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Abstract

The University of Manchester

Pourya Omidvar

PhD

Wave loading on bodies in free surface using smoothed particle

hydrodynamics (SPH)

2010

This thesis investigates wave loading on bodies in the free surface using smoothed
particle hydrodynamics (SPH). This includes wave loading on �xed bodies, waves
generated by heaving bodies in still water and the heave response of a body in
waves, representing a wave energy device. SPH is a �exible Lagrangian technique
for CFD simulations, which in principle applies to steep and breaking waves without
special treatment allowing us to simulate highly nonlinear and potentially violent
�ows encountered in a real sea. However few detailed tests have been undertaken
even with small amplitude waves.

This research uses the open-source SPH code SPHysics. First two forms of SPH
formulation, standard SPH with arti�cial viscosity and SPH-Arbitrary Lagrange
Euler (ALE) with a Riemann solver, are used to simulate progressive waves in a 2-D
tank. The SPH-ALE formulation with a symplectic time integration scheme and
cubic spline kernel is found to model progressive waves with negligible dissipation
whereas with the standard SPH formulation waves decay markedly along the tank.

We then consider two well-de�ned test cases in two dimensions: progressive waves
interacting with a �xed cylinder and waves generated by a heaving semi-immersed
cylinder. To reduce computer time in a simple manner a variable particle mass
distribution is tested with �ne resolution near the body and coarse resolution further
away, while maintaining a uniform kernel size. A mass ratio of 1:4 proved e�ective
but increasing to 1:16 caused particle clumping and instability. For wave loading
on a half-submerged cylinder the agreement with the experimental data of Dixon et
al. (1979) for the root mean square force is within 2%. For more submerged cases,
the results show some discrepancy, but this was also found with other modelling
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approaches. For the heaving cylinder, SPH results for the far �eld wave amplitude
and vertical force on the cylinder show good agreement with the data of Yu and
Ursell (1961). The variable mass distribution leads to a computer run time speedup
of nearly 200% in these cases on a single CPU. The results of the vertical force and
wave amplitude are shown to be quite sensitive to the value of the slope limiter in
the Riemann solver for the 2-D heaving cylinder problem.

A heaving 2-D wedge or 3-D cone whose oscillatory vertical motion is prescribed as
the elevation of a focused wave group is a precise test case for numerical free-surface
schemes. We consider two forms of repulsive boundary condition (Monaghan & Kos,
1999, and Rogers et al., 2008) and particle boundary force (Kajtar and Monaghan,
2009) for the 2-D wedge case, comparing the result with the experimental data of
Drake et al. (2009). The repulsive boundary condition was more e�ective than
the particle boundary force method. Variable particle mass with di�erent kernel
sizes was then tested for 2-D problems for mass ratios of 1:4, 1:16 and 1:4:16 with
satisfactory results without particle clumping and instability. For the 3-D cone case,
SPH reproduces the experimental results very closely for the lower frequency tested
where there is no separation from the bottom surface of the body but for the higher
frequencies the magnitudes of force minima were underestimated. The mass ratios
of 1:8 and 1:8:27 in two and three nested regions are tested for the 3-D cone problem
where a computer run time speedup of nearly 500% is achieved on 16 processors for
the mass ratio of 1:8.

Finally, the �oating body of a heaving wave energy device known as the Manchester
Bobber is modelled in extreme waves without power take-o�. The results for a single
�oat are in approximate agreement with the experiment.
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Nomenclature and Glossary

Symbol De�nition

A Cone and Bobber amplitude

a Wave amplitude

B ρwc2s
γ

BPs Boundary particles

c Speed of sound

Cr Courant number

D Diameter

d Water depth

d/ Body axis depth

F Total Force

F �ux

f Particle force

Frms Root mean square force

g Gravity

h Smoothing length

i, j, k Unit vectors

k Wave number

L Wave length

L0 Deep-water wave length

Lϑ Transport operation

M Mass of a body

m Mass of a particle

mc Counter mass

mf Mass of a single Bobber

nij (ri − rj) / |ri − rj|
P Pressure

P (ξ)
Function to ensure particles experience a constant

repulsive force

q rij/h

r Coordinate vector

R(ψ) Repulsive function
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Symbol De�nition

