give rise to zero-energy modes which allow

a checker-boarding of the pressure solution. Irregular spacing should suppress these zero-energy

modes, however we have found this pressure oscillation to be persistent even with particle disorder

when pressure smoothing is not included (ε3 ∼ 10−12). In Fig. 4.15, a disordered array of particles is

shown which was generated by displacing, in both x and y, each of the regularly-spaced particles by

a random amount between −0.4s and 0.4s, where s is the initial particle spacing. Using this array,

the same suite of cases were run and results for the pairs ε2 = 10−8, ε3 = 10−12 and ε2 = 10−3,

ε3 = 10−4.5 shown in Fig.s 4.16 and 4.17, respectively.

As can be seen in Fig. 4.16, the velocity solution when using ε2 = 10−8, ε3 = 10−12 is adequate,
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Figure 4.14: Lid-driven shear flow solution profiles at log ε2 = −3, log ε3 =
−4.5.
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Figure 4.16: Profiles at log ε2 = −8, log ε3 = −12 with disordered particles.
The pressure solution remains noisy despite the disordered array.



71

0 0.5 1

x 10
−3

−0.2

−0.1

0

0.1

0.2

V
y

x

Vy on horizontal midline

0 0.5 1
0

0.2

0.4

0.6

0.8

1
x 10

−3

Vx

y

Vx on vertical midline

0 0.5 1

x 10
−3

−0.1

−0.05

0

0.05

0.1

P

x

P along top boundary

Figure 4.17: Profiles at log ε2 = −3, log ε3 = −4.5 with disordered particles.
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Figure 4.18: Viscous droplet initial configuration.

but the pressure solution shows strong oscillations. Using the pair ε2 = 10−3, ε3 = 10−4.5 results in

a smoother pressure solution, although the velocity solution is degraded (Fig. 4.17).

4.6.2 Collapse of a viscous droplet

As a final test case, we model the creeping collapse of a viscous droplet. The model configuration

is shown in Fig. 4.18 and consists of a square of fluid (1.75 m by 1.75 m) with ρ = 1.0 kg/m3,

µ = 1.0 Pa s and g = 1.0 m/s2. Due to symmetry, only half of the domain is modeled. This is the

same configuration used by Betulu et al. [4] who modeled the collapse using a boundary element

method.

For the initial profiles, we will compare the SPH solution with the boundary element solution
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from Betulu et al. [4]. A similarity solution exists [53] for the advance of a viscous gravity current

which we will compare with the late-stage behavior of the collapsing droplet. The profile of the

advancing front of the collapse of a droplet will approach this similarity solution, regardless of the

initial shape of the droplet. Essentially, the initial profile will diffuse towards the similarity solution.

The line of symmetry along the left boundary corresponds to a free-slip velocity boundary con-

dition and a homogeneous Neumann pressure condition. The boundary condition along the base is

no-slip. Since the origin is a stagnation point of the flow, there is a tendency for the SPH particles

to accumulate in this region. To mitigate this effect, the SPH particles are initially placed in a

hexagonal configuration [86]. For this gravity-driven flow, it is important to use the full Neumann

pressure boundary condition as outlined in section 4.4.4. Using a homogeneous Neumann boundary

condition for pressure is insufficient and will allow particles to leak across the boundary.

SPH results of the initial collapse are compared with the BEM solution in Fig. 4.19. The

evolution of the SPH solution matches the evolution of the surface profiles of the BEM solution,

however the timing of the two solutions is not consistent with the SPH solution arriving at a profile

before the BEM solution predicts.

As the droplet collapses, variations in the initial profile decay towards the similarity solution. A

comparison of the late-stage behavior of the SPH solution with the similarity solution of Huppert

[53] is shown in Fig. 4.20. In this case the timing of the profile from the similarity solution matches

the timing of the profile of the SPH solution.

4.7 Conclusions

In any numerical method, the incompressibility constraint is a global restriction that is difficult or

expensive to enforce. With Eulerian, grid-based methods, a commonly used technique is to add

a pressure perturbation to the continuity equation that leads to an evolution of pressure. This

transient non-physical solution can be integrated to a steady-state solution, a solution that solves

the true steady-state, incompressible flow problem. With a Lagrangian particle scheme, advecting

the particles during this non-physical transient phase does not result in a steady-state solution and

does not guarantee that incompressibility will ultimately be achieved. In the traditional WCSPH

formulation which evolves density through the continuity equation and an equation of state, there is

an implicit acceptance of an error in the incompressibility condition, an error that can be quantified

and adjusted based on the imposed speed of sound. However, since the WCSPH formulation treats

density as a variable and since the equations of motion are non-linear in density, this formulation

is not well suited for very viscous flow for which explicit integration is not practical. The iterative
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Figure 4.19: The SPH solution of the collapse of a viscous droplet tracks the
evolution as predicted by Betelu et al. [4] using the Boundary Element Method.
Although the SPH solution arrives at the profiles faster predicted by the BEM
solution (profiles correspond to 0, 1, 4, and 8 s in the BEM solution), the SPH
solution follows the similarity solution of Huppert [53] once the initial profile
decays (see Fig. 4.20).

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Viscous drop at time: 27 s

0 0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Viscous drop at time: 11.2 s

Analytical
SPH

Figure 4.20: Collapse of a viscous droplet at 11 sec (left) and 27 sec (right)
(Similarity solution from [53])

.



74

solvers used for implicit integration rely on a linear relationship of the unknown variables in the

equations of motion.

The quasi-compressibility family of perturbations to the divergence-free velocity condition instead

treats density as a constant and evolves pressure. This formulation results in a set of equations linear

in pressure and velocity and therefore suited for linear iterative solvers. Casting the equations in

this form then allows highly viscous fluids to be efficiently modeled by implicit integration. These

quasi-compressibility methods include the artificial compressibility method (shown to be similar

to the WCSPH formulation), the mixed form of the penalty method (i.e. solving the momentum

and continuity equations simultaneously), as well as methods that involve higher-order derivatives of

pressure (pressure stabilization and pressure correction). Each of these methods results in a different

behavior for the evolution of pressure. It was shown that this evolution behavior for pressure also

describes the evolution of ∇ · v. We found that combining these methods into hybrid forms can be

advantageous. For example, combining the artificial compressibility and penalty methods results in

an evolution equation for ∇ · v that is a damped wave equation which is both hyperbolic (lending

itself to explicit solvers) as well as damping of the ∇ · v perturbations.

For quasi-static, creeping flows, the hybrid formulation consisting of the stationary, quasi-compressibility

forms (penalty and pressure stabilization) performed well for the two test cases; steady-state flow

in a lid-driven square cavity, and the collapse of a viscous droplet. The mixed form of the penalty

method is greatly improved by including this pressure stabilization term as the penalty method used

independently results in an oscillatory pressure solution. Including the ε3∇2p term suppresses these

oscillations and leads to faster convergence of the iterative solver and lower errors. A full explo-

ration of ε2 − −ε3–space for the lid-driven cavity flow case revealed an obvious choice for ε3 that

balanced ∇·v = 0 against the spurious oscillatory pressure modes. However, further work is needed

to quantify the appropriate choice of ε3 for a given problem.

Although more efficient for creeping flows than WCSPH, convergence can still be slow. This

could possibly be improved using preconditioning.
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Chapter 5

APPLICATIONS OF SPH TO TECTONIC DEFORMATION

5.1 Introduction

Although elasticity does play a role in the shorter time scales of tectonic deformation, it is less

important in the longer time scales. As such, many of the early numerical models [32, 31] of tectonic

deformation modeled the crust as a viscous fluid. The use of this simple rheology, has been successful

in explaining some of the broad features of mountain belts [33, 31, 10] such as the topography of the

Tibetan Plateau [32] and the extension seen in some convergent margins [10, 141].

