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Abstract

This thesis studies the Smoothed Particle Hydrodynamics (SPH) computational
method and its ability to describe multiphase fully compressible flows. By em-
ploying the framework of measure-valued evolutions, it is possible to derive the
discrete SPH equations from the principles of continuum mechanics. The derivation
shows that SPH is indeed the computational method which solves the equations of
continuum mechanics for a special type of medium: the smoothed medium. It is
precisely the fact that SPH abides by the principles of continuum mechanics, which
allows for exact conservation of mass, momentum and energy even for domains
under extreme deformations. An analysis of SPH shows the effect of the smoothing
length in the resolution of the scheme and how one may choose between different
smoothing functions while keeping the same resolution. The relation of the smoothing
length to the local number of particles is introduced in the context of measures, thus
providing the necessary tool to study the conditions under which the constructed
smoothed medium converges to the classical continuum model. Various one- and
two-dimensional multiphase compressible tests serve validation purposes and allow
for the comparison of the developed schemes. The coupling of number density to
the smoothing length plays a critical role in the stable evolution of the SPH system.
Finally, the developed multiphase fully compressible SPH scheme, which respects this
specific coupling, is applied to the computational analysis of hypervelocity impacts.
Upon validation with a set of well-referenced hypervelocity-impact experiments, it is
used for the analysis of deformation patterns of laminated materials. The developed
scheme simulates well the opening pattern of the laminate, when the latter is modeled
as a medium with discontinuous density and material parameters. When the laminate
is modeled as a homogenized material —similar to what the current state of the art
suggests— a significantly different opening pattern is observed.
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Synopsis

The present thesis begins by considering in Chapter 1, the Introduction, the prop-
agation of shock waves through continuous media. Shock waves are thin regions
of steep gradients, which —under appropriate assumptions— can be idealized as
discontinuities in the distribution of density and the other related quantities. In case
of inhomogeneous media, reflections and transmissions may occur, whenever a shock
encounters an interface separating parts of the medium with different properties.

Shocks in gases are easier to create than in solids, where shock-compression is
achieved only through rapid impulse-loading. Hypervelocity impacts are perhaps the
most distinguished examples of such processes. They typically occur in space, where
small-sized meteoroids or space debris may hit a spacecraft at speeds comparable to
the speed of sound through the involved materials and thus may seriously endanger
the integrity of a spacecraft. To this end, materials on the surface of spacecraft work
as protection shields. These shields are not always monolithic materials, but may be
laminated instead. The accurate simulation of the resulting wave patterns through
the laminated materials poses a challenge.

In the second part of the Introduction, the Smoothed Particle Hydrodynamics (SPH)
method is reviewed. SPH is the state of the art for the computational analysis of
hypervelocity impacts, due to the advantages it offers as a mesh-free method. SPH
is also used as a hydrocode in the analysis of numerous other flows, such as gas
dynamics or free-surface flows. Over the last decades there has been substantial
growth in the interest of simulating multiphase processes with the SPH method. The
research of SPH schemes for weakly compressible flows has advanced and achieved
remarkable results. A challenge is to extend the applicability of these SPH schemes to
the fully compressible regime. Some new insight into SPH schemes is necessary, if
shock propagation through inhomogeneous materials with SPH is to be studied.
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2 Synopsis

Chapter 2 is devoted to an analysis of the SPH method. Literature shows that various
functions can serve as smoothing functions, for the construction of smooth discrete
estimates, necessary in the context of SPH. To this end, a characteristic length over
which the smoothing operation takes place, becomes crucial. A common smoothing
length does not incur the same resolution for all smoothing functions. We extend
recent literature by showing that there is a link between the standard deviation of any
smoothing function with the resulting smoothing length. By this, we are able to endow
the same resolution to the SPH scheme, independently of the smoothing function used.
Further on, we present ways to construct smooth estimates of a system’s quantities. A
clear distinction is made between the estimates of invariant quantities, which should
be constructed as measures, and variant quantities in the system under study. We
observe the significance of the number density in this construction.

From the point of view of computational mechanics, the concept of SPH is to create
a link between a continuous medium and a discretized particle system. In order to
mitigate any ambiguities and to obtain a better understanding, Chapter 3 presents
a novel comparative derivation of the equations of classical continuum mechanics
and those for a medium with smoothed density profile —the smoothed medium.
It turns out that three well-referenced SPH schemes can be constructed using the
following building blocks: 1) one of three basic measures: probability, counting or
Lebesgue measure, 2) the principle of least action from continuum mechanics and, 3)
an appropriate thermodynamical relation, which leads to the modeling of the desired
properties of any medium. The side-by-side derivation of the governing equations of
classical continuum mechanics portrays the conditions under which the smoothed
system converges to the classical one. After obtaining the governing equations in the
continuous setting, a discretization of the introduced measure allows for a formal
pass to the discrete setting. Additionally, based on the developed framework, we
treat media with full-stress response and underline the differences between construct-
ing the smoothed equations for total Lagrangian versus the smoothed equations
in updated Lagrangian description. Moreover, we include deviatoric stresses in a
consistent manner, allowing for the modeling of viscous fluids and plastic solids.

In Chapter 4 we discuss issues regarding artificial dissipation and construct a new
dissipative mass flux, necessary to counteract numerical instabilities around contact
discontinuities. We give numerical evidence that the SPH method converges with
respect to the Wasserstein distance, as suggested by relevant theoretical findings from
the literature.

The developed schemes are validated in Chapter 5, against a collection of one-
dimensional multiphase shock problems, with known analytical solutions. Specifi-
cally, the three developed schemes and two different configurations of particles are
compared. The two different configurations refer to particles of equal mass with
the interparticle distances describing the initial density ratio or particles placed in a
uniform pattern with their masses depicting the mass ratio. We see that irrespectively
of the configuration, the scheme employing the evolution of the number density out-
performs the others. The validation of the selected scheme in two spatial dimensions
is achieved via three multiphase flow problems.
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Finally, in Chapter 6 the developed schemes are used for the simulation of hyperve-
locity impact experiments into various materials. The schemes provide improved
results compared to results reported in the relevant literature, while it also becomes
evident that the solution strategy is generic for any hypervelocity impact problem.
Last but not least, we simulate a hypervelocity impact experiment into an inhomoge-
neous layered material. The algorithm is indeed able to yield the details wanted from
such simulations and results give confidence that good quantitative comparison is
achievable, provided that more realistic material models are used.





CHAPTER 1

Introduction

1.1 Shock propagation

Let us consider a convoy of cars moving on a narrow road at the same constant
speed and at equal distances between successive cars. At the head of the convoy,
there is a large heavy truck which abruptly breaks down and instantaneously stops.
This disturbance in the traffic is understood by the driver of the first car, who starts
breaking. Similarly, the rest of the drivers notice the disturbance, each one due to
the reaction of the driver just in front and thus, the disturbance propagates at a
finite speed. If the cars are moving at any speed smaller than a critical value, they
are not going to crash. After some time, the convoy is compressed (smaller gaps
between cars), but the cars remain intact. If the common speed at which the cars are
moving is higher than the critical speed, the crash is inevitable. In both cases above, a
disturbance in the traffic occurs, travels through the convoy and results in a denser
configuration of the convoy. Profoundly, in case the cars crash, a special characteristic
is apparent: the disturbance travels so fast that the convoy is unable to accommodate to it.

The traffic situation above is an analogue of what may actually happen in continuous
media. Disturbances which invoke the compression of continuous media, meaning a
change in their local density in the same way the car density on the road changes in the
paradigm above, are pressure waves1. In case the disturbance is moving faster than

1Interestingly, Whitham [1999], Ch.1, argues that: ”there appears to be no single precise definition of
what exactly constitutes a wave. Various restrictive definitions can be given, but to cover the whole
range of wave phenomena it seems preferable to be guided by the intuitive view that a wave is any
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6 Introduction

adjacent matter can ”get out of the way”, superposition of the propagated pressure
waves leads to increased pressure amplitudes, steep gradients and ultimately, the
creation of shock waves. These are abrupt jumps in pressure, density, and velocity
[Whitham [1999], Ch.1, Toro [2009], Ch.2]. The generation mechanism described
above is the Doppler effect [Hiermaier, 2008, Ch.4] and this critical speed is the speed of
sound of the medium. It is a local property of the medium itself, related to the rate of
the pressure’s change due to the variation of density.

Mathematically, the appearance of shock waves is a feature of the nonlinear conser-
vation equations. Their distinctive feature is that even when the start of the motion
is perfectly continuous, shock discontinuities may later arise automatically. Yet, un-
der other conditions, just the opposite may happen; initial discontinuities may be
smoothed out [Courant and Friedrichs, 1948, Ch.1]. When the linear approximation of
the equations is used —as in acoustics— and the speed of sound is taken as a constant,
discontinuities do not arise automatically [Courant and Friedrichs, 1948, Ch.1]. Only
initial discontinuities across a surface are preserved as discontinuities and propagate
with the medium’s speed of sound [Whitham, 1999, Ch.1]. The assumption of linear
waves fails as the amplitude of the disturbances increases.

In the nonlinear regime, Courant and Friedrichs [1948], p.119, distinguish two types
of discontinuities: contact surfaces and shock fronts. In recent literature, each of these
terms is used interchangeably with contact discontinuities and shock waves respectively.
For continuum mechanics —ruling out cavitation in fluids and damage in solids—
across contact discontinuities the acceleration is equal, such that equality of stresses
and equality of velocities hold.

A constant speed of sound is not always a relevant assumption, especially for the
propagation of high-amplitude pressure waves, which affect the thermodynamical
state of the medium. Therefore, the speed of sound becomes a variable, an effect
which introduces yet another way of building shocks: dispersion-driven shocks. The
mechanism is the following. The first high-amplitude pressure wave compresses
the medium locally and thus incurs an increase of the medium’s speed of sound.
Consequently, the next pulse of pressure travels at higher speed and catches up with
the previous initial pulse. The coalescence of these pulse-waves leads to the formation
of a shock-wave Hiermaier [2008]. So that for the formation of a shock, the speed of
the disturbance should not necessarily be higher than the nominal speed of sound.

For a historical review of the shock-wave theory, we refer to Salas [2006].

1.1.1 Conservation equations across discontinuities

Figure 1.1 depicts a discontinuity S of surface area A which moves only with velocity
normal to the surface vS and hence sweeps volume |v0 − vS| A dt, within the infinites-
imal time interval dt. The discontinuity brings the medium from state 0 to state 1.

recognizable signal that is transferred from one part of the medium to another with a recognizable
velocity of propagation”.
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FIGURE 1.1: A propagating discontinuity S, bringing material from state 0 to state 1.

The three fundamental laws of conservation apply and all together, written for the
states 0–1, compose the Rankine-Hugoniot relations:

ρ0 (v0 − vS) = ρ1 (v1 − vS), (1.1)
ρ0 (v0 − vS) v0 + P0 = ρ1 (v1 − vS) v1 + P1, (1.2)

ρ0

(
e0 +

1
2

v2
0

)
(v0 − vS) + P0 v0 = ρ1

(
e1 +

1
2

v2
1

)
(v1 − vS) + P1 v1. (1.3)

Above and further on, subscripts refer to the different states of the medium, while ρ,
P, v and e denote mass density, pressure, velocity and internal energy of the medium
at the corresponding state. By transforming the equations to a system moving along
with the shock —that is a shock-fixed coordinate system moving at vS, the jump
conditions are obtained [Hiermaier, 2008, Ch.4]:

ρ0 v0 = ρ1 v1 ≡ ṁ, (1.4)

ρ0 v2
0 + P0 = ρ1 v2

1 + P1, (1.5)
1
2

v2
0 + e0 +

P0

ρ0
=

1
2

v2
1 + e1 +

P1

ρ1
. (1.6)

All these relations hold across both shock and contact discontinuities. The latter can
be distinguished by considering that the mass flux is zero (ṁ = 0). Consequently,
across contact discontinuities pressures are in equilibrium (P0 = P1). This type of
discontinuities move with the medium and separate two zones of different density
and temperature, while pressure and velocity are the same on both sides. Moreover,
contact discontinuities may also separate different media.

For a nonzero mass current (ṁ 6= 0), shock discontinuities are recovered from the
relations above. By successive replacements of the first to the second and finally to
the third, the Hugoniot relation is derived:

e1 − e0 =
1
2
(P1 + P0)

(
1
ρ0
− 1

ρ1

)
, (1.7)

which exclusively involves thermodynamic quantities. It is the locus of all admissible
states upon a shock transition and it is a curve in the P− 1/ρ− e space (Figure 1.2).
This is a material-specific curve and includes all phases of the material —gaseous,
liquid or solid. The shock transition, from state 0 to state 1, is assumed to be a straight
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FIGURE 1.2: Thermodynamic paths in the P− 1/ρ− e space.

line called Rayleigh line and it does not follow a line of consecutive states of thermo-
dynamic equilibrium, as an isentrope would [Hiermaier, 2008, Ch.4]. Effectively, this
means that shock transitions are irreversible processes and there are certain reasons
for that.

In the investigation leading to the final relation, it is assumed that the only acting
forces are due to pressure differences, while friction forces are ignored. This assump-
tion is justified, provided that the gradients of velocity and temperature are small,
for in regions of strong temperature and velocity variations irreversible thermody-
namic processes occur [Courant and Friedrichs, 1948, Ch.3]. In these regions, the
approximate description of flow in fluids with almost no viscosity and heat transfer
by an idealized flow involving shock fronts, but no viscosity and heat conductivity,
is necessarily inadequate. The examination of related phenomena shows that the
regions of irreversible processes in gases are narrow zones, while outside of these
transition zones the flow can be safely described as adiabatic and reversible. Thus the
empirical facts suggest that the mathematical idealization of describing irreversible
processes by sudden jump discontinuities, is valid. To put it as Courant and Friedrichs
[1948], Ch.3: ”...the assumption of sharp discontinuities is indeed an idealization
which agrees with the facts rather better than we might hope”. The thermodynamic
condition expressing the irreversible character of the process is that the entropy does
not decrease in the discontinuous process, so that ρ0 v′0 s0 ≤ ρ1 v′1 s1, leads to the
inequality for the specific entropy:

s0 ≤ s1. (1.8)

This entropy condition must be added to the conservation laws. Notice that for
contact discontinuities, the conservation of energy and the entropy condition are
automatically satisfied.
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FIGURE 1.3: Wave configurations for different stress regimes and the Hydrodynamic Elastic Limit (HEL).

1.1.2 Shocks through solids

Hiermaier [2008], Ch.4, mentions Prandtl’s attempt in 1906 to quantify the thickness
of shock fronts in single-atom gases and Oertel’s relation between the dimensions
of the shock-front thickness and the mean free path λ f p of the gas atoms ahead of
the shock wave. In the latter study, thicknesses of 10λ f p to 2λ f p are reported for
small to high shock Mach numbers respectively. These lead to typical shock-front
dimensions of 1× 10−7 m to 1× 10−6 m in gases and consequently, replacing these
waves as mathematical discontinuities is a reasonable approximation for macroscopic
modeling [Toro, 2009, Ch.2].

Regarding metals, Hiermaier [2008], Ch.4, cites the work of Swegle and Grady, who
found shock rise-times of 1× 10−2 µs for pressure jumps across shocks of about
10 GPa —that is Mach ≈ 0.1 jump in Aluminum— and up to 1× 10−1 µs for weaker
shocks of around 2 GPa. Thus for metals, the material-dependent properties of
shock-front dimensions are in the order of magnitude of 1× 10−5 m to 1× 10−4 m.
A distinct characteristic of solids is that they can deal with relatively high stresses
without changes in their speed of sound. In the diagram of pressure versus the
specific volume (P− 1/ρ) of Figure 1.3, this is depicted in the low pressure region
(yellow), where the increase of stresses can be approximated as linear, with respect to
the specific volume. This behavior is encountered for loadings with stresses below
the threshold value σHEL; the so-called Hugoniot elastic limit. In this elastic regime, the
wave structure corresponds to an elastic wave transmitted into the medium.

For loadings exceeding σHEL, the speed of sound becomes a nonlinear function of
volume. Above this critical value, the solid medium is unable to support shear
stresses; plasticity kicks in. It should be mentioned that this limit is not a fixed
material constant. It rather varies with the amplitude and the application time of
the loading. As seen in Figure 1.3, the typical wave structure in this elastic-plastic
regime, is an elastic precursor followed by a viscoplastic wave. Hiermaier [2008],
Ch.4, mentions that the existence of this precursor wave has been disputed. Whether
the elastic precursor is overtaken —and thus annihilated— by very fast plastic waves
is only a matter of the load application speed and the achieved maximum pressure
level [Hiermaier, 2008, Ch.4].
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In the hydrodynamic regime the stresses applied to the medium can be considered as
isotropic. Under these conditions, normal stresses dominate, being at least a scale of
magnitude higher than the shear stresses [Asay and Shahinpoor, 1993, Ch.2]. For this
reason, discussion is concentrated on pressure. Since the applied stress greatly exceeds
the yield stress of a solid, its behavior can be approximated by that of a fluid because
the fractional deviations from stress isotropy are small. Under these conditions, the
solid is considered to be hydrodynamic and obtains a fluid-like behavior. On the other
hand, material strength, plastic flow and polymorphic transformations are distinct
features of solids in lower loading regimes and are not encountered in liquids. From a
fundamental perspective, the deformation processes in solids are profoundly different
from liquids, at least up to stresses of σHEL.

The state of the medium determines how easily shock waves occur. For gaseous media,
a loading of 1× 102 MPa —equal to a quarter of the yield strength of Aluminum—
results to temperature increases of 1× 104 K and large changes of the speed of sound.
Consequently, gases are highly compressible and the propagation of shock waves is
guaranteed in almost every case [Asay and Shahinpoor, 1993, Ch.1]. In order to create
disturbances which travel at speeds higher than the speed of sound, or disturbances
of amplitude high enough to trigger shock waves, rapid impulse-loading of solids is
required. In practice, this is achieved by e.g. flyer-plate tests, detonation or during
hypervelocity impacts. The latter are considered in the final chapter (Chapter 6),
along with numerical investigations.

1.1.3 Equations of state

The system of Equations 1.4-1.6 includes nine variables. To solve the shock problem,
given some information from the right hand side —such as any value of vS, ρ1, P1,
v1 or e1— an extra relation is necessary. To this end, relations of the form P = P(ρ, e)
or vS = vS(v1) are essential. These may arrive from experimental data and/or
theoretical considerations. An example is the equation of state, which links the three
thermodynamical quantities, P, ρ and e, and in specific a caloric equation of state
[Hiermaier, 2008; Malvern, 1969]. The latter may lead to the creation of an equation
of state, given some theoretical considerations and assumptions. Typically it is used
for metals, where for c0 the speed of sound at reference state 0 and ξ a parameter, the
linear form vS = c0 + ξ v1 is adopted, albeit nonlinear forms are advised for some
metals [Kerley, 2006].

With the linear expression at hand, the conservation of mass in Equation 1.1 becomes:

vS =
c0

1− ξη
, η = 1− ρ1

ρ0
, (1.9)

so that the Rankine-Hugoniot relations transform into:

ρ1 = ρ0
c0 + ξv1

c0 + v1(ξ − 1)
, (1.10)
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P1 = P0 + ρ0c2
0

η

(1− ξη)2 , (1.11)

e1 = e0 +
η

ρ0
P1 −

η2

2
c2

0
(1− ξη)2 . (1.12)

This approach provides the possibility of deriving a nonlinear equation of state
capable of describing the thermodynamics of dynamic deformation processes in a
material including shock wave formation and propagation. In some cases it is used
indiscriminately as an equation of state, though it is certainly a wrong term.

Another option is to postulate an equation of state in the strict form P = P(ρ, e), based
on theoretical models and observations. The barotropic equation of state accounts for
the changes of pressure due to variations away from the medium’s reference density
ρ0, under a constant speed of sound c0:

P(ρ) = ρ0c2
0

( ρ

ρ0
− 1
)

. (1.13)

On the contrary, the ideal-gas equation of state, formulates an absolute relation between
pressure, internal energy and density:

P(ρ, e) = (γ− 1)ρe, (1.14)

where γ is the ratio of heat capacities of the gas. In order to accommodate liquids
under extreme pressures, an extension of it exists; the stiffened-gas equation of state:

P(ρ, e) = (γ− 1)ρe + γPre f , (1.15)

for Pre f a liquid-specific reference high pressure.

In all previous cases, the speed of sound, that is the change of pressure with respect
to density, is:

c =

√
dP
dρ

∣∣∣
s
, (1.16)

and involves both explicit and implicit terms, since in general P = P(ρ, e).

The main idea behind the Mie-Grüneisen equation of state, is to split the pressure
into a pressure due to a cold compression/expansion and a thermal contribution
[[Hiermaier, 2008, Ch.4], Asay and Kerley [1987]], which results in:

P(ρ, e) = PH − Γρ(e− eH), (1.17)

with PH , eH a Hugoniot reference state and Γ = (∂P/∂e|ρ)/ρ. The Hugoniot data
necessarily pertain to the Rankine-Hugoniot equations and thus, it is subtly implied
that equilibrium conditions apply across a shock. Typically the relations derived
before, upon the assumption of a linear shock-particle velocity, are used. The form
used is:

P(ρ, e) =
(

1− 1
2

Γη
)

PH(ρ) + Γρ(e− eH), PH = a0η. (1.18)
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In practice, especially under high-compression regimes, a reference to the cold curve
e = 0 is used for the dependency on internal energy [Libersky et al., 1993; Wicklein
et al., 2008].

Basically, the Mie-Grüneisen EOS is a first order approximation of the state surface in
the neighborhood of the measured Hugoniot curve along an isochoric path. Another
important limitation of this EOS is that phase changes are ruled out. Tillotson [1962]
developed a branched equation of state, capable of incorporating the physics of
phase changes of metals; it has been extended to model water [Brundage, 2013]. A
further alternative is the use of a set of tabulated data such as SESAME, discussed in
Hiermaier [2008], Ch.4.

1.1.4 Inhomogeneous media

In the case of multicomponent materials, shock waves will not propagate undisturbed
through the specimen. The transition from one layer to its adjacent layer is not a
smooth function in space; it shows up as a discontinuity in the density distribution
and reflections and transmissions may occur, whenever a shock encounters a mate-
rial interface [Davison, 2008, Ch.4]. Hence, the shock loading problem becomes a
multiphase shock problem [Courant and Friedrichs, 1948, Ch.3].

Let us consider the medium, shown in the upper plot of Figure 1.4, where a shock S
moving through material at reference state 0, brings it to state 1. Further upstream
the shock, there is a contact discontinuity with material at state 2. The moment the
shock arrives at the contact discontinuity, maximally two waves can be triggered: one
taking material from state 1 to state 3 and another taking material from state 2 to state
4, as seen on the lower plot of Figure 1.4. Any of them can be a rarefaction or a shock,
depending on the material parameters of the medium, the states 1 and 2, and the
shock S.

The system of Equation 1.1, referring to the states 1-3, is written as:

ρ1v′S = ρ3(v′S − (v3 − v1)), (1.19)

P1 = ρ3(v′S − (v3 − v1))(v3 − v1) + P3, (1.20)

considering a frame of reference moving along with the material at state 1; that is at
v1. Then, v′S can be eliminated by substituting the first to the second:

ρ2
3
(v1 − v3)

2

ρ1 − ρ3
= ρ3(v3 − v1)

2 + P1 − P3. (1.21)

By applying this across the (shock or contact) discontinuities 1-3 and 2-4, we obtain
the system:

ρ2
3
(v3 − v1)

2

ρ1 − ρ3
+ ρ3(v3 − v1)

2 = P1 − P3, (1.22)

ρ2
4
(v4 − v2)

2

ρ2 − ρ4
+ ρ4(v4 − v2)

2 = P2 − P4, (1.23)
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FIGURE 1.4: Wave configuration after the interaction of the shock wave S with the contact discontinuity
between states 1-2.

e3 + e1 +
1
2
(v3 − v1)

2 = P3

( 1
ρ1
− 1

ρ3

)
, (1.24)

e4 + e2 +
1
2
(v4 − v2)

2 = P4

( 1
ρ2
− 1

ρ4

)
. (1.25)

Note that these are jump conditions and in case any of the waves is a rarefaction, they
can only predict the emerging piecewise constant values of the variables. Additional
analysis is required to reveal the region over which the rarefaction expands —the fan
region.

The four equations above relate sixteen variables in total. Taking states 1 and 2 as
initial data: ρ1, v1, e1, P1, ρ2, v2, e2, P2, become parameters and eight variables are left
to be found via the four equations above. The functional relation:

P = P(ρ, e), (1.26)

provides two additional equations. Moreover, the assumption of a continuous
medium translates to equality of velocities and accelerations. Hence, also pressures
are equal, thus providing two additional equations:

P3 = P4 ≡ P∗ and v3 = v4 ≡ v∗. (1.27)

Therefore, the nonlinear system of eight equations contains eight unknowns and,
under certain assumptions, a numerical solution can be sought. In its simplest form,
the system incorporates the barotropic equation (5.1), where P = P(ρ), the energy
equations become redundant and the system reduces to a quadratic polynomial of v∗.

1.2 Smoothed Particle Hydrodynamics

The articles of Gingold and Monaghan [1977] and Lucy [1977] sketched a novel so-
lution strategy for astrophysical flows. The method aimed at offering an efficient
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FIGURE 1.5: Typical form of functions used for the construction of the SPH density estimate in a two-
dimensional problem domain.

treatment of open boundaries, which is a pronounced characteristic of astrophysical
flows. Gingold and Monaghan [1977] coined the name Smoothed Particle Hydro-
dynamics (SPH) to the method, for the core of SPH is the discretization of media in
a finite number of particles and the construction of a smoothed mass density via a
convolution-based operation. An appropriately chosen, yet not problem dependent,
(see discussion in Chapter 2)— parameter regulates the smoothing region and is
called the smoothing length. Figure 1.5 shows a Gaussian-like smoothing function
Wh, with h the smoothing length, which furnishes the SPH mass density for a finite
particle number in a two-dimensional domain. Since SPH solves the equations of
hydrodynamics, it falls in the vast category of hydrocodes; Zukas [2004] provides a
comprehensive review of hydrocodes. SPH adopts the Lagrangian description of the flow
field, a feature which results to perfect computation of advection and no extra effort
for tracking interfaces. The latter two properties are fundamental in the applications
SPH is called in for, and are reviewed by Monaghan [2012].

1.2.1 Development and applications

The first use of SPH in compressible flows appeared in Monaghan and Gingold [1983]
and the breakthrough is the artificial viscosity term for the treatment of numerical
instabilities related to the propagation of shocks. This term is based on the artificial
viscosity of Von Neumann from 1948, which is a standard ingredient of hydrocodes. In
a later study Monaghan [1997] constructed SPH artificial dissipation terms, viscosity
and conductivity, which have a structure similar to the one of Riemann solvers.
Similarly to the mesh-based methods, Riemann solvers have been proposed, simple
[Parshikov and Medin, 2002] or more elegant [Inutsuka, 2002]. Artificial dissipation
is still the favored option in a large body of SPH literature, due to its simplicity,
generality and straightforward derivation. Puri and Ramachandran [2014] compare
the two approaches and find them to deliver results of the same quality in the solution
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of the Euler equations.

In problems of shock propagation, also termed as fully compressible regime, the length
scales of the problem span over a wide range and some kind of adaptivity is necessary
in SPH. Typically, this is achieved by varying the smoothing length2. A solution is
to write an evolution equation for the smoothing length, which follows the density
evolution, such that the mass within the volume of a particle remains constant.
Hernquist [1993] examines the errors from such a choice and [Price, 2012] shows that
the subsequent derivation of the motion equation is not straightforward. Nelson and
Papaloizou [1994] first introduced a varying smoothing length in a way consistent
with the equations; it involves a complicated strategy. Bonet and Rodriguez-Paz
[2005]; Monaghan and Price [2001]; Springel and Hernquist [2002] show simple ways
to involve the variation of the smoothing length in the SPH equations. The first study
takes into account the variation of the smoothing length along with the variation of the
density in deriving the equations of motion; the second uses Lagrangian multipliers
as constraints for the volume of each particle, while the third uses a similar approach
as the first, and it additionally couples adaptivity to improved density estimates near
fixed boundaries.

The variation of the smoothing length is one kind of adaptivity. A second kind is to
have the number of particles vary in time, so that sparsely populated regions of the
domain are filled with particles and particles are removed from densely populated
regions. To this end, particle splitting and merging algorithms are introduced. The
splitting and merging of particles is not always momentum-conserving, let alone
energy conserving. For that reason, special care needs to be taken. Vacondio et al.
[2012] construct an algorithm for the shallow water equations —referring to isother-
mal conditions, where both the smoothing length and the number of particles vary.
They show that the coupling of a varying smoothing length with particle splitting is
not a straightforward task and it is questionable if it can be done in a consistent way,
that is including the extra terms discussed in the previous paragraph.

In contrast to the fully compressible flows, those flows that can be described ade-
quately by the weakly compressible regime —or the incompressible one— do not
require an adaptive smoothing length. Since SPH solves the equations of hydro-
dynamics and is best suited to domains with open boundaries, it finds application
in the computation of high-speed or high-momentum liquid flows involving free
boundaries. The first paper on free surface water flow by Monaghan [1994] considers
pressure coupled to density, which is assumed to vary at maximally 1% around its
reference value.3 To arrive at a trustworthy result, a viscosity model is required. It
turns out that the artificial viscosity term can be easily tuned in a way that it models
the Laplacian of the velocity field and thus shear stresses. This appears to be the stan-
dard SPH-way of modelling liquids. Other approaches appeared, as well. Cummins
and Rudman [1999] introduced a projection method, where during the update of the
velocity the restriction of zero velocity-divergence applies, which was later presented

2In early studies [Monaghan, 1997; Monaghan and Gingold, 1983], this task was avoided by simply taking
smoothed initial data.

3Note that the concept of artificial compressibility, introduced by Chorin [1967], exists in other computa-
tional methods as well.
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by Hu and Adams [2006] as Incompressible SPH (ISPH).

SPH’s Lagrangian description of the domain makes it unnecessary to track interfaces
or different materials or fluids. From this point of view, SPH is an excellent candidate
for multiphase computations. Unfortunately, the application is not as straightforward
as it might seem. Monaghan [1995] experimented with multiphase computations and
found out that the differential form of mass conservation works better, seconded by
the scheme which in later chapters we refer to as the volume scheme and particles
of mass ratio per phase equal to the ratio of the density. The paper of Colagrossi
and Landrini [2003] advanced the understanding of multiphase SPH and insists on
the same SPH scheme and mass arrangement. Hu and Adams [2006] promote the
use of the number-density in order to build an expression for density and the same
arrangement for mass. In yet another technique, Grenier et al. [2009] construct the
density via evolving the determinant of the Jacobian of the medium’s configuration
in time; particle masses are again unequal per phase. Finally, Monaghan and Rafiee
[2013] clearly show that the original scheme and mass configuration [Monaghan,
1995] is a simple and reliable way to model multiphase weakly compressible flows.