RA Wave amplitude ratio

Rx Global relative error

Sn(σ) Power spectrum

s Wavemaker or body stroke

T Period

t Time

Tp Peak period

Tt Tension force

u, v,w, U, V,W Components of velocity vector

u⊥ Normal velocity

v Velocity vector

W Kernel function

WPs Water particles

x, y, z, X, Y, Z Coordinate directions

∆ Initial particle spacing

∆b Distance between any two adjacent boundary

Π Arti�cial viscosity

Φ Arbitrary function

Ω Domain of interest in the interpolation of function Φ

ΩI Rotational velocity

β Beta limiter

δε Dirac function

δt Time step

ε(z, u⊥) Depth function

ζ(x) Sponge-layer function

µ Viscosity

σ Frequency

σF Force coe�cient

ρ Density

ρw Reference density

υ Kinematic viscosity

ω Volume of a particle
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Term Description

Arti�cial viscosity

Arti�cial viscosity is a common way proposed by

Monaghan (1992) to model the e�ect of viscosity in the

Standard SPH equation

HLL
Harten-Lax-van Leer is a solution for a Riemann

problem

HLLC
Harten-Lax-van Leer-Contact is a solution for a

Riemann problem

Kernel function is an interpolating function used in SPH

ISPH Incompressible SPH

MUSCL

Monotone Upstream-centred Schemes for Conservation

Laws is a second order extension of the Godunov

upwind method

Particles
interpolation points where properties of the �uid can be

calculated

Smoothing length

is analogous to an average cell size in Eulerian methods

and characterises the spatial discretisation of the

problem in SPH.

SPH-ALE
Smoothed Particle Hydrodynamics-Arbitrary Lagrange

Euler

Tensile instability
is an instability in SPH when negative pressures cause

particle attractions

WCSPH Weakly Compressible SPH

XSPH
is a term added to the position equation to keep the

particles orderly in the absence of viscosity
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Chapter 1

Introduction

1.1 Background

Renewable energy sources have become a key component to meet the world's fu-

ture energy demands due to the recent climate changes. Renewable energy can be

produced from di�erent sources such as using wind turbines, wave energy devices

and tidal stream turbines. In principle, useful wave energy devices can provide a

concentrated source of renewable energy to make a substantial contribution to en-

ergy consumption. For example, the Manchester Bobber is considered as such a

device, which is a heaving point absorber comprising of a �oat with hemispherical

base generating oscillatory shaft motion.

For the case of multiple heaving wave energy devices the �ow �eld is potentially

complex since each device is moving and there is a need to study the basic behaviour

to enable the design for such a complex problem. Modelling multiple heaving wave

energy devices which involve complex interactions of wave breaking, re�ection and

di�raction processes can help to understand their behaviour in real seas. Moreover,

generating energy from waves with a heaving device can place them under extreme

loading conditions, especially for cases where �ow is particularly violent. At the

moment, no large body of knowledge or understanding of the behaviour of such

devices under these conditions exists, hence there is still much work to be undertaken

to improve their potential performance.

The o�shore �ow �eld with various arrangements of �xed/�oating devices can involve

complex interactions of physical processes making its experimental investigation very
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di�cult. Furthermore, investigation of the �xed/�oating bodies in extreme waves

must be evaluated through physical experimentation and sea trials. On the other

hand, linear, or second-order, wave di�raction theory is the standard approach for

such structures of large dimensions but does not represent highly nonlinear e�ects

associated with extreme waves.

Computational Fluid Dynamics (CFD), which has had many successes in other areas

of engineering, e.g. turbomachinery, aeronautics and combustion, is an alternative

approach for modelling heaving wave energy devices and understanding their be-

haviour in real seas by solving the Navier-Stokes and continuity equations. The

bene�ts of using CFD are well known where design cases may be set up and anal-

ysed in relatively short time and the input conditions may be precisely controlled

which is particularly important for extreme waves. The desired �ow �eld can be gen-

erated allowing us to study integrated e�ects like forces and responses. However, in

order to conduct proper analysis, the accuracy of predictions, numerical convergence

and computational e�ciency are important and need to be quanti�ed.

The implementations of CFD in engineering applications are most of the time based

on the Eulerian description. In this method, one can focus on �ows at a �xed spatial

point x at time t and any �ow variable φ is expressed as φ(x, t). This description

has been studied for over �fty years and is clearly understood. Most of commer-

cial codes have been developed by using �nite di�erence, �nite element and �nite

volume approaches. However, the Eulerian approach is less well suited to complex

problems such as large deformations and complex free-surface �ow. Simulating free-

surface �ow with most Eulerian CFD methods is potentially very di�cult as explicit

treatment of the free surface is required.