Deformation in the upper crust, however, is neither viscous nor elastic, but instead the crust

behaves as a frictional plastic material. The plastic failure is governed by the Mohr-Coulomb failure

criterion [127]. Although on a crustal scale, this deformation is localized on distinct planes of brittle

failure, this failure criterion has also been successfully used in critical wedge theory to describe the

growth of a prism of sand where the material is at failure everywhere [25]. To model this more

diffuse mode of Mohr-Coulomb failure we have implemented a non-linear viscoplastic rheology in

our Stokes flow SPH code.

An attractive feature of mesh-free numerical methods is that they can, in principle, accommodate

highly localized deformation without the detrimental effects of mesh entanglement suffered by grid-

based methods. Moreover, grid-based methods show a mesh sensitivity of failure planes [92] whereas

with a mesh-free model, the initiation of these failure planes should, in principle, be less sensitive to

the geometry of the underlying stencil [62].

This chapter is organized as follows. In section 5.2 we apply the Stokes flow SPH model to

linear viscous models of a doubly-vergent wedge and a symmetric rift. In section 5.3 we outline the

Mohr-Coulomb SPH formulation and apply it to the doubly-vergent wedge and the symmetric rift.

In section 5.4, we address the issue of strain localization. We outline several improvements, both

to the visco-plastic constitutive law and to the numerical implementation, which sharpen the shear

bands into more localized failure planes.
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5.2 Linear viscous models

The rheologic model we use is that of quasi-static incompressible creeping flow. The equations

describing this motion were outlined in chapter 4 and are given by:

1
ρ∇p = 1

ρ ∇·
(
µ∇v

)
+ g Momentum

∇ · v = ε3

(
∇2p− ρΓ

)
− ε2p Continuity

where Γ results from inhomogeneous material properties and is given by

Γ = ∇·
[

∇·
(
µ∇v

)
+ ∇ρ · g

]
.

At each time step, an equilibrium velocity and pressure are determined by solving these equations

using an iterative solver. Because the implementation of the boundary conditions, as described in

the previous chapter, results in a non-symmetric system of equations, we use the GMRES iterative

solver from SPARSKIT [114] with a stopping criterion given by

||residual|| ≤ 10−8 ∗ ||initial residual||+ 10−11

The particles are then advected according to

x(n+1) = xn + ∆t vn

where vn is the velocity solution returned by the GMRES solver at the current time step. For particles

near boundaries, particularly near stagnation points of the flow, this integration scheme can result

in particles being advected across the boundary. To prevent this penetration of the boundary, the

time step is reduced until all offending particles plot within the boundaries. Repeatedly offending

particles are assumed to have a streamline intersecting a stagnation point and are given a random

perturbation to their position.

5.2.1 Wedge cases

The first model geometry is that of a doubly-vergent accretionary wedge as described in [142, 141].

A schematic of the geometry is outlined in Fig. 5.1. A horizontal velocity is imposed on the left

side and a zero velocity on the right. The velocity singularity in the middle is referred to as the

‘S-point.’ Velocity boundary conditions are no-slip, supplemented with the convergence velocity on
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Figure 5.1: Schematic of the doubly-vergent wedge. The S-point is located at the
velocity singularity.

the left side of the wedge.

A non-dimensional number that characterizes the viscous response of a mountain to an accre-

tionary flux is the Argand (Ar) number [141] give by:

Ar =
ρgh2

µv

This number can be interpreted as the ratio of gravitational stresses to viscous stresses and deter-

mines the propensity of a mountain to undergo a gravitational collapse. For high values of Ar, viscous

stresses are too weak to sustain orogeny, low values result in higher mountains. For a given model

geometry, the Argand number can be scaled by adjusting the convergence rate, v. An example of

the SPH solution of the linear viscous wedge case is shown in Fig. 5.2. Time is non-dimensionalized

(scaled by h
v ) and can be interpreted as the number of thicknesses (h) accreted. Particles are shown

in orange (shaded according to the square root of the second invariant of the rate of deformation

tensor) and velocity vectors drawn in black. A finite element solution (FEM) with an arbitrary

Lagrangian-Eulerian (ALE) formulation [141] with this geometry is also shown in Fig. 5.2. The

FEM solution solves the equations of Stokes flow without the perturbation to the continuity equa-

tion. These equations are solved on an Eulerian grid with a Lagrangian grid advected based on

Eulerian velocities [36]. The Lagrangian grid is plotted in Fig. 5.2 with regions of high horizontal

strain rate (ε̇xx) shaded (See Fig. 6 of Willett [141]).

In general, the profile and the pattern of deformation of the SPH solution compares favorable with

the FEM solution. There are some differences, however, between the models. The SPH solution, for

example, shows a greater rate of deformation in the vicinity of the S-point than the FEM solution.

The topography of the FEM solution also is slightly higher than the SPH solution. The FEM solution

shows the beginning of an overturning of the Lagrangian mesh on the backside of the mountain, a

feature not observed in the SPH solution.



78

FEM solution, Ar = 0.1
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SPH solution, Ar = 0.1

Figure 5.2: Linear viscous (Ar = 0.1) doubly-vergent wedge at non-dimensional time,
t = 5. The finite element solution of Willett [141] is shown above; the SPH solution
is shown below with velocity vectors plotted.
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5.2.2 Rift cases

A schematic diagram of the symmetric rift case is shown in Fig. 5.3. The Argand number is not

generally used in this case since the viscous stresses contribute to a tensile state of stress. In the

convergent case, it is plausible to model the crust as a viscous material and compare gravitational

stresses to viscous stresses. In the divergent case, requiring gravitational stresses to overcome tensile

viscous stresses is a poor model of geomaterials. However, since non-linear, Mohr-Coulomb model

will be based on a viscous model, it is useful to see how linear viscous material behaves in this

symmetric rift environment.

v

h

v

v v

Figure 5.3: Schematic of the symmetric rift.

Results of the linear viscous rift are shown in Fig. 5.4. In this figure and in figures of the results

of rift cases that follow, time increases from top to bottom. In general, the column on the left of

each of the rift figures will be plots of particles with size corresponding to the characteristic width

and colors corresponding to some scalar variable (pressure in the case of Fig. 5.4). The column to

the right will be either a velocity vector plot or a tensor plot of the rate of deformation tensor. In

the case of Fig. 5.4, both the vector and tensor plots are shown. In the tensor plots, particles are

shown as ellipsoids scaled and oriented according to the rate of deformation tensor. The ellipsoids

are colored according to the square root of the second invariant of the rate of deformation tensor.

The coloring sequence of all of these plots is (from low values to high values) blue, cyan, green,

yellow, red.

The effect of the no-slip boundary condition can be seen from the progressive necking of the

fluid. The divergent velocity singularity initiates a tear. The bulk of the deformation occurs near

the S-point as can be seen by large values (size of glyphs and warm colors) in the tensor plot of the

rate of deformation tensor. Continued deformation results in the fluid separating into two blobs.
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HighLow

Pressure Velocity Rate of Def.

Figure 5.4: Linear viscous (µ = 104 Pa s) rift. Pressure is plotted in the left column (warm colors
correspond to higher values) and velocity vectors are plotted in the middle column. In the right
column, the rate of deformation tensor is plotted, scaled by the eigenvalues and colored by the
square root of the second invariant.