The extension of the weakly compressible multiphase schemes to the fully compress-
ible regime is not a straightforward task. Ritchie and Thomas [2001] rearrange the
conserved variables such that a smooth estimate of pressure is based on thermal
energy and is used for the construction of the density estimate. The study of Hop-
kins [2013] generalizes this approach, obtaining particle volumes as functions of the
internal energy density, rather than mass density. This approach can raise criticism,
considering that internal energy is not a conserved quantity, whereas the total energy
is. Last but not least, Agertz et al. [2007] argue that the fundamental differences
between SPH and mesh-based methods, may drive SPH to suppress mixing of fluids.
Price [2008] focuses on Kelvin-Helmholtz instabilities and shows that schemes coming
from the standard SPH framework are adequate for multiphase computations by
choosing artificial dissipation terms carefully. Thus, two questions rise. First, which
of all schemes coming from the standard SPH framework (as described by Monaghan
[2005]; Price [2012]) is the most suitable? Second, for fully compressible computations
particles of equal masses are advised and typically used [Borve and Price, 2009; Price,
2012]; can particles of unequal masses deliver trustworthy results? Recent studies
[Zisis et al., 2015a,b] and the tests of Chapter 5 are devoted to answering this question.

For solid dynamics, hydrodynamic codes become essential when rapid impulsive
loading of materials results to the propagation of strong waves. On top of that,
SPH’s ability in dealing well with open boundaries, makes it a good candidate for
the numerical simulation of hypervelocity impacts, that is impacts between objects at
speeds higher than the speed of sound through the materials involved. With the
normal stresses given by the standard SPH algorithm, the critical step is to construct
the deviatoric stresses in terms of the particle values. This research was pioneered by
Libersky et al. [1993] and resulted in the establishment of SPH as the state of the art
methodology for the computational investigation of hypervelocity impacts. Chapter 6
is devoted to the discussion of hypervelocity impacts and the computation of various
problems.
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FIGURE 1.6: Experiment

1.2.2 SPH for hypervelocity impacts

Spacecraft in orbit run the risk to experience impacts from small-sized particles such as
space debris and micrometeorites. They travel at typical velocities of 10 km/s relative
to the spacecraft. Micron-sized particles degrade the spacecraft’s shield protection. It
is estimated that in the near Earth space, the affected surface area of brittle materials
(e.g. solar panels and mirrors) is 0.01–0.001% per year of exposure, with the main
impactors being of micrometer size Drolshagen [2008]. Millimeter- and centimeter-
sized bodies can puncture vital components of the spacecraft or lead to its complete
destruction Drolshagen [2008]. In order to conceive the damage potential of the latter
bodies, consider that a centimeter-sized object speeding at 10 km/s, has similar kinetic
energy as a car speeding at 40 km/h, only concentrated in a centimeter-sized volume!

Hypervelocity impact events are characterized by the projectile’s relative velocity
being in the range or higher than the speed of sound of the target material, which
is about 6 km/s in Aluminum. Sharp density changes occur, propagated through
the target as shock waves. The projectile’s momentum is absorbed, visible by the
fact that dynamic pressure is abruptly transformed into static pressure. Normal
stress effects on an incremental element of the material dominate over the deviatoric
stress effects and the hydrodynamic loading regime occurs [Asay and Kerley, 1987;
Hiermaier, 2008]. Solid materials will effectively behave like fluids in this loading
regime. Hypervelocity impacts are considered to be substantially different than
ballistic impacts, where impact velocities are one order of magnitude lower.

Materials and configurations for spacecraft shields were considered by Whipple
[1947], even before the first satellite was set in orbit around the Earth. Multicomponent
materials are being used extensively [Christiansen et al., 1995].

In the case of multicomponent materials, shock waves will not propagate undis-
turbedly through the specimen. The transition from one layer to its adjacent layer
is not a smooth function in space; it shows up as a discontinuity in the density
distribution of the target and reflections and transmissions will occur, whenever a
shock encounters a material interface [Davison, 2008, Ch.4]. Hence, the shock loading
problem becomes a multiphase shock problem.

Figure 1.6 shows a snapshot of a hypervelocity impact experiment, 50 µs after impact.
A spherical Aluminum projectile of diameter 5 mm, moving at 4.36 km/s from left
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to right, impacts normally onto a laminated plate, 15 mm thick and made up of five
successive Aluminum/epoxy resin layers. On the right of the plate, the transmitted
material forms a debris cloud, which is a distinct characteristic of hypervelocity
impacts. Depending on the impact parameters (mainly the impact speed), it is full of
solid fragments, liquid droplets or even gaseous mixtures coming from sublimated
solid material. At higher impact speeds, production of plasma is reported [Drolshagen,
2008]. Additionally, on the left there is a cloud of reflected material, while at the same
time the plate is undergoing severe deformation. All these three processes involve
continuously evolving surfaces, and their description poses a challenging problem
for computational methods.

The appearance of shocks requires a hydrocode with the following features: 1) decom-
position of the stress tensor into a hydrodynamic and a deviatoric part; 2) artificial
viscosity or a Riemann solver, to treat the strong wave propagation problem [Hi-
ermaier, 2008]. Regarding real viscous and heat-conduction effects, it is typically
assumed that the process is much faster than the time necessary for those effects to
appear. The exact conservation of mass, momentum and energy are crucial for the
long-term stability of the simulation.

Although at the time of the pioneering article of Libersky et al. [1993], the exact
conservation properties of SPH were still questionable, other major advantages of
SPH are stated: robustness, conceptual simplicity, ease of adding new physics, a natural
treatment of void and the ability to handle high strains in a purely Lagrangian frame. Due to
these properties, they apply SPH to the hypervelocity impact of a Copper projectile
onto an Aluminum plate, at 5.5 km/s and qualitatively validate the solver against the
corresponding experiment. Moreover, the impact of an Iron cylinder onto a rigid wall
at 221 m/s serves as an additional validation case. They use an evolution equation
for the smoothing length, which follows the evolution of density. In order to choose
the smoothing length factor —the number of particles per smoothing length— for the
Cubic spline they run Noh’s implosion problem, which involves an ideal gas and admits
an analytical solution.

Various developments of their code and suggestions for future research are reported
in Libersky et al. [1997]. There are two main features. First, the introduction of ghost
particles which are created by mirroring the actual particles, so that the convergence
of the solution strategy improves close to boundaries. Second, they introduce what
they call conservative smoothing. Nonetheless, the arsenal which provides a variational
derivation of SPH was not developed yet. The algorithm is variationally inconsistent
and the conservative smoothing is not similar to the Riemann-like dissipative terms
(Monaghan [1997]) of concurrent SPH algorithms.

Johnson [1996] develops an axisymmetric SPH and a three-dimensional SPH algo-
rithm to study high-velocity impacts, which he couples to Finite Elements (FE). It
seems to be the first effort towards a coupled strategy. Dyka and Ingel [1995] in-
troduce a second set of points —in addition to the particles— for the calculation of
stresses, in an effort to cancel tensile instability. However, this method is difficult to
apply in complex arbitrary geometries.
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The trust in SPH for the simulation of hypervelocity impacts is augmented by Hier-
maier et al. [1997], who undertake a combined experimental-computational campaign.
They use an axisymmetric SPH algorithm to simulate the projectile-target impacts
of Aluminum-Aluminum, Aluminum-Copper and Aluminum-Lead at velocities of
about 6 km/s. In the meantime, the foundations for a Lagrangian derivation of SPH
were laid by Nelson and Papaloizou [1994]. The latter work is cited in Hiermaier et al.
[1997], when the variation terms related to the smoothing length are disregarded as
computationally expensive to calculate. They arrive at an algorithm which produces
large variations of 5% in energy conservation. Additionally, they employ the scheme
of Libersky et al. [1993], which is variationally inconsistent. It is now known [Bonet
and Lok, 1999; Colagrossi and Landrini, 2003] that variational inconsistency of weakly
compressible SPH schemes may inflict noisy results. Regarding fully compressible
SPH schemes, in Chapter 5 we provide evidence that not all choices of variationally
consistent schemes are wise when the smoothing length is a variable.

Hayhurst et al. [1998] report the introduction of SPH to the AUTODYN package,
which until today (integrated to the ANSYS workbench package) is a leading com-
mercial package for SPH. That same code is used by Hiermaier and Schafer [1999] to
publish numerical-experimental results regarding hypervelocity impacts into pres-
surized vessels. Air, Aluminum and Titanium are treated in the same computational
domain.

Parshikov and Medin [2002] drop the artificial viscosity and construct a Riemann-
solver based on the acoustic approximation. They apply it to the simulation of impacts
at moderate impact speeds of below 1 km/s. Effectively, it is also a contact algorithm.
A comparative study is performed by Mehra and Chaturvedi [2006], who consider
four different shock capturing schemes used in SPH. Their performance in simulating
moderately high-velocity impacts (at 3 km/s) and hypervelocity impacts (at 6 km/s)
is examined. They find that the contact algorithm of Parshikov and Medin [2002] is
best suited to impacts of moderately high-velocity (3 km/s), since it does not suffer
from nonphysical fracture and particle-clumping. Regarding hypervelocity impacts,
algorithms based on artificial dissipation seem to be more suitable, notwithstanding
an overestimation of the resulting crater diameter on the target (by 12–16% in Al–Al
impact). Eventually, they note that the overestimation of the crater size in hyper-
velocity impact could be attributed to excessive artificial viscosity, which enhances
transverse momentum transfer. Finally, they also found that the choice of alternative
equations of state does not significantly change the results.

In a different context, the study of Vignjevic et al. [2005] compares SPH, Discrete
Elements and Erosive Finite Elements. They obtain good agreement for all methods,
in terms of target damage with the available experimental results. The element-
erosion method shows problems in following the correct deformation pattern as a
large number of elements are deleted. The other two methods describe failure patterns
with more ease, although tensile instability appears in SPH and a better definition of
the node linkage failure criterion is required for the Discrete Elements Method.

In an effort to remedy the instabilities of SPH, Shintate and Sekine [2004] extend the
traditional algorithm by introducing a particle merger/generation technique and they
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study high-velocity impact scenarios. Especially for the moderately high-velocity
impacts, results are promising. Nonetheless, in a later work, Vacondio et al. [2012]
warn that it is not a straightforward task to render accurate schemes or momentum
conserving schemes from the traditional framework, when particle adaptivity is
applied.

In the literature, there exist two methods which are conceptually similar to SPH for
hypervelocity impacts. First, Fahrenthold and Koo [2001] employ a rather complicated
framework, which resembles SPH and is derived from variational principles. The
benefit is that it is consistent to thermodynamics, while at the same time it makes it
possible to capture small deformations. Second, Li et al. [2010] construct the Optimal
Transportation Meshfree method, which incorporates concepts from the theory of
optimal transportation, with meshfree interpolation and material point sampling
(which effectively is the previously mentioned stress-points [Dyka and Ingel, 1995]).
Notwithstanding the formal mathematical basis, the resulting scheme is practically
the same as the SPH schemes with the integral mass conservation and artificial
viscosity. They apply the method to high-velocity impacts.

Substantial effort was made to simulate hypervelocity impacts onto multicomponent
structures with SPH. Homogenized materials were introduced, with the averaged
properties of their components as material properties. The homogenization approach
became popular in the community of hypervelocity impacts and was equipped
with a rigorous procedure of producing averaged versions of anisotropic materi-
als [Clegg et al., 1999; Riedel et al., 2006; Wicklein et al., 2008]. Nevertheless, two
major drawbacks are apparent in this approach: the homogenization process is
based on assumptions coming from quasi-static loading regimes, and the effects
of shock reflection-transmission are neglected. Following a different approach, the
Modified-SPH method is introduced [Zhang and Batra, 2007] to solve an elastic wave
propagation problem through a functionally graded material. The properties of such
a material are smooth functions in space. Therefore, without any discontinuities in
the properties of the material it is impossible for any transmission-reflection pattern
to occur.

Zhou et al. [2007] introduce the Adaptive SPH methodology of Owen et al. [1998] in
the field of high velocity impacts. This methodology consists of creating a tensorial
smoothing length, so that the smoothing kernel becomes ellipsoidal. It is advanta-
geous because it is able to adjust to the asymmetries of the strains per direction, which
are observed during an impact. On the other hand, Price [2012] explains that this
choice is impossible to deliver variationally consistent schemes.

Zisis et al. [2013] present multiphase fully compressible SPH schemes to treat hyper-
velocity impacts into inhomogeneous materials, focusing on a basic isothermal impact
test. The key ingredient is an artificial mass-flux term —which acts as an approximate
acoustic Riemann solver— and suppresses the instabilities occurring on the interface
of two different materials. Later [Zisis et al., 2014b], the algorithm is employed to
study impacts into materials which involve large- and small-scale inhomogeneities.
The former correspond to laminate plates and the latter to random inhomgeneities.
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Liu et al. [2013] apply SPH to the hypervelocity impacts of laminated plates, without
any special treatment to suppress the shock-induced instabilities on the interface
of different materials. Zhang et al. [2015] employ a transport velocity algorithm
for moderately high-velocity impacts at 3 km/s. This approach is susceptible of
corrupting the conservation properties of the scheme, since it is not variationally
consistent. Finally, Zisis et al. [2016b] show the differences in the deformation patterns
occurring during hypervelocity impacts of monolithic plates, laminated plates and
simple homogenized models of laminated plates.

Finally, it seems relevant to clearly state the merits leading to the choice of SPH as
the appropriate computational method for hypervelocity impacts. First and foremost,
these are its conservation properties, which allow for the long term stability of the
solution. Second, its simplicity of adding physics and last, but not least the natural
treatment of free boundaries, multibody interactions and discontinuous flows. As a
downside, one should consider the reduced accuracy and the related —as we show
in a later chapter— appearance of tensile instability.

1.2.3 Derivation

The central idea of the SPH method is to set up a relation between the continuum and
a particle system, in which the continuum is loosely considered to be the limit case in
which the number of particles tends to infinity. Two comments are necessary to raise
any ambiguities. First, the term particle should not be interpreted as a physical object
of any scale, like an atom, molecule or grain, but rather as a numerical entity attributed
with mass, position, velocity and other properties of the medium it represents. Second,
the loose link between the continuum and the resulting particle system, is by no means
an ad hoc connection.

There exist two generally accepted ways to derive the SPH equations of continuum
mechanics. The first way starts by constructing convolution-based discrete approxima-
tions of the differential operators which appear in the equations of mass, momentum
and energy conservation [Liu and Liu, 2003; Violeau, 2012]. Thus, a plethora of
differential operators becomes available, without a straightforward way of choosing
which operator best mimics the conservation equations. It turns out that one has to
choose a less accurate approximation for the momentum equation in order to derive
a conservative scheme. The second way of introducing SPH is indeed a consistent
way, since it employs the principle of least action applied to a particle system. Then,
the SPH density estimator, being a weighted sum of the system’s particle masses,
is introduced as a constraint to the equation of motion. Nelson and Papaloizou
[1994] are credited with the first derivation in this way and are followed by Bonet
and Lok [1999], Monaghan and Price [2001] and Springel and Hernquist [2002]. The
importance of the variational structure of the system is already mentioned in the
article of Gingold and Monaghan. [1978]. In later literature [Monaghan and Gingold,
1983; Monaghan and Lattanzio, 1985] the derivation of SPH schemes by constructing
discrete approximations of differential operators is promoted.
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FIGURE 1.7: The convergence of the SPH density to the density of continuum mechanics.

Regarding the derivation of SPH from the Lagrangian of a particle system, a subtlety
lies in the fact that in the derivation of the SPH equations from the particle system, the
action of the particle system is minimized rather than the action of the continuum. The
minimization of the action at the continuum level and the subsequent discretization
of the motion equation in terms of particles do not necessarily yield the same equation
of motion (at the discrete level). The latter procedure also reveals the mathematical
formalities necessary to convince oneself that SPH indeed comes from principles of
continuum mechanics.

DiLisio et al. [1998] are the first to cognize the significance of a measure-valued formu-
lation for SPH, since it allows the study of both the particle system, and the limiting
continuum setting in a single context. Nonetheless, they prove the convergence of an
SPH-like scheme, rather than the one actually used in the practice of SPH. Their work
has been extended by Evers et al. [2015], who first derive the classic SPH scheme
in a systematic manner and then prove its convergence as the number of particles
grows to infinity. Following the pioneering work of DiLisio et al. [1998], they adopt
the Wasserstein distance in the space of probability measures, to study convergence.
Effectively, it is a way to assign a cost function to any admissible configuration of
the system and thus one can obtain an upper bound which is a necessary ingredient
to prove convergence. Additionally, they show numerical evidence of the theoreti-
cal findings. In any case, smoothing the density practically means that the original
problem is deliberately turned into a regularized/smoothed one, which is afterwards
solved by means of an SPH scheme. Hence, by choosing SPH as the solution method
one is automatically bound to studying a different problem than the original one,
already at the continuum level. In the diagram of Figure 1.7, four different density
functions appear and the ways they converge to each other, either as the number of
particles N → ∞, either as the smoothing length h→ 0 or as both previous occur via
n = n(N → ∞, h→ 0)→ 0. Thus, three questions naturally arise:

• Does the solution of the smoothed problem converge to the solution of the
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original problem of classical continuum mechanics, ρ̃→ ρ as h→ 0?

• Does the particle solution of the smoothed problem converge to the solution of
the smoothed continuum problem, ρ̃N → ρ̃ as N → ∞?

• Does the particle solution of the smoothed problem converge to the solution of
the original problem of continuum mechanics, ρ̃N → ρ̃N as n→ 0?

The present study shows how the concepts of measure-valued evolutions can advance
our understanding for these questions.





CHAPTER 2

Constructing smooth estimates

The strong asset of SPH is that it can treat transforming and discontinuous domains
with relative ease, compared to other numerical methods [Monaghan, 2005]. Funda-
mental to this is the convolution-based operation which is applied on a function and
delivers a smoothed version of it. However, the integral operation requires a good
partitioning of the domain, which is far from being the case in the discontinuous
domains in which SPH gives good results.

In order to provide a straightforward framework for this challenge, we formulate
the smoothing operation in the context of measure-valued evolutions. This formulation
is inspired by two studies [DiLisio et al., 1998; Evers et al., 2015], which provide
mathematically rigorous proofs of convergence for the classical SPH scheme applied
in hydrodynamics. The present chapter aims at bridging the gap between the afore-
mentioned studies and the current SPH literature. In order to do so, we first discuss
the importance of formulating the SPH estimates in terms of measures when the
problem domain undergoes a transformation. Second, we show how the various
SPH estimates fit in this framework and at the same time we underline the difference
between approximating invariants of the system and any other, variant quantity.
Finally, we introduce the differential operators which are used in deriving the SPH
equations of motion in the following chapter.

25
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2.1 Smoothing in a fixed domain

The term mollifier is coined by Friedrichs [1944] to the linear integral operator which
provides the smooth approximation:

f̃ (x) =
∫

Rd
f (y)Wh(x− y)dλ(y), x, y ∈ Rd, h ∈ (0, ∞), (2.1)

for the function f : Rd → R and h a —still to be defined— parameter of the smooth
function Wh : Rd → R. Here, for reasons which are discussed further on, it is written
with the help of λ, the Lebesgue measure. In this way [Evans, 1998, App.C], the notion
of derivative is extended to the weak derivative:

∂α f̃ (x) =
∫

Rd
f (y) ∂αWh(x− y)dλ(y), (2.2)

adopting an index notation α, β, γ for the spatial dimensions. In the related literature,
the above operation serves as the basis for the theory of distributions which applies to
all locally integrable functions f [Schwartz, 1969, Ch.1].

The usefulness of this smoothing or regularization or mollification operation1 is twofold.
First, it allows to construct approximations of the differential operators which appear
in differential equations; thus making the equations possibly easier to analyze or
solve, especially numerically. Second, in case discontinuous functions or point-wise
data (given a discretization of the domain) are treated, the operation transforms the
problem into a problem with corresponding smooth data, while providing a concrete
framework under which the solutions of the smoothed problem converge to those of
the original one.

Note that in the literature the smooth function Wh is found under various names,
such as kernel, test function, smoothing function, or even mollifier, although Friedrichs
[1944] reserves the latter for the integral operator. In our discussion we use the term
commonly used in the SPH-literature, namely smoothing function, while the integral
operation is termed smoothing.

2.1.1 Smoothing functions

The class of radially symmetric smoothing functions can be written in the form:

Wh(x) =
cd

hd w(q), q :=
‖x‖

h
, c−1

d :=
∫

Rd
w dλ, (2.3)

1Although the term smoothing is primarily used in this work —adhering to the common SPH terminology,
we consider these three terms to be equivalent.
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with ‖ · ‖ the Euclidean distance. The prototype of such functions, as presented by
Evans [1998], App.C, is the standard mollifier2:

w(q) =

 exp

(
1

q2 − 1

)
, q < 1,

0, q ≥ 1,

(2.4)

with cd ≈ [2.2523, 4.826, 5.08] for d = [1, 2, 3], the parameter which guarantees the
standard mollifier’s scaling to unity3. Properties tantamount to the convergence of f̃
to f as h→ 0 in Equation 2.1 are [Evans, 1998, App.C]:

1. infinite smoothness, Wh ∈ C∞;

2. compact support, Wh(‖x‖ > ϑh) = 0, for some fixed ϑ ∈ R>0;

3. scaling to unity,
∫

Rd Wh dλ = 1;

4. convergence, Wh→0(x) = δ(x);

5. radial symmetry, Wh(x) = Wh(‖x‖).

The latter property implies that the mollifier’s gradient:

∂αWh(x) =
cd

hd+1


xα

q
dw(q)

dq
, q > 0;

0, q = 0,

(2.5)

is antisymmetric, since ∂αWh(−x) = −∂αWh(‖x‖). This is a property frequently used
in the SPH literature and in Chapter 3.

The defining properties of the standard mollifier are broad enough to accommodate a
vast variety of functions which can be used in the solution of numerical problems. On
the other hand, apart from studying the problem in terms of mathematical analysis,
its numerical solution appears in the discrete setting. This may allow for weakening
some of the aforementioned five properties. For example, the scaled Gaussian function:

w(q) = exp[−(3q)2], (2.6)

for cd = [3/
√

π, 3/π, 3/(π
√

π)] in d = [1, 2, 3] defies the second property, as it is not
compactly supported. In order to establish a common radius for all functions under
study, q ∈ [0, 1] is considered as an indicative ”support radius” for the Gaussian. After
all, its truncated version is an attractive option, since values for q > 1 are close to zero
with acceptable numerical accuracy 4. In contrast to the Gaussian, functions of finite

2It frequently appears under the name bump function, as well.
3Without an analytical expression available for the integral, the values are obtained numerically, with the

accuracy decreasing for increasing dimensionality.
4The integral operator of Equation 2.1 with the Gaussian is frequently termed Weierstrass transform.
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FIGURE 2.1: Kernels (left) and their gradients (right) in a common support radius and scaled to unity.

differentiability challenge the property of infinite smoothness, however they turn out
to be amenable. Examples of the latter are the Schoenberg kernels and the Wendland
kernels, which enjoy popularity in practice [Dehnen and Aly, 2012; Monaghan, 2005;
Price, 2012].

The family of Schoenberg kernels is widely known as B-splines and they are piece-wise
polynomials of finite differentiability [Price, 2012]. The cubic spline is the M4 kernel:

w(q) = (1− q)3
+ − 4(1/2− q)3

+, (2.7)

used with cd = [8/3, 80/(7π), 16/π]. Note that the introduced notation should
read (·)+ = max{0, (·)}. Splines with polynomials of higher degrees approach the
Gaussian, and the quintic spline is the M6 kernel:

w(q) = (1− q)5
+ − 6(2/3− q)5

+ + 15(1/3− q)5
+, (2.8)

for cd = [35/40, 377/(478π), 37/(40π)], which offers a good approximation to the
Gaussian. A drawback, which can be serious (see discussion following 2.11), is that
their Fourier transforms in d > 1 are not positive definite [Dehnen and Aly, 2012].

This property is the cornerstone of the family of the Wendland kernels, which by
construction have positive definite Fourier transforms for all d. Examples are the C2
kernel:

w(q) = (1− q)τ1d
+ (1 + τ1d q), (2.9)

with τ1d = [3, 4, 4] and cd = [5/4, 7/π, 21/(2π)] and the smoother C6 kernel:

w(q) = (1− q)τ1d
+ (1 + τ1d q + τ2d q2), (2.10)

with τ1d = [5, 6, 6], τ2d = [8, 35/3, 35/3] and cd = [3/2, 9/π, 495/(32π)], mentioned
in Dehnen and Aly [2012]. Figure 2.1 shows the kernels which are discussed above,
along with their gradients.
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2.1.2 Fourier transform of the smoothing function

Typically, f is the estimate of mass density, which is pursued in SPH. On physical
grounds it must be positive. This is guaranteed for Wh(x − y) ≥ 0, ∀ x, y ∈ Rd,
whence in the discrete system a positive definite function w is required. A function
w : R→ C is called positive definite, if the matrix [w(xi − xj)]

N
i,j=1 is positive definite

for all N, no matter the choice of xi’s Stewart [1976]. Thus, it is necessary, but not
sufficient, that w(0) ≥ 0 and |w(x)| ≥ w(0), which is indeed the case for all w
functions presented before.

An important result [Stewart, 1976] is that if w is positive definite, then, taking∫
Rd w(x)dp(x) =

∫
Rd w(x)dx/(2π)d/2, its Fourier transform [Rudin [1987], Ch.9,

Evans [1998], Ch.4]:

F{w}(ζ) =
∫

Rd
w(x) e−iζxdp(x), ζ ∈ Rd, i2 := −1, (2.11)

is non-negative, provided that it exists. Conversely, if w satisfies the Fourier inversion:

F−1{w}(x) =
∫

Rd
F{w}(ζ) eiζxdp(ζ) =

∫
Rd

∫
Rd

w(y) eiζ(x−y)dζ dp(y), (2.12)

and F−1{w} ≥ 0, ∀x, then w is a positive definite function [Stewart, 1976]. The latter
remark imposes another demand on w, and by extension on Wh. Hence, in addition
to the previous five properties, a Wh with:

6. non-negative inverse Fourier transform, F−1(Wh) ≥ 0,

is required. It should be mentioned that given the radial symmetry of the w functions,
the Fourier transform in d > 1 coincides with the Hankel transform, which can provide
significant simplification in the calculations.

2.1.3 Scaling the smoothing functions

The kernels above (also see Figure 2.1) are written with a support radius q = 1,
although they can be expanded or contracted to different radii as q → ϑq. This
transformation leaves the functional form w unchanged [Dehnen and Aly, 2012] and
thus, given a Wh, the smoothing length obtains a different meaning for each kernel.
Up to this point, the parameter h is only understood as h→ 0.

Various ways are proposed in order to define a relation h = h(Wh) [Dehnen and Aly,
2012]:

• the distance ‖r∗‖ of the kernel’s inflection point, r∗ : |∂αWh(r∗)| = max
(

∂αWh(x)
)

;

• the ratio Wh(r∗)/|∂αWh(r∗)|;
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FIGURE 2.2: Kernels (left) and their gradients (right) in the appropriate σ-based support radius.

• the kernel’s standard deviation, σ2 =
∫

Rd x2 Wh(x)dλ,

with the latter offering an implicit definition. Indeed, all these definitions coincide for
the Gaussian [Dehnen and Aly, 2012]. More importantly, σ2 is the second moment of
the kernel and the first which has a different value for each functional form w. Notice
that the zeroth moment of Wh is the scaling to unity and the first is nullified due to
the antisymmetry of the kernel’s gradient. Additionally, it turns out that σ is directly
related to the numerical resolution of waves and that is why it is usually preferred to
set h = 2σ, for every kernel [Dehnen and Aly, 2012].

However, we can show that σ also has a different meaning for each kernel (the
derivation requires the change of the coordinate system to a radially symmetric one),
according to:

σ2 =
∫

Rd
x2 Wh dλ = cd h2 σ2

w, σ2
w := cd h2

∫
Rd

w dλ. (2.13)

Hence, we conclude that the relation of the smoothing length to the kernel’s standard
deviation differs for the various functional forms w. Consequently, in order to have
the same resolution (governed by σ) for any chosen kernel, the smoothing length:

h2 = cd

( σ

σw

)2
, (2.14)

becomes a certain kernel-specific quantity. It offers a way to achieve the same res-
olution with different kernels. Thus, by no means is it an explicit definition of the
smoothing length. Figure 2.2 shows the kernels which are discussed above, along
with their gradients, in the support radius which is defined according to σ.
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2.1.4 Resolution of the discretized system

Consider the partitioning of Ω as: ΩN = {⋃N
i=1 Ωi = Ω : Ωi

⋂
Ωj 6=i = ∅, ∀i, j ∈

[1, N]}, N ∈N+, and the points xi ∈ Ωi in each subdomain. The function:

f̃ N(x) =
N

∑
j=1

f (xj)Wh(x− xj) λ(Ωj), (2.15)

converges to f̃ of Equation 2.1 as N → ∞, for a space filling distribution. The
latter implies that as N → ∞, a condition such as maxj ‖xi − xj‖ → 0, ∀xj ∈ Ωi, is
necessary to obtain a reasonable partitioning. A stronger requirement would be to
assume maxi λ(∂Ωi)→ 0, for ∂Ωi denoting the boundary of Ωi. Certain constructions
respect the former requirement and they are discussed in Section 3.1.1. Note that
the superscript N is used to distinguish a quantity in the discrete setting from the
corresponding quantity in the continuous setting.

The h = h(Wh) relation tells something about the behavior of h, however, it provides
no link whatsoever with the discrete system to be solved. In a review article, Mon-
aghan and Lattanzio [1985] state a simple rule and the following puts this rule in the
context of measures, thus providing a more formal understanding of the resolution of
the discretized SPH system.

The total number of integration points is given by the counting measure [Cheng, 2008;
Rudin, 1987, Ch.2]:

ν(ΩN) =

{
elements of ΩN , if ΩN 6= Ω,
∞, if ΩN = Ω,

(2.16)

which can be written as the sequence:

ν =
N

∑
i=1

δxi . (2.17)

In the discrete case, it obtains the number or point density:

n(xi) =

∫
Ωi

dν∫
Ωi

dλ
=

1∫
Ωi

dλ
, (2.18)

which is a local property at the smallest scale of the numerical system. There exists
a larger scale in the system, corresponding to a region Ωh,i = {x : ‖x− xi‖ ≤ ϑh}.
Therefore, the number density can be approximated as:

n(xi) =
ν(Ωi)

λ(Ωi)
≈

ν(Ωh,i)

λ(Ωh,i)
=

ad(ϑη)d

ad (ϑh)d =
(η

h

)d
= n(xi), (2.19)

with η the number of points per ϑ units of support radius and ad = [1, π, 4π/3] con-
stant, depending on the dimensionality of the problem. For the above we underline
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that n→ n for h→ 0, because Ωh→0
i = Ωi, as the h-neighborhood collapses towards a

point. Notice that in any case for a regular distribution of points n(xi) = n(xi) holds.
Therefore, the previous relation offers a definition for the smoothing length, as:

h(n) := η n−1/d, (2.20)

especially since the number density —or an estimate of it— is available given the
configuration of points.