Another description of study of CFD is the Lagrangian method where one can follow

the history of an individual �uid parameter through the time. In the Lagrangian

methods, any �ow variable is expressed as φ(x0, t), where the point vector x0 of the

particle at the reference time t = 0. Meshless and particle methods are based on the

Lagrangian approach and can be used in complex problems described above.

This work is a part of a joint project between the Universities of Plymouth Manch-

ester, Oxford and Manchester Metropolitan funded by EPSRC looking at the suit-

ability of di�erent Computational Fluid Dynamics (CFD) schemes to model heaving

wave energy devices and to understand their behaviour in real seas.
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1.2 Smoothed Particle Hydrodynamics (SPH)

Simulating free-surface �ow with most Eulerian CFD methods can be di�cult as

explicit treatment of the free-surface is required. Smoothed particle hydrodynamics

(SPH) is a �exible Lagrangian and meshless technique for CFD simulations initially

developed by Lucy (1977) and Gingold and Monaghan (1977) in astrophysics. In

this method, each particle carries an individual mass, position, velocity, internal en-

ergy and any other physical quantity. The Lagrangian nature of SPH would lead

this method to be well suited to problems with large deformations and distorted

free surfaces. Simplicity, robustness and relative accuracy in comparison with other

numerical methods are the main advantages of using SPH (Monaghan, 2005). More-

over, the major advantage of using SPH is in dealing with free-surface problems

where there is no need for special treatments for the free surface in order to simulate

highly nonlinear and potentially violent �ows. This method has been successfully

applied to a range of free-surface problems which involve breaking and splashing up,

e.g. Monaghan & Kos (1999), Monaghan & Kos (2000) and Dalrymple and Rogers

(2006).

Advantages and disadvantages

SPH method has some advantages in comparison with the Eulerian methods as

follows:

• There is no need to construct a mesh in SPH, therefore in some problems such

as breaking waves SPH is easier to be used and gives better results.

• Complex problems related to physical phenomena can be investigated with

SPH (such as free surface, voids, Lagrangian phenomena, etc).

• The SPH method can handle fully nonlinear, multiple-connected free-surface

problems and extend computations beyond wave breaking.

• The equations used in SPH are quite simple in comparison with other particle

methods and Eulerian techniques.

However, SPH has some disadvantages as follows:
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• The computational cost is one of the disadvantages of SPH, the time step is

much smaller than other methods due to using explicit integration scheme, the

use of weakly compressible formulation and avoiding particle penetration.

• Wall treatment may be very di�cult and complicated in some problems.

• Parallel computing is more complicated (particles constantly need to be re-

grouped in common neighbourhoods).

Although the SPH method has the above drawbacks, it was found to be an attractive

and well suited method for free-surface problems and complex environmental �ows,

since the equations used in SPH are simple to be implemented in comparison with

other particle methods (Idelsohn and Oñate, 2005).

1.3 Study objectives

The main objective of this project is to investigate the e�ect of waves on o�shore wave

energy devices using the SPH method, especially in extreme conditions. However,

�rst, it is important to study wave propagation in channel, surface waves interacting

with a �xed body or generated by a heaving body which would enable us to lead

towards simulation of Manchester Bobber wave energy device in waves.

Therefore, the objectives of this research can be summarised as:

• Investigation of wave propagation generated by paddle motion in an interme-

diate deep and weakly compressible water tank.

• Study of wave loading on �xed and partially submerged bodies.

• To use the SPH method for investigation of surface waves generated by forced-

motion bodies.

• Techniques to reduce the computer time in the SPH simulations.

• To extend the knowledge behind the �uid-structure interactions to simulate a

�oating Manchester Bobber in extreme focused waves using NewWave theory

(Taylor and Williams, 2004).
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1.4 Outline of the thesis

This chapter is followed by a review of the literature to examine recent advances

in meshless and particle methods and in particular the SPH method in Chapter 2,

which also includes the recent applications of SPH in free-surface �ow and �uid-

structure problems. In Chapter 3, the theoretical and mathematical overviews of

the SPH method are presented followed by di�erent SPH formulations, two forms

of di�erent boundary conditions, time stepping method, kernel functions and all

equations used to simulate the problems in later chapters.