81

5.3 Non-linear viscous models

5.3.1 Algorithm

Plasticity is incorporated into our model using a non-linear effective viscosity given by µp = σY

2
√

I′2

where I ′2 is the second invariant of the deviatoric rate of deformation tensor given by

I ′2 =
1
2
DijDij

σY is the yield stress. For a Mohr-Coulomb material in 2-D, the yield stress is given by

σY = C cosφ+ p sinφ (5.1)

where C is the cohesion and φ is the internal angle of friction [141]. The equation for material in

3-D is slightly more involved (see Eq. 19 of Willett [140] or Eq. 6.3.23 of Vardoulakis and Sulem

[134] for three-dimensional varieties.), however since all the simulations that follow are 2-D, we use

Eq. 5.1. This model does not include a temperature dependent viscosity.

A similar SPH implementation of the Mohr-Coulomb rheology using this non-linear plastic vis-

cosity was used in modeling the dynamics of ice-floes [45, 44, 46, 94, 121]. These studies differ from

the present implementation in that the equations were integrated explicitly. Small time-steps were

used (due to the large viscosity) so plastic viscosities did not need to be equilibrated with the velocity

and pressure fields at a given time-step.

The calculations proceed as follows. At the start of the simulation, the material is initialized

to a high viscosity. The equilibrium velocity and pressure for the imposed boundary conditions is

calculated. From the new pressure and velocity field, Dij , σY and µp are calculated. If the new µp

is less than the initialized value, the viscosity is reassigned to the new µp and a new velocity and

pressure field are calculated. The iterations proceed until the relative error of the velocity solution

is less than 10−6.

5.3.2 Numerical Tests

Angle of Repose

To test this implementation of Mohr-Coulomb plasticity in our SPH model, we use the dam break

test. In this case, the initial square of Mohr-Coulomb material should collapse and come to rest in

a pile with an angle of repose. This angle of repose is an approximate measure of the internal angle

of friction (φ) [59, 95].
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Figure 5.5: Mohr-Coulomb Dam Break – Initial configuration. Colors correspond to
pressure.

The initial configuration is shown in Fig. 5.5 and consists of a square of material against a wall.

Two simulations were run with material with internal angles of friction of φ = 30◦ and φ = 60◦.

Results are shown in Fig. 5.6. Again, the colors correspond to pressure. The angle of repose increases

with increasing internal angle of friction, as expected. However it differs slightly from the imposed

internal angle of friction (36◦ for φ = 30◦ and 57◦ for φ = 60◦). Aside from this slight discrepancy,

this visco-plastic SPH formulation simulates Mohr-Coulomb material as expected.

Figure 5.6: Mohr-Coulomb Dam Break – Shown on the left, φ = 30◦ (The actual
angle of repose is approximately 36◦), On the right, φ = 60◦ (The actual angle of
repose is approximately 57◦)

Wedge

Using the Mohr-Coulomb rheology with the doubly-vergent wedge boundary conditions, leads to the

a broad zone of plastic deformation near the S-point. This zone of plastic deformation can be seen

in the left column of Fig. 5.7 where the colors correspond to plastic viscosity (cooler colors are lower

viscosities). After a short amount of convergence, deformation bands form in the expected locations.

Fig. 5.7 shows the deformation bands in both the pro- and retro-wedge. The deformation bands,

however, are fairly diffuse. As can be seen in the last time step of plastic viscosity plot of Fig. 5.7,
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a triangular block is being uplifted. From the velocity plot in the right column, the orientation of

uplift is along the retro-wedge shear zone.

Rift

Applying this rheology to the rift geometry also generates two prominent shear zones as can be seen

in Fig. 5.8. In this case (Case 1), a quintic spline kernel was used with h = 1.2 as is typically used

for viscous flow problems. Although the velocity vectors in Fig. 5.8a indicate that the central block

descends fairly uniformly, the plot of plastic viscosity (left column of Fig. 5.8b) indicates that the

entire central region is experiencing plastic failure. This plastic failure zone broadens with increasing

deformation, however there is some flux of material across the deformation zones. The material in

this case has no history dependence so it might be expected that the deformation bands would be

located primarily by the geometry. This would lead to a material flux across the ‘failure plane’ as the

material is deformed across the shear zone. The localization of deformation can most easily be seen

in the right column of Fig. 5.3.2b where the rate of deformation tensor is plotted, scaled according

to the eigenvalues of the tensor and colored according to its second invariant. The larger the glyphs,

the more intense the deformation.

Figures 5.9 and 5.10 show the same rheology and geometry modeled with two other numerical

methods, the finite element (FEM) and distinct element (DEM) methods. The finite element case

was run by Chris Fuller [118] using a variant of the ALE software shown in Fig. 5.2. In this plot, the

color scheme is reversed so that blue corresponds to no plastic deformation and red to low plastic

viscosity. The plastic viscosity for the FEM solution shows a similar shear banding as was seen in

the SPH model. In the SPH model, however, the descending triangular block was also undergoing

plastic deformation although not as severely as in the shear zones.

The distinct element method (DEM) is another Lagrangian particle numerical method for simu-

lating Mohr-Coulomb material. The method was originally described by Cundall and Strack [24] and

consists of simulating individual grains interacting with each other through frictional contact forces.

The simplest formulation for these grains is radially symmetric grains which exert normal forces on

neighboring grains in proportion to the amount of overlap of the particles. Shear forces are limited

by this normal force through a frictional constant. In a sense, this method can be thought of as

the numerical equivalent of a sandbox experiment. This method has been widely used for modeling

the behavior of granular material, material which often exhibits behavior not readily approximated

with continuum equations (grain bridging, grain-size sorting [29]). Because the formulation is de-

signed for grains interacting through frictional forces, and because sandbox experiments have been
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Figure 5.7: Mohr-Coulomb Wedge: The left column shows log of plastic viscosity
(log10 µp) where red corresponds to high viscosity (no plastic deformation) and blue
to low. Velocity vectors are plotted on the right.
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HighLow

Pressure Velocity

Figure 5.8a: CASE 1: Mohr-Coulomb Rift, (Quintic Spline kernel, h = 1.2). Pressure is plotted in
the left column (warm colors correspond to higher values) and velocity vectors are plotted in the
right column.
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Figure 5.8b: CASE 1: Mohr-Coulomb Rift, (Quintic Spline kernel, h = 1.2). log10 µp is plotted
in the left column. In the right column, the rate of deformation tensor is plotted, scaled by the
eigenvalues and colored by the square root of the second invariant.
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Figure 5.9: Mohr-Coulomb rift: Finite Element Method (FEM) solution, colors cor-
respond to plastic viscosity.

successful in capturing deformation behavior seen on the crustal scale [116], DEM simulations have

been extrapolated to crustal-scale processes [12, 126, 13, 135, 34, 119, 91, 144]. In this extrapolation,

‘grains’ are ten’s of meters across. However, deformation patterns can show similarities to features

of deformation observed in crustal deformation, as for example, highly localized shear zones (faults)

[13].

The results of the DEM model shown in Fig. 5.10 were generated with a subroutine of our

particle code that stemmed from software written by Mark Naylor. Naylor has found that grains

can be prone to over-rotation unless their angularity is increased such as by considering rigid clusters

of grains [91]. In the model shown, grain clusters were not used, only circular grains of non-uniform

radius. Cohesion can be included, however it is not included in the model shown, as it was not

used either in the SPH or the FEM model. The instantaneous deformation field is not as easy to

visualize, however, the elements in Fig. 5.10 are colored according to their initial height which allows

the cumulative deformation to be seen.