It is worth pondering how does the dependence h = h(Wh) —described by Equation
2.14— pop up within the last definition of h. To this end, consider the scaling property
of the kernel:

1 ≈∑
j

Wh,ijλ(Ωj) = ∑
j

Wh,ij
1

n(xj)
≈∑

j
Wh,ij

hd

ηd =
cd

ηd ∑
j

wij, ∀ j : ‖xi − xj‖ < ϑh,

(2.21)

where the second approximation is in case the configuration of integration points is
not regular and the condition involving h is due to the fact that the summation of
w-values emanates from a summation of Wh-values. Hence:

η ≈
(

cd ∑
j

wij

)1/d

∼ ϑ
(

cd ad max(wij)
)1/d

, ∀ j : ‖xi − xj‖ < ϑh, (2.22)

depends on: 1) the functional form w, via its values and the scaling factor cd, and
on 2) how large the compact support of the kernel is, in ϑ units of h. The last
(crude) approximation is performed by considering a block function of value max(wij).
Finally, note that η becomes independent of the problem’s dimensions only for kernels
with cd being a power of the dimensions, like the Gaussian function. Therefore,
Equation 2.20 is a fundamental link between the resolution of the continuous and the
discretized domains.

2.2 Smoothing in a transforming domain

The smoothing in the previous section is performed in a fixed domain and therefore
the domain’s partitioning can be chosen to be regular. Let us now assume that the
domain Ω is the transformation —via a deterministic or probabilistic process— of an
original domain Ω0. The points x = x(x0) of Ω are in one-to-one correspondence with
points x0 of Ω0. A regular partitioning of the original domain Ω0, as the upper left
plot in Figure 2.3, does not necessarily end up to a regular distribution pattern of the
discretization points in Ω, see e.g. the upper right graph in Figure2.3. Consequently,
there is an aporia of how to calculate the associated volumes in order to employ
Equation 2.1.

Starting from the partitioning of Ω0 as: ΩN
0 = {⋃N

i=1 Ω0,i = Ω0 : Ω0,i
⋂

Ω0,j 6=i =
∅, ∀i, j ∈ [1, N]}, for x0,i ∈ Ω0,i, and along with the above mentioned condition
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for a space filling distribution, there are various ways to obtain the volumes λ(Ωi)
in the transformed domain ΩN . The crudest approach is to assume equally sized
subdomains λ(Ωi) = λ(Ω0,i) = ∑j λ(Ω0,j)/N. This concept characterizes integration
in a Monte-Carlo way. Another approach is to deploy a fixed background Cartesian
grid of A ⊇ Ω with Aj∈{1,M} subdomains and count the ν(Aj) particles, such that
λ(Ωi) = λ(Aj)/ν(Aj), for all Ωi ∈ Aj. This approach is depicted in the lower left
plot of Fig.2.3 and forms the basis of the Particle In Cell method. Alternatively, it is
always a possibility to perform a Voronoi tesselation in the transformed domain Ω and
thus obtain λ(Ωi), as in the lower right plot of Fig.2.3.
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FIGURE 2.3: The initial and the transformed domain (upper plots), and two ways to obtain a partitioning of
the transformed domain (lower plots).

2.2.1 Invariant quantities

A different concept is to formulate the problem in terms of the system’s inherent
invariants, if any. Suppose that ϕ is an invariant quantity. Then, we describe it by the
measure:

ϕ(Ω) =
∫

Ω
dϕ(x) =

∫
Ω0

dϕ0(x0) = ϕ0(Ω0), (2.23)
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and its smoothing leads to its smoothed density (e.g. see the treatment of mass in
Evers et al. [2015]):

f̃ (x) =
∫

Ω
W(x− y)dϕ(y). (2.24)

The above equality is guaranteed by the one-to-one correspondence5 between the
points of Ω0 and Ω. Moreover, the integration over the two domains:∫

Ω
g(x)dϕ(x) =

∫
Ω0

g(x0)dϕ(x0), (2.25)

is equivalent for any bounded function g.

Considering that ϕ is absolutely continuous with respect to the Lebesgue measure
and thus, the Radon-Nikodym derivative of the measure ϕ with respect to the Lebesgue
measure, provides a well-defined density:

f (x) =
dϕ

dλ

∣∣∣
(x)

. (2.26)

According to the latter, Equation 2.24 transmutes to Equation 2.1 and thus allows
for the calculation of f̃ without prior knowledge of f . A well-defined f0 is typically
available in Ω0 and the calculation of f̃ can be performed in the following steps:

– Partition Ω0 into ΩN
0 and assign points x0,i ∈ Ω0,i;

– Introduce the discrete measure ϕN
0 = ∑i p(xi)δx0,i , where p(xi) :=

∫
Ω0,i

f0 dλ;

– Obtain f̃ N in the transformed domain, as: f̃ N(x) = ∑j p(xj)Wj(x).

Regarding SPH schemes, this is precisely the ingredient which allows for the rela-
tively easy treatment of discontinuous flows, with ϕ the measure of mass and f̃ the
smoothed density of mass. Moreover, this effect endows SPH with the property of
exact conservation of mass. On the other hand, this is the reason why in order to
study SPH schemes, a measure-based formulation is necessary.

For systems lacking inherent invariant quantities, the total number of the discretized
system’s points offers an alternative.With N → ∞, each Ω0,i collapses into the point
x0,i and the continuous domain is recovered as (Rd)N ⊃ ΩN

0 → Ω0 ⊂ Rd. Thus, the
total number of integration points within ΩN

0 , given by ν0 = ∑i δx0,i , is a conserved
quantity as:

ν(ΩN) = ∑
i

δxi = ∑
i

δx0,i = ν0(ΩN
0 ). (2.27)

The smoothed number density:

ñ(xi) =
∫

ΩN
W(xi − y)dν(y) = ∑

j
W(xi − xj), (2.28)

5The rigorous procedure goes through the definition of the pushforward operation and is described in [Evers
et al., 2015].
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is explicitly computable for the discrete system, as well as the per-particle density of
the conserved quantity ϕ:

p(xi) =

∫
Ωi

dϕ∫
Ωi

dν
=
∫

Ωi

dϕ. (2.29)

Eventually, f is approached as the limit:

lim
N→∞

f̃ N(xi) = lim
N→∞

p(xi) ñ(xi) = lim
N→∞

∫
Ωi

dϕ∫
Ωi

dλ
=

dϕ

dλ

∣∣∣
(x)

= f (x), (2.30)

with the conservation of p(xi) =
∫

Ωi
dϕ =

∫
Ω0,i

dϕ0. Accordingly, given f0 in Ω0, the

calculation of f̃ N can be performed in the following steps:

– Partition Ω0 into ΩN
0 and assign points x0,i ∈ Ω0,i;

– Introduce the discrete measures ϕN
0 = ∑i p(xi) δx0,i and ν = ∑i δx0,i , where

p(xi) ≡
∫

Ω0,i
f0 dλ;

– Obtain f̃ N in the transformed domain, as: f̃ N(xi) = p(xi) ∑j Wj(xi).

Finally, for domains which are discretized in a uniform pattern, Equation 2.19 shows
that h(n) = η n−1/d. In case of a large span of n in the transformed domain, a
better estimate can be achieved by considering h to vary with the number density6.
Therefore, we resort to ñ, which is a readily available estimate of n, and postulate:

f̃ N(xi) = p(xi) ñ(xi), h(ñ(xi)) = η ñ(xi)
−1/d, (2.31)

which is a system of simultaneous equations.

2.2.2 Variant quantities

In contrast to the procedure above, which applies to invariant quantities, the smoothed
estimate of any variant quantity of the system necessitates the definition of a volume.
Inhibiting the use of a meshing procedure, the construction of a volume can be
accomplished in two ways. In case there exists an invariant ϕ in the system, with
regularized density f̃ , then volume increments are obtained as dλ ≈ dϕ/ f̃ , thus
arriving at:

g̃(x) =
∫

Ω
g(y)W(x− y)dλ(y) ≈

∫
Ω

g(y)W(x− y)
dϕ

f̃

∣∣∣
(y)

, (2.32)

which is clearly only an approximation. By introducing the discrete measure ϕN , the
sum:

g̃N(x) = ∑
j

g(xj)W(x− xj)
ϕN(Ωj)

f̃ N
j

, (2.33)

6In literature of SPH, this is a usual approach [Monaghan, 2005], yet only a few studies underline the
significance of number density (e.g. [Price, 2012]).
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converges to the integral as N → ∞. Alternatively, if no inherent invariants exist we
resort to the construction of an increment for the discrete measure of volume via the
number density, as λ(Ωj) = ν(Ωj)/n(xj). The smoothed estimate becomes:

g̃N(x) = ∑
j

g(xj)W(x− xj)λ(Ωj) ≈∑
j

g(xj)W(x− xj)
1

ñ(xj)
. (2.34)

Similarly to the construction of smoothed estimates for invariant quantities in domains
with a non-uniform discretization, the estimate for variant quantities becomes:

g̃N(xi) = ∑
j

g(xj)Wj(xi, h(xi))
1

ñ(xj)
, h(xi) = η ñ(xi)

−1/d, (2.35)

which is again a system of coupled equations.

2.3 Smoothing operators

Having constructed the smoothed invariant quantity and its derivative:

f̃ (x) =
∫

Ω
W(x− y)dϕ(y), ∂α f̃ (x) =

∫
Ω

∂αW(x− y)dϕ(y), (2.36)

we now proceed to the definition of other operators that are used in the following
chapters. Note that we suppress the explicit reference to h, so that W ≡ Wh. The
transformation of the original domain Ω0 into Ω implies a variation of the smoothing
integral operator with respect to a change in the coordinates by δx. The integral
appearing in f̃ above varies as:

δ f̃ (x) =
∫

Ω
∂αW(x− y)

(
δxα − δyα

)
dϕ(y). (2.37)

Last but not least, since the transformation begins from the original configuration
Ω0 of the system, it is necessary to define the weak derivative with respect to that
configuration as well. The smoothing applied to the measure ϕ and the corresponding
weak derivative are:

f̂0(x0) =
∫

Ω0

Ŵ(x0 − y0)dϕ0(y0), ∂0α f̂0(x0) =
∫

Ω0

∂0αŴ(x0 − y0)dϕ0(y0). (2.38)

Note that Ŵ ≡ Ŵĥ is not necessarily the same as W ≡Wh. Also, ĥ does not equal h in
general. Obviously, the variation in this case is:

δ f̂0(x0) = 0. (2.39)

Regarding the smoothing operators for a variant quantity, its estimate and the corre-
sponding derivative are:

g̃(x) =
∫

Ω
g(y)W(x− y)

dϕ

f̃

∣∣∣
(y)

, ∂α g̃(x) =
∫

Ω
g(y) ∂αW(x− y)

dϕ

f̃

∣∣∣
(y)

. (2.40)
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For a variation of the spatial coordinates, all the terms of the functional need to be
taken into account:

δg̃(x) =
∫

Ω
δg(y)W(x− y)

dϕ

f̃

∣∣∣
(y)

+
∫

Ω
g(y)∂αW(x− y)

(
δxα − δyα

)dϕ

f̃

∣∣∣
(y)

−
∫

Ω
g(y)W(x− y)

δ f̃
f̃ 2

∣∣∣
(y)

dϕ(y). (2.41)

Interestingly, in case g coincides with f̃ , then the first term is an approximation of
δ f̃ = ∂ f̃ /∂xα δxα and the third term is its opposite, leaving only the second term. This
effect forms the basis for a density estimate in the following chapter.

The smoothed estimate of a function with respect to the original coordinates is:

ĝ(x) =
∫

Ω0

g(y) ∂αŴĥ(x0 − y0)dλ(y0), ∂0α ĝ(x) =
∫

Ω0

g(y) ∂αŴĥ(x0 − y0)dλ(y0),

(2.42)

while it can be improved by using the analysis of Section 2.4. Equation 2.42 is used in
the following sections. Note that in contrast to the density of the conserved quantity,
this estimate depends on the particle trajectories. Consequently, ĝ varies as:

δĝ(x) =
∫

Ω0

∂αg(y) δyα Ŵĥ(x0 − y0)dλ(y0). (2.43)

and we underline that dλ(y0) typically arrives from a partitioning of the original
domain Ω0 and thus it is known.

2.4 Convergence of smooth estimates

Until now, we constructed f̃ —the estimate of the density of a conserved quantity in a
transforming domain— without using f and the estimate g̃ under the least assumption
that g is locally integrable. In order to study the convergence of these estimates, to f
and g respectively, the latter two should at least be piecewise continuous functions.

From an SPH point of view, we follow the concepts also presented in Monaghan
[2005], Price [2012] and Macia et al. [2012]. Nevertheless, we highlight the distinction
between the regularized density f̃ and the density f = dϕ/dλ. This allows us to
trace a nonlinearity which is typically shunned in most SPH error analyses. We note
the scalings:

Wh = O(1), ∂αWh = O(h−1), and (x− y)θ = O(hθ). (2.44)
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2.4.1 Invariant quantities

In the regions of the domain Ω where f is smooth enough, the Taylor expansion:

f̃ (x) =
∫

Ω
W(x− y)dϕ(y) =

∫
Ω

f (y)W(x− y)dλ(y)

= f (x) H(x) + ∂α f (x)Θα(x) + ∂αβ f (x)Iαβ(x) +O(h3), (2.45)

reveals the convergence f̃ to f , for the functionals:

H(x) ≡
∫

Ω
W(x− y)dλ(y), Θβ(x) ≡

∫
Ω
(yα − xα)W(x− y)dλ(y),

Iαβ(x) ≡ 1
2

∫
Ω
(yα − xα)(yβ − xβ)W(x− y)dλ(y). (2.46)

Due to the scaling of W to unity, in unbounded domains H(x) = 1. Additionally, W
is symmetric, whence for the same domains Θα(x) = 0 and Iαβ(x) 6= 0. Therefore, we
deduce that in the general case of unbounded or bounded continuous domains:

f̃ = f +O(hκ), 0 ≤ κ ≤ 2. (2.47)

Similarly, for the weak derivative we obtain:

∂α f̃ (x) =
∫

Ω
∂αW(x− y)dϕ(y) =

∫
Ω

f (y) ∂αW(x− y)dλ(y)

= f (x)Kα(x) + ∂β f (x)Λαβ(x) + ∂βγ f (x)Mαβγ(x) +O(h2), (2.48)

for the functionals:

Kα(x) ≡
∫

Ω
∂αW(x− y)dλ(y), Λαβ(x) ≡

∫
Ω
(yβ − xβ)∂αW(x− y)dλ(y),

Mαβγ(x) ≡ 1
2

∫
Ω
(yβ − xβ)(yγ − xγ) ∂αW(x− y)dλ(y). (2.49)

Since ∂αW is antisymmetric, Kα = 0 in unbounded domains. Moreover, Λαβ = δαβ,
for δαβ the Kronecker delta, and Mαβγ = 0. Thus, the result is:

∂α f̃ = ∂α f +O(hξ), −1 ≤ ξ ≤ 2, (2.50)

for the general case of unbounded or bounded continuous domains.

It is necessary to stress that the observed possible divergence only appears for parti-
tionings which are away from being reasonable, or on the boundaries of the domain.
Regarding bounded domains, we discuss certain fixes in the next subsection. About
problematic partitionings, we will see how these inefficiencies manifest themselves
in instabilities during the dynamical evolution of the SPH system (see Section 3.4).
Fixing them is not a straightforward task, as then the dynamics of the system itself is
affected.
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2.4.2 Variant quantities

For regions of Ω where g is analytical, the Taylor expansion of its smoothed estimate
is:

g̃(x) =
∫

Ω
g(y)W(x− y)

dϕ

f̃

∣∣∣
(y)

= g(x) H̃(x) + ∂αg(x) Θ̃α(x) +O(h2), (2.51)

for the functionals:

H̃(x) ≡
∫

Ω
W(x− y)

dϕ

f̃

∣∣∣
(y)

=
∫

Ω
W(x− y)

f dλ

f̃

∣∣∣
(y)

,

Θ̃α(x) ≡
∫

Ω
(yα − xα)W(x− y)

dϕ

f̃

∣∣∣
(y)

=
∫

Ω
(yα − xα)W(x− y)

f dλ

f̃

∣∣∣
(y)

. (2.52)

According to Equation 2.47, for nonzero f̃ , f / f̃ = [1 +O(hκ)]−1, 0 ≤ κ ≤ 2. Consid-
ering the binomial series7, we may write up to first order:

H̃ = H
(

1− hκ
)

, Θ̃β = Θβ

(
1− hκ

)
. (2.53)

Thus, the leading error term is the error of H = O(1) and we establish that:

g̃ = g +O(hκ), 0 ≤ κ ≤ 2. (2.54)

An improvement to the estimate appearing in Equation 2.51 is to consider:

g̃(x)
H̃(x)

=
1

H̃(x)

∫
Ω

W(x− y)
dϕ

f̃

∣∣∣
(y)

, (2.55)

an operation which is known as the Shepard correction [Macia et al., 2012]. Conse-
quently, the convergence is:

g̃
H̃

= g +O(hκ), 1 ≤ κ ≤ 2. (2.56)

Note that H = O(1), so that divergence problems related to the division by a positive
power of h do not arise8.

Regarding the weak derivative of g, it converges as:

∂α g̃(x) =
∫

Ω
g(y) ∂αW(x− y)

dϕ

f̃

∣∣∣
(y)

= g(x)K̃α(x) + ∂βg(x)Λ̃αβ(x) +O(h2), (2.57)

with the functionals:

K̃α(x) =
∫

Ω
∂αW(x− y)

dϕ

f̃

∣∣∣
(y)

, Λ̃αβ(x) =
∫

Ω
(xβ − yβ)∂αW(x− y)

dϕ

f̃

∣∣∣
(y)

. (2.58)

7The binomial series (1 + z)θ = 1 + θz + ..., converges for |z| < 1.
8Actually, such problems occur in the discrete setting, for points away from any other; then the discrete

estimate of H tends to 0 and the calculation blows up.
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Again by employing the binomial series and keeping first order terms, we find that:

K̃α = Kα

(
1− hκ

)
, Λ̃αβ = Λαβ

(
1− hκ

)
. (2.59)

and the approximation becomes:

∂α g̃ = ∂αg +O(hξ), 0 ≤ ξ ≤ 2. (2.60)

In order to guarantee convergence, Equation 2.57 can be turned into:

g(x) K̃α(x)− ∂α g̃(x) =
∫

Ω

(
g(y)− g(x)

)
∂αW(x− y)

dϕ

f̃

∣∣∣
(y)

. (2.61)

The subtraction definitely removes the terms O(1) and delivers the convergence
result for bounded or unbounded domains:

g(x) K̃α − ∂α g̃ = ∂αg +O(hξ), 1 ≤ ξ ≤ 2, (2.62)

since Λ̃αβ = Λαβ

(
1− hκ

)
and Λαβ = O(δαβ + h). Finally, Equation 2.57 suggests that

convergence of ξ = 2 can be achieved by inverting the tensor Λ̃αβ in the expression:

∂βg(x)Λ̃αβ(x) =
∫

Ω

(
g(y)− g(x)

)
∂αW

dϕ

f̃

∣∣∣
(y)

. (2.63)

This operation can be problematic though. Notice that for α 6= β, O(h) terms are
introduced in the approximation, due to Λ̃αβ = O(δαβ + h).

Apart from the constructions presented so far, there is a plethora of improved
smoothed estimates that can be constructed for functions or their derivatives. An
extensive review is given by Price [2012] and Violeau [2012]. We delineate the most
popular and those that are used for the analysis of the smoothed equations of me-
chanics, as becomes apparent in Section 3.4.

Effectively, the convergence of the estimates and their derivatives to the corresponding
functions depends on the values of the functionals H̃, Θ̃α, K̃α and Λ̃αβ. Although the
previous analysis related them to H, Θα, Kα and Λαβ and in turn to the proximity of a
point to the boundaries, in discretized domains their behavior is strictly connected to
the configuration of the moving points.

Finally, it is crucial to underline that the conservation of the quantity ϕ is independent
of the convergence of f̃ to f . The latter convergence plays an important role in the
convergence of smoothed estimates of the variant quantity g.



CHAPTER 3

The SPH equations from continuum mechanics

In the literature of SPH, it is established that the classical SPH scheme can be derived
by applying the principle of least action to a particle system, where the SPH density
estimate acts as a constraint [Bonet and Lok, 1999; Monaghan, 2005; Monaghan and
Price, 2001; Price, 2012]. The importance of the particle system’s Lagrangian function
is already recognized in early articles about SPH (e.g. Gingold and Monaghan. [1978]).
A subtlety lies in the fact that in the derivation of the SPH equations the action
of the particle system is minimized rather than the action of the continuum. The
minimization of the action at the continuum level and the subsequent discretization
of the motion equation in terms of particles do not necessarily yield the same equation
of motion (at the discrete level). The latter procedure also reveals the mathematical
formalities necessary to convince oneself that SPH indeed comes from principles of
continuum mechanics.

For this reason, we follow a somewhat different path. We start by considering a
general framework for the derivation of the equations of mechanics for continuous
media. The indicated framework consists of the following triptych: measure-valued
evolutions, the principle of least action and the fundamental relation of thermodynamics.
Thereupon, we delve into the derivation of two types of equations: the classical
equations and the smoothed ones. This distinction is understood in the following
sense: while the classical equations designate a functional relation of density with
local distortions, the smoothed equations adopt a smoothed density profile, which
is eventually an explicit function of the medium’s configuration. Three different
smoothings are constructed based on three basic measures: the measure of mass, which
upon scaling with the total mass of the medium is a probability measure, the counting
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FIGURE 3.1: Transformation of a medium from Ω0 to Ω.

measure and the Lebesgue measure. All three offer a formal way to pass to the discretized
SPH equations. We finally conclude with remarks and suggestions for the use of the
developed schemes.

3.1 General concepts

Classical mechanics defines a particle as a moving point of mass. Continuum mechan-
ics is based on the notion of a particle in order to introduce the continuous medium
as a mechanical system consisting of an infinite number of particles [Berdichevsky,
2009, Ch.3]. In the latter case, particles are definitely not physical entities of any
scale. The infinite set of particles Ωt ⊂ Rd, which constitute the medium at any
time t ∈ [0, T), is in one-to-one correspondence with a set of points of some region
Ω0 ⊂ Rd. Particles are tagged with their coordinates x0 ∈ Ω0 and in this way the
material or Lagrangian coordinates are defined [Berdichevsky, 2009, Ch.3]. The particle
trajectories are the functions:

x = x(x0, t), x ∈ Ωt, (3.1)

which describe the Eulerian coordinates of the particles in the observer’s frame of
reference. Although curvilinear coordinate systems can be used, in what follows
we avoid complications by assuming a single fixed Cartesian frame as the observer’s
frame of reference. Regarding the reference configuration, this may be any of the
configurations attained by the medium during its motion. In case Ω0 coincides with
the initial configuration, then the description is called total Lagrangian. Alternatively,
if the current configuration Ωt is chosen as the reference, then the problem obtains an
updated Lagrangian description. In order to keep the notation concise, we suppress
the explicit dependence of Ωt on t and simply write Ω ≡ Ωt. The transformation of
the medium from Ω0 to Ω is depicted in Figure 3.1, where every point x of the new
configuration corresponds to one point in the initial configuration.

Using an index notation for the spatial dimensions, the particle trajectories (3.1)
appear as:

xα = xα(x0, t), α ∈ {1, 2, 3}, (3.2)
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or also β, γ ∈ {1, 2, 3} further on. The summation convention applies wherever
repeated indices are encountered. Accordingly, the Lagrangian coordinates in index
notation become x0α and they are fixed in time. Thus, the time derivatives of the
trajectories provide the particle velocities:

vα(x(x0, t), t) =
dxα

dt

∣∣∣
(x0,t)

, (3.3)

with d(·)/dt denoting the total or material derivative. Note the difference in the
temporal derivatives. In general, any real-valued function f = f (x(x0, t), t) of the
Eulerian coordinates and time, obtains the total derivative:

d f
dt

=
d f (x(x0, t), t)

dt
= ∂t f + ∂α f

dxα

dt
= ∂t f + vα ∂α f , (3.4)

where ∂t(·) is the variation in time for the observer’s frame and ∂α(·) are the spatial
derivatives with respect to Eulerian coordinates. Therefore, we emphasize that:

∂t vα(x) 6= d2xα

dt2 . (3.5)

Similarly, the derivatives with respect to the Lagrangian coordinates becomes ∂x0α(·).

For any real-valued function g = g(x) = g(x(x0, t)) of the particle trajectories,
we define the function g0 := g0(x0) = g(x(x0, 0)), which represents values at the
medium’s initial configuration.

Finally, we reserve i, j, k to denote particle indices in the discrete setting, so that the
comma in vα,i simply separates the α-component of the velocity vector from particle i
index.

3.1.1 Measure-valued formulation

The equations derived in the following sections are formulated with the help of three
measures, characterizing basic quantities of the medium. Emphatically, we adopt the
notation λ, µ and ν.

For a medium found in the domain Ω, its total volume is given by the Lebesgue measure:

λ(Ω) =
∫

Ω
dλ. (3.6)

While the volume of a medium changes under certain transformations, its mass:

µ(Ω) =
∫

Ω
dµ(x) =

∫
Ω0

dµ0(x0) = µ0(Ω0), (3.7)

is always conserved in the absence of sinks or sources. The above equality is guaran-
teed by the one-to-one correspondence between the set of particles in the medium’s
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FIGURE 3.2: Transformation of a discretized medium from Ω0 to Ω.

reference configuration Ω0 and any later configuration Ω. Similarly, the integration
limits in integrals with respect to mass:∫

Ω0

f (x)dµ0(x0) =
∫

Ω
f (x)dµ(x), (3.8)

may change for any bounded function f .

The measure-valued definition of mass conservation (3.7) is more general than the
typical form:∫

Ω
ρ(x)dλ(x) =

∫
Ω0

ρ0(x0)dλ(x0), (3.9)

since the requirement for a well-defined mass density, as the Radon-Nikodym derivative
of the measure of mass with respect to the Lebesgue measure:

ρ(x) =
dµ

dλ

∣∣∣
(x)

, (3.10)

becomes redundant. Thus, it offers the basis for a generalized approach for both
continuous and discretized media. Within this context, we may construct the discrete
approximation µN

0 of µ0, which can then be used for numerical analysis. Essentially,
the continuously distributed mass is ”squeezed” towards a countable number of
point masses. This construction is achieved using one of the two methods described
in a formal manner by Evers et al. [2015].

In principle, consider the partitioning ΩN
0 = {⋃N

i=1 Ω0,i = Ω0 : Ω0,i
⋂

Ω0,j 6=i =

∅, ∀i, j ∈ [1, N]}, N ∈N+, and the points x0,i ∈ Ω0,i in each subdomain. A condition
such as maxj ‖xi − xj‖ → 0, ∀xj ∈ Ωi, is necessary to obtain a reasonable partitioning,
as N → ∞. A stronger requirement would be to assume maxi λ(∂Ωi) → 0, for
∂Ωi denoting the boundary of Ωi. This concept is visualized in Figure 3.2, for the
trajectories of particles i and j. In the first approach, the empirical measure:

µN
0 = m̄

N

∑
i=1

δx0,i , m̄ :=
µ0(Ω0)

N
(3.11)
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assigns the same amount of mass to each particle. Particle positions should be
carefully chosen, such that they replicate the density function ρ0. Thus, this procedure
can be very demanding for ρ0 varying in Ω0. Conversely, the second method delivers
equal subdomains Ω0,i. The latter is a simple construction in case Ω0 is for instance
a rectangle in a domain of two spatial dimensions, otherwise the centroidal Voronoi
tessellation is the relevant procedure. In any other case (e.g. partitioning a sphere
with cubes), it should be understood as a converging procedure with increasing N.
Eventually, the discrete measure is:

µN
0 =

N

∑
i=1

m(x0,i) δx0,i , m(x0,i) :=
∫

Ω0,i

dµ0, (3.12)

and due to the one-to-one correspondence of the particles between ΩN and ΩN
0 , it is

also conserved:

µN(Ω) =
∫

Ω
dµN(x) =

∫
Ω0

dµN
0 (x0) = µN

0 (Ω0), (3.13)

under any transformation.

The convergence of µN
0 to µ0 is intuitively discerned, but the convergence of µN to

µ is the subject of lengthy proofs [DiLisio et al., 1998; Evers et al., 2015], due to the
dynamics involved.

Apart from mass, there exists another invariant quantity in a transforming medium:
the total number of its particles. Naturally, this becomes infinite for Ω0 and therefore it
is necessary to introduce it as a limiting process.

Essentially, with N → ∞, each Ω0,i collapses into the point x0,i and the continuous
domain is recovered by the set of points. Thus, the total number of subdomains in
ΩN

0 is given by the counting measure ν0 = ∑N
i=1 δx0,i , which is a conserved quantity.

The number density n, defined in Equation 2.18 as:

n(xi) =

∫
Ωi

dν∫
Ωi

dλ
=

1∫
Ωi

dλ
, (3.14)

becomes infinite for the continuous system, while the mass-per-particle density:

m(xi) =

∫
Ωi

dµ∫
Ωi

dν
=
∫

Ωi

dµ, (3.15)

reduces to zero in the same limit. A combination of the latter two densities furnishes
the mass density as:

lim
N→∞

m(xi) n(xi) = lim
N→∞

∫
Ωi

dµ∫
Ωi

dλ
=

dµ

dλ

∣∣∣
(x)

= ρ(x). (3.16)

Additionally, the conservation of mass (3.7) implies that m(xi) =
∫

Ωi
dµ(x) =∫

Ω0,i
dµ0(x0), hence is known from the initial configuration. Due to this limiting

behavior, it becomes possible to construct the mass density at any time, using the
number density and stay within the context of continuum mechanics.
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3.1.2 The principle of least action

The principle of least action states that the true motion of the continuum is a stationary
point of the action functional:

S =
∫ t1

t0

L dt, t0, t1 ∈ [0, T] (3.17)

obeying the constraint of initial and final positions [Berdichevsky, 2009, Ch.4]. The
Lagrangian function is the difference between the medium’s kinetic and potential energy per
unit mass e and is written with the help of the introduced measure as:

L =
∫

Ω

(1
2

v2
α − e

)
dµ =

∫
Ω0

(1
2

v2
α − e

)
dµ0, (3.18)

for e = e(x) an explicit or implicit function of the particle positions. Note that the
Lagrangian may be written equivalently, with reference to the initial configuration, as
described by Equation 3.8. The action’s stationary point is found through the action’s
vanishing variation with respect to an infinitesimally small disturbance δx of the
trajectories x:

δS
∣∣∣t1

t0
= 0. (3.19)

The operator coined with δ(·) has certain properties, with respect to the already
defined differential operators. It commutes with d(·)/dt and ∂(·)/∂x0α, while it does
not with the spatial derivative ∂(·)/∂xα [Berdichevsky, 2009, Ch.4].

The infinitesimal disturbance is chosen such that it vanishes at initial and final times
δx|t0 = δx|t1 = 0 and on the boundaries of the domain δxα|∂Ω = 0 as well. Then, the
action’s variation expands as:

δS
∣∣∣t1

t0
= δ

∫ t1

t0

L dt =
∫ t1

t0

∫
Ω

(
δ
(1

2
v2

α

)
− δe

)
dµ dt

=
∫ t1

t0

∫
Ω

(
vα δvα −

δe
δxα

δxα

)
dµ dt

=
∫ t1

t0

∫
Ω

(
vα

d
dt

(
δxα

)
− δe

δxα
δxα

)
dµ dt

=
∫ t1

t0

∫
Ω

(
− dvα

dt
δxα −

δe
δxα

δxα

)
dµ dt +

∫
Ω

[
vαδxα

]t1

t0
dµ = 0. (3.20)

Since the variation vanishes at initial and final times, the last term of Equation 3.20
drops and thus the variational principle writes:∫ t1

t0

∫
Ω

(dvα

dt
+

δe
δxα

)
δxα dµ dt = 0. (3.21)

Note that by preserving the notation δe/δxα, we imply that the internal energy might
be a functional, rather than a function. The fundamental lemma of calculus of variations
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states [Berdichevsky, 2009, Ch.4] that in order for the previous Equation 3.21 to
hold for any arbitrary variation δxα, the integrand should be zero and therefore the
equation of motion for each point of the system becomes:

dvα

dt
= − δe

δxα
. (3.22)

Nonetheless, the functions of potential energy which are examined further on involve
implications. Thus, in order to find the functional derivative δe/δxα, we first seek the
variation of the energy functional in the form:

δE
∣∣∣t1

t0
=
∫ t1

t0

∫
Ω
δe dµ dt =

∫ t1

t0

∫
Ω

δe
δxα

δxα dµ dt. (3.23)

With this expression at hand, the variational principle is written in the form of
Equation 3.21 and Equation 3.22, the equation of motion, follows straightforwardly.