The simulation of a vertical plate moving in a 2-D channel and wave propagation

in an intermediate deep and weakly compressible water tank, using di�erent SPH

equations and kernel functions, are presented in Chapter 4. Then, surface waves

interacting with a �xed cylinder or generated by a heaving semi-immersed cylinder

are presented in two dimensions.

In order to reduce computer time a variable particle mass distribution is presented

in Chapter 5 with �ne resolution near the body and coarse resolution further away,

paying careful attention to avoid tensile instability with the interpolating kernel

function and to obtain hydrostatic pressure in still water conditions. The variable

mass distribution of particles will be then used for progressive waves interacting

with a �xed cylinder and the simulations of the waves generated by a heaving semi-

immersed cylinder.

A heaving wedge or cone with oscillatory vertical motion is a challenging test case

for numerical free-surface schemes and will be investigated in Chapter 6, looking

carefully at the calculation of the forces on a moving body and the surface elevations

around it. The use of variable particle mass distribution for the heaving cone test

case with di�erent kernel size will be also explained in Chapter 6. The motion of

Manchester Bobber in focus waves will be then investigated in Chapter 7.

All the SPH results will be compared with either the available experimental data or

analytical solutions. Finally, the thesis will �nish with conclusions and recommen-

dations in Chapter 8.
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Chapter 2

Bibliographic investigation

2.1 Introduction

The aim of this literature survey is to examine recent advances in meshless methods

and in particular Smoothed Particle Hydrodynamics (SPH). The survey reviews dif-

ferent types of meshless methods, describing advantages and disadvantages, followed

by a description of the origins of the SPH method, di�erent SPH formulations and

SPH for �uid dynamics. Moreover, the recent applications of SPH in free-surface

�ow problems will be shown including wave impacts with rigid bodies.

2.2 Meshless methods

Free-surface �ow in �uid mechanics problems is a good illustration of complexity

where the free surface can be joined in one or broken in multiple locations in a domain

which is unknown and may change in time. These types of problems need a complex

algorithm to connect the nodes which are close to each other in one particular time

step and may be far from each other in the next time step. Therefore, introducing

a set of nodal points or particles, without any mesh construction can be an e�cient

way to overcome these di�culties (Oñate et al., 1996).

Meshless methods are a class of algorithm that de�ne the nodal shape functions

which depend only on the node positions and the evaluation of the nodal connec-

tivity bounded in time (Idelsohn and Oñate, 2005). Meshless methods have the
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advantages of handling very large nonlinear deformations as well as providing accu-

rate representation of geometric objects where controlling the accuracy and nodes

can be added (h-adaptivity).

The followings are some examples of meshless methods:

• Vortex methods where the Navier-Stokes equations are introduced in vorticity

formulation was originally proposed by Chorin (1973, 1978). In these methods

the �uid vorticity �eld is the principal variable for computations obtained

from an integral of vorticity as it is eliminated by the curl operator while

pressure is not explicitly solved (Barba et al., 2005). The vortex method has

two subjects (a) point-vortex method which is approximated by continuous

di�erentiations instead of Lagrangian �nite di�erencing consequently leading

this method to be singular numerically and unstable (Chorin, 1973), (b) The

vortex blob method where the numerical computation sheet is discretised into a

number of discrete vortex whose strength and location are such that the no-slip

condition is satis�ed at the corresponding control points on the body surface

leading the model to be stable. The vortex method has a wide and e�cient

application in the investigation of problems involving areas of high vorticity

e.g. simulation of �ows around cylindrical bodies (Smith and Stansby, 1988)

and complex �ows involving large scale separation and turbulence (Dutta,

1988). However, it su�ers from loss of accuracy for the calculation of unsteady

�ows due to the Lagrangian deformation of the particle �eld (Barba et al.,

2005). The usefulness and limitations of the method are discussed in details

by Sarpkaya (1989).

• The Dissipative Particle Dynamics (DPD) method is a mesoscopic simulation

technique �rst devised by Hoogerbrugge and Koelman (1992) in order to sim-

ulate microscopic hydrodynamic phenomena in order to tackle hydrodynamic

time and space scales beyond those available with Molecular Dynamics (MD)

in which the particles move according to Newton's laws. The main objective

of using DPD was to simulate macroscopic non-Newtonian �ow properties of

the �uid due to its microscopic structure, e.g. modelling the rheological prop-

erties of concrete (Sims and Martys, 2004), porous �ow (Hoogerbrugge and

Koelman, 1992), colloidal suspensions (Koelman and Hoogerbrugge, 1993), or

multicomponent �ows (Coveney and Novik, 1997). This method however does
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not conserve energy which leads the DPD system not to sustain a temperature

gradient (Español, 1997).