The resulting topography generated by the three numerical methods are summarized in Fig.

5.11. The DEM model results in a very irregular topography while the SPH and FEM models both

generate similar topographies.

Although Fig. 5.10 does not show predominant deformation through faulting (that may be a

function of cohesion), DEM is popular because it can exhibit highly localized shear deformation.

This is due primarily to the short radius of influence of the neighboring grains. Either grains are in

contact, in which case there is an inter-particle force, or they are not in contact, in which case there

is no force. In SPH, in contrast, the influence of neighboring particles is much broader, as can be

seen in Fig. 5.12, thereby setting a lower limit on the thickness of shear bands.
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Figure 5.10: Mohr-Coulomb rift: Distinct Element Method (DEM) solution, colors
correspond to initial height.
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Figure 5.11: Mohr-Coulomb rift: Comparison with finite-element and distinct element
models.
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Figure 5.12: Schematic of SPH kernel.

For the remainder of this chapter, modifications to Case 1 will be implemented in order to

improve the localization of strain. The next ten cases will include these various modifications and

are tabulated in Table 5.1 at the end of section 5.4 on page 125.

5.4 Improvements on non-linear model

In both the doubly-vergent wedge and symmetric rift cases, deformation was partially localized in

diffuse shear bands. The hope in using a mesh-free numerical method is to be able to accommodate

highly localized deformation, as in brittle deformation along faults, without requiring the regridding

necessary with a highly deformed mesh and without suspicions of a mesh dependency on fault initia-

tion. As mentioned in the previous section, DEM has been fairly successful in this endeavor, however

the inter-particle contact force formulation makes it difficult to specify behavior more appropriately

modeled as a continuum, such as viscous deformation. The SPH approach solves the continuum

equations, but the shear bands in neither the convergent nor the divergent cases were localized.

As suggested above, the success of the DEM formulation is due, in part, to the limited range

of influence of the neighboring particles. In sections 5.4.1 and 5.4.2, the focus will be on methods

of accurately reducing the region of influence of the smoothing kernel. The hope is that there will

be a corresponding reduction in the width of the shear bands. The most obvious approaches are to

directly decrease the smoothing length (h) or to decrease the order of the smoothing kernel. These

are investigated in sections 5.4.2 and 5.4.2. Accuracy, however, will decrease with fewer neighboring

particles. Before testing the accuracy of smaller kernels, it is worth applying the same techniques
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for correcting the Laplacian of scalar fields as developed in chapter 3 to the Laplacian of v. This

will compensate for the reduction in accuracy in shrinking the kernel width. This correction term

for ∇2v is developed and investigated in section 5.4.1

An alternate method of reducing the width of a kernel is to employ some means of adaptively

refining the resolution of the problem by splitting particles in regions of large deformation gradients.

This is discussed in section 5.4.3.

Finally, in section 5.4.4, the constitutive law is modified to include strain-softening.

5.4.1 Corrected Viscous Term

In chapter 3, a correction term was derived that improves the accuracy of the Brookshaw discretiza-

tion of the Laplacian of a scalar function f , given by:

〈
∇·

(
τ∇f(xi)

)〉
'

Γ−1
ββ

n

∑
j

ϕj (τj + τi) (f(xj)− f(xi))
(xij)αW,α

|xij |2

−
[(
τif(xi)

)
,α
− f(xi)τi,α + τif,α(xi)

]
·
[ ∑

j

ϕjW,α

] (5.2)

in which the Latin subscripts refer to particles, Greek subscripts to coordinates, and

Γβγ =
∫

Ω

(∆x)αW,α

|∆x|2
(∆x)β (∆x)γ dx (5.3)

This correction can also be applied to the Laplacian of a vector function such as the viscous term of

Eq. 5.2 where τ → µ and f → v.

〈
∇·

(
µ∇vα(xi)

)〉
'

Γ−1
γγ

n

∑
j

ϕj (µj + µi) (vα(xj)− vα(xi))
(xij)β W,β

|xij |2

−
[(
µivα(xi)

)
,β
− vα(xi)µi,β + µivα,β(xi)

]
·
[ ∑

j

ϕjW,β

] (5.4)

In Eq. 5.4, the Γ-term is the same as given in Eq. 5.3. This is fortunate since generating the

correction coefficient (Γ−1
γγ

n ) is expensive both in terms of computation, as it requires inverting a

matrix, and in storage. The free-surface, viscous flow test cases of chapter 4 were quite successful

without this correction term, however the hope is that the use of this correction will mitigate the

decrease in accuracy associated with decreasing the width of the stencil.

As in chapter 3, this correction can be considered in two steps: the additive correction term
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associated with the gradients of µ and v, and the multiplicative term associated with the Γ-matrix.

As noted in chapter 3, this scaling term should be approximately unity in regions of full kernel

support, but will become significant in the vicinity of free-surfaces. A plot of the magnitude of this

scaling term over a unit patch (2 < x < 3, 2 < y < 3) is shown in Fig. 5.13. This figure shows that

the scaling factor indeed differs significantly from unity near the edges of the patch.
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Figure 5.13: Correction factor Γii/n over a unit patch.

To test the efficacy of each correction step, the function v = (x2 + y2)̂i + (x2 + y2)ĵ was used

to test the three Laplacian discretizations: the Brookshaw form due to Morris et al. [89] (which

we refer to as L1), the two-term form without the Γ-scaling factor but with gradients calculated

using the CSPH formulation (L2), and the two-term form with the scaling factor as given in Eq. 5.4

(L1-Γ). The true solution is ∇2v = 4̂i + 4ĵ. In Fig. 5.14, the relative error at each point, given by

Relative Error =

√
(∇2v0 −∇2v) · (∇2v0 −∇2v)

∇2v0 · ∇2v0
(5.5)

is plotted for the three discretizations on a unit patch of equally-spaced particles. It can be seen

that the L2 form performs significantly better than the L1 form near the boundaries. The L2-Γ form

to within machine-ε for this quadratic test function on a regular array of particles.
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Figure 5.14: Correcting ∇2v where v = (x2+y2)̂i+(x2+y2)ĵ over an ordered array of
particles. The left figure shows the log of the relative error in ∇2v with no correction.
The middle figure show the effect by including the unscaled second term. The plot
on the right shows the effect including the second term scaled by Γii/n.

To test the performance of these correction terms for a disordered array of particles, each particle

of the regular array was given a random perturbation. This disordered unit patch is the same that

was used in section 3.2.4 of chapter 3. Results are shown in Fig. 5.15. The performance of each

discretization is hampered by the disorder of the particles, however the same trend can be seen where

the L2 form reduces the error by a couple orders of magnitude over just the L1 form. The L2-Γ form

results in a further reduction in relative error.
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Figure 5.15: Correcting ∇2v where v = (x2 + y2)̂i + (x2 + y2)ĵ over an disordered
array of particles. The left figure shows the log of the relative error in ∇2v with no
correction. The middle figure show the effect by including the unscaled second term.
The plot on the right shows the effect including the second term scaled by Γii/n.