3.1.3 Thermodynamic relations

A particularly interesting form of potential energy is a system’s internal energy, for
which an expression for its change is known, rather than an explicit formula. In
what follows, we consider internal energy as the only form of potential energy in the
system. For processes which are reversible, meaning that they follow a continuous
thermodynamic path of equilibria, the medium’s thermodynamic state is fully deter-
mined by the k + 1 state variables ξ1, ξ2, ..., ξk and s. Here ξr are the thermodynamic
substate variables and s is the specific entropy [Malvern, 1969, Ch.5]. Thus, a general
caloric equation of state provides the internal energy per unit mass:

e = e(s, πr, x0), (3.24)

with the thermodynamic temperature and the thermodynamic tensions defined by

T :=
∂e
∂s

∣∣∣
ξ
, πr :=

∂e
∂ξr

∣∣∣
s
, r = 1, 2, ..., k. (3.25)

Note that inhomogeneous media are permitted by the form of e due to x0, the initial
particle positions. The change of internal energy within the system is then delivered
by Gibbs’ relation for thermodynamics:

de = T ds + πr dξr, (3.26)

which accommodates the changes of the system’s entropy, while at the same time
it provides a very broad framework for physical modeling. What is necessary, is
to choose the relevant thermodynamic substate variables and use their conjugate
thermodynamic tensions. The latter may include mechanical, electromagnetic or
chemical effects in the system. These describe the part of the internal energy which
is available for use by the system —this is the concept of work. The variation of the
internal energy δe is required by the equation of motion .
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We first examine a form of internal energy which is encountered in ideal media. This
term refers to media for which their internal energy varies with the medium’s specific
volume 1/ρ, constituting e = e(ρ). The conjugate thermodynamic tension of volume
is a mean volumetric stress P, the pressure, at each particle of the medium [Malvern,
1969, Ch.5]. By convention, it is taken to be positive under compression and ultimately:

de|s = Pd
(

1/ρ
)
=

P
ρ2 dρ. (3.27)

Thus, in view of the least action principle, the equation of motion of an ideal com-
pressible medium depends on how ρ changes in the system.

3.2 Classical equations

The one-to-one correspondence between the initial particle positions x0 and the
current ones x = x(x0, t), seconded by the fixed infinitesimal masses which are
associated to each particle, imply that:

dµ(x) = dµ0(x0). (3.28)

The definition of the medium’s density function (3.10) delivers:

ρ(x)dλ(x) = ρ0(x0)dλ(x0). (3.29)

Volume increments are translated to length increments per direction [Malvern [1969],
Ch.4; Berdichevsky [2009], Ch.3; Seliger and Whitham [1968]]:

ρ dx1 dx2 dx3 = ρ0 dx01 dx02 dx03, (3.30)

and consequently the classical medium’s density:

ρ(x) = ρ0(x0)
1

J(x)
, (3.31)

turns out to be a function of the Jacobian matrix:

J =
∂(x1, x2, x3)

∂(x01, x02, x03)
, Jβγ =

∂J
∂xβγ

, (3.32)

via its determinant J = εαβγ x1α x2β x3γ, for εαβγ the Levi-Civita symbol [Berdichevsky
[2009],Ch.3; Seliger and Whitham [1968]]. Note that this form of mass conservation is
useful only if the reference configuration is different than the current configuration.
Thus it is typically used for problems in the total Lagrangian formulation.

From Equation 3.27, the medium’s internal energy becomes e = e(ρ(J)) and the
variation of density is:

δρ =
dρ

dJ
∂J

∂xαβ
δxαβ = −ρ0

J2
J

xαβ
δ
( ∂xα

∂x0β

)
= −ρ0

J
∂x0β

∂xα

∂

∂x0β

(
δxα

)
= −ρ∂α

(
δxα

)
.

(3.33)
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Given a temporal variation of the positions of the medium, we arrive at the continuity
equation1:

dρ

dt
= −ρ ∂αvα. (3.34)

For the total Lagrangian description, both Equations 3.31 and 3.34 can be used, while
for the updated Lagrangian, only the latter is useful.

In order to write out the equation of motion (3.22), the variation of energy with respect
to a variation in δx is required. To this end, we start by writing:

δe =
de
dρ

δρ = − P
ρ2 ρ ∂α

(
δxα

)
. (3.35)

According to the derivation strategy the variation of energy is cast into the variation
of the functional in Equation 3.23:

δE
∣∣∣t1

t0
=
∫ t1

t0

∫
Ω
δe dµ dt = −

∫ t1

t0

∫
Ω

P
ρ

∂α

(
δxα

)
dµ dt

= −
∫ t1

t0

∫
Ω

P∂α

(
δxα

)
dλ dt

= −
∫ t1

t0

∫
Ω

∂α

(
P δxα

)
dλ dt +

∫ t1

t0

∫
Ω

∂αPδxα dλ dt

= −
∫ t1

t0

∫
∂Ω

[
P δxα

]
∂Ω

ζα dΓ dt +
∫ t1

t0

∫
Ω

1
ρ

∂αP δxα dµ dt

=
∫ t1

t0

∫
Ω

1
ρ

∂αP δxα dµ dt. (3.36)

where we used the definition ρ = dµ/dλ and the fact that the variation δx|∂Ω = 0
vanishes on the boundaries ∂Ω with outward normal unit vector ζα. With the integral
of δe above in the form required by the variation of the action in Equation 3.20, the
equation of motion (3.22) becomes:

dvα

dt
= −1

ρ
∂αP. (3.37)

This is the Euler equation for inviscid flows, written in terms of the material derivative
of velocity2.

1The continuity equation can also be derived from Equation 3.9 by applying the Reynolds transport theorem
and the Gauss theorem [Berdichevsky, 2009, Ch.3]. Notably, the latter is an approach more flavored
by the fluid mechanics community. Presumably because it does not involve the introduction of any
reference configuration which is a concept closer to solid mechanics.

2In case a variational principle with respect to the Eulerian coordinates is pursued, by comparison of
Equation 3.37 to 3.22, the Lagrangian is simply the pressure P. The proof is quite involved and is based
on Clebsch potentials, as shown in Seliger and Whitham [1968].
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3.3 Smoothed equations

The definition of a continuous medium guarantees a continuous mass distribution,
which results in the density ρ = dµ/dλ. Nevertheless, in order to describe the mass
distribution in a more general way and thus include cases of discontinuous media,
the measure-based formulation (3.7) offers an alternative.

The smoothed density obtains a weak derivative and thus conveys continuous solu-
tions to the equation of motion through internal energy, as exhibited by the thermo-
dynamic relation (3.26). Three different smoothed density estimates are introduced
and the corresponding equations of motion are derived.

3.3.1 Mass-smoothed medium

The measure of mass (3.7) obtains the smoothed density:

ρ̃(x) =
∫

Ω
W(x− y)dµ(y), (3.38)

where y := x(y0, t) for any y0 particle of the medium at the reference configuration.
It is the continuous form of the classical SPH density estimate [Monaghan, 2005;
Monaghan and Gingold, 1983; Price, 2012]. The smoothed density’s variation with
respect to a change in the medium’s positions is:

δρ̃(x) =
∫

Ω
∂αW(x− y)

(
δxα − δyα

)
dµ(y). (3.39)

Therefore, a temporal variation of the particle trajectories delivers the medium’s
continuity equation:

dρ̃

dt

∣∣∣
(x)

=
∫

Ω
∂αW(x− y)

(
vα(x)− vα(y)

)
dµ(y). (3.40)

The evolution of density constitutes a differential form of mass conservation for the
smoothed system, as opposed to the integral form of mass conservation appearing in Equa-
tion 3.10. Moreover, any allusion to the reference configuration is disregarded in the
derivation of the continuity equation of the smoothed medium. Thus, the description
of the medium always corresponds to the updated Lagrangian, as delineated in the
beginning of the chapter.

By adopting ρ̃, the internal energy of the smoothed medium becomes e = e(ρ̃(x)) and
from the thermodynamic relation (3.26), it follows that P = P(ρ̃, e). The variation of
the medium’s internal energy is:

δe(x) =
∂e
∂ρ̃

∣∣∣
(x)

δρ̃(x) =
P
ρ̃2

∣∣∣
(x)

∫
Ω

∂αW(x− y)
(
δxα − δyα

)
dµ(y), (3.41)

and the energy functional varies as:

δE
∣∣∣t1

t0
=
∫ t1

t0

∫
Ω
δe dµ dt =
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=
∫ t1

t0

∫
Ω

( ∫
Ω

P
ρ̃2

∣∣∣
(x)

∂αW(x− y)dµ0(y)

)
δxα dµ(x)dt

−
∫ t1

t0

∫
Ω

∫
Ω

P
ρ̃2

∣∣∣
(x)

∂αW(x− y) δyα dµ(y)dµ(x)dt

=
∫ t1

t0

∫
Ω

[ ∫
Ω

(
P
ρ̃2

∣∣∣
(x)

+
P
ρ̃2

∣∣∣
(y)

)
∂αW(x− y)dµ(y)

]
δxα dµ(x)dt. (3.42)

A critical step is that we swap x with y in the second term and use the antisymmetry
property of the gradient of the smoothing function (see properties of the smoothing
function in Chapter 2). Ultimately, the variation of the energy functional is in the
form of Equation 3.23, whence Equation 3.22 delivers:

dvα

dt

∣∣∣
(x)

= −
∫

Ω

(
P
ρ̃2

∣∣∣
(x)

+
P
ρ̃2

∣∣∣
(y)

)
∂αW(x− y)dµ(y), (3.43)

the equation of motion for the mass-based smoothed medium.

By introducing the discrete measure µN = ∑i m(xi) δxi , we obtain:

dρ̃

dt

∣∣∣
(xi)

= ∑
j

∂αW(xi − xj)
(

vα(xi)− vα(xj)
)

m(xj), (3.44)

dvα

dt

∣∣∣
(xi)

= −∑
j

(
P(ρ̃)

ρ̃2

∣∣∣
(xi)

+
P(ρ̃)

ρ̃2

∣∣∣
(xj)

)
∂αW(xi − xj)mj, (3.45)

the discrete SPH scheme of the mass-smoothed medium.

3.3.2 Volume-smoothed medium

Although the conservation of volume is not a principle of mechanics, another scheme
is derived starting from the medium’s characteristic function or color function:

qΩ(z) =

{
1, z ∈ Ω,
0, z /∈ Ω.

(3.46)

Within the medium, the latter obtains the smoothed version:

q̃Ω(x) =
∫

Ω
W(x− y)dλ(y), (3.47)

which may be used to construct the smoothed density:

ρ̃ = ρ q̃. (3.48)

Considering that ρ = dµ/dλ, the variation of the previous becomes:

δρ̃(x) = δρ(x)
∫

Ω
W(x− y)

dµ

ρ

∣∣∣
(y)
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+ ρ(x)
( ∫

Ω
δW(x− y)

dµ

ρ

∣∣∣
(y)
−
∫

Ω
W(x− y)

δρ dµ

ρ2

∣∣∣
(y)

)
= δρ(x) H(x) + ρ(x)

∫
Ω
δW(x− y)

dµ

ρ

∣∣∣
(y)
− ρ(x)

(δρ

ρ

∣∣∣
(x)

H(x) +O(hξ)
)

= ρ(x)
∫

Ω
δW(x− y)

dµ

ρ

∣∣∣
(y)

+O(hξ), (3.49)

for a Taylor expansion of the integrand in the third term around y, defining H(x) ≡∫
Ω W(x − y)dλ(y) and 0 ≤ ξ ≤ 2. This procedure is explained in more detail in

Section 2.4. Nonetheless, the function ρ is unknown and the above is considered as a
substitution:

δρ̃ = ρ̃(x)
∫

Ω
W(x− y)

(
δxα − δyα

)dµ

ρ̃

∣∣∣
(y)

+O(hξ), (3.50)

introducing error terms. The implications related to the convergence of this scheme
are discussed in Section 3.4, wherein it is shown that ξ ≥ 0. We continue with the
derivation of the scheme.

Notice that this density construct requires the definition of a volume around a particle,
which is apparent in Equation 3.51. This is not a requirement of density constructs
coming from the conserved quantities of mass or number of particles (as shown in the
following section). We can actually conjecture that any variation of density coming
from the smoothing of a variant quantity of the system, is bound to be approximate;
e.g. the density estimators which Monaghan [2005] and Price [2012] review in the
discrete setting. This detail is discussed in the following chapter.

Inarguably, for this scheme there only exists a differential form of mass conservation,
which is given for a temporal variation of the particle positions:

dρ̃

dt

∣∣∣
(x)

= ρ̃(x)
∫

Ω
∂αW

(
vα(x)− vα(y)

)dµ

ρ̃

∣∣∣
(y)

. (3.51)

The variation of energy is:

δe(x) =
∂e
∂ρ̃

∣∣∣
(x)

δρ̃(x) = ρ̃(x)
∫

Ω
∂αW(x− y)

(
δxα − δyα

) dµ

ρ̃
|(y), (3.52)

and consequently, the variation of the energy functional becomes:

δE
∣∣∣t1

t0
=
∫ t1

t0

∫
Ω
δe dµ(x)dt =

=
∫ t1

t0

∫
Ω

P
ρ̃

∣∣∣
(x)

∫
Ω

1
ρ̃(y)

∂αW(x− y)
(
δxα − δyα

)
dµ(y)dµ(x)dt

=
∫ t1

t0

∫
Ω0

( ∫
Ω

P
ρ̃

∣∣∣
(x)

1
ρ̃(y)

∂αW(x− y)dµ(y)

)
δxα dµ(x)dt

−
∫ t1

t0

∫
Ω

∫
Ω

P
ρ̃

∣∣∣
(x)

1
ρ̃(y)

∂αW(x− y) δyα dµ(y)dµ(x)dt
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=
∫ t1

t0

∫
Ω

[ ∫
Ω

(
P(x) + P(y)

ρ̃(x) ρ̃(y)

)
∂αW(x− y)dµ(y)

]
δxα dµ(x)dt. (3.53)

In the second term, we swap y with x and use the antisymmetry property of ∂W. All
in all, the acceleration of the particles is:

dvα

dt

∣∣∣
(x)

= −
∫

Ω

(
P(ρ̃(x)) + P(ρ̃(y))

ρ̃(x) ρ̃(y)

)
∂αW(x− y)dµ(y), (3.54)

and constitutes the equation of motion for the volume-smoothed medium. Obviously, the
scheme which arrives from the volume-based smoothing has a clear description in the
continuous setting. The derivation of this scheme is typically performed [Bonet and
Lok, 1999; Monaghan, 2005] at the particle level and requires the continuity equation
as a starting point. The present derivation starts from a more basic property of the
medium, the measure of its volume and hence, from this point of view, the present
derivation seems more general than older ones.

By introducing the discrete measure µN = ∑i m(xi) δxi , we obtain:

dρ̃

dt

∣∣∣
(xi)

= ρ̃(xi)∑
j

∂αW
(

vα(xi)− vα(xj)
)m(xj)

ρ̃(xj)
, (3.55)

dvα

dt

∣∣∣
(xi)

= −∑
j

(
P(ρ̃(xi)) + P(ρ̃(xj))

ρ̃(xj) ρ̃(xj)

)
∂αW(xi − xj)mj, (3.56)

the discrete SPH scheme of the volume-smoothed medium.

3.3.3 Number-smoothed medium

As exhibited in Section 3.1.1, the number of the medium’s particles is an invariant
of the system and its number density n can be used to construct the mass density.
Similarly to the smoothing of the measure of mass, the smoothing of the counting
measure provides the smoothed number-density:

ñ(x) =
∫

Ω
W(x− y)dν(y). (3.57)

This smoothed estimate is defined at all points x, in contrast to number density
(2.18), which is defined only at specific points xi, according to the partitioning of Ω.
Eventually, the smoothed estimate of mass density becomes:

ρ̃(xi) = m(xi) ñ(xi) =
∫

Ω
W(xi − y)dν(y), (3.58)

and it is also defined only at the discrete points xi. In the form of sum, Equation 3.58
is:

ρ̃(xi) = m(xi) ∑
j

W(xi − xj). (3.59)
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Hu and Adams [2006] worked on this estimate, without showing its precise relation
to the classic mass-smoothed one. To highlight the difference of the previous estimate
to the mass-smoothed estimate (3.38), consider the smoothing:

m̃ n
∣∣∣(xi) = ∑

j
m(xj) n(xj)W(xi − xj)

∫
Ωj

dλ

= ∑
j

m(xj) n(xj)W(xi − xj)

∫
Ωj

dν

n(xj)
= ∑

j
W(xi − xj)

∫
Ωj

dµ. (3.60)

Notice that in Equation 3.58 the smoothing appears for n, but not for m. The limiting
behavior of the number-smoothed estimate is:

lim
N→∞

ρ̃(xi) = lim
N→∞

m(xi) ñ(xi) = lim
N→∞

∑
j

W(xi − xj)
m(xi)

m(xj)

∫
Ωj

dµ

= lim
N→∞

∑
j

W(xi − xj)
∫

Ωj

dµ = ρ(xi). (3.61)

Notice that the final sum is simply the density of the mass-smoothed medium, ex-
pressed in the discrete setting. To arrive at the previous result, recall that W ≡ Wh.
Then, for a regular configuration of the points of the discrete space, N → ∞ implies
n → ∞, which results in h → 0, due to Equation 2.20. This means that the contri-
butions of the terms m(xi)/m(xj) from particles j around i decrease fast, and the
term m(xi)/m(xj=i) dominates. The latter holds as far as m(xi) and m(xj) in the
summation are not of extremely different scales.

Upon a variation of the trajectories, the constructed density becomes:

δρ̃(xi) = m(xi)∑
j

∂αW(xi − xj)
(
δxα,i − δxα,j

)
, (3.62)

keeping in mind that the variation of m(xi) = m0(x0,i) is zero by construction, since
it is not affected by a shift of the particle’s position. For a temporal variation, the
estimate above delivers the medium’s continuity equation:

dρ̃

dt

∣∣∣
(xi)

= m(xi)∑
j

∂αW(xi − xj)
(

vα(xi)− vα(xj)
)

, (3.63)

furnishing the variation of the internal energy functional (3.23):

δE
∣∣∣t1

t0
=
∫ t1

t0

∫
Ω
δe dµ dt

=
∫ t1

t0
∑

i

(
m P
ρ̃2

∣∣∣
(xi)

∑
j

∂αW(xi − xj)

)
δxα,i m(xi)dt

−
∫ t1

t0
∑

i
∑

j

m P
ρ̃2

∣∣∣
(xi)

∂αW(xi − xj) δxα,j m(xi)dt
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=
∫ t1

t0
∑

i

[
∑

j

(
m2 P

ρ̃2

∣∣∣
(xi)

+
m2 P

ρ̃2

∣∣∣
(xj)

)
∂αW(xi − xj)

]
δxα,i dt

=
∫ t1

t0
∑

i
∑

j

(
m2 P

ρ̃2

∣∣∣
(xi)

+
m2 P

ρ̃2

∣∣∣
(xj)

)
∂αW(xi − xj) δxα,i

∫
Ωi

dµ

m(xi)
dt. (3.64)

Similarly to the functional in the mass-based smoothing, we change xi for xj and use
the antisymmetry of ∂αW.

Notice that the limit N → ∞ of the latter relation equals
∫ t1

t0 δe δxαdµ dt and even-
tually, the variation of the energy functional is in the form of Equation 3.23. Thus
Equation 3.22 delivers:

dvα

dt

∣∣∣
(xi)

= − 1
m(xi)

∑
j

(
m2 P

ρ̃2

∣∣∣
(xi)

+
m2 P

ρ̃2

∣∣∣
(xj)

)
∂αW(xi − yj), (3.65)

the equation of motion for the number-smoothed medium.

3.3.4 Discussion

Bonet and Lok [1999], Monaghan [2005] and Price [2012] start from the (discrete)
Lagrangian of a particle system under the constraint of the discrete version of the
density estimate (3.10). The difference is that our approach starts from the continuum,
derives the equations at a continuous setting and in the end discretizes the derived
equations. Additionally, it shows the relation of the traditional SPH estimate to the
estimate employing the number-density. This has two advantages. First, convergence
properties of the schemes may be studied rigorously as in Evers et al. [2015] and
DiLisio et al. [1998]. Second, it becomes clear that SPH is not only about a loose
particle representation of the continuum as N → ∞. There exists a strict and defined
correspondence with processes taking place at the level of continuum. Moreover,
it is evident that the SPH equations refer to a specific type of continuous medium:
the smoothed medium. Thus, we can state that SPH is the numerical method which solves
the equations of continuum mechanics for the smoothed medium. Another characteristic
of SPH is that media are discretized with respect to their mass or by discretizing
the continuum into a finite number of particles. This concept is in contrast to the
Finite Element Method or the Finite Volume Method —either in their Eulerian or
Lagrangian description of the flow field, which integrate over the medium’s volume.
Two significant properties arise from this feature. First, a mesh over the domain
is redundant; SPH is a truly mesh-free method. Second, even for extreme changes
of the domain, remeshing —which would correspond to redistribution of masses—
is not necessary3. Additionally, in this way discontinuous media —predominantly
occurring in free surface flows or fragmentation of solids— are handled with ease.
Moreover, the integration with respect to the medium’s mass, one of the system’s

3This property is not universal, as there are non-standard SPH algorithms which employ redistribution of
mass or particle splitting/merging techniques.
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invariants, endows the property of exact mass conservation. Furthermore, having
derived the equations consistently from the action principle, the method inherits the
property of momentum conservation, at least without considering errors from time
integration [Price, 2012]. The same holds true for energy if ideal media are considered.
Finally, the advantages discussed do not come without any cost. The idealization of
the smoothed medium raises the question: under which circumstances does the smoothed
medium behave the same as the classical one? This question is discussed in the next
section.

3.4 Convergence of the SPH schemes

The following analysis reveals how the derived smoothed equations of Section 3.3
converge to the classic ones of Section 3.2, in the limit h → 0. Inarguably, such an
analysis corresponds to a static case and disregards the system’s dynamical evolution.
Effectively, time is considered as a parameter. By this we mean that given the necessary
function values at some time instance, the systems of smoothed equations in Section
3.3 may be interpreted as approximations of the equations in Section 3.2 at that time
instance.

Our strategy is the following. We work out the derived equations of the smoothed
medium so that we can write them in terms of the equations of the classic medium.
Then, the conditions under which the two forms are equal give us the desired con-
ditions for convergence as h→ 0. We follow the concepts developed in Monaghan
[2005] and Price [2012] and we highlight the distinction between the smoothed density
ρ̃ and the density ρ = dµ/dλ. This remark allows us to trace a nonlinearity which is
typically shunned in most SPH error analyses.

3.4.1 Mass-smoothed medium

The continuity equation of the mass-smoothed medium:

dρ̃

dt

∣∣∣
(x)

=
∫

Ω
∂αW(x− y)

(
vα(x)− vα(y)

)
dµ(y)

= vα(x)
∫

Ω
∂αW(x− y)dµ(y)−

∫
Ω

vα(y) ∂αW(x− y)dµ(y)

= vα(x)
∫

Ω
ρ(y) ∂αW(x− y)dλ(y)−

∫
Ω

ρ(y) vα(y) ∂αW(x− y)dλ(y),

is the up to O(h)-terms approximation:

dρ̃

dt

∣∣∣
(x)
≈ vα

[
ρ Kα + ∂βρ Λβα

]
−
[
ρ vα Kα + ∂β

(
ρ vα

)
Λβα

]
=
[
vα∂αρ− ∂β

(
ρ vα

)]
Λβα = −ρ ∂βvα Λβα, (3.66)
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according to Equation 2.49. In the same way, the corresponding equation of motion:

dvα

dt

∣∣∣
(x)

= −
∫

Ω

( P
ρ̃2

∣∣∣
(x)

+
P
ρ̃2

∣∣∣
(y)

)
∂αW(x− y)dµ(y)

= − P
ρ̃2

∣∣∣
(x)

∫
Ω

∂αW(x− y)dµ(y)−
∫

Ω

P
ρ̃2

∣∣∣
(y)

∂αW(x− y)dµ(y)

= − P
ρ̃2

∣∣∣
(x)

∫
Ω

ρ(y)∂αW(x− y)dλ(y)−
∫

Ω

P ρ

ρ̃2

∣∣∣
(y)

∂αW(x− y)dλ(y),

leads to the approximation of up to O(h)-terms:

dvα

dt

∣∣∣
(x)
≈ − P

ρ̃2

[
ρ Kα + ∂βρ Λβα

]
−
[P ρ

ρ̃2 Kα + ∂β

(P ρ

ρ̃2

)
Λβα

]
= −

[ P
ρ̃2 ∂βρ + ∂β

(P ρ

ρ̃2

)]
Λβα − 2

P ρ

ρ̃2 Kα

= −
[
2

P
ρ̃2 ∂βρ + ρ ∂β

( P
ρ̃2

)]
Λβα − 2

P ρ

ρ̃2 Kα

= −
[
2

P
ρ̃2 ∂βρ− 2

P ρ

ρ̃3 ∂βρ̃ +
ρ

ρ̃2 ∂βP
]
Λβα − 2

P ρ

ρ̃2 Kα. (3.67)

Let us simplify the problem by assuming P = P(ρ̃), instead of P = P(ρ̃, e). Addition-
ally, we consider P(ρ̃) = cρ̃γ, with γ the ratio of heat coefficients, and we assume that
the scheme delivers:

ρ̃ = ρ +O(hκ), ∂αρ̃ = ∂αρ +O(hξ). (3.68)

For these approximations, the first two terms in the brackets of Equation 3.67 become:

2
c ρ̃γ

ρ̃2 ∂βρ− 2
ρc ρ̃γ

ρ̃3 ∂αρ̃

= 2 c ργ−2
(

1 +O(hκ)
)γ−2

∂βρ− 2 c ργ−2
(

1 +O(hκ)
)γ−3

∂βρ
(

1 +O(hξ)
)

= 2 c ργ−2∂βρ
[(

1 +O(hκ)
)γ−2

−
(

1 +O(hκ)
)γ−3(

1 +O(hξ)
)]

≈ 2 c ργ−2∂βρ
[(

1 + (γ− 2)O(hκ)
)
−
(

1 + (γ− 3)O(hκ)
)(

1 +O(hξ)
)]

= O(hmin(κ,ξ)). (3.69)

In the approximation involved above, we used the two first terms of the binomial
series (1 + z)θ = 1 + θz + ..., which converges for |z| < 1. The previous analysis
also holds for the case that P = cργ − 1. The term involving unity is represented by
considering γ = 0 and c = 1 in the equations above. It still gives the same result. The
third term in the brackets of Equation 3.67 reads:

ρ

ρ̃2
∂P(ρ̃)

∂ρ̃
∂̃βρ = cγ ρρ̃γ−3∂̃βρ = cγ ργ−2

(
1 +O(hκ)

)γ−3
∂βρ
(

1 +O(hξ)
)

≈ cγ ργ−2∂βρ
(

1 + (γ− 3)O(hκ)
) (

1 +O(hξ)
)
=

1
ρ

∂βP(ρ) +O(hmin(κ,ξ)).

(3.70)
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Regarding the very last term of Equation 3.67:

P ρ

ρ̃2 =
c ρ ρ̃γ

ρ̃2 = c ργ−1
(

1 +O(hκ)
)

, (3.71)

and therefore we may deduce that:

−
∫

Ω

(
P
ρ̃2

∣∣∣
(x)

+
P
ρ̃2

∣∣∣
(y)

)
∂αW(x− y)dµ(y) = −1

ρ
∂βP(ρ)Λβα − 2

P
ρ

Kα, (3.72)

for equations of state of the form P(ρ) = cργ or P(ρ) = cργ − 1, up to O(h)-terms.

3.4.2 Volume-smoothed medium

In the derivation of the corresponding equation of mass conservation (Section 3.3.2), a
complication appears, which is resolved by assuming that δρ̃ = δρ +O(hξ), for ξ ≥ 0.
Here, we prove the validity of this assumption.

Consider the continuity equation of the volume-smoothed medium (3.51):

dρ̃

dt

∣∣∣
(x)

= ρ̃(x)
∫

Ω
∂αW(x− y)

(
vα(x)− vα(y)

)dµ

ρ̃

∣∣∣
(y)

= ρ̃(x)
[

vα(x)
∫

Ω

ρ

ρ̃

∣∣∣
(y)

∂αW(x− y)dλ(y)

−
∫

Ω

ρ vα

ρ̃

∣∣∣
(y)

∂αW(x− y)dλ(y)
]
,

which provides the up to O(h)-terms approximation:

dρ̃

dt

∣∣∣
(x)
≈ ρ̃

{
vα

[ρ

ρ̃
Kα + ∂β

(ρ

ρ̃

)
Λβα

]
−
[ρ vα

ρ̃
Kα + ∂β

(ρ vα

ρ̃

)
Λβα

]}
= ρ̃

[
vα ∂β

(ρ

ρ̃

)
− ∂β

(ρ vα

ρ̃

)]
Λβα = −ρ ∂βvα Λβα. (3.73)

Therefore, indeed the residual terms are at most O(h) and the convergence of δρ̃
as well, considering time as a parameter. Regarding the corresponding equation of
motion, the approximation is:

dvα

dt

∣∣∣
(x)

= −
∫

Ω

(
P(x) + P(y)

ρ̃(x) ρ̃(y)

)
∂αW(x− y)dµ(y)

= −P
ρ̃

∣∣∣
(x)

∫
Ω

1
ρ̃

∣∣∣
(y)

∂αW(x− y)dµ(y)− 1
ρ̃(x)

∫
Ω

P
ρ̃

∣∣∣
(y)

∂αW(x− y)dµ(y)

= −P
ρ̃

∣∣∣
(x)

∫
Ω

ρ

ρ̃

∣∣∣
(y)

∂αW(x− y)dλ(y)− 1
ρ̃(x)

∫
Ω

P ρ

ρ̃

∣∣∣
(y)

∂αW(x− y)dλ(y),
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and up to O(h)-terms:

dvα

dt

∣∣∣
(x)
≈ −P

ρ̃

[ρ

ρ̃
Kα + ∂β

(ρ

ρ̃

)
Λβα

]
− 1

ρ̃

[P ρ

ρ̃
Kα + ∂β

(P ρ

ρ̃

)
Λβα

]
= −

[P
ρ̃

∂β

(ρ

ρ̃

)
+

1
ρ̃

∂β

(P ρ

ρ̃

)]
Λβα − 2

P ρ

ρ̃2 Kα

= −
[
2

P
ρ̃

∂β

(ρ

ρ̃

)
+

ρ

ρ̃2 ∂βP
]
Λβα − 2

P ρ

ρ̃2 Kα

= −
[
2

P
ρ̃2 ∂βρ− 2

P ρ

ρ̃3 ∂βρ̃ +
ρ

ρ̃2 ∂βP
]
Λβα − 2

P ρ

ρ̃2 Kα. (3.74)

The result is the same as in the equation of motion of the mass-smoothed medium
(3.72) and consequently:

−
∫

Ω

(
P(x) + P(y)

ρ̃(x) ρ̃(y)

)
∂αW(x− y)dµ(y) = −1

ρ
∂βP(ρ)Λβα − 2

P ρ

ρ̃2 Kα, (3.75)

so that they converge in the same way.