• Di�use Elements Method (DEM) proposed by Nayroles et al. (1992) uses the

collection of nodes and a boundary description to formulate the Galerkin equa-

tions, which is a class of method for converting a continuous operator problem

such as di�erential equations to a discrete problem, where the interpolation

functions are polynomials �tted to the nodal values by a weighted least-square

approximation. This method is more precise in the evaluation of the derivations

of the reconstructed functions. However, this method still needs some kind of

�auxiliary grid� to compute numerically the integral expressions derived from

the Galerkin approach (Oñate et al., 1996 and Nayroles et al., 1992) which lim-

its the applications for complex problems, e.g. free-surface �ow (Arefmanesh

et al., 2005). This method has a successful application in heat conduction (Liu

et al., 1995).

• Atluri and Zhu (1998) proposed the Meshless Local Petrov-Galerkin (MLPG)

method. This method is based on a local weak form over a local sub domain

which can be any simple geometry such as circles, rectangles, or ellipses centred

at the �eld node in question in two dimensions. MLPG can solve all the

weak forms locally and various trial and test functions can be chosen and

combined together for solving one problem. This method has been applied to

solid mechanics �eld by Gu and Liu (2001), e.g. to analyse the static and free

vibration of thin plates, and has a few application in CFD, e.g. Lin and Atluri

(2001) to solve the lid-driven cavity �ow problem. More recent application of

MLPG was attempted by Ma (2005) in investigation of nonlinear water wave

problems. Application of MLPG may cause some instabilities especially for

�ows with with a Reynolds number more than 400 (Wu et al., 2005).

• Reproducing Kernel Method (RKM) developed by Liu et al. (1995) is a mesh-

less and multiple-scale method based on reproducing kernel and wavelet anal-

ysis. In this method one can develop a new type of shape functions using

an integral window transform. The window transform function is translated

and dilated around the domain. This will help to replace the need to de-

�ne elements and providing re�nements. This method can create the ability

to analyse a speci�c frequency range in dynamic problems reducing the CPU

cost. This method was applied to large deformation structural dynamics (Liu

et al., 1995) and strain localisation (Li and Liu, 2000).
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• Finite Point-set Method (FPM) was originally introduced by Tiwari & Kuh-

nert (2003) for numerical investigation of pure incompressible Navier-Stokes

equations and is based on a moving least squares approach where particles are

de�ned as interpolation points without any associated mass. In this method,

particles can be added to or removed from the simulation and there is no need

to calculate the gradient of kernel, importantly the boundaries can be solved

analytically. This method is suitable to handle free-surface �ow and two-phase

�ow (Kuhnert and Tiwari, 2007), however, it is time consuming since 6 × 6

matrices in 2D and 10 × 10 matrices in 3D should be solved and inversed for

every particle every time step. Moreover, this method is non-conservative in

addition to di�culties to reproduce the hydrostatic conditions in free-surface

problems (Vacondio and Mignosa, 2009).

• Meshless Finite Element Method (MFEM) is similar to the �nite element

method with a special shape function whose domain is divided into spherical

polyhedral elements (Idelsohn et al., 2003). In this method the shape function

depends only on the node positions and the space is divided into elements with

continuity of the shape functions but with discontinuity of the derivatives. In

MFEM the shape function is applied to each polyhedral element where it is

applied to all the domain in the natural element method. Moreover, the eval-

uation of the node connectivities is bounded in time, which depends on the

total number of nodes in the domain (Idelsohn and Oñate, 2005). This method

was applied to �uid�structure interaction by Idelsohn et al. (2003) and to a

number of electromagnetic cases(see Xuan et al., 2004 and Ho et al., 2005).