As noted above, the motivation for this extra effort is to hopefully retain a level of accuracy

while reducing the width of the support domain. The reduction in the kernel width should allow
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for more localized deformation by reducing the depth of influence of viscous effects across shear

bands. Using a cubic spline kernel and a slightly shorter characteristic width of h = 1.0 (the effects

of these modifications is investigated in the sections 5.4.2 and 5.4.2), the two corrected Laplacian

discretizations (L2 and L2-Γ) were applied to the symmetric rift case. Results of the velocity solution

are shown in Fig. 5.16

As can be seen in Fig. 5.16, the velocity solution is not stable with deviations from the expected

values most pronounced near the surface. It is not clear why this discretization which more accurately

calculates the Laplacian results in a less stable velocity solution returned by the iterative solver. In

the test cases of chapter 3, the Laplacian was not actually employed at the surface. The surface

particles were treated as boundary particles and were not required to satisfy the differential equation

(containing the Laplacian term), only the boundary condition. For the viscous flow cases, a velocity

boundary condition is not imposed at the surface. The stress-free condition at the surface can be

approximated by setting p = 0, however using the stationary hybrid perturbation to the continuity

equation results in negligible pressure values at the surface (See the left column of Fig. 5.8a). This

lack of enforcement of velocity boundary conditions at the surface is likely the cause of this instability.

Velocity of the surface particles could be coupled to the stress-free boundary condition by requiring

that the vector equation σ · n = 0 (where n is the unit normal to the surface) is satisfied instead of

assigning p = 0.

Because of the velocity instability in the converged solution, the L2 and L2–Γ correction terms

will not be used in rift cases presented later in this chapter. The strictly stress-free boundary has

not been implemented, but could be at a later time. Therefore the behavior of these corrections will

be included in the next section on the effects of reducing the kernel width.

5.4.2 Minimizing the smoothing effect of the kernel

Reduce the characteristic width, h

Higher order kernels such as the quintic spline kernel are normally used in the discretization of

Laplacian terms since it has smoother derivatives than the lower-order kernels.
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Figure 5.16: CASE 2 and 3: Mohr-Coulomb Rift, (Cubic Spline kernel, h = 1.0, Two-term Laplacian
(Case 2) and with Γ correction (Case 3)). Velocity vectors for Cases 2 and 3 are plotted in the left
and right columns, respectively.
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The quintic spline kernel commonly used in viscous flow calculations is given by:

W (s) =
w0

hn



(3− s)5 − 6(2− s)5 + 15(1− s)5 : 0 ≤ s < 1

(3− s)5 − 6(2− s)5 : 1 ≤ s < 2

(3− s)5 : 2 ≤ s < 3

0 : s > 3

∇W (s) =
w0

hn+1



−5
[
(3− s)4 − 6(2− s)4 + 15(1− s)4

]
r̂ : 0 ≤ s < 1

−5
[
(3− s)4 − 6(2− s)4

]
r̂ : 1 ≤ s < 2

−5
[
(3− s)4

]
r̂ : 2 ≤ s < 3

0 : s > 3

w0 =
1

120
,− 7

478π
,− 3

359π
for 1, 2, 3D

where h is the adjustable smoothing length. We have found good results for thermal diffusion and

viscous flow calculations if we choose h = 1.2. If h is decreased, there is a corresponding decrease

in the number of neighbors contributing to the integral approximation, however this also leads to a

decrease in the range of influence of the viscous effects.

To test how the various Laplacian discretizations perform when the kernel width is reduced, the

relative error for the three discretizations are plotted as the kernel width varied from 0.6 to 1.2 in 0.05-

step increments. The disordered patch was used and all particles in the subdomain 2.25 < x < 2.75,

2.25 < y < 2.75 were considered in order to neglect particles with truncated support as happens

near surfaces. The particles were assigned a velocity value according to v = (x2 + y2)̂i + (x2 + y2)ĵ.

Because of the disorder, each particle had a different number of neighbors, a number which decreased

as the characteristic width decreased. To quantify the average performance of the discretizations

as a function of the number of neighbors in the support domain, the errors for all particles in the

subdomain for each value of h are plotted in the same figure. Results are shown in Fig. 5.17. The

log of the average relative error as a function of the number of neighbors, is plotted as the solid lines

(Brookshaw (L1) in black, L2 in red, and L2-Γ in blue). As expected, the discretizations all improve

with increasing number of neighbors with the corrected versions of the Laplacian outperforming the

Brookshaw form.

Figure 5.18 shows the probability distribution of the number of neighbors a particle will have for

the quintic spline kernel of different characteristic widths. This is useful since we can see from Fig.

5.17 that for the quintic spline kernel, the solution does not improve much once a particle has at

least 25 neighbors. Fig. 5.18 then suggests that 25 neighbors can be reliably achieved by using a
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Figure 5.17: Dependence of the relative error of the estimate of ∇2v on the number
of neighbors for the quintic spline kernel.
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characteristic width of h = 1.0.
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Figure 5.18: Probability distribution of the number of neighbors for the quintic spline
kernel with h = 0.6–1.2.

Reduce order of smoothing kernel

From the equations for the quintic spline kernel, we see that the range of influence of that kernel

is 3h. Lower order kernels, such as the cubic spline kernel, has a stencil width of only 2h. Various

commonly-used kernels are plotted in Fig. 5.19. First and second derivatives are plotted in Fig.s 5.20

and 5.21. Although the cubic spline kernel is more frequently seen in the literature for general SPH

problems, the quintic spline kernel is often used for diffusive problems since the second derivative is

smoother than that of the cubic spline kernel.
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Figure 5.19: Commonly-used smoothing kernels.
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Figure 5.20: First derivatives of the commonly-used smoothing kernels.
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Figure 5.21: Second derivatives of the commonly-used smoothing kernels.

The equations for the cubic spline kernel are given below.

W (s) =
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,
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π

for 1, 2, 3−D

To test the performance of this kernel in calculating the various Laplacian discretizations, the

same tests were run as for the quintic spline kernel with h spanning the range 0.6 → 1.2. As can

be seen in Fig. 5.22, accurate results can be obtained with the cubic spline kernel with far fewer

neighbors than required for the quintic spline kernel, despite the particle disorder. As in Fig. 5.17,

the log of the average relative error as a function of the number of neighbors is plotted as the solid

lines (Brookshaw (L1) in black, L2 in red, and L2-Γ in blue). As expected, the corrected forms of

the Laplacian outperform the Brookshaw form. The sharp increase in error for both corrected forms

for particles with 5 or fewer neighbors is a result of restrictions on matrix inversions for Γ and C.
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Fewer than 6 neighbors can result in ill-posed matrices which lead to spurious accelerations when

inverted. Essentially, for particles with very few neighbors, both the L2 and L2-Γ forms are the

unscaled two-term correction with the gradients calculated with no gradient corrections.
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Figure 5.22: Dependence of the relative error of the estimate of ∇2v on the number
of neighbors for the cubic spline kernel.

The probability distribution of the number of neighbors as a function of the characteristic width

is plotted in Fig. 5.23. From Fig. 5.22, it can be seen that the error is not significantly reduced

after a particle has at least 10 neighbors. Fig. 5.23 then shows that this can be achieved using a

characteristic width of h = 1.0.

Application of narrower kernel to the symmetric rift

To test the effect of using this lower order kernel, a case (Case 4) was run for the symmetric rift

using h = 1.2 using the cubic spline kernel. Results are shown in Fig 5.24. These results are to be

compared with that using the quintic spline kernel (Fig 5.8). The width of the deformation zone,

as identified by the size of the ellipsoids of the rate of deformation tensor (right columns of Fig.s

5.8b and 5.24b) is not significantly different when using the cubic spline kernel or the quintic spline
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Figure 5.23: Probability distribution of the number of neighbors for the cubic spline
kernel with h = 0.6–1.2.
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kernel. This is somewhat expected since the cubic and quintic spline kernels have nearly the same

shape (and first derivative) within a radius of 2h (see Fig.s 5.19 and 5.20). The contribution from

particles between 2h and 3h for quintic spline kernel are small. Although the shear bands were not

more localized, one beneficial result of this test is that the cubic spline kernel can be used to achieve

results similar to the quintic spline kernel. This is beneficial since the cubic spline kernel has far

fewer neighbors and is thus computationally much less expensive.