3.4.3 Number-smoothed medium

The number-smoothed medium uses the counting measure as the building block for
the corresponding smoothed density. The continuity equation of the number-based
smoothing is:

dρ̃

dt

∣∣∣
(xi)

= m(xi)∑
j

∂αW(xi − xj)
(

vα(xi)− vα(xj)
)

= ∑
j

∂αW(xi − xj)
(

vα(xi)− vα(xj)
) m(xi)

m(xj)

∫
Ωj

dµ, (3.76)

In Equation 3.61, it is argued that an integral similar to the ones appearing here,
converges to the corresponding equation of the mass-smoothed medium. Due to the
same reasons, in the limit N → ∞, the previous behaves similarly to the corresponding
equation of the mass-smoothed medium, that is:

dρ̃

dt

∣∣∣
(xi)

=
(

vα(xi)
∫

Ω
∂αW(xi − y)dµ(y)−

∫
Ω

vα(y) ∂αW(xi − y)dµ(y)
)

. (3.77)

Since in this Section we are interested in the limit h → 0, a relevant question is
whether the two processes, N → ∞ and h→ 0, occur simultaneously. Recalling that
W ≡Wh, as N → ∞ for a relatively regular configuration of particles, the definition
of the smoothing length (2.20) provides: h = η n−1/d ≈ η(ν(ΩN)/λ(ΩN))−1/d =
η(N/λ(ΩN))−1/d → 0. Hence, we may pass directly from Equation 3.76 to the
O(h)-terms approximation of Equation 3.66, also for the continuity equation of the
number-smoothed medium. Using the same technique, it is shown that the corre-
sponding equation of motion converges similarly to the equation of motion of the
mass-smoothed medium (3.72).
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FIGURE 3.3: The effect of particle disorder in the calculation of the term Λ.

3.4.4 Discussion

The previous convergence analysis establishes that the equations of mass conservation
of the smoothed media relate to the continuity equation of the classical medium as:

dρ̃

dt
= −ρ ∂βvα Λβα, (3.78)

where ρ̃ is obtained with any of the three SPH schemes. The convergence is deter-
mined by the extent to which Λαβ =

∫
Ω(xα − yα) ∂βW(x− y)dλ(y) takes its identity

value δαβ in the discrete system, where

ΛN
αβ(xi) = ∑

j
(xβ,i − xβ,j) ∂αW(xi − xj) λ(Ωj) = ∑

j
(xβ,i − xβ,j) ∂αW(xi − xj)

1
n(xj)

.

(3.79)

Obviously, in the discrete setting, the extent to which the identity holds relies on the
particle configuration, via the terms ‖xi − xj‖ ∝ h and the local number density n.
This is an evidence in support of [Monaghan, 2005], who concludes that the SPH error
depends on the ordering of the particles, which in turn is an effect of the dynamics
and therefore the equations themselves. The identity value of Λ is obtained due to the
antisymmetry of the smoothing function. This is true in case of regular distributions,
while for irregular distributions errors appear. In order to examine the scale of the
errors, first consider the scale of Λ:

|ΛN
αβ(xi)| ≈∑

j
h

1
hd+1

1
n(xj)

≈ ν(Ωh,i) h−d 1
n
= h−d λ(Ωh,i) = O(1), xj ∈ Ωh,i,

(3.80)

with the help of Equation 2.19. From a qualitative point of view, this means that
deviations from regularity in the particle configuration may induce errors of up to
O(1). This behavior is expected for highly disordered configurations or close to
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boundaries, where the support of the smoothing function is cut off. In order to
envisage this scenario, consider a one-dimensional irregular particle configuration.
These two cases are illustrated in Figure 3.3. The sum on the left of a particle is not
equal to the opposite of the sum on the right of the particle and thus an imbalance
occurs. This imbalance prevents Λ from taking its identity value.

Equivalently, for the motion equations of the smoothed media:

dvα

dt
= −1

ρ
∂βP(ρ)Λβα − 2

P
ρ

Kα, (3.81)

where the identity value of Kα is zero, because of the antisymmetry of the kernel’s
derivative. Unlike the continuity equation, the K term remains and it scales as:

|KN
α (xi)| = ∑

j
|∂αW(xi − xj)|λ(Ωj) ≈∑

j

1
hd+1

1
n(xj)

≈ ν(Ωh,i) h−(d+1) 1
n

= h−(d+1) λ(Ωh,i) = O(h−1), xj ∈ Ωh,i, (3.82)

recalling the average number density (2.19). Whence, for strongly disordered config-
urations or close to boundaries, errors may reach O(h−1). Therefore, in those cases
the motion equation of the smoothed medium diverges locally from the equation of
motion of the classical medium.

Note that the conservation properties of the scheme in the discrete setting are intact
and as a matter of fact, they are guaranteed by the variational principle which they
originate from.

For a comment on the dynamics of the situation above, let us consider an initial
well-ordered particle configuration. If the neighbors of the particle i start moving
closer to it, more particles enter within its h-neighborhood and thus the sampling
increases and the estimate tends to be better; the ordering plays a less significant role.
On the other hand, if the neighbors of the particle i start moving apart from it, less
particles remain within the h-neighborhood and thus the estimate tends to worsen.
Consequently, the ordering starts playing a very crucial role. This may explain why
SPH is prone to instabilities when high tensile forces appear during the computation.

The relevant literature offers a way to counteract the effects of the K-term. Using
Newtonian mechanics, one may develop the motion equation:

− 1
ρ(x)

∂αP(x) = −
∫

Ω

(
P(x)− P(y)

ρ̃(x) ρ̃(y)

)
∂αW(x− y)dµ(y) = −1

ρ
∂βP(ρ)Λβα, (3.83)

based on a better approximation of ∂αP, according to Section 2.4. This estimate con-
verges locally to the equations of the classical medium, since K is absent. However,
it is not consistent with the variational framework and therefore, this equation of
motion cannot guarantee the conservation of global momentum in the relevant pro-
cesses. Price [2012] underlines that —provided a regular particle distribution— such
formulations are going to be more accurate for linear or weakly non-linear problems,
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as those run for a short time and/or are not involving strong shocks. Conversely,
formulations based on variational methods are able to treat processes with strong
non-linearites —such as shocks— and offer long-term stability, due to the global
conservation of momentum and energy. Paradoxically, SPH defies local convergence
to guarantee conservation.

3.5 Non-ideal media

The previous sections dealt with ideal media, according to e = e(ρ) and assuming
isentropic conditions. This behavior is typically encountered in gases, which respond
to mechanical loading by changes of the volume of their infinitesimal parts. Liquid
and solid media are more prone to respond with a change of the shape of their
infinitesimal parts, which is described by the distortions:

xαβ := ∂0βxα. (3.84)

They implicitly appear in the definition of the Jacobian (3.32) and they describe an
affine deformation of the medium’s shape in the neighborhood of x0 [Berdichevsky,
2009, Ch.3].

3.5.1 General equations of motion

Considering e = e(xαβ, s), the conjugate thermodynamic tensions of the distortions
are the total stresses, described by the elements παβ of the Piola-Kirchhoff stress tensor
[Berdichevsky, 2009, Ch.3]:

∂e
∂xαβ

∣∣∣∣∣
s

:=
παβ

ρ0
=

σαγ Jγβ

ρ0
, (3.85)

or alternatively with the help of the Cauchy stress tensor: σαγ = xγβπαβ ρ/ρ0. Emphasis
should be given to the second index of the Piola-Kirchhoff stress tensor, which pertains
to the reference configuration of the medium, unlike the indices of the Cauchy stress
tensor, which both refer to the current configuration [Berdichevsky, 2009, Ch.4].
The identity xγθ Jγβ = δβθ J, so that Jγβ = J/xγβ, proves useful for completing the
transformation [Seliger and Whitham, 1968].

Distortions are the only way for the medium to respond mechanically. Let aside
any other response of the system —chemical, electromagnetic etc.— and additionally
assume that there is no heat conduction from one part of the medium to another. The
latter assumption is true in two cases: either the heat produced within each of the
medium’s infinitesimal parts is uniform or the changes are so fast that there is no time
for heat to conduct. Thus heat —created from internal friction due to the distortions—
remains within the medium’s infinitesimal parts and contributes exclusively to the
increase of the local temperature.
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The equation of motion is in any case the result of the distortions, while for the de-
scription of the medium’s thermodynamic state, the calculation of changes in entropy
are necessary as well. Thus, we first derive the equations under isentropic conditions,
taking into account all distortions, and afterwards, we study how distortions trigger
entropy changes in some specific cases.

Classical equations The variation of energy in Equation 3.85 is:

δe =
∂e

∂xαβ
δxαβ =

σαγ Jγβ

ρ0
δ
(

∂0βxα

)
=

σαγ Jγβ

ρ0
∂β

(
δxα

)
=

σαγ

ρ
∂γ

(
δxα

)
. (3.86)

It leads to the energy functional:

δE
∣∣∣t1

t0
=
∫ t1

t0

∫
Ω
δe dµ dt =

∫ t1

t0

∫
Ω

σαβ

ρ
∂β

(
δxα

)
ρ dλ dt =

=
∫ t1

t0

∫
Ω

∂β

(
σαβδxα

)
dλ dt−

∫ t1

t0

∫
Ω

∂βσαβδxα dλ dt =

=
∫ t1

t0

∫
∂Ω

[
σαβδxα

]
∂Ω

ζβ dΓ dt−
∫ t1

t0

∫
Ω

∂βσαβδxα dλ dt =

= −
∫ t1

t0

∫
Ω

1
ρ

∂βσαβδxα dµ dt, (3.87)

taking into account that δxα|∂Ω = 0 and δxα|t1
t0
= 0. Casting the result into Equation

3.23 delivers the equation of motion:

dvα

dt
=

∂βσαβ

ρ
, (3.88)

or in the equivalent form [Seliger and Whitham, 1968]:

dvα

dt
=

1
ρ0

∂βπαβ, (3.89)

which employs a derivative with respect to the initial configuration. The difference
between the two formulations pertains to the reference configuration of the medium
used. The former equation employs the updated Lagrangian description, while the
latter used the total Lagrangian description (see Section 3.1).

Smoothed equations – Introduction The first effort to introduce deviatoric elastic
stresses in SPH is by Libersky et al. [1993], albeit the resulting equations are variation-
ally inconsistent. The problems tackled refer to high-strain deformation of solids and
the updated Lagrangian description is then —naturally— incorporated. A variational
approach is employed by Bonet and Kulasegaram [2000], which is applied to the
discrete system and arrives to a formula which misses one of the two terms that
are customary in the SPH equations for the deviatoric stresses. That second term
guarantees the conservation of momentum. In a prior paper by Bonet and Lok [1999],
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the second term appears, although the derivation details are not clear. Finally, the
SPH equations for the total Lagrangian description are based on ideas of Rabczuk
et al. [2004] and also employed by Vignjevic et al. [2006]. They are developed with
conventional derivation strategies. In what follows we derive the SPH equations for
the deviatoric stresses, based on the framework developed in Chapter 3.

Notably, we see that the classical equations for both descriptions —updated and
total Lagrangian— are derived from the same formula of the variation of energy.
For the smoothed equations, the equations for the two descriptions follow from the
construction of two different estimates.

Smoothed equations – Total Lagrangian description In Section 3.1, we point out
that the variation of energy for the smoothed equations involves the smoothing of
the thermodynamic substate variables. Additionally, the total Lagrangian description
typically employs the first Piola-Kirchhoff stress tensor. Therefore, the variation of
the internal energy of media with total stress response (3.85):

δe =
παβ

ρ0
δxαβ, (3.90)

requires the construction of the smoothed distortions in order to calculate δx̂αβ. The
smoothings pertain to the reference domain Ω0 and therefore we retrieve the notation
x̂αβ from Section 2.3 and continue accordingly with the smoothed distortions:

x̂αβ =
∫

Ω0

(yα − xα)∂βŴ(x0 − y0)dλ(y0), (3.91)

and their variations:

δx̂αβ =
∫

Ω0

(δyα − δxα)∂βŴ(x0 − y0)dλ(y0). (3.92)

Note that in the reference domain, dλ does not involve an approximation; it is the
result of the initial partitioning of the domain. The energy functional:

δE|t1
t0
=
∫ t1

t0

∫
Ω
δe dµ dt =

∫ t1

t0

∫
Ω0

παβ(x)
ρ0(x0)

δx̂αβ dµ0(x)dt =

=
∫ t1

t0

∫
Ω

παβ(x)
ρ0(x0)

∫
Ω0

(δyα − δxα)∂βŴ(x0 − y0)dλ(y0)dµ0(x0)dt =

=
∫ t1

t0

∫
Ω0

παβ(x)
∫

Ω0

(δyα − δxα)∂βŴ(x0 − y0)
dµ0(y0)

ρ0(y0)

dµ0(x0)

ρ0(x0)
dt =

=
∫ t1

t0

∫
Ω

∫
Ω0

1
ρ0(x0)

(
παβ(x) + παβ(y)

)
∂βŴ(x0 − y0)dλ(y0) δxα dµ(x)dt,

(3.93)

provides the equation of motion:

dvα

dt

∣∣∣
(x)

=
1

ρ0(x0)

∫
Ω0

(
παβ(x) + παβ(y)

)
∂βŴ(x0 − y0)dλ(y0), (3.94)
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and the evolution of internal energy:

de
dt

∣∣∣
(x)

=
παβ(x)
ρ0(x0)

dx̂αβ

dt
. (3.95)

In the previous, dx̂αβ/dt is constructed from Equation 3.92, considering a temporal
variation. Notice that in all the equations above, the use of the Piola-Kirchhoff stress
tensor can be bypassed in favor of the Cauchy stress tensor, by employing the smooth
estimates of the Jacobian elements παβ ≈ σαγ Ĵαγ.

Smoothed equations – Updated Lagrangian description In case the problem is
described in the current frame of reference, another SPH scheme is developed. For
the classical equation we wrote:

δe =
σαβ

ρ
∂β

(
δxα

)
. (3.96)

The construction of the corresponding gradient starts by considering the smoothed
variation:(̃
δxα

)
=
∫

Ω

(
δyα − δxα

)
W(x− y)

dµ(y)
ρ̃(y)

, (3.97)

which obtains the gradient:

∂β

(̃
δxα

)
=
∫

Ω

(
δyα − δxα

)
∂βW(x− y)

dµ(y)
ρ̃(y)

, (3.98)

and results in the variation of energy:

δE|t1
t0
=
∫ t1

t0

∫
Ω
δe dµ dt =

∫ t1

t0

∫
Ω

σαβ

ρ
δx̃αβ dµ dt =

=
∫ t1

t0

∫
Ω

σαβ

ρ

∣∣∣∣∣
(x)

∫
Ω

(
δxα − δyα

)
∂βW(x− y)

dµ(y)
ρ̃(y)

dµ(x)dt =

=
∫ t1

t0

∫
Ω

∫
Ω

(
σαβ(x)

ρ(x) ρ(y)
+

σαβ(y)
ρ(y) ρ(x)

)
∂βW(x− y)dµ(y) δxα dµ(x)dt. (3.99)

Apparently, the density comes from a smoothing and thus:

dvα

dt
|(x) =

∫
Ω

1
ρ̃(x) ρ̃(y)

(
σαβ(x) + σαβ(y)

)
∂βW(x− y)dµ(y) (3.100)

is the equation of motion for the medium, with reference to the current configuration.
Finally, the evolution of energy:

de
dt

=
σαβ

ρ̃
∂βṽα (3.101)

is readily available by introducing a temporal variation.
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Discussion Given the relation:

∂e(xαβ)

∂xαγ
=

σαβ Jβγ

ρ0
, (3.102)

it becomes evident that σαβ is not a freely chosen function. Any model for σαβ, which
is coupled to the derived equation of motion, should respect that σαβ = σαβ(xαβ). If
this is not the case, the system obtains a pseudo-variational structure. By that, we refer
to schemes for which the equation of motion is derived via the variational procedure
of the previous section, based on the functional relation e = e(xαβ). The stresses
are calculated autonomously without necessarily abiding to the functional relation
σαβ = σαβ(xαβ). As it is exhibited in the preceding section, these schemes only take a
truly variational form for elastic media.

3.5.2 Elastic media

Regarding elastic media, the functional relation e = e(xαβ) upon which the general
equation of motion is based, is deceptive. That is because it implies changes in the
internal energy even for rigid rotations of the medium [Seliger and Whitham, 1968].
It is, then, more appropriate to consider e = e(εαβ), where for the infinitesimal or linear
strain theory [Berdichevsky, 2009, Ch.6], the displacements uα define the strains:

εαβ =
1
2

(
∂uα

∂x0β
+

∂uβ

∂x0α

)
≈ 1

2

(
∂uα

∂xβ
+

∂uβ

∂xα

)
, uα := xα − x0α, (3.103)

and additionally, for isotropic materials εαβ = εβα. Since εαβ = xαβ − δαβ, it follows
that:

δe =
∂e

∂εαβ

∂εαβ

∂xαβ
δxαβ =

∂e
∂xαβ

δxαβ =
σαβ

ρ

(
δxα

)
(3.104)

and the resulting equation of motion coincides with the one of the previous section.

In light of the previous discussion, about σαβ not being a freely chosen function, the
stresses are modeled as:

σαβ = λεγγδαβ + 2µεαβ, (3.105)

and hence they indeed are functions of xαβ. This is not true for general models of σαβ

and attention should be paid on the stress models used, so that the final system of
equations is variationally consistent.

3.5.3 Dissipative media

All equations of motion derived above only correspond to isentropic conditions,
neglecting dissipative processes, such as viscous stresses in fluid media or plastic
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stresses in solid media. According to the thermodynamic modeling of Section 3.1,
when dissipative effects appear, in addition to distortions, entropy s is required for
the description of the thermodynamic state of the medium.

In this case the equation of motion cannot be derived from a variational principle, but
a variational equation instead. Berdichevsky [2009], Ch.3, explains this procedure for
the static case; the extension to the dynamic case is straightforward. After introducing
the dissipation potential D = D(t, vα), the variational equation:

δL
δxα

= − δD
δvα

, (3.106)

delivers the equation of motion:

dvα

dt
− δe

δxα
= − ∂D

∂vα
. (3.107)

A variational equation is different from a variational principle in the sense that it
does not describe a law of nature, ”but rather a way to obtain a model with simply
controlled mathematical features” [Berdichevsky, 2009, Ch.3]. Rather than looking
for a stationary point of the action S =

∫
T L dt, we are setting a constraint to the

minimization of the action S , by asking for the two processes to follow paths of the
same steepness, each one according to their variables. What remains, is to define a
dissipative potential4 describing the desired properties of the medium.

For the definition of the internal energy e of the ideal medium, ρ̃ replaces ρ in Section
3.3. In the same way, the dissipative potential D = D(eαβ) employs the smooth
estimates of the velocity components ṽα, in order to define the strain rate:

eαβ ≡
1
2

(
∂βṽα + ∂αṽβ

)
. (3.108)

For an isotropic medium (∂βṽα = ∂αṽβ), the latter provides:

∂D
∂vα

=
∂D

∂eαβ

∂eαβ

∂vα
= ∂β

(
∂D

∂eαβ

)
. (3.109)

In the following, this modeling choice is specified for the description of the viscous
response of fluid media and the plastic response of solid media.

Viscous compressible medium Regarding the viscous response of fluid media, the
usual assumption is that the dissipative potential defines the viscous stresses ταβ,
which in turn are functions of the strain rates:

∂D
∂eαβ

≡
ταβ

λ
= eγγδαβ + 2

µvsc

λ
eαβ, (3.110)

4[Berdichevsky, 2009, Ch.3] makes a distinction between the dissipative potential and the dissipation
function. In the cases studied here, they only differ by the multiplication with a constant.
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for the viscosity µvsc and the bulk viscosity λ. It follows that:

∂D
∂vα

= ∂βeγγδαβ + 2
µvsc

λ
∂βeαβ = ∂γαvγδαβ + 2

µvsc

λ
∂ββvα, (3.111)

and therefore the equation of motion is complete, according to Equation 3.107.

Therefore, based on vα, it is necessary to construct smoothed estimates of the Laplacian
∂ββṽα and the gradient of the divergence ∂γαṽγ. Price [2012] discusses various options.

Elastic-plastic medium Solid media respond elastically only up to a certain strain
and then plastic deformation starts. The following covers the linear strain theory,
where strains are considered to be small so that the deformation rates equal the strain
rates (ε̇αβ ≈ eαβ). This is typically connected to the updated Lagrangian formulation,
for deformation states which are ”close” to each other.

Plastic deformation has two main characteristics: first, it is a dissipative process and
second, it is a history-dependent process. The latter implies that the deformations
producing it are not unique. Nevertheless, the strain rates (equivalent to the defor-
mation rates in the linear regime) leading to the deformed state can be considered as
unique and therefore the decomposition:

eαβ = e(e)αβ + e(p)
αβ , (3.112)

holds. Additionally, in the theory of perfect plasticity it is assumed that eαβ ≈ e(p)
αβ .

Eventually, the dissipative potential is defined as:

D =

{
0, G(σαβ) < Y0,

D(e(p)
αβ ), G(σαβ) ≥ Y0.

(3.113)

The internal energy becomes the branched function:

e =

{
e(εαβ), G(σαβ) < Y0,
e(εαα, s), G(σαβ) ≥ Y0,

(3.114)

where G = G(σαβ) is the yield function, a criterion for the transition from the elastic
regime to the plastic regime, and Y0 the material’s yield strength. The Von Mises
plasticity model [Berdichevsky, 2009, Ch.3] assumes that plastic deformation is an
incompressible process, implying that D = D(e′(p)

αβ ), where the deviatoric part of the
strain rate is:

e′αβ = eαβ −
1
3

eγγ δαβ. (3.115)

Furthermore, it postulates that D = Y0

√
e′(p)

αβ e′(p)
αβ and consequently:

∂D

∂e′(p)
αβ

≡
ταβ

λ
=

Y2
0√

e′(p)
γδ e′(p)

γδ

e′(p)
αβ , (3.116)
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usually for λ = 1. According to Equation 3.109, this definition of the differential leads
to:

∂D
∂vα

= ∂β

(
∂D

∂e′(p)
αβ

)
, (3.117)

and requires a smooth estimate of the derivative of the deviator (3.116). This way of
constructing the plasticity terms is not common in the SPH literature and possible
merits or difficulties are yet to be discovered.

In the context of SPH, plasticity is typically introduced in another way. The deforma-
tion of the medium is described by the equations for elastic media and at each time
step the yield criterion (G > 0) is examined for each particle. If plastic flow is detected,
the deviatoric stresses of that particle are assigned with the fixed limiting value. This
procedure was pioneered by Libersky et al. [1993] and a detailed description follows
in Chapter 6.





CHAPTER 4

The discrete SPH equations

The previous chapters deal with the derivation of the equations of smoothed media
from principles of continuum mechanics and additionally, they delineate how these
equations relate to the equations of classic media. The present chapter develops all
the ingredients necessary to integrate the discretized equations in time, such that a
long term stability is achieved. To this end, we discuss the following subjects: spatial
adaptivity of the schemes, symplectic time integrators and dissipative terms for the
accurate description of propagating discontinuities. Finally, we present novel numer-
ical evidence of convergence of the SPH schemes as they approach the continuous
equations.

4.1 Adaptive smoothing

In order to introduce variable resolution in the smoothing procedure, Equation 2.31
suggests a methodology based on the local number density, so that:

h(xi) := η ñ(xi)
−1/d. (4.1)

Hence, the smoothing length changes in time and space, growing larger for sparsely
populated regions and reducing in denser regions. Moreover, η is a scalar parameter1.
Considering that the objective of turning h into a variable is to relate it to the local

1A vector-valued η can also offer advantages, not to be discussed in the present study; the reader is
referred to Owen et al. [1998].
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length scale in the neighborhood of a particle, another kind of adaptivity is devised:

h(xi) = η
(m(xi)

ρ̃(xi)

)1/d
, (4.2)

based on the definition of a volume around the particle. For the discrete system∫
Ωi

dλ =
∫

Ωi
dµ/ρ(xi) = m(xi)/ρ(xi) ≈ m(xi)/ρ̃(xi), where m is the mass-per-

particle density, which remains constant in time. Due to the definition of the number
density (becomes infinite for the continuous system), this is a procedure only defined
in the discrete system. Therefore, in the following we employ the discrete forms of
the conservation equations.

The two formulae, (4.1) and (4.2), coincide if the number-density smoothing ρ̃(xi) =
m(xi) ñ(xi) is used. Although the numerical tests in Chapter 5 reveal that the former
relation is more appropriate, the latter one may be combined with any of the three
types of smoothing.

In the following, on grounds of concise notation, all magnitudes appear with the
index of the corresponding particle i, rather than writing them as functions of xi.

For the mass smoothing (3.38), the calculation of density is coupled to the smoothing
length:

ρ̃i = ∑
j

W(xi − xj, hi)mj, hi = η
(mi

ρ̃i

)1/d
, (4.3)

and gives the variation:

δρ̃i = ∑
j

∂αW(xi − xj, hi)
(
δxα,i − δxα,j

)
mj

= ∑
j

∂αW(xi − xj, hi)
(
δxα,i − δxα,j

)
mj + ∑

j

∂W(xi − xj, hi)

∂hi

∂hi
∂ρ̃i

δρ̃i mj, (4.4)

which turns out to be an explicit function:

δρ̃i =
1

ωi
∑

j
∂αW(xi − xj, hi)

(
δxα,i − δxα,j

)
mj,

ωi := 1−∑
j

∂W(xi − xj, hi)

∂hi

∂hi
∂ρ̃i

mj. (4.5)

Similarly, the volume-based regularization (3.48) delivers the coupled equations:

ρ̃i = ρ̃i ∑
j

W(xi − xj, hi)mj, hi = η
(mi

ρ̃i

)1/d
, (4.6)

which result in:

δρ̃i =
ρ̃i
ωi

∑
j

∂αW(xi − xj, hi)
mj

ρ̃j
, ωi := 1− ρ̃i ∑

j

∂W(xi − xj, hi)

∂hi

∂hi
∂ρ̃i

mj

ρ̃j
, (4.7)
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the corresponding variation. Finally, the number smoothing (3.61) becomes:

ρ̃i = mi ∑
j

W(xi − xj, hi), hi = η
(mi

ρ̃i

)1/3
= η ñ−1/d

i , (4.8)

and varies as:

δρ̃i =
mi
ωi

∑
j

∂αW(xi − xj, hi)
(
δxα,i − δxα,j

)
,

ωi := 1−mi ∑
j

∂W(xi − xj, hi)

∂hi

∂hi
∂ρ̃i

. (4.9)

Like the equations derived in the previous section, the continuity equation is derived
by considering δ(·) to be a temporal variation d(·)/dt. Equivalently, the variation of
the medium’s internal energy becomes:

δei =
dei
dρ̃i

δρ̃i =
Pi

ρ̃2
i
δρ̃i. (4.10)

In order to avoid lengthy mathematical writing, one should observe that ωi may be
treated similarly to the term Pi/ρ̃2

i in the equation above. Additionally, the ∂αW(xi −
xj, hi) term is also a function of xi through h = hi and should be treated likewise.
Therefore, the continuity and motion equations for each type of regularization are the
following, for the mass-smoothed medium:

dρ̃i
dt

=
1

ωi
∑

j
∂αW(xi − xj, hi)

(
vα,i − vα,j

)
mj, (4.11)

ωi = 1−∑
j

∂W(xi − xj, hi)

∂hi

∂hi
∂ρ̃i

mj, hi = η
(mi

ρ̃i

)1/d
, (4.12)

dvα,i

dt
= −∑

j

(
Pi

ωi ρ̃2
i

∂αW(xi − xj, hi) +
Pj

ωj ρ̃2
j

∂αW(xi − xj, hj)

)
mj. (4.13)

For the volume-smoothed medium the equations become:

dρ̃

dt

∣∣∣
i
=

ρ̃

ω

∣∣∣∣∣
i

∑
j

∂αW(xi − xj, hi)
(

vα,i − vα,j

)m
ρ̃

∣∣∣
j
, (4.14)

ωi = 1− ρ̃i ∑
j

∂W(xi − xj, hi)

∂hi

∂hi
∂ρ̃i

m
ρ̃

∣∣∣
i
, hi = η

(mi
ρ̃i

)1/d
, (4.15)

dvα

dt

∣∣∣
i
= − 1

ρ̃i
∑

j

(
P
ω

∣∣∣∣∣
i

∂αW(xi − xj, hi) +
P
ω

∣∣∣∣∣
j

∂αW(xi − xj, hj)

)
m
ρ̃

∣∣∣
j
. (4.16)

Finally, for the number-smoothed medium the equations of continuity and motion
are:
dρ̃i
dt

=
mi
ωi

∑
j

∂αW(xi − xj, hi)
(

vα,i − vα,j

)
, (4.17)
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ωi = 1−mi ∑
j

∂W(xi − xj, hi)

∂hi

∂hi
∂ρ̃i

, hi = η ñ−1/d
i , (4.18)

dvα,i

dt
= − 1

mi
∑

j

(
m2

i Pi

ωi ρ̃2
i

∂αW(xi − xj, hi) +
m2

j Pj

ωj ρ̃2
j

∂αW(xi − xj, hj)

)
. (4.19)

Due to the thermodynamic relation (3.26), an internal energy evolution equation of
the form:

dei
dt

=
Pi

ρ̃2
i

dρ̃i
dt

, (4.20)

corresponds to each set of the smoothed equations above.

4.2 Dissipative terms

In the context of SPH, dissipative terms are used for the modeling of dissipative media
and additionally in order to accurately model the propagation of shocks through ideal
media. In the latter case, this special treatment is necessary in order to dampen out
spurious effects near shocks. Having derived SPH directly from the Lagrangian of
the discrete system, Price [2008, 2012] notes that dissipative terms in the equation of
motion of the ideal medium compensate for errors caused by the subtle assumption
of a differentiable Lagrangian function; in the continuous setting this is Equation 3.18.

The dissipative terms of Monaghan [1997] are heuristically shown to have a structure
similar to the structure of approximate Riemann solvers. They try to bridge the jumps
of the conservative variables from “left” to “right” states of the Riemann problem,
multiplied by eigenvalues that can be interpreted as signal velocities [Price, 2012].