• Moving Particle Semi-implicit method (MPS) is a meshless method for the sim-

ulation of incompressible free-surface �ows �rst developed by Koshizuka and

Oka (1996). The MPS method is similar to the Smoothed Particle Hydrody-

namics (SPH) method which both provide approximations on the basis of inte-

gral interpolants. However, the solutions are obtained through a semi-implicit

prediction-correction process and there is no calculations of kernel gradient in

MPS. Since the �rst introduction of this method, MPS has been successfully

used in a wide range of applications such as nuclear engineering (Koshizuka

et al., 2001) and coastal engineering (Gotoh and Sakai, 1999; Gotoh et al.,

2005; Khayyer and Gotoh, 2009). Non conservation of momentum and spuri-

ous pressure �uctuation can be classi�ed as the disadvantages of this method,

which have been only recently addressed in Khayyer and Gotoh (2009).
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• Smoothed particle hydrodynamics (SPH), sometimes called the free Lagrange

method (Oñate et al. 1996), is described by a set of disordered points or

particles �rst developed by Lucy (1977) and Gingold & Monaghan (1977) in

order to investigate the non-axisymmetric phenomenon in astrophysics such as

the formulation and evolution of galaxies. Since then, SPH has been widely

used in many areas of solid and �uid mechanics, etc. as one of the most e�-

cient computational techniques. In this method each particle has an individual

mass, position, velocity, internal energy and other quantities. There is no need

to construct a mesh in SPH (Monaghan, 1992), therefore, in some problems

such as breaking waves, SPH is easier to use and gives better results. Also,

the equations used in SPH are quite simple in comparison with other particle

methods and Eulerians. Moreover, by using the SPH algorithms, the bound-

aries can be described by sets of computational boundary particles interacting

with �uid particles (Monaghan, 2005). This advantage of the SPH method

including conservation of linear and angular momentum can be extended for

�oating body problems. However, the computational cost is one of the dis-

advantages of SPH, the time step is much smaller than other methods due to

using explicit integration scheme and avoiding particle penetration.

To conclude, there are numerous particle and meshless methods, with their own ad-

vantages and drawbacks, to simulate engineering problems. Here, the SPH method

was found to be an attractive method and the best choice for the free-surface prob-

lems and complex environmental �ows, since �rst the equations used in SPH are

simple to be implemented in comparison with other particle methods (Idelsohn and

Oñate, 2005). The most attractive feature of SPH methods in a large-deformation

analysis is its general robust behaviour. SPH has been also successfully applied to

wide range of �uid mechanics and particularly in free-surface problems e.g. see Mon-

aghan (1994), Monaghan & Kos (1999) and Monaghan & Kos (2000). Moreover, the

major advantage of using SPH is that no treatment of the free surface is required

which combined with its Lagrangian nature enables one to model highly nonlinear

and potentially violent �ows.
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2.3 Smoothed Particle Hydrodynamics (SPH)

2.3.1 Origins of SPH

Smoothed Particle Hydrodynamics (SPH) is a meshless and �exible Lagrangian

technique in Computational Fluid Dynamics (CFD) simulations initially developed

by Lucy (1977) and Gingold & Monaghan (1977) in order to investigate the non-

axisymmetric phenomenon in astrophysics.

As Monaghan (2005) notes, this method has some attractive advantages in terms

of pure advection, which is treated exactly. In this method the particle resolution

depends on time and space suited for astrophysical and many geometrical problems.

Moreover, for the problems involving more than one material where each material

is described by its own set of particles, interface problems are found to be triv-

ial in SPH in comparison with other methods e.g. �nite di�erence schemes. For

the complex problems such as fragments, drops or stars, the SPH method has a

computational advantage as the simulation can be done only for the active part of

the problem consequently leading to reduction in storage and calculations. Simplic-

ity, robustness and relative accuracy in comparison with other numerical methods

are other advantages of using SPH whereas the close similarity between SPH and

molecular dynamics enables this method to become one of the most attractive nu-

merical methods. The SPH method can handle fully nonlinear, multiply-connected

free-surface problems and extend computations beyond wave breaking, which need

complex treatments in other grid-based methods, e.g. Volume of Fluid (VoF).

However, the computational cost is one of the disadvantages of SPH because the

time step is much smaller than other methods as explicit integration schemes are

used. Besides, wall treatments may be di�cult and complicated in some problems.

On the other hand, although the interpolation method used in SPH is simple and

SPH gives reasonable results for the �rst-order gradients, for higher order derivatives

special techniques are required. For example, just developing accurate and robust

second-order operators has been a non-trivial task (Schwaiger, 2007).