To test the effect of simply reducing the width of the kernel, cases were run with the cubic spline

kernel for characteristic widths h = 1.0 and h = 0.85. For the case (Case 5) with h = 1.0 results

are shown in Fig 5.25. In this case, comparing the right columns of Fig.s 5.24b and 5.25b shows

that there is a slight narrowing of the deformation band, although the change is modest. Further

reducing h to 0.85 (Case 6) did not seem to significantly effect the solution (Fig 5.26), however we

know from Fig.s 5.22 and 5.23 that the errors can become significant using an h this small.
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Figure 5.24a: CASE 4: Mohr-Coulomb Rift, (Cubic Spline kernel, h = 1.2). Pressure is plotted in
the left column (warm colors correspond to higher values) and velocity vectors are plotted in the
right column.
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Figure 5.24b: CASE 4: Mohr-Coulomb Rift, (Cubic Spline kernel, h = 1.2). log10 µp is plotted in the
left column. In the right column, the rate of deformation tensor is plotted, scaled by the eigenvalues
and colored by the square root of the second invariant.
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Figure 5.25a: CASE 5: Mohr-Coulomb Rift, (Cubic Spline kernel, h = 1.0). Pressure is plotted in
the left column (warm colors correspond to higher values) and velocity vectors are plotted in the
right column.
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Figure 5.25b: CASE 5: Mohr-Coulomb Rift, (Cubic Spline kernel, h = 1.0). log10 µp is plotted in the
left column. In the right column, the rate of deformation tensor is plotted, scaled by the eigenvalues
and colored by the square root of the second invariant.
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Figure 5.26a: CASE 6: Mohr-Coulomb Rift, (Cubic Spline kernel, h = 0.85). Pressure is plotted
in the left column (warm colors correspond to higher values) and velocity vectors are plotted in the
right column.
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Figure 5.26b: CASE 6: Mohr-Coulomb Rift, (Cubic Spline kernel, h = 0.85). log10 µp is plotted
in the left column. In the right column, the rate of deformation tensor is plotted, scaled by the
eigenvalues and colored by the square root of the second invariant.
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5.4.3 Adaptive Refinement (AR)

An alternative method of reducing the kernel width is to have an adaptive characteristic length.

This has often been employed in gas dynamics simulations where the smoothing length is evolved

in such a way that the mass of the kernel volume remains constant [84]. For incompressible flow

problems, this formulation of evolving h to maintain constant volume is no longer feasible. This

does not preclude having various kernel widths throughout the domain as a function of the local

rate of deformation. However, the kernel width could not be reduced below approximately h = 0.85

without a reduction in accuracy (Fig.s 5.17– 5.18 and 5.22–5.23). Unfortunately, this kernel width

did not lead to a significant localization of strain.

Rather than just modifying the kernel width, we have implemented an adaptive refinement scheme

in which particles are split once the local rate of deformation exceeds a threshold. This allows a

locally smaller kernel width by effectivly reducing the particle spacing in the regions where the

velocity gradients are highest. The split particles correspond to half the initial volume and mass

and acquire the history of the parent particle. For cases where there is a significant flux of material

across deformation zones, a method would have to be implemented to merge particles once they have

passed through the shear band. Otherwise there is an accumulation of smaller particles which slows

down the iterative solver.

In order to capture the high velocity gradients across shear bands, the particles enduring the

greatest deformation rates are split. The criterion we employ is the square root of second invariant of

the rate of deformation tensor (
√
I2) exceeding some specified threshold. This value has a dimension

of t−1 and is problem dependent. Some experimentation is needed to identify a suitable threshold.

The choice of the value of the threshold is a balance of the need for increased resolution with the

memory and computational constraints. The two daughter particles are placed such that they are

normal to the dominant gradient of velocity as determined from the velocity gradient tensor (i.e.

placed across the shear band).

At each time step, the velocity and pressure fields are solved on all existing particles. The rate

of deformation tensor is calculated with this new velocity field. If the splitting criterion is met, new

particles are generated and assigned the history, velocity and pressure of the parent. Particles are

then advected and the process repeated.

AR test case

To test the formulation for identifying particles to split and the formulation for the placement of

daughter particles, we used the regularly-spaced unit patch with an imposed shear velocity field.
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Two levels of refinement were used. The particles were not advected in this test in order to see how

many iterations were required for the refinement to be complete. All particles are given a velocity

of zero, except those within r0 = 1 of the point (cx = 3.25, cy = 3.25). Particles within this distance

were assigned a velocity corresponding to rigid body rotation (v = cx−x
r î + cy−y

r ĵ). This initial

velocity field is shown in Fig. 5.27.
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Figure 5.27a: AR test case, t=0. Particle colors correspond to
√
I2.

Fig. 5.4.3 shows the progressive generation of particles. After four time steps, the shear zone is

fully refined to two refinement levels. The orientation of the placement of the daughter particles is

in agreement with the local orientation of the shearing along the whole curved shear band.
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Figure 5.27b: AR test case, t=1.
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Figure 5.27c: AR test case, t=2.



112

2 2.2 2.4 2.6 2.8 3

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Adaptive Re!nement t = 3

Figure 5.27d: AR test case, t=3.

2 2.2 2.4 2.6 2.8 3

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Adaptive Re!nement t = 4

Figure 5.27e: AR test case, t=4.
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AR applied to the symmetric rift

This AR scheme was applied to the symmetric rift case with results (Case 7) shown in Fig 5.28. For

comparison, the case with the same parameters (h, kernel type) but without the AR scheme is Case

4, shown in Fig 5.24. The plots of plastic effective viscosity show very similar patterns between the

two cases, however the AMR does slightly improve the localization of the shear bands as can be seen

from the plot of the ellipsoids of the rate of deformation tensor. Two levels of AR refinement were

used.

5.4.4 Constitutive Model

Strain-softening

One noticeable feature of the results of the AR model of the symmetric rift is that there is a broad

zone of refinement. This broad zone is not a consequence of the lack of localization since the zone

is much broader than the deformation bands that do exist. The breadth of this zone is a result

of the material flux through the deformation zone. As mentioned in section 5.4.3, a scheme for

merging daughter particles once they no longer exceed the threshold deformation rate, has not been

implemented. The diffuse shear zone sweeps across the material generating daughter particles that

remain refined, resulting in a broad AR zone.

For the shear zone to remain a persistent zone of deformation, some form of rheologic dependence

on material history can be included. Although this history dependence is typically thought of as a

form of damage or a strain softening, Hobbs et al. [50] noted that strain hardening can also lead to

localization. We use strain softening and choose a functional form as suggested by Buiter et al. [11]

where there is a linear decrease in the internal angle of friction over a range of finite strain.