Following Price [2008], a generic term of artificial dissipation for a scalar variable ψ is:

dψi
dt

∣∣∣
diss

= ∑
j

mj

a{ψ} v′{ψ}ij(ψi − ψj)

ρij
rα,ij∂αWij, (4.21)

with the signal velocity:

v′{ψ}ij ≡ cij −
1
2

b{ψ}vα,ijrα,ij, (4.22)

defined via the relative particle velocity vα,ij ≡ vα,i − vα,j, and the unit vector:

rα,ij ≡


xα,i − xα,j

‖xi − xj‖
, i 6= j,

0, i = j,

(4.23)
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and the mean values ρij = 1
2 (ρ̃i + ρ̃j), cij = 1

2 (ci + cj) and ∂αWij = 1
2 (∂αWij(hi) +

∂αWij(hj)), for the parameters a{ψ} and b{ψ}. The notation a{ψ}ij highlights that each
parameter refers to a conserved variable ψ and can have its own value. This formula
for the signal velocity is typically augmented [Monaghan, 2005; Price, 2012] for SPH
schemes, as an approximation of the signal-velocity term derived by Monaghan
[1997]:

v′{ψ}ij =
(

c2
i + b{ψ} (vα,ijrα,ij)

2
)1/2

+
(

c2
j + b{ψ} (vα,ijrα,ij)

2
)1/2

− vα,ijrα,ij. (4.24)

In the following we preserve the original form rather than the approximate. Regarding
the dissipative term, Price [2008] argues that it corresponds to the approximation:

dψi
dt

∣∣∣
diss
≈ −2 ∑

j

(
ψi − ψj

)
∂αWijrα,ij

mj

ρj
≈ λ

∂2ψi
∂xαα

, (4.25)

with λ ∝ a{ψ}v′{ψ}‖xij‖. Additionally, Price [2012] suggests that dissipation should
be added to every conservation equation and thus to the evolution of the variables
ψ = {ρ̃, vα, e∗}, where e∗ = 1

2 v2
α + e. When the integral form of mass conservation

is used, there is no need for artificial dissipation in mass evolution, since there is no
differential involved.

Finally, modern astrophysical SPH solvers are equipped with dissipation switches
[Monaghan, 2005; Price, 2008], which turn on and off artificial dissipation when
necessary, by evolving in time the parameters α{ψ}. We found their use non-critical
for the successful completion of the tests presented in this thesis. Therefore, to keep
things simple and generic, the preset study chooses not to discuss them.

Dissipative mass-flux In order to accurately describe propagating jumps in den-
sity we construct an artificial diffusive mass-flux term, inspired by the structure of
Equation 4.21. However, since density discontinuities are natural characteristics of
inhomogeneous materials, smoothing these is ruled out. An expression in the same
manner as Equation 4.21 needs to account for pressure differences. From dimensional
analysis point of view, changing density differences into pressure differences in the
general form of diffusive terms (4.21) needs to be complemented with a division by a
characteristic velocity v{ρ}ij. Thus, we suggest the following structure:

dρ̃i
dt

∣∣∣
diss

= ∑
j

mj
a{ρ}(Pi − Pj)

ρijv{ρ}ij
rα,ij∂αWij, v′α,ijrα,ij ≤ 0, (4.26)

The optimal values for the parameters are discussed along with the numerical experi-
ments in the next chapter. Note that for vα,ijrα,ij ≤ 0, v{ρ}ij > 0, since cij > 0.

Viscosity Similarly to Price [2012], diffusion in the momentum equation is added in
the form of (4.21):

dvα,i

dt

∣∣∣
diss

= ∑
j

mj
a{v}v′v(vα,i − vα,j)rα,ij

ρij
∂αWij, vα,ijrα,ij ≤ 0, (4.27)
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and zero otherwise.

Thermal conductivity For problems involving thermal effects, artificial thermal
conductivity is added to the evolution of specific internal energy [Monaghan, 2005;
Price, 2012], as:

dei
dt

∣∣∣
diss

= −∑
j

mj

ρij

(1
2

a{v}v
′
{v}ij(vα,ijrα,ij)

2

+ α{e}v
′
{e}ij(ei − ej)

)
rα,ij∂αWij, vα,ijrα,ij ≤ 0, (4.28)

and zero otherwise. The above form refers to the physically appropriate conserva-
tion of the total energy e∗, rather than the internal energy e. Note that Price [2008]

introduces the signal velocity term: v′{e}ij =
√
|Pi − Pj|/ρij, so that artificial conduc-

tivity is applied only in order to eliminate spurious pressure gradients across contact
discontinuities

In the literature of SPH, a similar approach of adding diffusive terms in all evolution
equations appears [Libersky et al., 1997; Randles and Libersky, 1996], termed conser-
vative smoothing. The most noteworthy differences are the following: 1) the present
dissipative terms belong to a generic form and are designed such that they comple-
ment schemes coming from a variational SPH framework [Monaghan, 2005; Price,
2008, 2012], 2) they come from a framework which incorporates the W–h–ρ coupling,
3) the dissipative terms are directly related to approximate Riemann solutions Mon-
aghan [1997] and finally 4) the new dissipative mass flux term is precisely designed
to treat spurious spikes on the internal interface of inhomogeneous materials.

4.3 Time integration

Properties of the Lagrangian formulation are better preserved using symplectic integra-
tors and Monaghan [2005] states that they should be used for SPH. Accordingly, in all
following tests, time integration is achieved with a leap-frog scheme, which initiates as:

{dρ̃/dt, dvα/dt, de/dt}0
i = f (x0

α,i, v0
α,i, ρ0

i , e0
i ) (4.29)

{ρ̃, vα, e}1/2
i = {ρ̃, vα, e}0

i + {dρ̃/dt, dvα/dt, de/dt}0
i ∆t|1/2, (4.30)

and continues from any subsequent timestep k > 0 to timestep k + 1 as:

{dρ̃/dt, dvα/dt, de/dt}k
i = f (xk

α,i, vk
α,i, ρk

i , ek
i ) (4.31)

{ρ̃, vα, e}k+1/2
i = {ρ̃, vα, e}k−1/2

i + {dρ̃/dt, dvα/dt, de/dt}k
i ∆t|k (4.32)

xk+1
α,i = xk

α,i + vk+1/2
α,i ∆t|k (4.33)

{ρ̃, vα, e}k+1
i = {ρ̃, vα, e}k+1/2

i + {dρ̃/dt, dvα/dt, de/dt}k
i ∆t|k/2. (4.34)
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The timestep criterion is according to the Courant-Friedrichs-Lewy criterion ∆tk =
ξCFL min{vi + ci)/hi}, with ξCFL ∈ [0.1, 0.3] and specified in tests. A maximum
timestep due to artificial dissipation was not necessary.

4.4 Initial particle configuration

In general, for SPH computations two different initial configurations of particles are
possible: particles of equal masses placed in a non-uniform manner or particles of
uniform spacing and unequal masses, as discussed in Section 3.1.1. These two options
are depicted in Figure 4.1, where the same medium, comprising of regions of constant
density (red and green regions), is discretized with particles in a uniform spacing
(left) and particles in a non-uniform spacing (right). No matter which one is used,
it should be able to reproduce the initial density ρ0, and for that, unequal particle
masses are necessary in the first case, while the latter case can be also constructed
with particles of equal masses. Mathematically, they correspond to two different
building procedures. First, the empirical measure:

µ0 = m ∑
i

δx0,i , m ≡
∫

Ω0
dµ0

N
, (4.35)

is constructed in a probabilistic manner [Evers et al., 2015]. Effectively, the density
ρ0 of the medium is the corresponding probability density function. Second, the
measure:

µ0 = ∑
i

m(x0,i) δx0,i , m(x0,i) :=
∫

Ω0,i

dµ0 = ρ0(xi)
∫

Ω0,i

dλ, (4.36)

is constructed in a deterministic way, using a discretization of the domain Ω0.

Consequently, the three derived schemes may be combined with two initial configu-
rations of the particle system. Notice that for particle systems of equal masses, the
mass-based smoothing (3.38) and the number-based smoothing (3.61) are equivalent.
The same holds, in case the adaptive schemes of Section 4.1 are used, where addition-
ally, they are endowed with the same form of adaptivity h = h(ñ). Alternatively, if
particles of unequal masses are to be used, the only scheme which respects this type
of adaptivity, is the number-smoothed.

Usually, particles of equal masses are used for shock problems [Borve and Price,
2009; Monaghan and Gingold, 1983; Price, 2008], although there appears no clear
motivation for this choice in the literature. Indeed, this subtlety is discussed in the
tests of Chapter 5 and its effects appear.

Regarding the practical aspects of each construction, let us examine the discretization
of a simple one-dimensional domain, with regions L and H, of densities ρ0,H > ρ0,L.
For the empirical measure, a uniform discretization per specie is chosen, such that each
line increment in the low density region is DL ≡

∫
Ω0,i∈A

dλ. Consequently, particles of
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FIGURE 4.1: Two different ways to construct the density profile of an inhomogeneous medium: particles in
uniform spacing (left) and particles in a non-uniform spacing (right).

this region are separated by interparticle distances DL and obtain a mass mL = DL ρ0,L.
Particles of the same masses are placed at DH = DL(ρ0,L/ρ0,H) interparticle distances
in the higher density region H. As a result, the largest discretization length is dictated
by the region with the lowest density ρ0,L in the system. Alternatively, in order
to achieve uniform partitioning overall the domain, a discretization length D is
selected and one particle is placed in the middle of each domain partition. The
mass of each particle is assigned according to the initial density distribution, as:
m(x0,i) = ρ0(x0,i)D.

For spatial dimensions d = {2, 3}, the procedures above lead to rectangular packings
of the particles, while other denser configurations such as hexagonal packings may be
advantageous. Diehl et al. [2015] discuss various options. In any case, the discretiza-
tion lengths DL and DH , which are necessary to initiate the filling of the particles in
the domain, are obtained with the above procedure. As discussed in Chapter 2, a
centroidal Voronoi tessellation can be used in order to furnish a uniform partitioning.

4.5 Numerical evidence of convergence

The Wasserstein distance of two measures µ1 and µ2 in the space of probability measures
is defined as:

W(µ1, µ2) = inf
Π∈Π(µ1,µ2)

∫
Rd×Rd

|χ− ψ|Π(dχ, dψ) (4.37)

and it is a way to assign a cost-function to any admissible configuration of the
system. We denote by Π(µ1, µ2) the set of all joint representations of µ1 and µ2. Joint
representations are also called couplings and are defined such that for each i = 1, 2:∫

Rd×Rd
f (χi)Π(dχ1, dχ2) =

∫
Rd

f (χ) µi(dχ), (4.38)

for all measurable, bounded functions f on Rd. For an exposition on the Wasserstein
distance and the related concept of optimal transport, we refer to Evers et al. [2015]
and the related references therein.
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Considering the mass-smoothed system of (3.38), written with respect to the continu-
ous measure µ, and the corresponding system written for the discrete measure µN ,
the proof in Evers et al. [2015] establishes that:

sup
t∈[0,T]

W(µN
t , µt)→ 0, as N → ∞. (4.39)

Note that in the expression above we explicitly write the dependence of µ on t. The
proof is an extension of an older result of DiLisio et al. [1998]. The discussion about
the differences between the two approaches and a comprehensive comparison of the
equations treated in each case can be found in Evers et al. [2015].

The paradigms of the numerical illustration, which follow, are performed for a series
of increasing particle numbers Nk. For each computation, after normalizing the total
mass of the system, at each time instance t ∈ I := {φT/10, φ = {0, ..., 10} ⊂N}, we
solve a linear programming problem to calculate:

Mk,k+1 := max
t∈I
W(µ

Nk
t , µ

Nk+1
t ) ≈ sup

t∈[0,T]
W(µ

Nk
t , µ

Nk+1
t ), (4.40)

and furnish the convergence rate:

C(d)
k+1 := log Nk+1

Nk

(Mk+1,k+2

Mk,k+1

)
. (4.41)

The theoretically predicted C(d)
k+1 is the same as for the initial measure, i.e. O(N−1/d),

whence we expect that it tends to the value −1/d.

A critical point of the theoretical result of Evers et al. [2015] (and previously of DiLisio
et al. [1998]) is that it makes no conclusion on the smoothing length h. The convergence
proof is achieved for h fixed with the number of particles, and the dependence of
h on N is not investigated. It is known that in order for the regularized equations
of hydrodynamics to approximate the real physics well, h should be sufficiently
small. As discussed in Chapter 2, in the SPH literature this is achieved by taking
h = η N−1/d, with 1.2 ≤ η ≤ 1.5, for Gaussian-like kernels. By extension, cases of
spatially and temporally varying h, like those used in shock problems Monaghan
[2005], are not covered by the theoretical result.

The theoretical proof of convergence Evers et al. [2015] covers cases broader than the
equations of the ideal medium discussed in the previous section. First and foremost,
the form of the potential energy covered by the theoretical proof of convergence is:

e∗ = e∗(ρ(x), x) = e(ρ(x)) + u(x), (4.42)

with e the internal energy of the medium given by ∂e/∂ρ = P(ρ)/ρ2, and u an external
field, such as gravity. A limitation of the theoretical proof is that the admissible
equations of state are of the form:

P(ρ) = c ργ, (4.43)
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where c is a parameter and γ, the so-called polytropic exponent, which needs to satisfy
γ > 1. It should be underlined that the theoretical proof is not conclusive about
equations of state in the form P(ρ) = B · ((ρ/ρ0)

γ − 1), which are typically employed
in SPH computations for the modeling of liquids or solids Monaghan [2005].

Apart from the ideal system of the mass-smoothed medium —discussed in Section
3.3.1, the proof of convergence covers processes described by the problem:

δS|T0 = −
∫ T

0

∫
Ω

(
− µvsc(x) vα(x) +

∫
Ω

K(x− y)dµ(y)
)
δxα dµ(x)dt, (4.44)

so that in the resulting acceleration of the ideal medium, the terms −∂αu(x) −
µvsc(x) vα(x) +

∫
Ω K(x− y)dµ(y) need to be added. In the general case K can be an

anisotropic kernel, K(x− y) 6= K(‖x− y‖), describing non-local interactions within
the system. The term µvsc = µvsc(x) is a model for dissipation without non-local
characteristics. It should be stressed that this is in contrast to the non-locality of the
dissipative term:

∼
∫

Ω

(
vα(x)− vα(y)

)
∂ββW(x− y)

dµ

ρ̃

∣∣∣
(y)

, (4.45)

typically constructed (via approximation of ∂ββW) in SPH, to model viscosity (e.g.
Monaghan [2005]). Note that this construction further assumes the approximation:
dλ = dµ/ρ ≈ dµ/ρ̃, which characterizes the volume-smoothed medium of Section
3.3.2.

We construct the initial measure µN
0 , corresponding to the N-particle approximation

of µ0, according to a partitioning of the initial domain in N subdomains of incremental
volume Vi. Masses are assigned as mi = ρ0(xi)Vi for each i = 1, . . . , N. In Section
3.1.1 (and in Evers et al. [2015] formally) two ways of constructing the sequence
µN

0 are shown, such that it converges to µ0 at rate O(N−1/d); they correspond to
particle initialization strategies typically used in the SPH literature. The theoretical
convergence result Evers et al. [2015] establishes that the corresponding solutions µN

converge at the same rate.

In Evers et al. Evers et al. [2015], test cases which conform to the assumptions of the
proof are examined. The cases that follow here and which are also presented in Zisis
et al. [2016a], suggest that the same theoretical results may be expected to hold also
for cases that are typically used for benchmarking SPH algorithms, but do not satisfy
all the assumptions of the convergence theorem in Evers et al. [2015].

4.5.1 Evolution of elliptical drop

The evolution of an elliptical drop is a benchmark problem for weakly compressible
flows, which admits an analytical solution [Monaghan, 1994]. It refers to an initially
circular water drop (of unit radius) which attains an elliptical shape under the shearing
velocity field (v0,x1 , v0,x2) = (−100x0,1, 100x0,2). The problem involves a conservative
part, with P(ρ) = B · ((ρ/ρ0)

7 − 1), and a dissipative part. The numerical recipe
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FIGURE 4.2: Droplet test; final-to-initial density at t=0.0076 and convergence rates of the initial (blue) and
the final (red) measures.

is considered standard in the current SPH literature. For the motion due to the
hydrodynamic conservative part we use the equation of motion of the mass-smoothed
medium of Section 3.3.1 and dissipation is modeled with the analogous term of
Monaghan and Rafiee [2013], which pertains to Equation 4.45. Additionally, the
Wendland C2 kernel [Monaghan and Rafiee, 2013], and a leapfrog time integrator
—preferred for its symplectic nature— are used, with h = 1.5N−1/2 assigned to all
particles. Furthermore, we employ the artificial mass-flux term of Zisis et al. [2015b]
with the corresponding parameters α = 0.5 and β = 0, to counteract oscillations in the
density profile. We examined two different systems: 1) the mass-smoothed medium
of Section 3.3.1; 2) the volume-smoothed medium of Section 3.3.2, which is also
employed by Monaghan and Rafiee [2013]. Results are practically indistinguishable.
Additionally, note that in this problem of a single homogeneous medium, the former
approach is equivalent to the number-smoothed medium. The left plot of Figure 4.2
shows the upper half plane of the problem for N = 7232 at normalized time t = 0.0076,
when Monaghan [1994] records the height of the semi-major axis. He finds the latter
height to be 1.91, compared to 1.95 for the analytical result (black dashed horizontal
line in Figure 4.2) and our 1.93. We follow the process until normalized final time
t = 0.01, achieved with a time step ∆t = 10−6. The right plot of Figure 4.2 shows the
convergence rates C(2)

k+1 of the initial measure µN
0 and the final one µN

T , with respect
to the Wasserstein distance between particle systems of successive particle numbers
Nk ∈ {2, 12, 32, 52, 112, 208, 448, 812, 1804, 3228, 7232}. The convergence rates oscillate
around the theoretically predicted value −1/2, and they tend to become identical.
Computing the Wasserstein distance for higher Nk becomes computationally too
expensive for our brute-force algorithm. In order to fill the initial circle (red dashed
circle in Figure 4.2) with Nk particles, we use `k = {2, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96}
particles per unit length to pack particles within a larger square and then disregard
all particles falling outside. Recall that the theoretical result (Sections 3 and 4) does
not support the current form of dissipation, the equation of state, or the specific
functional dependence of h on N, in the proof h is assumed to be a fixed parameter
for all examined Nk. Moreover, we obtained indistinguishable results using the SPH-
approximation of the continuity equation [Monaghan and Rafiee, 2013], for which
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FIGURE 4.3: Shock-tube test; density at t=0.2 and convergence rates of the initial (blue) and the final (red)
measures.

the theoretical result is not applicable. Yet, our numerical results provide evidence
that typically used weakly compressible SPH schemes converge with respect to the
Wasserstein distance. Rigorous proofs are left for future work. Our conjecture that
the scaling h ∼ N−1/d is the correct one, may serve as a guideline.

4.5.2 Shock tube

The shock tube test is a classic one-dimensional test, frequently employed for the
validation of fully compressible SPH schemes [Monaghan, 2005; Price, 2012; Zisis
et al., 2015b]. It is also discussed in more detail in Section 5.2. In this test, there is
a discontinuity in the density profile of the medium, with ρ0(x0 < 0.5) = 1 and
ρ0(x0 ≥ 0.5) = 0.125. We construct the initial density profile with particles of equal
masses and solve the system of Equations 4.11, for the mass-smoothed medium with
a varying smoothing length hi := 1.2 n−1

i . The complete solution strategy is further
discussed in Section 5.2 (also found in Zisis et al. [2015b]) and falls within the standard
SPH framework [Monaghan, 2005; Price, 2012]. The typical resolution is 450 particles
in total [Price, 2012; Zisis et al., 2015b] and therefore, we examine convergence with
respect to the Wasserstein distance for Nk ∈ {18, 45, 90, 225, 450, 900, 1800}, to the
theoretical value C(1)

k+1 = −1. The distinct characteristic of this case is that h varies
spatially and temporally. This is not supported by the theoretical result of convergence
[Evers et al., 2015], neither are the —necessary for the solution— artificial dissipative
terms in all equations, as described in Section 4.2. Nonetheless, in Figure 4.3 the
system is shown to converge in a manner similar to the prediction of the theoretical
result. The density profile for the highest resolution is also presented in Figure 4.3,
against the analytical solution (red solid line) at final normalized time t = 0.2.
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4.5.3 Discussion

A limitation of the theoretical proof is that it is not conclusive regarding the number
of particles going to infinity and the smoothing length going to zero at the same
time. It rather holds for examining a fixed value of smoothing length as the number
of particles goes to infinity. Additionally, open problems are the inclusion of the
following features: dissipation with a non-local character, similar to the one typically
used in SPH to mimic viscosity of fluids; equation of states for liquids and solids;
spatially varying smoothing length.

The presented convergence study introduces an innovation, by supporting the theo-
retical proof with numerical evidence. More specifically, we calculate the convergence
rates of the SPH system corresponding to two problems typically employed in the
SPH literature, however with formulations not covered by the theoretical result. One
refers to the schemes used in weakly compressible SPH computations and another
to fully compressible SPH schemes, where h is varying in space and time. For both
test cases we observe the theoretically predicted convergence rate with respect to the
Wasserstein distance as the number of particles increases.





CHAPTER 5

Hydrodynamical validation tests

The following tests concern the propagation of shocks through media. Consequently,
the chosen scheme is required to resolve the spatially varying length scale in the
problem domain. To this end, adaptivity of the smoothing length is necessary and
the methods described in Section 4.1 provide the framework for this task. As the
following numerical experiments show, coupling the smoothing length with the local
number density seems to be the sole correct option. This is conjectured by Price
[2012].

In general, two different initial configurations of the SPH particles can be applied: par-
ticles of equal masses or particles of uniform spacing (see Section 4.4). Consequently,
the three derived schemes may be combined with two initial configurations of the
particle system. For particle systems of equal masses the mass-smoothing approach
(4.11) and the number-smoothing approach (4.17) are equivalent and hence adaptivity
is indeed in the form h = h(ñ). Alternatively, if particles of unequal masses are to be
used, the only scheme which respects this type of adaptivity, is the number-based
smoothing.

In the related literature, fully compressible problems are typically solved with parti-
cles of unequal masses [Borve and Price, 2009; Monaghan and Gingold, 1983; Price,
2012]. Due to the geometric restrictions of this method, as discussed in Section 4.4, the
following tests aim at answering how well fully compressible SPH computations can
perform, using particles of unequal masses and, chiefly, the number-based smoothing.

We focus only on the differential forms of Section 4.1, for three reasons. First, according

85
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to Section 3.4, they guarantee zeroth order discrete approximation by construction
and thus they are appropriate for bounded domains, like those of the problems in
Chapter 6. Second, they do not require the solution of a system of equations (like
Equation 4.3 or 4.8), when adaptive schemes are used and the smoothing length
becomes a local variable. Third, the integral forms of mass conservation abruptly
smooth out contact discontinuites, even though such an effect is not predicted by
all equations of state (e.g. the barotropic Equation 5.1) or problem setups. On the
other hand, the differential forms of mass conservation require a velocity difference
to trigger the variation of density and this is an attractive feature for the problems in
Chapter 6, as well as for many problems in the present Chapter.

5.1 Isothermal shock-bar tests

The first test is the Riemann problem which is solved analytically in Section 1.1.4
and refers to the isothermal impact of a homogeneous projectile onto an inhomoge-
neous target. The main assumption is that due to the high kinetic energy involved,
materials respond hydrodynamically and only normal stresses develop, following
the barotropic equation of state:

P(ρ) = c2
0 (ρ− ρ0), (5.1)

also introduced in Section 1.1.3. The isothermal conditions imply constant speeds
of sound. More importantly, this test is the closest model to the impacts which are
discussed in Chapter 6 and admits closed form solution as well. Starting from left to
right, the domain comprises the projectile and the three different regions of the target,
which model three distinct materials, according to:

{ρ, v, ρ0, c0} =


{1, 1, 1, 1}, 0 ≤ x < 0.6;
{1, 0, 1, 1}, 0.6 ≤ x < 0.8;
{0.25, 0, 0.25, 0.5}, 0.8 ≤ x < 1.2;
{1, 0, 1, 1}, 1.2 ≤ x ≤ 1.4.

The initial conditions (for x > 0.4) are presented in Figure 5.1. There exist two contact
discontinuities which are not affected until a wave reaches them.

The parameters ρ0 and c0 of each state are the reference density and the constant
speed of sound respectively. The problem is solved with a constant time-step of
∆t =5× 10−5 towards observation time t = 0.4. This time is enough for the right-
moving shock wave which emanates from the initial discontinuity in velocity to reach
the interface of the two-phased target. It splits into a reflected rarefaction wave and
a transmitted shock wave (Section 1.1.4). We focus on ρ and P, since they are the
most sensitive variables to instabilities, rather than velocity. In both cases, we use
the dissipation parameters aρ = 0.2, bρ = 2.0 and the standard artificial viscosity
parameters av = 1.0, bv = 2.0.
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FIGURE 5.1: The isothermal shock-bar test at t = 0 (upper plots), and at t = 0.4 for the number density
scheme, with particles of unequal masses (middle plots) and equal masses (lower plots).

In the upper plots of Figure 5.1, particles of unequal masses are employed to solve the
problem with the number-density scheme. The SPH solution for N` = 400 particles
per unit of length is shown with black dots and the analytical solution with the red
continuous line. The left running rarefaction is approximated with a line. In the lower
plots of Figure 5.1, a distance DL = 0.005 in the low-density region creates particles
of equal masses. The results show that the solution using the latter strategy offers
a nearly flat pressure profile around the contact discontinuity, as expected by the
exact solution. A small hump appears at the same place for the system of unequal
masses. Besides this, both numerical solutions accurately follow the wave pattern of
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FIGURE 5.2: The asymmetric impact test for initial density ratio 1/4 and speed-of-sound ratio 1/2, at
t = 0.3, for the number-density scheme with particles of unequal masses (upper plots) and
equal masses (lower plots). For comparison, results without dissipative mass flux appear in the
inset plots.

the analytical solution.

For a closer examination of the various schemes, the asymmetric impact test of Davison
[2008], Ch.3, seems more appropriate. In x ∈ [0, 0.5), the state of the moving material
is {ρle f t, vle f t} = {ρ0,le f t, c0,le f t} = {1, 1}, while on the right side x ∈ [0.5, 1.0] the
material is described by {ρright, vright} = {ρ0,right, 0}. In each test-case studied below
ρ0,right and c0,right take different values, while the barotropic equation of state (5.1) is
employed.

In Figure 5.2, the convergence of the test-case with ρ0,right = 0.25 and c0,right = 0.5
appears, employing a crude discretization (blue dots) and a four times finer one
(black dots). The upper plots refer to particles of unequal masses for N` = {100, 400}
particles per unit length and the lower ones, to particles of equal masses with initial
distances DL = {0.02, 0.005} in the low density region. Respectively, the time steps
∆t = {10−4, 5 · 10−5} are used until time t = 0.3. In the inset plots, the density around
the contact discontinuity is presented for the finer discretization, when no artificial
mass flux is used.

By and large, the two systems converge to the exact solution as the number of particles
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increases. The main difference is located at the contact discontinuity, where the system
of unequal masses is unable, for the given number of particles, to provide a sharp
discontinuity in density and thus, diminish the hump in the pressure profile. This
effect is attributed to the way the number-smoothed density is constructed. To see
this, consider Equation 3.61, and write:

m(xi) ñ(xi) = m(xi)∑
j

W(xi − xj) = ∑
j

W(xi − xj)
m(xi)

m(xj)

∫
Ωj

dµ. (5.2)

For a regular configuration of particles, N → ∞ implies n → ∞ and by virtue
of h ∝ n−1/d, h → 0. The latter means that in this limiting case the contribution
of the terms m(xi)/m(xj) from particles j around i decreases fast, and the term
m(xi)/m(xj=i) ≡ 1 dominates and we arrive to ρ(xi). Note that the observation
holds as far as the m(xi) and m(xj) involved in the summation are not of extremely
different scales. Regarding problems of finite number of particles —as the numerical
paradigm— terms m(xi)/m(xj), which are not unity, remain in the previous sum.
Thus, they make the result around the contact discontinuity worse than the one
obtained from the mass-smoothed medium: ∑j W(xi − xj)

∫
Ωj

dµ.

Note that this effect is to not be confused with the singularity appearing in the inset
plots of density (Figure 5.2) for both particle systems. This is the result of neglecting
the boundary terms in the variation of the integral operator Price [2008]; Zisis et al.
[2015b] and it occurs for any of the smoothed density estimates. Therefore, the use of
the artificial mass-flux is crucial in removing the singularity in both cases.

Another difference is that the system of unequal-masses smears out the left running
wave in a larger region than the equal-mass system. Effectively, the left-running and
the right-running waves appear to be the same for the equal-mass system. Last but not
least, we report that in case a large time-step is used, the value of density in the region
between the right-moving shock and the contact discontinuity is underestimated.
This is precisely the region of the highest changes of density in the system. We may
infer that the time-step is bounded by the maximum time-variation of density and
thus the time-step should be governed by a corresponding criterion, besides the CFL
criterion. In Figure 5.3, there appears some evidence that in problems of varying h
not all the developed schemes are wise choices. The left subplot shows the region
around the contact discontinuity for schemes employing particles of unequal masses,
while the right subplot depicts the solutions of schemes with equal-mass particles.
The profile of density on the right of the contact discontinuity is overestimated for
the volume-smoothed approach (Equation 4.14) in both particle configurations and
the mass-smoothed approach for the unequal-mass system (Equation 4.11). This is a
spatial error and it persists after reduction of the time-step. In conclusion, for systems
with particles of unequal masses and varying h, the number-density scheme appears
to be the only choice.

The following tests explore the generality of the number-density scheme and its
limitations for isothermal problems. In Figure 5.4 the plots of pressure refer to the
problem of initial data ρ0,right = 0.5, c0,right = 0.5, at t = 0.3. The number-density
scheme is used with N = 400 particles placed at uniform initial spacing (right plot)
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FIGURE 5.3: The asymmetric impact test for initial density ratio 1/4 and speed-of-sound ratio 1/2, at
t = 0.3, in the region of the shock and the contact discontinuity. Particles of unequal masses
(left) and particles of equal masses (right). Recall that number-smoothing and mass-smoothing
deliver identical schemes.
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FIGURE 5.4: The asymmetric impact test at t = 0.3, for density and soundspeed ratios 1/2. The number-
density scheme with (left) particles of equal masses and (right): unequal masses.

and a system of N = 500 equally-massed particles (left plot). Recall that the different
number of particles is due to the restrictions of the particle-filling procedure for equal
masses. A more demanding case occurs for the data ρ0,right = 0.25, c0,right = 0.25,
primarily due to the high speed-of-sound ratio. It is for this purpose that an increased
value of aρ = 1.0 is necessary to suppress the singularity in the pressure profile at
the contact discontinuity. Additionally, a finer resolution is required, leading to a
higher amount of particles. The corresponding pressure profiles of Figure 5.5 are for
N = 800 particles of uniform initial spacing (left plots) and N = 1250 particles of
equal masses (right plots). The inset plots show the solution for aρ = 0.2 around the
contact discontinuity, which can be considered as a standard value for density ratios
up to 1/4 and speed-of-sound ratios up to 1/2. Apparently, the latter ratio plays a
critical role.

Thus, a preliminary conclusion and a suggestion follows the asymmetric impact
test. Whenever density ratios are small, say ρ0,le f t/ρ0,right < 1/4, the equally-massed
particles should be the primary choice, since they offer results of better quality around
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FIGURE 5.5: The asymmetric impact test at t = 0.3, for density and soundspeed ratios 1/4, using the
number-density scheme with particles of equal (left) and unequal masses (right).