There are a number of measures of strain that could be chosen. In our scheme, we follow McKenzie

[79] and integrate the finite deformation tensor, Fij , (initialized to the identity matrix) according to

F
(n+1)
ij = Fn

ij + Fn
ikvk,j ∆t

The right-Cauchy-Green strain tensor [134] (also called the Green deformation tensor [75, 76]) can

be calculated according to

C = FT · F

This is one measure of the full tensor of finite strain, however for the purpose of the strain softening

function, we are interested in a scalar measure of finite strain. We use the second invariant of the
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Figure 5.28a: CASE 7: Mohr-Coulomb Rift, (Cubic Spline kernel, h = 1.2, Adaptive Refinement).
Pressure is plotted in the left column (warm colors correspond to higher values) and velocity vectors
are plotted in the right column.
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Figure 5.28b: CASE 7: Mohr-Coulomb Rift, (Cubic Spline kernel, h = 1.2, Adaptive Refinement).
log10 µp is plotted in the left column. In the right column, the ellipsoids of the rate of deformation
tensor is plotted, scaled by the eigenvalues and colored by the square root of the second invariant.
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right Hencky (or natural) finite strain tensor. The tensor is given by [134]:

λr
ij =

1
2
(lnC)ij

The second invariant of λr
ij is simply the natural log of the second invariant of the right-Cauchy-Green

strain (C), which can be calculated from the eigenvalues of C according to (for 2-D) [76]

CII =
1
2

[
(λ1 + λ2)

2 −
(
λ2

1 + λ2
2

)]
Application to symmetric rift

As a first test of the effects of strain softening, we use the baseline test (Case 1, quintic spline kernel,

h = 1.2) but include damage by reducing the internal angle of friction from 40◦ to 20◦ over the finite

strain interval from 0.2 to 0.7 (Case 8). Results are shown in Fig 5.29. The progressive damage can

be seen from the left column of Fig. 5.29b which shows the internal angle of friction. The necking

is slightly narrower as well as the shear bands, however the effect is not dramatic.

A second strain softening test function was used where φ ranges from 40◦ to 5◦ (Case 9) over

the same finite strain interval as before. Results are plotted in Fig. 5.30. Again, the difference in

localization is minor.

The inclusion of the adaptive refinement scheme with strain softening, however, leads to a dra-

matic localization of strain. Result from the one-level refinement (Case 10) are shown in Fig. 5.31

while the two-level refinement (Case 11) is shown in Fig. 5.32.
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Figure 5.29a: CASE 8: Mohr-Coulomb Rift, (Quintic Spline kernel, h = 1.2, Strain-softening (φ =
40◦–20◦)). log10 µp is plotted in the left column (warm colors correspond to higher values) and
velocity vectors are plotted in the right column.
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Figure 5.29b: CASE 8: Mohr-Coulomb Rift, (Quintic Spline kernel, h = 1.2, Strain-softening (φ =
40◦–20◦)). The coefficient of friction (tanφ) is plotted in the left column. In the right column, the
rate of deformation tensor is plotted, scaled by the eigenvalues and colored by the square root of the
second invariant.
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Figure 5.30a: CASE 9: Mohr-Coulomb Rift, (Quintic Spline kernel, h = 1.2, Strain-softening (φ =
40◦–5◦)). log10 µp is plotted in the left column (warm colors correspond to higher values) and velocity
vectors are plotted in the right column.
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Figure 5.30b: CASE 9: Mohr-Coulomb Rift, (Quintic Spline kernel, h = 1.2, Strain-softening (φ =
40◦–5◦)). The coefficient of friction (tanφ) is plotted in the left column. In the right column, the
rate of deformation tensor is plotted, scaled by the eigenvalues and colored by the square root of the
second invariant.
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Figure 5.31a: CASE 10: Mohr-Coulomb Rift, (Cubic Spline kernel, h = 1.2, Strain-softening
(φ = 40◦–5◦), One-level Adaptive Refinement). log10 µp is plotted in the left column (warm colors
correspond to higher values) and velocity vectors are plotted in the right column.
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Figure 5.31b: CASE 10: Mohr-Coulomb Rift, (Cubic Spline kernel, h = 1.2, Strain-softening (φ =
40◦–5◦), One-level Adaptive Refinement). The coefficient of friction (tanφ) is plotted in the left
column. In the right column, the rate of deformation tensor is plotted, scaled by the eigenvalues
and colored by the square root of the second invariant.
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Figure 5.32a: CASE 11: Mohr-Coulomb Rift, (Cubic Spline kernel, h = 1.2, Strain-softening
(φ = 40◦–5◦), Two-level Adaptive Refinement). log10 µp is plotted in the left column (warm colors
correspond to higher values) and velocity vectors are plotted in the right column.
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Figure 5.32b: CASE 11: Mohr-Coulomb Rift, (Cubic Spline kernel, h = 1.2, Strain-softening (φ =
40◦–5◦), Two-level Adaptive Refinement). The coefficient of friction (tanφ) is plotted in the left
column. In the right column, the rate of deformation tensor is plotted, scaled by the eigenvalues
and colored by the square root of the second invariant.
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Table 5.1: Table of Mohr-Coulomb rift cases

Case Str.-Soft. Kernel h Lap. AR
1 No (φ = 30◦) Quintic 1.2 L1 No
2 No (φ = 30◦) Cubic 1.0 L2 No
3 No (φ = 30◦) Cubic 1.0 L2–Γ No
4 No (φ = 30◦) Cubic 1.2 L1 No
5 No (φ = 30◦) Cubic 1.0 L1 No
6 No (φ = 30◦) Cubic 0.85 L1 No
7 No (φ = 30◦) Cubic 1.2 L1 AR–1
8 φ = 40◦ → 20◦ Cubic 1.2 L1 No
9 φ = 40◦ → 5◦ Quintic 1.2 L1 No

10 φ = 40◦ → 5◦ Cubic 1.2 L1 AR–1
11 φ = 40◦ → 5◦ Cubic 1.2 L1 AR–2
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5.5 Discussion

Once the corrected Laplacian term (described in chapter 3) is applied to pressure and the stationary

hybrid perturbation to the continuity equation (described in chapter 4) is used, the Mohr-Coulomb

rheology is fairly straight-forward to implement. The results of the angle of repose test for the

collapse of Mohr-Coulomb material were satisfactory, as were the comparison of the SPH rift case

with the FEM solution. The localization of strain however proved to be much more elusive.

Capturing this localization of strain is important in modeling the brittle deformation of crustal

material, and is in fact the primary motivation for employing a mesh-free method. The difficulty

is due, in part, to the width of the smoothing kernel. This is because particles on the far side of

an idealized fault would contribute to the viscous stress by the same amount as if the fault were

not present. The focus of improving the localization of strain was reducing the kernel width so as

to minimize the influence of particles across faults. Much effort went into investigating the limits

of reducing the kernel width which included applying corrections to the viscous term to improve

accuracy, reducing the kernel order, reducing the characteristic width (h) and adaptively splitting

particles. None of these techniques by themselves led to the significant localization of strain.

A second approach was to modify the constitutive behavior to include a history dependence

through a strain-softening function. This also only led to modest improvements in strain localization.

Strain-softening coupled with the adaptive refining, however, led to highly localized deformation

bands. The goal is to mitigate as much as possible any hinderance the numerical scheme might have

on the evolution of the physical problem. Strain-softening, but with the lack of refinement, leads

to a resolution-dependent constraint on the width of the shear bands. Adaptively increasing the

resolution, alleviates this numerical constraint and allows the localization to sharpen.

There are a few points to note. An inspection of the velocity vectors in the right-side column

of Fig. 5.32a or the ellipsoids of the rate of deformation tensor in the right-side column of Fig.

5.32b shows that the shear bands are still several particles thick. This could potentially be reduced

by using the corrected Laplacian term, however the instability in the velocity solution needs to be

identified and remedied. We suspect this instability is due to the lack of velocity boundary conditions

enforced at the stress-free surface.

Secondly, the method of refining particles works well, but a method of merging particles of the

appropriate AMR level needs to be implemented so that faults that become dormant can undergo a

coarsening of resolution.