ρ0 v0 P0 Pre f γ

Gas 1 0 1 0 5/3
Gas 0.125 0 0.1 0 5/3

Liquid 1 20 1× 103 6× 108 4.4
Liquid 1 20 1 6× 108 4.4

Liquid 1 0 1 0.6 4.4
Gas 0.05 0 0.01 0 1.4

TABLE 5.1: Initial data and parameters

the contact discontinuity. When computations become heavy due to high density
ratios which dictate large numbers of particles to create an acceptable resolution
in the low density regions, the use of unequal-mass particles becomes the unique
choice, albeit, at the cost of errors in pressure around contact discontinuities. The
same suggestion holds in more spatial dimensions for complex geometries, where it
is easier to fill the domain with uniformly spaced particles than choosing the spacing
in each part of the domain according to the density distribution.

5.2 Shock-tube tests

Three shock-tube tests allow for the evaluation of the developed schemes in describ-
ing the propagation of shocks vis-à-vis analytical solutions, which are found via
procedures described in Toro [2009] and Plumerault [2009]. In all problems, the
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stiffened-gas equation of state delivers the pressure:

P(ρ, e) = (γ− 1)ρe− γPre f , c2 =
γ(Pre f + P)

ρ
, (5.3)

using the appropriate ratio of heat coefficients γ and reference pressure Pre f for each
fluid. The ideal-gas equation of state is recovered for Pre f = 0.

Regarding the optimal parameters for the artificial dissipation terms, we find the
following values working well in all examined test cases. An increased —compared
to the previous isothermal tests— artificial mass-flux term aρ = 0.5 is used in all three
tests, while bρ = 2.0 as previously. For the energy conservation equation ae = 0.1 and
be = 2.0 is applied.

5.2.1 Air-Air shock tube
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FIGURE 5.6: The Air-Air shock-tube test at t = 0.2 for the number-smoothed approach and particles of
unequal masses.

The first test is the classic shock-tube benchmark of Sod [1978], which has been
addressed since the early development of SPH [Monaghan and Gingold, 1983], for
density ratios of 1/4 . Its solution within the standard variational SPH framework
is extensively examined by Price [2008] for density ratios of 1/8, where the use of
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the integral equation for mass conservation is flavored along with a system of equal
particle masses. There, the differential form of mass conservation is shown to suffer
from a singularity at the contact discontinuity, which in our tests is turned into a
hump due to the artificial mass-flux term. In Figure 5.6, the solution at t = 0.2 is
presented using N = 400 particles of uniform initial spacing, while in Figure 5.7
DL = 0.001 in the low density region, resulting in 450 particles. A constant time-step
of ∆t = 5 · 10−5 is used in both cases. The analytical solution (red solid line) shows
a constant pressure through the contact discontinuity and the suggested artificial
dissipation terms work towards achieving this fairly well for the SPH solution by
suppressing the singularities. For the system of equal masses the singularity is turned
into a flat pressure profile around the contact discontinuity, while for the system of
unequal masses a hump appears in that region. Obviously, the solution of the former
system is closer to the analytical, nevertheless at the cost of extra particles.
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FIGURE 5.7: The Air-Air shock-tube test at t = 0.2 for the number-smoothed approach and particles of
equal masses.

5.2.2 Liquid-Liquid shock tube

Hosono et al. [2013] concentrate on problems related to mixing and show that standard
SPH with only artificial viscosity added gives poor results in their Liquid-Liquid
benchmark. This leads them to choose the more complicated variational framework
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of Hopkins [2013] for SPH schemes and obtain particle volumes as a function of the
internal energy density, rather than mass density (see the related discussion in the
Introduction).
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FIGURE 5.8: The Liquid-Liquid shock-tube test at t = 0.01 for the number-smoothed approach and particles
of unequal masses. In the inset plot of density, convergence with the number of particles is
shown and in the inset plot of internal energy, the effect of an increased dissipation parameter
in the corresponding variable (more details are provided in the text).

Note that due to the equal ”left” and ”right” initial densities, the number-smoothed
and the mass-smoothed approaches coincide. As it may be seen in Figure 5.8, the
scheme is able to capture properly the physics described by the semi-analytical
solution. More importantly, the instabilities observed by Hosono et al. [2013] at the
contact discontinuity (nearly in the middle of the domain) are canceled. Diffusion in
mass proves tantamount to obtaining the observed flat pressure profile. In the inset
plot of density, the convergence of the scheme is shown for N` = 100 particles per
unit length with a constant time-step ∆t = 5 · 10−5 (blue circles) and for a four times
finer discretization of N` = 400, with ∆t = 5 · 10−5 (black dots). An issue is the error
which appears on the left-running wave, which can be lowered using the increased
value aρ = 1. Zisis et al. [2014a] mention that it is completely eliminated if artificial
dissipation is added to approaching particles and particles moving apart, instead of
only particles moving closer as suggested in Section 4.2. The applicability of that
choice in two spatial dimensions has not been confirmed.
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FIGURE 5.9: The Liquid-Gas shock-tube test at t = 0.0023 for the number density scheme and particles of
unequal masses.

5.2.3 Liquid-Gas shock tube

This test involves a truly multiphase medium in the sense that the initial density
profile is discontinuous and the fluid parameters as well. It is a Liquid-Gas shock tube
and involves an initial density ratio of 1/20 and a pressure ratio of 1/100. In Figure
5.9, the results at t = 0.0023 are given, as obtained with ∆t = 10−8 and 800 particles
of uniform initial spacing. Of course the minuscule time-step poses restrictions to the
use of the algorithm. Similarly to the Air-Air shock-tube, the solution for pressure
suffers from the appearance of a hump. This effect is magnified by a factor two in
the inset plots of pressure. The inset plot of density zooms in the right-running shock
by a factor two. Therein, the convergence of the solution is shown for 200 and 800
particles with blue circles and black dots, respectively. Notice that as the number of
particles increases, not only does the steepness of the numerical wave increase, but the
numerically predicted wave also comes closer towards the true shock position. Finally,
it is evident that the SPH solution manages to capture the left-running rarefaction
and the shock which propagates through the low-density fluid.
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5.3 Isentropic shock-bar test

0.2 0.4 0.6 0.8 1.0 1.2 1.4
x

0.4

0.6

0.8

1.0

1.2

1.4

ρ

0.2 0.4 0.6 0.8 1.0 1.2 1.4
x

0.0

0.2

0.4

0.6

0.8

1.0

P  

0.2 0.4 0.6 0.8 1.0 1.2 1.4
x

0.0

0.2

0.4

0.6

0.8

1.0

v

0.2 0.4 0.6 0.8 1.0 1.2 1.4
x

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

e

FIGURE 5.10: The isentropic shock-bar test at t = 0.25 for the number-density scheme and particles of
equal masses.

The last test comprises an ideal —also termed isentropic— hypervelocity impact into
an inhomogeneous structure using the nonlinear equation of state:

P = K1µ + K2µ2 + K3µ3 + B0ρ0e, µ =
ρ− ρ0

ρ0
, (5.4)

for the parameters defined as:

K1 = ρ0 c2
0, K2 = K1(1 + 2(S0 − 1)), K3 = K1(2(S0 − 1) + 3(S0 − 1)2). (5.5)

Normal stresses in metals during hypervelocity impacts are typically modeled with
this type of equations [Hiermaier, 2008]. The main assumption is that the changes
of the internal energy take place much faster than the changes of entropy, which are
therefore neglected. Parameters and initial conditions are described by:

{ρ0, v0, P0, c0, S0, B0} =


{1, 1, 0, 1, 1.338, 2.0}, 0 ≤ x < 0.6;
{1, 0, 0, 1, 1.338, 2.0}, 0.6 ≤ x < 0.8;
{0.4, 0, 0, 0.484, 1.470, 0.67}, 0.8 ≤ x < 1.2;
{1, 0, 0, 1, 1.338, 2.0}, 1.2 ≤ x ≤ 1.4.

(5.6)
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Values of the projectile’s material are reported for Aluminum [Hiermaier, 2008], while
the values of the projectile’s medium layer material are approximately those reported
for a pure epoxy resin [Millett et al., 2005].

No exact solution exists in order to validate the numerical results. However, the
purpose of this test is to highlight the importance of the dissipative mass flux term
and examine whether its interplay with the artificial heat conduction coefficient
ae delivers a flat pressure distribution across shocked material interfaces. We are
interested in the behavior of the number-smoothed approach with particles of equal
initial volumes and especially in its ability to suppress any spurious kinks in the
distribution of computed variables.
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FIGURE 5.11: The isentropic shock-bar test at t = 0.25 for the number-density scheme and particles of
unequal masses.

In Figure 5.11, results at t = 0.25 are shown, using N` = 400 particles per unit length.
Artificial mass flux (aρ = 0.5) and artificial conductivity with ae = 0.5 are used.

Similarly to the isothermal impact test, the use of dissipative mass flux smoothens out
spurious kinks on the shocked interface and provides continuous and almost uniform
pressure distribution through the contact discontinuity. A flat pressure distribution
in that region is expected due to the Riemann structure of the problem. Regarding
the early stages of the impact, the dissipative heat term removes the energy which is
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localized at the impact site. This localization is due to the abrupt change of kinetic
energy into internal energy during an impact of velocity as high as the material’s
speed of sound. Actually, the result of the localized energy is apparent in the later
stages of the experiment; notice a wave succeeding the rarefaction wave in the plots
of e, in both Figures 5.10 and 5.11. In the inset plot of internal energy, a substantially
increased value of ae = 2.0 is used and it achieves to diminish the wave. Lacking
an analytical solution, we cannot safely conclude whether this wave is an artefact.
Nevertheless, there is a major argument against the existence of this wave. For ae = 0
and normal aρ = 0.5, the wave is suppressed in the density profile, however not for
the internal energy. By increasing the artificial dissipation of the internal energy, the
wave is increasingly suppressed. The localized internal energy is smoothed out to a
broader region, does not affect the strength of the shock and works independently
of the dissipative mass term. Therefore, increased values of ae should be used with
caution, if at all.

At this point a comment regarding the choice of the artificial dissipation parameters is
necessary, especially in cases where there is no reference solution. We aim at arriving
to a set of optimal parameters, which can be used universally, or at least in a large
set of problems. To this end, we examine different parameter values. In specific, we
keep the artificial viscosity parameter the same as in the literature (av = 1) and in
the first two experiments (Section 5.1 and 5.2.1), we examine different values for the
artificial dissipative mass aρ. The one performing the best is recorded and used in the
following experiment, to verify that it delivers good results as well. In the latest test,
the isentropic shock-bar, we discarded a higher value for the artificial conductivity
ae, exactly because it produced over-smoothing of waves. Upon verifying that the
parameter values also work well in two-dimensional geometries (Section 5.4), the
problems of Section 5.5 and Chapter 6 are successfully solved with the single set of
parameters. Certainly, artificial dissipation parameters are not a panacea and one
could consider Riemann solvers. That is, of course, at the expense of more involved
solution strategies and more computational effort.

5.4 Shock-chamber tests

Apart from the one-dimensional experiments, the ability of the developed SPH
schemes to describe the propagation of shocks is also examined in a domain of two
spatial dimensions. To this end, both previous tests are performed in two-dimensional
setups, in what can be referred to as shock-chamber tests.

Initially, fluid of high density and high pressure is at rest in the square Gin = {x1, x2 :
{|x1| < 0.5} ∩ {|x2| < 0.5}} and it is encapsulated within a fluid of lower density
and pressure. The whole problem domain is the square Gbox = {x1, x2 : {|x1| < 3} ∩
{|x2| < 3}}, where particles outside the square G = {x1, x2 : {|x1| < 2.5} ∩ {|x2| <
2.5}} are boundary particles and at every time-step their velocity is kept fixed at zero.
The use of the square geometry instead of a smooth circular one, makes the test more
demanding, due to the concentration of stresses on the corners.
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FIGURE 5.12: The whole computational domain at t = 0 and the configurations of the number, mass and
volume-smoothed media at t = 0.5 for the Air-Air shock chamber.

The abrupt expansion of the high-density fluid generates a shock which propagates
through the low-density fluid and a rarefaction wave which moves towards the center
of the chamber. After the expansion wave collapses to the center of the chamber,
it reverses its direction and starts moving towards the boundaries of the chamber.
Thus, it provides a distinct wave pattern, which we investigate at t = 0.5. Lacking
the analytical solution and following Zisis et al. [2015a], we consider as reference
numerical solution, the solution obtained using the Arbitrary Lagrangian Eulerian
(ALE) multi-material methodology of Aquelet et al. [2005], implemented in the LS-
DYNA code, using 1000 elements.

In order to realize the SPH initial particle configuration, a number of particles per
unit length N` is chosen. This number defines a Cartesian grid for the square problem
domain. Particles are placed in the middle of the grid’s cells. The initial configuration
appears in the upper left subplot of Figure 5.12, with the colors marking the species
of the particles: high density gas (green), low density gas (blue) and boundaries
(red). Note that boundaries of finite thickness are typical in SPH. The three spatial
resolutions, which are examined, correspond to N` ∈ {25, 50, 100} particles per
unit length. The values aρ = 0.5, av = 1 and ae = 0.1 are used, unless mentioned
differently.
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5.4.1 Air-Air

The upper right and the lower subplots of Figure 5.12 show the computations for
N` = 50, at time t = 0.5, using the three different schemes derived from the number-
smoothed (upper right), the mass-smoothed (lower left) and the volume-smoothed
(lower right) media.

FIGURE 5.13: The Air-Air shock-chamber at t = 0.5, solved by SPH (left) and ALE (right).

With the colors referring to the species of each particle, it can be observed that for the
mass-smoothed and the volume-smoothed media particles of initially low-density
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gas infiltrate the region of high-density gas. There are two issues connected to this
instability. First and foremost, it is not consistent to the corresponding continuum
model, also apparent in the ALE solution presented later, which dictates that the
high-density gas expands following a smooth topology and that no mixing occurs.
Second, there is a direct computational consequence. The number of neighbors in
that region increases significantly leading to increased number density ñ(xi) and
thus leading to smaller smoothing lengths h(ni) = 1.2n−1/2

i . Subsequently, the
smaller smoothing length reduces the time-step (see Section 4.3) and thus, for the
mass-smoothed medium, twice as many time-steps are necessary to arrive at t = 0.5.

The described instability presents some evidence of the superiority of the number-
smoothed medium, as compared to when particles of unequal masses are used for
fully compressible multiphase computations. In support of this argument, recall the
erroneous results of the other two schemes in the one-dimensional impact in Section
5.1. For these reasons, the following tests exclusively concern the behavior of the
number-density scheme.

In Figure 5.13, the left triad of plots present the SPH solution for density, pressure
and internal energy respectively, with the finest resolution of N` = 100 particles per
unit length. The right triad of plots show the ALE solution for the same quantities. By
and large, the SPH solution captures the wave pattern described by the ALE solution.
The SPH solution tends to overestimate the zones of high pressure downstream the
contact discontinuity.

For closer examination of the previous issue, we plot the problem’s solution along
the positive x1 semi-axis of the domain, in Figure 5.14. For the SPH solution, we
choose the particles found within a maximal distance of hi from the x1 axis. The
magnitudes of density, pressure and internal energy appear from top to bottom
respectively and they are compared to the corresponding magnitudes of the ALE
reference solution. Convergence is examined on the left column and the influence of
the artificial dissipation parameters on the right. The legends for each column are in
the plots of internal energy.

Regarding the left triad of plots in Figure 5.14, they show that the SPH solution
converges as the number of particles per unit length N` = {25, 50, 100} increases.
Besides this observation, we note that although the SPH solution follows the behavior
of the ALE solution, there is an overestimation of all quantities to the left of the
contact discontinuity (found approximately at x1 = 1.0). This overestimation appears
only after the rarefaction wave passed that region and increased the interparticle
distances. This difference in the interparticle distances within the two regions is also
visible in the left plots of Figure 5.13. It is reasonable to assume that this effect can
possibly be treated with a particle generation algorithm, like the one of Vacondio et al.
[2012, 2016]. In the inset plots, the solution refers to the use of the approximate signal
velocity from Equation 4.24 instead of the Riemann-like term. In that case, notice
in the plot of density that the SPH solution runs ahead the shock, an effect which
is not observed when the Riemann-like term is used. Moreover, the pressure plot
focuses on the region around the contact discontinuity, and makes obvious that the
approximate signal velocity is unable to successfully treat the instability at the contact
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discontinuity.
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FIGURE 5.14: Convergence (left) and influence of the dissipative terms (right) for the Air-Air shock chamber
at t = 0.5.

The effect of the artificial mass-flux term is studied in the right triad of plots in
Figure 5.14. The reason for this investigation is that the addition of the artificial
mass-flux term to the evolution of density, influences the calculated speed of sound
cs = (∂P/∂ρ)s = (γ− 1) e via the computed thermal energy. A large value for aρ

might lead to misprediction of the sound speed. For N` = 100, we examine the
chosen values aρ = 0.5 and ae = 0.1 (black dots), against the values aρ = ae = 0 (blue
circles). One may recognize the healing effect of dissipation, by looking at the plots of
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density and pressure around the contact discontinuity in the absence of dissipation,
where kinks appear. In the inset plots (cyan circles), we examine possible merits of
increasing the dissipation parameter to aρ = 1. The results in density suggest that the
shock is smoothed further. The predicted position of the shock is independent of the
value of aρ. With respect to the contact discontinuity, the plot of pressure shows that
the increased value of aρ offers no advantage.

5.4.2 Liquid-Gas

FIGURE 5.15: The Liquid-Gas shock chamber at t = 0.001, using SPH (right) and ALE (left).

In the same non-smooth geometry (upper left plot of Figure 5.12), the number-
smoothed SPH algorithm is employed for the Liquid-Gas problem, with the initial
conditions shown in Table 5.1. For N` = 50, the density plot at t = 0.001 appears in
the left subplot of Figure 5.15, and is compared to the ALE solution (right subplot).
Although it can be argued that the SPH solution is in overall accordance with the ALE
solution, a certain kind of instability is observed around the point (x1, x2) = (0.6, 0.6).
Some lower density particles (blue dots) appear to neighbor with high density parti-
cles (yellow and red dots). Indeed, looking at the left subplot of Figure 5.16, particles
of Air (blue dots) infiltrate the Water region (green dots) for N` = 50. As a direct con-
sequence, the number of neighbors of the infiltrated air particles increases extremely,
making the processing of each time-step dramatically slow and making it implausible
to collect results for N` = 100 at t = 0.001. Indicatively, in that latter case, there are
particles with the number of neighbors exceeding 13, 000.

Recall that in the Air-Air problem, the instability of low-density particles migrating to
the high-density region only appears for schemes other than the number-smoothed.
The present test shows that the number-smoothed scheme is not a panacea for instabil-
ities of this kind. The instabilities appear due to a synergy of non-smooth geometries,
high density ratios and schemes not respecting the smoothing length coupling to the
number density.
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FIGURE 5.16: Particle species for the Liquid-Gas shock-chamber at t = 0.001 on the left and the problem
domain in the Liquid-Gas shock-chamber with circular inner geometry.

FIGURE 5.17: The SPH solution (left) and the ALE solution (right) for the Water-Air shock chamber with
the circuar inner geometry, at t = 0.001.

To clarify the last statement, let us examine the problem with the same initial data,
but with a smooth geometry. Instead of a rectangular water region, the circular one
shown in the right subplot of Figure 5.16 is used, corresponding to Gin = {x1, x2 :
{(x2

1 + x2
2)

1/2 < 0.5}}.
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The left column of Figure 5.17, shows the SPH solution for density, pressure and
internal energy profiles, at t = 0.001, regarding N` = 200 particles per unit length.
Since the problem is successfully solved for N` > 50, we infer that the instability,
which appears in the corresponding problem of non-smooth geometry, is due to the
geometry rather than being an inherent problem of the algorithm with high-density
ratios.

5.5 Shock-bubble interaction test

We now concentrate on the experimental work of Haas and Sturtevant [1987], against
which we validate our computational results. They experimented with several cases of
single spherical or cylindrical bubbles hit by a shock wave, according to the following
configuration. In the low-density compartment of a wind tunnel, a bubble filled with
another gas rather than air and of different density, rests in equilibrium with the
surrounding air. The shock wave travels through the air and upon hitting the bubble,
several wave reflections and transmissions occur, followed by the creation of complex
interfaces, since the two fluids hardly mix. The latter effect is due to the high velocity
of the shock wave; the bubble is overpassed in almost 100 µs only.

FIGURE 5.18: The computational domain and a detail of the particle configuration.

The experiments of Haas and Sturtevant [1987] also exhibit that the resulting wave
patterns and bubble deformations strongly depend on the gas inside the bubble. They
used Helium (slightly contaminated with air) and Refrigerant 22 (R22, a refrigerator
gas). The former has a speed of sound higher than that of air, the latter a lower.

As the shock sweeps over the inhomogeneity, the bubble’s volume changes because
of compression and the induced differential motions. The latter, if they are normal
to the axis of symmetry, also lead to compression, while oblique and tangential
off-axis interactions lead to shear. From this point of view, vorticity is produced
because of the misalignment of the gradients in pressure and density (or entropy).
The initial deformation of the inhomogeneity can also be interpreted in terms of
the Rayleigh-Taylor instability of accelerated, curved interfaces separating fluids of
different density; the acceleration is caused by the shock wave. The shock-induced
Rayleigh-Taylor instability of a sinusoidally perturbed plane interface is referred to
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ρ0 v0,1 v0,2 P0 γ

Air 1 1.4 0 0 1.0 1.4
Air 2 1.92691 −0.33361 0 1.5698 1.4
R22 4.41540 0 0 1.0 1.249

TABLE 5.2: Initial data and parameters

as the Richtmyer-Meshkov instability. The latter instabilities, also play a role in the
process described further on.

Several computational studies use the aforementioned experiments for the purpose
of validating numerical schemes, typically focusing on the cases of the cylindrical
bubbles. One of the earliest and perhaps the most detailed is the study of Quirk
and Karni [1996], who focus on the magnitude of the gradient of density; thus, their
computational images resemble the Schlieren images of the experimental study. In
the present study, we take into account the results of Kreeft and Koren [2010], who
plot the density and pressure fields. Thus, in addition to the primary comparison,
that is the SPH results vis-á-vis the experimental result, a secondary comparison is
made, with respect to the differences in the density field between the SPH result
and those reported by Kreeft and Koren [2010]. It should be noted, that they solve a
five-equation model for inviscid, non-heat-conducting, compressible two-fluid flow,
using a Finite Volume scheme equipped with an approximate Riemann solver. Some
comments regarding their different solution strategy are necessary. First, using an
Eulerian description of the flow field makes the detection of each species challenging,
a problem which their algorithm treats. On the other hand, this comes with ease
for SPH. Second, they use a Riemann solver, which inevitably makes their shock
description superior to the one obtained with our artificial-dissipation approach. All
ideal gas parameters used in the present study are from Kreeft and Koren [2010] and
can be found in Table 5.2, with all values of the velocity components scaled with
343 m/s, the nominal speed of sound of air. Therefore, the normalized time t∗ of
the computation refers to the time scale τ = L/cair = 1 m/343 m/s = 2.915 452 ms.
Note that the length scale is comparable to the total length of the wind tunnel, which
is 0.89m. The width is 0.089m and the bubble diameter D = 0.05m, as is shown in
Figure 5.18.

In order to replicate the solid boundaries of the experimental configuration, following
Quirk and Karni [1996], we enforce reflective boundary conditions along the lines
y = 0 and y = 0.089 m. This is achieved by creating at every time-step on the upper
and lower edges, a layer of ghost particles of thickness three times the maximum
smoothing length of all particles. Two additional sets of fixed boundary particles are
constructed to the left of x = 0 and to the right of x = 0.89 m. In any case, these latter
boundaries do not affect the computational result, since no waves arrive there within
the examined time period.

The presented results refer to N` = 4000 particles per unit length placed in the
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computational domain with a rectangular particle formation, leading to around 1.4×
106 particles. A fixed time-step ∆t∗ = 5× 10−6 s is used until the final observation
time t∗ = 4× 10−1 s. Note that for this specific test, artificial conductivity is switched
off (aρ = 0), because it otherwise produces an abrupt smoothing of the bubble, due to
the imbalance of its internal energy and the internal energy of the surrounding air.
A choice, which is not examined, is to use the signal velocity of Price [2008], which
works only for pressure differences and is discussed in Section 4.2.

Haas and Sturtevant [1987] produced a series of Schlieren images for a time span
of almost 1000 µs after impact (that is 370τ) and these are the images to which we
compare our results. In the computational setup, the initial distance of the shock
front from the bubble’s surface is such that the shock arrives there at t∗ = 7.5τ, still
as uncurved, normal shock, so that ”start effects” in the smearing of the shock easily
appear before any interaction, as suggested by Quirk and Karni [1996]. Note that the
latter study uses an extreme initial distance of 4.5D, while the distance used in our
study corresponds to 1D, in order to save computational time.

Figures 5.19-5.21, depict the evolution of the shock-bubble interaction as captured at
the same post impact time instances by: 1) the Schlieren images of the experiment
by Haas and Sturtevant [1987] on the left, 2) the density profile from the FV scheme
of Kreeft and Koren [2010] in the middle and, 3) the density profile of the number-
smoothed SPH scheme on the right. The colors appearing in the latter two results
are scaled in approximately the same way and thus a qualitative comparison can be
made. For the Schlieren images, the end of the cylindrical bubble coincides with the
observation window and thus the outline of initial position of the bubble is visible.
The T-shaped structure at the bottom supports the bubble. On the SPH plots, the
black dashed line marks the initial position of the bubble.

When the shock arrives at the R22-air interface, it is refracted inside the bubble, while
a reflected wave is created upstream the bubble. At the same time, the incident shock
sweeps over the bubble. Notice that all three waves appear in the computational
results for t =55 µs, with slightly different patterns. Additionally, there is a distinct
feature for each of the two computational methods. The FV scheme, equipped with
an approximate Riemann-solver, seems to predict a thin slice of nominal-R22 density
upstream the shock (green-colored region between blue and orange in the FV plot).
Kreeft and Koren [2010] attribute it to numerical spreading. This region plays a
role in mixing, which becomes obvious in later time. Moreover, the incident and
the refracted shocks are represented as sharp discontinuities. On the contrary, the
number-smoothed SPH scheme offers a sharp upstream air-R22 interface and tends
to over-smooth the two shocks.

At the next two observation instances, t =115 µs and t =135 µs after impact, the
reflected wave is already out of the observation window. In the later time instance, the
experimental image shows that there are two symmetric waves arriving as reflections
on the solid boundaries, from the top and bottom wall of the wind tunnel. The
shock wave through the bubble starts curving and converging to the downstream
interface of the bubble, while it should be noticed that the incident and the refracted
shocks remain connected. Haas and Sturtevant [1987] consider this to be the reason
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FIGURE 5.19: Shock-bubble R22 interaction 55, 115 and 135 µs after impact.

of a striking contrast between the thickness of the shock front in the curved regions
and the shock front in the middle of the bubble. Effectively, as Kreeft and Koren
[2010] mention, pressure waves arise there. The fact that the two shocks remain
connected is evident in both the computational results, being rather proclaimed by
the FV computation and quite smoothed in the SPH result.

In the next post-impact experimental image, at t =187 µs, the refracted wave, curved
at the top and the bottom of the bubble, finally focuses on the downstream air-R22
interface. The thick black lines imply high densities. These high density spots are
finely resolved in the computational results of the FV scheme and are rather smoothed
out in the SPH results. Furthermore, the experimental image shows that the two
reflected waves from the top and the bottom of the wind tunnel have crossed each
other, creating a distinct wave pattern, which is resolved by both computational
methods.

Until this stage of the process, the bubble is not set in motion as a whole, but it rather
experienced a reduction of its volume, due to shock compression. Upon focusing,
the refracted shock sets the whole bubble in motion, which can be seen displaced
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FIGURE 5.20: Shock-bubble R22 interaction 187, 247 and 318 µs after impact.

from its initial position at t =247 µs. At the same time, the focused shock creates
a radial expansion wave outside the bubble, and a rather complex wave structure
moving to the right, inside the deformed bubble. Notice that the overall wave pattern
is very well captured by both numerical methods, with the FV scheme producing
sharper wave surfaces. It should be underlined that the top-bottom asymmetries in
the experiment are due to the T-shaped support structure.

At time t =318 µs after impact, the radially expanding wave almost catches up with
the incident shock front and creates a crossed wave pattern on the left part of the
experimental image. Note that this wave pattern is accurately described by the SPH
solution. Regarding the computational results with FV, the surrounding region of
the bubble is clearly perturbed (recall from the first instance that it is recognized as a
region where mixing takes place) and Richtmyer-Meshkov instabilities start forming.

In the following observation instance, t = 342 µs post-impact, the internal back-
reflected wave is visible in the experimental image and is reproduced by the compu-
tational results. Additionally, the computational results are able to capture the waves
outside the bubble. This is especially portrayed by the FV scheme. With respect to
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FIGURE 5.21: Shock-bubble R22 interaction 342, 417 and 1020 µs after impact.

the Richmyer-Meshkov instabilities, they can be seen growing on the interface of the
bubble in the experiment, while they are pronounced in the FV results and absent in
the SPH results.

At t = 417 µs after impact, the wave pattern in the experiment is quite descriptive
regarding the exterior transmission of the back-scattered wave. The corresponding
waves are also visible in the SPH results. Here, there are no data available for the FV
scheme.

The last observation instance, t = 1020 µ s following the impact, finds the bubble
deformed into a vortex pair. Compared to its shape in the previous instances, the
bubble expanded in width during the formation of vortices by engulfing fluid across
its way to the left. Furthermore, it is evident that the process of breakup initiated. The
SPH result is able to resolve the strongly deformed shape.

The SPH scheme coming from the number-smoothed medium, with particles of
unequal masses, simulates the evolution of the shock-bubble interaction very well.
Compared to the results obtained with the FV scheme with Riemann solver of Kreeft
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and Koren [2010], the SPH scheme produces sharper interfaces, but more smeared
shock fronts. Comparison of the SPH result with the Schlieren images shows that
the developed SPH scheme can accurately resolve the complex wave patterns of
the physical process until its latest stages. More importantly, it achieves this in a
straightforward manner —that is without using any additional special treatments of
the flow— and in a relatively easy computational setup.

There are two effects which appear in the experiment, however not in the SPH
solution. First, the experiment shows that Richtmyer-Meshkov instabilities grow
on the interface of the two fluids while these are not observed in the SPH solution.
These instabilities are reproduced by the FV scheme. Second, in the last image of the
experiment, the deformed bubble breaks up; an effect which does not occur in the
SPH solution. All in all, results imply that SPH suppresses mixing.

The ability of SPH to resolve instabilities of this type (Kelvin-Helmholtz, Rayleigh-
Taylor or Richtmyer-Meshkov) and mixing is debated in the literature of SPH. The
most prominent study is the one by Agertz et al. [2007]. Using various SPH algorithms
and grid-based methods, they run a test involving a cold cloud engulfed in a hot
wind; by and large, it is similar to the shock-bubble interaction problem. They observe
good agreement of all approaches in the early stages of the process. However, as soon
as the large-scale instabilities have grown, the SPH results diverge by suppressing
mixing.

Agertz et al. [2007] attribute this effect to an inherent vice of SPH. They continue that
SPH, at least in the standard usage and formulation, inaccurately handles situations
where density gradients are present. In these situations, SPH particles of low density
close to high-density regions suffer erroneous pressure forces due to the asymmetric
density within the smoothing kernel. This causes a gap between regions of high-
density contrast, essentially decoupling the different phases of the fluid.

Examining the details of the final SPH result in Figure 5.21, we see that for our
approach there is no gap between the phases. Having excluded this possibility, we
turn to the study of Price [2008] who concentrates on Kelvin-Helmholtz instabilities —
mixing due to shearing motion of fluid with different densities— and exhibits that this
problem relates to the inaccurate description of pressure across contact discontinuities,
where a flat profile is expected. Similar conclusions appear for Richtmyer-Meshkov
instabilities [Borve and Price, 2009]. As a treatment, it is advised to use: 1) particles
of equal masses, 2) the integral form of mass conservation, ρ̃i = m ∑j Wij(hi) solved
simultaneously with hi = η(m/ρ̃)1/d), and 3) Riemann-like artificial dissipation terms
as in Monaghan [1997] and 4) artificial dissipation for the evolution of the total energy
(which is the conserved quantity rather than the internal energy).

From the four stated ingredients, our algorithm accommodates the latter two, while it
cannot use the former two, due to the following specific reasons. In Section 4.4, we
argued that the use of equal masses imposes a serious geometrical restriction and the
particle filling of complex domains, including inhomogeneous media, cannot be a
generic procedure in that case. Additionally, the use of the integral equation for mass
is problematic for bounded domains, since it leads to zeroth order errors a priori, as it
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is pointed out in Section 3.4. This is not critical for the shock-bubble interaction, where
the computational domain is extended to enforce boundary conditions. However, it
becomes a serious limitation in the problems of the next chapter which exclusively
involve free boundaries.

Furthermore, Price [2008] uses the accurate pressure results in the Air-Air shock
tube to decide on the ability of his algorithm to describe mixing. By doing the same,
our results of Figures 5.6 and 5.7 imply that the equality of masses seems to be the
limitation of our algorithm, rather than the differential form of mass conservation.
Finally, it should be underlined that the coupling of the smoothing length with
the local number-density is tantamount to capturing correctly the physics around
discontinuities.



CHAPTER 6

Hypervelocity impacts

Perhaps the most exotic processes involving shock propagation through solid media,
are hypervelocity impacts. They are characterized by a violent deformation with the
continuous creation of new surfaces. Undoubtedly, when inhomogeneous media
are encountered these processes become increasingly interesting. Ergo, this final
chapter is devoted to the computational simulation of hypervelocity impacts with the
developed fully compressible multiphase SPH algorithm.

6.1 Fully compressible multiphase SPH for hypervelocity impacts

The fully compressible multiphase scheme is based on the equations for ideal media
of the adaptive number-smoothed approach, from Equation 4.17. In total, the scheme
writes:
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with a preliminary run over the j particles being necessary at every timestep to
calculate the terms:

ωi = 1−mi ∑
j

∂Wij(hi)

∂hi

∂hi
∂ρ̃i

, hi = η
(mi

ρ̃i

)1/d
, (6.4)

which account for the adaptivity of the scheme. Note that Pi = P(ρ̃i, ei) and by Fα,i
we denote the effects of the deviatoric stresses to the acceleration, while by Ri their
contribution to the evolution of internal energy. According to Chapter 5, there is a
unique description for them, no matter which scheme is used for the evaluation of
density. In case of ideal media, modeled as e = e(ρ̃, P(ρ̃)), they identify as Fα,i = 0
and Yi = 0. For media with deviatoric response the discretized equations in updated
Lagrangian description are (see Section 3.5.1):
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For their calculation, the Jaumann stress rate is employed, with its estimate provided
[Libersky et al., 1993] by:

dταβ,i

dt
= ταγ,i

d$βγ,i

dt
+ τγβ,i

d$αγ,i

dt
+ Gi

(dεαβ,i

dt
− 1

d
dεγγ,i

dt
δαβ

)
. (6.7)

In order to calculate the latter, the strain and rotation rates, respectively:
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are recovered by the discrete smooth estimates of the velocity’s spatial derivatives:
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The Mie-Grüneisen equation of state (also discussed in Section 1.1.3), with the param-
eters Γ and ξ, is used for the prediction of pressure:
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(

1− 1
2
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)
PH,i + Γi ρ̃i ei, (6.10)

defined from the Hugoniot state:
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2
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3
i , υi > 0,

Aiυi, υi ≤ 0,
(6.11)

where the compression is:

υi = ρ̃i/ρ0,i − 1, (6.12)
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and the material constants are:

Ai = ρ0,i c2
0,i, Bi = Ai[1 + 2(ξi − 1)], Ci = Ai[2(ξi − 1) + 3(ξi − 1)2]. (6.13)

The Von Mises yield criterion for material strength is:

τ∗αβ,i = ταβ,i
σY,i

3ταβ,iταβ,i
, (6.14)

with σY the yield strength and G the shear modulus. These and all other necessary
parameters for the materials used in this study, appear in Table 6.5, collected from
Hasegawat and Young [1980]; Hiermaier et al. [1997]; Libersky et al. [1993]; Marsh
[1980]; Millett et al. [2005]; Shintate and Sekine [2004].

In all later tests, the Gaussian kernel (2.6) is employed, with η = 1.2, truncated at 3h.
Following the discussion of Chapter 2, possible advantages of using the Wendland
kernel (2.10) were examined. No advantage was experienced. Time marching is
performed using the leapfrog algorithm of Section 4.3, using a constant time step,
which is checked against the time-stepping criterion.

The reasons of choosing the specific scheme, sum up to the following: 1) the in-
troduced adaptivity is with respect to the local number density; certain findings
of Chapter 5 offer evidence that disrespecting it, may bring in inaccuracies; 2) the
inclusion of the ω-terms, accounting for the adaptivity, allows for exact conservation,
which is tantamount to the long-term stability of the system; 3) the use of particles
of unequal masses allows for exact modeling in terms of geometric restrictions, as
it is argued in Section 4.4; 4) artificial dissipation terms are endowed with the struc-
ture of Riemann-solvers (see Section 4.2) and are applied to all variables, so that an
over-increased viscosity parameter [Hiermaier et al., 1997; Shintate and Sekine, 2004]
becomes unnecessary; the latter may create over-smoothed solutions.

A comment about some of our modeling choices is in place. Regarding the equation of
state, the Tillotson equation of state could have been used (see Section 1.1.3). However,
its parameters for materials other than A` are scarce, if existing at all in the literature.
Similarly, data for advanced strength models, such as the Johnson-Cook, are scarce
when materials other than Aluminum are studied, while it is not always possible
to include them consistently in the variational framework. For this reason, and as a
primary approach, we choose to keep the models simple.

The three-dimensional experiments, which follow, are simulated in a two-dimensional
geometry. Since in all experiments the projectile is a sphere and the target a plate, we
are actually simulating the impact configuration on an equatorial plane of the sphere,
parallel to the vector of the impact velocity. There are good reasons for this choice.
First, the computational effort to achieve fine details in 3D (both due to the higher
total number of particles and the interactions of each particle with its neighbors) is
prohibitive for a code which can be run on a standard personal computer. Second,
the validation of the experimental data is performed with shadowgraphs depicting
the projections of the three-dimensional configurations onto the observation two-
dimensional frame. On this frame, the maxima of the debris cloud’s length and width
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are considered. They occur on exactly the plane simulated, that is the equatorial plane
of the sphere, parallel to the vector of the impact velocity.

6.2 Experimental validation

The combined experimental and computational study of Hiermaier et al. [1997] serves
as a validation test. Three scenarios are examined therein and they refer to the
normal impacts of an Aluminum-2024 (A`2) sphere of radius R = 5 mm into: 1) an
Aluminum-2024 plate of thickness 4 mm, at velocity U = 6.18 km/s; 2) a copper (Cu)
plate of thickness 15 mm, at velocity U = 5.75 km/s; and 3) a lead (Pb) plate 15 mm
thick, at velocity U = 6.85 km/s. The relevant data appear in Tables 6.1 and 6.2.

The left subplots of Figure 6.1, show the initial problem setups for the cases examined.
In all of them, the distance of the projectile to the plate is such that it is covered by the
projectile in 1 µs.

ρ0 c0 ξ Γ G σY
103 Kg/m3 Km/s GPa GPa

A`1 2.710 5.300 1.500 1.7 25.0 0.550
A`2 2.785 5.330 1.338 2.0 27.1 0.265
Pb 11.360 2.030 1.470 2.6 8.6 0.090
Cu 8.930 3.900 1.500 2.0 46.0 0.045

Epoxy 2.280 2.930 1.630 1.0 0.6 0.050
Homogenized 2.659 4.730 1.411 1.75 20.5 0.238

TABLE 6.1: Material data.

Materials Sphere radius Plate thickness Impact velocity
mm mm km/s

A`2 - A`2 5 4 6.18
A`2 - Cu 5 15 5.75
A`2 - Pb 5 15 6.85

TABLE 6.2: Geometrical and initial data.
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Experiment Computation Present Study
A`2 - A`2 1.39 1.11 1.36
A`2 - Cu 1.39 1.33 1.49
A`2 - Pb 1.56 1.16 1.48

TABLE 6.3: Length-to-width of the debris cloud 20 µs after impact. Experiment and computation from
Hiermaier et al. [1997] compared to the results of the present study.

FIGURE 6.1: The hypervelocity impacts A`2-A`2, A`2-Cu and A`2-Pb, from top to bottom, initially and
20 µs after impact.
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Experiment Computation Present Study
mm mm mm

A`2 - A`2 27.5− 34.5 35 24− 34
A`2 - Cu 21.2 23 27
A`2 - Pb 26.0 30 27

TABLE 6.4: Crater diameter after impact. Experiment and computation from Hiermaier et al. [1997]
compared to the results of the present study. Range of values refer to crater diameters including
and excluding crater lips.
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FIGURE 6.2: Energy variations for the Al-Al, Al-Cu and Al-Pb impacts.

The discretization of the projectile and the plates correspond to 20 particles per mm, so
that 30 particles appear through the thickness of the Cu and Pb plates in a hexagonal
formation and N = 25184 is the total number of particles for the related impacts. The
same through-the-thickness resolution produces N = 54059 number of particles in
the A`2 plate of the corresponding impact. Regarding the chosen timestep, ∆t =
5× 10−5 µs is well above the corresponding numerical criterion as used by Hiermaier
et al. [1997]; Libersky et al. [1993] and discussed in Section 4.3. The simulation is
run until t = 31 µs. Note that there is no explicit reference to a stopping criterion
in any of the relevant studies cited [Hiermaier et al., 1997; Libersky et al., 1993; Liu
et al., 2013; Shintate and Sekine, 2004]. In any case, we expect that the assumption
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of ideal conditions, which the employed set of equations describes, fails as time
passes. The reason is that dissipative effects become effective later than the effects of
compressibility.

In Figure 6.1, the right subplots show the material distribution of all cases 20 µs
after impact, when the ratio of length-to-width of the debris clouds are recorded
for validation by Hiermaier et al. [1997]. Table 6.3 refers to the values of the debris
clouds developed t = 20 µs post impact. For the impact with the largest density ratio,
A`2-Pb, the latter value is found to be 1.48, which is in good agreement with the
experimentally observed 1.56, compared to the computational value 1.16 of Hiermaier
et al. [1997]. Regarding the resulting opening of the plate in Table 6.4, it is 27 mm, with
the experimental value being 26 mm, and the result of Hiermaier et al. [1997] being
30 mm. A similar enhancement in the computational results is observed for the case of
the A`2-A`2 impact, with a much better prediction of the length-to width ratio of the
debris cloud (Table 6.3). Regarding the A`2-Cu impact, results are not as satisfactory
as in the previous cases. The reason for this is that in Hiermaier et al. [1997] the
specific type of Cu used is not mentioned, neither can it be deduced. Therefore, the
parameters chosen for the present study for Cu, probably vary from the actual ones,
thus leading to inaccurate results.

Finally, the energy losses of the scheme is in all cases smaller than 0.003% of its initial
value, in contrast to the maximal energy losses of 5.5% mentioned in Hiermaier et al.
[1997] for the same impacts. In Figure 6.2, the variations of kinetic, internal and total
energy are presented.

6.3 Deformation patterns in laminated materials

The goal of the following investigation focuses on the opening pattern occurring after
hypervelocity impacts into laminated materials. Additionally, it is highlighted that
a detailed description of the deformation is possible when the laminate is modeled
with piecewise constant properties in contrast to using a homogenized model.

For the purpose of experimental investigation, a laminated plate was constructed
at the facilities of the Fibre Metal Laminates Centre of Competence (FMLC), TU
Delft, The Netherlands. Three Aluminum 2024 plates, with surface dimensions
40 mm×40 mm and of thickness 0.5 mm each, were glued together using the Stycast
2850 alumina-filled epoxy resin. The epoxy comes in two ingredients, which upon
mixing in appropriate doses, were applied to the Aluminum 2024 plates. The laminate
was cured in an oven. The resulting thickness of each epoxy resin was 0.25 mm giving
a total thickness of 2 mm to the laminate.

The experimental hypervelocity impact took place at the facilities of the Fraunhofer
Ernst Mach Institute (EMI), Freiburg, Germany on November 26th 2014, with EMI
shot id: SLGG-5660 and Project Title: Impact tests for TU Eindhoven. An Aluminum
series 1000 projectile was accelerated using the lab’s light-gas gun (Figure 6.3) at
the speed of U = 4.28 km/s in an almost pressure-less (100 mbar) chamber, where it
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FIGURE 6.3: The two-stage light-gas gun at the hypervelocity impact facilities of the Fraunhofer EMI,
Freiburg, Germany. For the related technology see Ch.1. and Ch.2, Chhabildas et al. [2005].

FIGURE 6.4: The initial setup of the plate in the vacuum chamber of the gas gun. The plate noted ”3x0.5mm
AL” is the laminate and the other plate serves as witness plate. The direction of the accelerated
projectile is from the Laminate to the witness plate, with the latter receiving the impact-
produced debris.

FIGURE 6.5: Front side of the Laminate after the hypervelocity impact experiment. The opening of the
middle layer is 10 mm and the inner diameter of the petal-like opening 23 −25 mm. For the
latter opening, a slightly larger value (27 −28 mm) is observed on the rear side.
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impacted the above-mentioned laminate. The experiment was recorded by an optical
camera until time 5000 µs, using a temporal resolution of 20 µs. Figure 6.4 shows the
initial setup in the chamber and in Figure 6.5 the final opening on the front side of the
Laminate is exhibited.

In Figure 6.6, selected camera pictures depict the evolution of the process. Starting
from left to right and going top-down, the first image shows the exact moment
when the projectile hits the target plate. At t = 20 µs, a light emission appears,
which characterizes hypervelocity impacts. Additionally, the two major effects of the
hypervelocity impact appear: the developing debris cloud and the opening of the
laminate at the impact site. In the next picture (t = 40 µs), the debris cloud expands
further, while the plate has deformed significantly and in the later image, at t =60 µs,
most of the deformation has already occurred, since its differences from the previous
picture are indistinguishable. The following two pictures are one timescale later,
at t =200 µs and t =300 µs, when the debris cloud finally arrives on the witness
plate. A secondary effect clearly appears at t =500 µs, and concerns epoxy ejecta
detaching from the target and traveling in the direction opposite to the impact velocity.
Eventually, the last picture refers to t = 5000 µs, that is one timescale later than the
previous picture, and shows that the process has terminated.

The camera pictures and the post mortem analysis of the laminate, as witnessed in
Figure 6.5, show that the projectile perforated the laminate and the diameter of the
opening was 10 mm. Interestingly, the deformation pattern around the impact site
is characterized by a petaling pattern, exactly because it resembles the opening of a
flower’s corolla.

This opening pattern poses a challenge for any attempted computational solution of
the previous problem. Inevitably, models which neglect the piecewise properties of
the laminate by assuming a homogenized laminate model (of uniform properties) are
doomed to miss this deformation pattern. To this end, and also in order to pronounce
the necessity for multiphase modeling, we test how the results of the developed
multiphase SPH scheme qualitatively compare to the experiment.

Three different numerical experiments are conducted. Each of them refers to a plate
of thickness 2 mm, which is impacted by an Aluminum-1000 (A`1) projectile of radius
R = 2.5 mm, at the speed of U = 4.28 km/s. The material parameters of the projectile
remain the same for all three experiments, while those of the plate are different in
every experiment. The first plate is monolithic Aluminum-2024 (A`2). The second is
the layered plate of the experiment. The third plate is created as the Homogenized
version of the laminated plate.

Due to the lack of data from homogenization models, and since this is a numerical
experiment aiming at revealing qualitative features, the homogenization is merely
an averaging of the properties over the volume of the plate’s constituents. This
means that all the properties of the Homogenized model-plate (see Table 6.5) are
taken as πHmg = 0.75πA`2 + 0.25πEpx, depicting the volume ratio of the plate’s
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FIGURE 6.6: Evolution of the experimental hypervelocity impact into the Laminate, at t =
0, 20, 40, 60, 200, 300, 500, 5000µs, after impact. The temporal resolution of the camera is 20 µs.
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FIGURE 6.7: Initial discretization of the Laminate.

constituents1. Note that in this way, the total mass of the plate remains the same, only
it is distributed uniformly over the plate. It is certainly not an accurate modeling
choice, nevertheless it depicts the concept of homogenization and it is relevant for
the extraction of qualitative conclusions vis-à-vis the purely discontinuous laminate
model. It has the advantage that in the global scale, features such as momentum
transfer and inertia, remain the same.

Figure 6.7 depicts the initial configuration and a detail of the discretization, corre-
sponding to 20 particles per mm, resulting to 40 particles through the thickness of the
plate in a rectangular formation and N = 54509 particles in total. Each Epoxy layer
has 5 particles through the thickness, a number which is in good balance between
acceptable results and the computational efficiency of obtaining results in less than
a day on a standard desktop computer. The timestep is ∆t = 5× 10−5 µs, bounded
by the same criterion used by Libersky et al. [1993]. Similarly to the validation test
case, and according to the conservative nature of the equations, the energy losses are
below 0.005% of the initial kinetc energy of the projectile. The projectile impacts the
target having traveled for 1 µs from its initial position.

In all cases, the impact generates two shock waves which travel away from the
projectile/target interface, moving in opposite directions; one through the projectile
and the other through the target. The latter wave compresses the target, in the
way depicted in the left plots of Figure 6.8, for the monolithic, the laminate the
homogenized plate from top to bottom, respectively.

In the right plots of Figure 6.8, the material distribution of each plate is shown 10 µs
after impact, when the projectile has perforated the target plates. No major differences
are observed among the plates at that time. Nonetheless, certain differences start
becoming apparent at later times. The material configurations in Figure 6.9 correspond
to time 20 µs after impact. In the left plots, showing the local material configuration,
for the plates with uniform initial density, a sharp opening through their thickness
appears. Conversely, in the Laminate, the outer A`2 layers start detaching from the
middle one. This characteristic is observed in Figure 6.5, which shows the opening of

1Where, Hmg stands for Homogenized and Epx for Epoxy.



124 Hypervelocity impacts

the specimen, following the corresponding experimental hypervelocity impact. The
computational result presented here suggests that this detachment occurs within the
Epoxy layers. This deformation pattern is the result of the different wave propagation
mechanisms in the laminated plate as compared to the other plates.

FIGURE 6.8: Monolithic, Laminate and Homogenized models, 0.8 µs and 10 µs after impact.

In the plates with uniform initial density, shocks arrive undisturbed to their rear
sides, while in the Laminate, successive reflections-transmissions of waves occur.
The mechanism is the following. The impact-induced shock wave starts moving
through the first A`2 layer and compresses it. When the shock wave arrives on the
first material interface (A`2/Epx), it is partly transmitted through the interface to
the adjacent Epoxy layer and partly reflected back to the first A`2 layer. Similar
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reflections-transmissions occur inside all layers of the target. At the same time, apart
from the wave propagation through the thickness of the targets, the impact-induced
shocks propagate also in the transverse direction. Apparently, for the laminated plate,
the waves propagate at different speeds within each material. Thus, a shearing motion
occurs between layers of different materials. The different propagation mechanisms
are illustrated in Figure 6.10, which shows the shock wave formation in terms of
density for the laminate (left) and the homogenized plate (right). With respect to the
computational result, notice that no instabilities appear on the interfaces in the profile
of these two magnitudes. Additionally, the density profile is discontinuous in the
case of the laminate, as expected by the Riemann-like structure of the problem.

Therefore, the characteristic deformation pattern of the laminate can be attributed
to the synergy of these two propagation mechanisms: the successive reflections-
transmissions and the shearing motion. It is questionable which mechanism prevails;
they rather work complementary to each other.

In any case, it should be mentioned that the computational result is susceptible to
numerical fracture, especially in regions of the domain which undergo large bending.
A possible way to fix this is to use an adaptive method; one that splits existing particles
and populates these regions with more particles. A splitting technique has been
suggested by Shintate and Sekine [2004] in the context of the traditional SPH scheme
for hypervelocity impacts. Although simple in concept, such techniques typically
lead to momentum and energy injection in the system. Additionally, Vacondio et al.
[2012] shows that such schemes cannot be derived in a straightforward manner. An
extension of the present research would aim at examining this aspect.

The right plots of Figure 6.9 depict the material configurations 20 µs after impact, for
the monolithic plate, the laminated plate and the homogenized plate, respectively
from top to bottom. In all cases, it may be seen that the rarefaction wave decelerated
the projectile material (orange-colored particles), which is lagging behind with respect
to the target material. Moreover, it seems that this feature is somehow pronounced for
the laminated plate, an effect which can be attributed to the multiple rarefaction waves
occurring due to the discontinuous density profile of the plate. Safer conclusions can
be drawn by measuring the size of the debris cloud’s length, width and length-to-
width ratio, 20 µs after impact. The following recordings appear for the monolithic
plate: length 65 mm, width 45 mm and ratio 1.44; for the laminate: length 68 mm,
width 46 mm and ratio 1.48; for the homogenized plate: length 66 mm, width 48 mm
and ratio 1.38. One may expect that a lower length-to-width ratio implies that the
debris cloud is dispersed in a wider region and the concentration of momentum per
unit area on the tip of the cloud is smaller.

In the numerical experiments under discussion, the openings produced (Figure 6.11)
are almost four times the diameter of the projectile and in specific: 18.2 mm to 18.3 mm
for the monolithic plate, 19.4 mm for the laminate and 17.6 mm for the homogenized
plate.
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FIGURE 6.9: Monolithic, Laminate and Homogenized models, 20 µs after impact, local (left) and global
(right) material configurations.

As already discussed, the computational Laminate model is able to capture correctly
the petaling opening pattern, observed in the experimental result of Figure 6.5. A
direct quantitative comparison is also possible, regarding the sizes of the openings.
The Laminate model overestimates the experimentally observed value of 10 mm for
the diameter of the opening in the middle Aluminum layer. In fact, the computational
model seems to provide an opening with size closer to the inner diameter of the
petal-like opening in the experiment (23 −25 mm).

The reasons for this quantitative deviation point towards ways to improve the com-
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Debris cloud Crater diameter
mm

Monolithic 1.44 18.3
Laminate 1.48 19.4

Homogenized 1.38 17.6

TABLE 6.5: Length-to-depth of the debris cloud 20 µs after impact and crater diameter

putational model. The following seem the most appropriate, in order of significance:
1) including a bond strength, since now SPH is left to do this inherently, by allowing
particles of Aluminum to ”see” particles of Epoxy; 2) treating numerical fracture,
an issue also discussed above; 3) advanced modeling of material strength, in a way
that respects the multiphase scheme; 4) improving material data, though the ones
used now are already on the limits of what engineers can provide; 5) performing 3D
computations with fine discretization.

FIGURE 6.10: Density profiles for the Laminate and the Homogenized models, 0.8 µs after impact.

Finally, the variation of energies for these experiments appear in Figure 6.11 and show
that the assumption for invariant total energy is correct for the time period studied.

6.4 Discussion

The present study reports some developments in the simulation of hypervelocity im-
pacts into laminated plates with the SPH method. For detailed deformation patterns,
each layer of a laminate should be modeled explicitly rather than using a homoge-
nized model for the whole plate. To this end, a multiphase fully compressible SPH
solver is extended such that it accommodates full stress models. It is found to provide
good results when validated against the classical hypervelocity impact experiments
of Hiermaier et al. [1997], and especially to the impact between two materials of high
density ratio (A`2-Pb).
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FIGURE 6.11: Monolithic, Laminate and Homogenized models, 30 µs after impact (left plots with magni-
tudes in SI units) and energy variations (right plots).

In order to exhibit the differences in the deformation patterns of laminates under
hypervelocity impacts, the study compares the impact of a projectile at the same
velocity against three plates of the same size; a monolithic A`2, an A`2-Epoxy laminate
and a homogenized version of the latter. It is found that the differences in the sizes of
the debris clouds produced after the hypervelocity impact of each plate are not critical.
Conversely, there are profound differences in the deformation pattern of laminates,
when compared to the deformation patterns of the plates with uniform initial density.

As a general remark, the detailed description of the deformation of laminates under
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hypervelocity impacts is possible and multiphase SPH schemes are capable for this
task. Furthermore, it is probably possible to achieve more accurate results using an
adaptive strategy —where the number of particles increases in critical regions of the
domain— so that numerical fracture is limited.





Epitome

The research elaborated in the present thesis arrives to certain conclusions and pro-
vides guidelines for further studies.

Starting from the first topic presented, the framework of measure-valued evolutions
enables us to consistently analyze the smoothing operation in SPH and more impor-
tantly, the transition from the continuous system to the discrete one. Heuristically, it is
shown how the smoothing length relates to the local number of particles, thus making
number density a key quantity in SPH. Additionally, the coupled relation of the
smoothing length to the smoothing function is tackled. This issue is discussed in the
literature, the present study extends it in the following way. For the discrete system,
given a smoothing length and a smoothing function, there exists a formula which
calculates the necessary smoothing length, such that results of the same resolution
are obtained with another smoothing function. The applicability of this formula, in
practical SPH computations, is still to be investigated.

From a mathematical point of view it is shown that SPH schemes arrive from the
following triptych: 1) the smoothed density of one of the basic measures, probabil-
ity, counting or Lebesgue measure; 2) the principle of least action for continuous
media; 3) a thermodynamic relation describing the properties of the medium under
study. Note that the action of the continuum is minimized rather than the one of
the discrete system. This formulation allows to define SPH as the computational
method which solves the equations of continuum mechanics for a specific type of
medium: the smoothed medium. Depending on the chosen measure, three different
smoothings appear, which result to three different schemes, each with certain merits
and weaknesses. The latter are examined with a series of tests in the last two chapters.

A simple convergence analysis, exhibits the conditions under which the smoothed
medium converges to the classic medium of continuum mechanics. It corresponds
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to a static case, however it provides insight into how the number density influences
convergence.

For media which respond with a full stress tensor, the developed framework suggests
that either smoothed estimates of distortions need to be constructed or smoothed
estimates of the variations of the distortions. These two different options lead to
SPH in total Lagrangian description and SPH in updated Lagrangian description,
respectively. The choice is made based on which description suits the problem better,
similarly to classical continuum mechanics. An open question is whether these two
approaches can be coupled.

The form of the gradient operators in the conservation equations of the smoothed
medium are bound by the variational structure of the system. In specific, they arrive
as variations of the corresponding smoothed densities with respect to a change in
particle trajectories, rather than being constructed as smooth approximations to the
gradients of these densities. As opposed to this, the Laplacian operator of velocity
—responsible for dissipative effects— is not due to variations, and thus its form can be
freely chosen based on the required accuracy. Regarding dissipative media exhibiting
plasticity, further understanding is required on how derivatives are constructed,
especially for problems in the updated Lagrangian description.

Fully compressible SPH schemes require an adaptive smoothing length. It is con-
jectured that only those which respect the coupling of the smoothing length to the
local number density are (the most) adequate to resolve shock propagation. Indeed,
the series of numerical tests performed in the present study show the validity of this
claim, in one and two spatial dimensions. This is achieved for schemes coming from
the smoothing of number density and for multiphase problems, it is combined with
two types of discretization: using equal particle masses per phase or equal initial
particle volumes, also corresponding to uniform initial number density. In specific,
the former seem to perform better around contact discontinuities and in fact, in this
case the scheme becomes equivalent to the scheme coming from the smoothing of the
mass density. Nonetheless, they suffer from two restrictions: a geometrical one and a
computational one. Regarding the first, since for schemes with equal particle masses
the ratio of the phases’ initial densities should equal the ratio of the initial volumes
in each phase, this cannot lead to generic particle-filling algorithms in complicated
or bounded geometries. As for the second restriction, since the resolution is dictated
by the phase with the highest density, large density ratios become tedious. In the
present thesis, the alternative of constructing equal initial volumes (hence uniform
initial number density), with the particle masses of each phase reflecting the ratio of
initial densities, is shown to work remarkably well.

In the developed algorithm, artificial dissipation terms are used, in order to suppress
oscillations rising around shocks and perturbed contact discontinuities. A new mass-
flux term is employed and tested for delivering sharp density contact discontinuities
and flat pressure profiles across them. Towards the former, the term works effectively,
even for high density ratios. An open question is whether it can become more
advanced, so that it treats the latter for high density and speed-of-sound ratios. To
this end, comparisons with approximate Riemann-solvers are necessary.
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The two last topics are part of a broader question: are very high-density ratios a
bottleneck for SPH in multiphase fully compressible processes? And if they are, is it
merely for reasons of computational efficiency? Tests in two spatial dimensions seem
to imply that in order to answer this question, consistent approaches to introduce
particle adaptivity —particle splitting and merging— are necessary.

Regarding hypervelocity impacts and the deformation patterns of laminated mate-
rials, qualitative comparisons become available, partially because of the developed
algorithm’s ability to describe shock description correctly. For quantitative compar-
isons, specific data for the involved materials are necessary, which are scarce in the
literature. Additionally, it becomes obvious that two ingredients are missing from
the current treatment of hypervelocity impacts: 1) some form of particle adaptivity
in order to deliver finer results and possibly counteract instabilities and 2) correct
application of free boundary conditions to reduce the computational cost, such that it
becomes possible to go further in time. Both strategies exist in the literature, however
they are mostly performed in an ad hoc manner. New studies should focus on making
them consistent with the standard SPH framework.

Last but certainly not least, the Golden Fleece2 of SPH: a proof of its convergence in the
course of time, as N → ∞ and h→ 0 simultaneously. In the present thesis, numerical
evidence of convergence, under the aforementioned conditions, is exhibited with two
practical applications. However, a complete proof is elusive in the literature which
typically considers each condition separately. The heuristics of this work suggests
that number density is probably the key to this longstanding problem.

2The fleece of a golden ram, guarded by an unsleeping dragon, and sought and won by Jason with the help of
Medea, Oxford Dictionary of English (https://en.oxforddictionaries.com), from the poem Argonautica
by Appolonios Rhodios [3rd century BC].
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nian interface SPH formulation for multi-fluid and free surface flows. J. Comput.
Phys., 228(22):8380 – 8393, 2009.

J. Haas and B. Sturtevant. Interaction of weak shock waves with cylindrical and
spherical gas inhomogeneities. J. Fluid Mech., 181:41–76, 1987.
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