Faults did not go dormant in any of the rifting cases, however preliminary tests of doubly-

vergent wedge cases with AMR and strain-softening do show the forward migration of faults. This is
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somewhat surprising since the basal boundary condition is no-slip, not frictional. To properly apply

the refinements developed in this chapter to the double-vergent wedge case, frictional basal sliding

would need to be included.

Lastly, the strain-softening function allows for the development of much weaker material than

other authors have employed. Buiter et al. [11], for example, used a linear decrease of φ from 36◦

to 31◦ over the finite strain range of 0.5–1.0. Further work is needed to compare SPH results with

results from other published methods.
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Chapter 6

SUMMARY AND DISCUSSION

The brittle failure of geomaterials is a problematic process to simulate numerically, especially

if the post-failure deformation is large. The aim of this project has been to develop a mesh-free

continuum-based numerical method for the large-deformation of heterogeneous, history-dependent

material to be applied to tectonic deformation. The motivation in using a mesh-free framework

is to draw on the successes of the Distinct Element Method in modeling, through the frictional

contacts of numerical ‘grains’, the sharp failure planes (faults) in Mohr-Coulomb material, but to

also include the ability to model deformation based on a continuum description, such as viscous

deformation. The hope is that a mesh-free, Lagrangian model will be able to track material history

and accommodate highly-localized deformation without the difficulties associated with modeling

shear bands with mesh-based methods.

Smoothed Particle Hydrodynamics is among the simplest mesh-free methods to implement and

is well suited to model certain classes of geophysical flows such as the high-velocity impact of two

fluids as illustrated in chapter 2. The lack of consistency of SPH in regions where the kernel loses

some of its support (i.e. near surfaces), however, causes problems accurately representing function

values and gradients. Much work was required to modify the standard SPH method to remedy

this deficiency and many authors have proposed correction methods [18, 147, 67, 5]. For the quasi-

static creeping incompressible flow problems of tectonic deformation, the same issue of a deficient

kernel support region manifested itself in calculations of the Laplacian. Moreover, the standard SPH

implementation of incompressible flow is not suited for the high viscosities needed for creeping flow.

In chapters 3 and 4, methods were developed to remedy these problems. Chapter 3 outlines a

proposed method of correcting the Laplacian discretizations. Although the correction method is

presented in the context of thermal diffusion, Laplacian discretization are important in creeping

flow problems both in the form of ∇2v and ∇2p. The correction method was found to significantly

improve Laplacian calculations in the vicinity of surfaces where kernel support becomes deficient.

Since a Mohr-Coulomb rheology is pressure sensitive, the next step towards a tectonic model was

to apply these correction methods to calculating smooth pressure solutions for creeping, linear viscous

flow. Chapter 4 outlined a method of imposing the incompressibility constraint for creeping viscous
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flows based on a generalization of the quasi-compressibility perturbations to the constraint ∇·v = 0.

In both this chapter and the previous, care was taken to develop a method of imposing both Dirichlet

and Neumann boundary conditions. When the equations are cast implicitly, boundary conditions are

enforced by augmenting the set of variables, subject to the constraint that the boundary conditions

are satisfied. This method works well both when enforcing boundary conditions through ghost

particles at wall-boundaries, and along the particles at fluid surfaces.

With the creeping flow implementation of SPH developed, chapter 5 could focus on incorporating

the non-linear viscosity to simulate Mohr-Coulomb behavior and the localization of strain. The

SPH implementation of Mohr-Coulomb rheology compared favorably with finite element solutions,

however the resulting shear bands were quite diffuse. Much of this chapter was devoted to improving

strain localization. Strain-softening was included to encourage shear bands to persist, however the

primary difficulty seems to be that the SPH kernel, in order to calculate accurate values, requires too

broad of a support region. This breadth then inhibits strain-localization. Tests were run to determine

how much this breadth could be reduced, how narrow the kernel could be set, and still return accurate

values. It was found that applying the correction terms to the Laplacian discretization, as developed

in chapter 3, allowed a smaller kernel width to be used while maintaining accurate values for the

Laplacian of a vector field. Unfortunately, when applying this to the creeping flow case, the velocity

field was unstable, likely a result of the lack of velocity boundary condition at the stress-free surface.

This approach of reducing the allowable kernel width by compensating for the deterioration of the

Laplacian by including correction terms shows promise. More work is needed to address the stress-

free boundary condition.

The more successful approach investigated in this chapter was to reduce the effective kernel width

by adaptively increasing the resolution in regions of high deformation. This increase in resolution was

achieved by splitting particles in the appropriate regions and resulted in highly-localized deformation

bands.

The methods outlined in this chapter successfully extend SPH to modeling the brittle failure of

Mohr-Coulomb material, however further work is needed in several aspects. As mentioned above,

imposing the stress-free boundary condition needs to be improved. Further work is also needed to

verify that incompressibility is maintained through the adaptive refinement. Thirdly, the iterative

solver used is quite slow and could likely be improved by preconditioning.

Additionally, since this method is based on a visco-plastic continuum model, the ‘faults’ do not

behave like the sliding of blocks on a frictional surface. Although the localization behavior shows

promise for modeling brittle and ductile crustal deformation, it is not clear that the width of the



130

smoothing kernel can be overcome efficiently. It is possible that the smoothing nature of SPH, in

essence is incompatible with the sharp localization of strain.

Furthermore, Lagrangian hydrocodes are best suited for modeling systems where there is a fixed

amount of material. In crustal dynamics, there is a growing body of literature noting the coupling

of geomorphic processes with tectonic deformation. Mass flux boundary conditions, both erosional

and depositional, would not be straight-forward to implement within this model. This difficulty

would also hamper the application of the creeping viscous SPH model to other similar flows such

as that of glaciers where quantity of ice is controlled by the flux through the surface by ablation or

accumulation.

Nevertheless, the viscous SPH model is a useful numerical framework for modeling a broad class

of flows, especially flows which require the tracking of material interfaces, the tracking of material

history, or coupled thermo-mechanical problems.

For example, many geophysical flows require the tracking of material interfaces; from flows such

as the Rayleigh-Taylor instability of salt diapers to various gravity currents (landslides, turbidity

currents, pyroclastic flows). Interfaces can be tracked with mesh-based methods by advecting an

interface function, however the Lagrangian scheme tracks these interfaces as an inherent aspect

of the method. This is advantageous when there are specific interface conditions that need to be

imposed or investigated. For example, surface tension can play a role in multiphase flow however

evaluating the forces require some knowledge of the geometry of the interface. In the case of the

tsunamigenic landslide, the Lagrangian framework eases the inclusion of an energy loss function at

the landslide–water interface or in the spray zone.

The Lagrangian framework also eases the tracking of material history which can have important

rheologic implications such as for fluids with memory or for tracking work hardening of strain soft-

ening in plastic deformation. This tracking of material history facilitates the calculation of processes

such as the evolution of fabrics in the rock through tracking of finite deformation or the tracking of

chemical constituents in mantle convection.

With the inclusion of heat flux boundary conditions, this viscous SPH model is well positioned to

address some of the complexities of deformation of coupled thermo-mechanical flows. For example,

the mechanics of the solidification of a creeping lava flow is effected by the solidified surface rolling

beneath the advancing front. This cooled material incorporated into the flow requires a tracking of

the material history as it could effect the deformation field. For faster flows, the solidified material

could become entrained into the flow and accelerate the cooling, a process difficult to model with

grid-based methods.
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Géotechnique, 29(1):47–65, 1979.

[25] F.A. Dahlen. Noncohesive critical Coulomb wedges: An exact solution. Journal of Geophysical
Research, 89:10,125–10,133, 1984.



133
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