The initial development of SPH by Lucy (1977) and Gingold & Monaghan (1977)

was for calculation of derivatives that did not require a structured computational

mesh for the simulation of astrophysics problems. Since then, the SPH method has

been used in many areas such as the simulation of binary stars (Benz 1988 & 1990,
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Monaghan 1992), cloud fragmentation and collisions (Durisen et al., 1986) as well as

the formation of galaxies (Monaghan & Lattanzio 1991, Berczik 2000), and even the

evolution of the universe (Monaghan, 1990). Besides, SPH has been widely imple-

mented in computational �uid and solid mechanics due to its relatively strong ability

to interpolate complicated physical e�ects into the SPH formulation. Impact prob-

lems (Johson et al., 1996, Libersky & Petscheck, 1991 and 1993), impacts of solids

simulation (Benz and Asphaug, 1994) and metal forming (Bonet and Kulasegaram.

2000) are the illustrations of using SPH in solid mechanics. SPH investigation of

multi-phase �ows (Monaghan and Kocharyan, 1995), heat conduction (Chen et al.,

1999), underwater explosions (Swegle and Attaway, 1995), free-surface �ows (Mon-

aghan, 1994, Monaghan & Kos, 1999 and Monaghan & Kos, 2000), etc., are other

examples of implementing SPH in �uid mechanics.

2.3.2 SPH for Fluid Dynamics

Classical SPH

Monaghan has been trying to develop SPH method in the computational �uids

area since the 1980s (referring to his SPH papers). The method relies on a local

interpolation around each particle and is the heart of SPH in order to derive the SPH

formulations. The interpolation method allows one to express any function in terms

of its value at a set of disordered points (particles) which can be constructed by using

a kernel which is di�erentiable (Monaghan, 1992). This is called the standard SPH

formulation which su�ers from several weaknesses such as accuracy, stability and a

correct treatment of boundary conditions (Marongiu et al., 2008). In order to remedy

partially the lack of stability arti�cial viscosity was introduced by Monaghan (1992),

which was proposed to conserve total linear and angular momentum, to stabilise

the numerical algorithm and handle high Mach number shocks (Monaghan, 1992).

However, the arti�cial viscosity may cause some problems involving velocity shear

(e.g. di�erentially rotating disks) by giving a very large e�ective shear viscosity or

velocity divergence (Cha and Whitworth, 2003). Moreover, sometimes the arti�cial

viscosity permits particle penetration in SPH (Monaghan, 1989). Also, as discussed

later, the standard SPH formulation cannot deal with the propagation of waves in

a long and intermediate depth channel. An overview of classical SPH is presented

by Monaghan (1992) and Gómez-Gesteria et al. (2010). Details of standard SPH

formulation and arti�cial viscosity will be addressed in Chapter 3.
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Variational and momentum aspects of SPH

Both Bonet & Lok (1999) and Vila (1999) showed how to derive SPH formulations

for the derivation of the stress forces in terms of an internal energy function in a

variational approach. This new formulation simultaneously expresses and relates the

equations used for density and employed for the equilibrium of particles in which

�rst-order completeness was enforced, meaning that �rst-order polynomials are re-

produced exactly. Their work is followed by showing the conservation of linear and

angular momentum in the absence of external forces. Bonet & Lok (1999) also pre-

sented separate and mixed corrections to the gradient and kernel functions with the

standard SPH equations, which provide a much improved interpolation, especially

near the domain boundary, but fail to satisfy the rotational invariance conditions

where the kernel gradients are no longer equal and opposite. Moreover, the forces

between the particles are proportional to the kernel gradient. The failure to satisfy

rotational invariance conditions leads to failure to satisfy conservation principles.

On the other hand, the improvements to the SPH method by Bonet & Lok (1999)

were followed by a number of illustrations for free-surface �ow such as a water bubble

and a breaking dam comparing with the normal SPH algorithm. These illustrations,

however, did not conduct detailed investigations into the accuracy and pressure. The

non-conservation issue of Bonet & Lok's (1999) correction to the kernel functions

was investigated by Vaughan et al. (2008). They enforced the mass conservation by

employing the summation interpolant (an equation that can be used to approximate

an integral using disordered points) for the density.

Godonov-type SPH

An alternative approach to maintaining stabilities to the arti�cial viscosity is based

on a contact interaction between SPH particles described by a Riemann solution for

normal and tangential discontinuities, which are achieved by using arti�cial viscosity

for the shock tube problem, introduced by Parshikov et al. (2000). The velocity and

stresses at the contact surface determined by an approximate Riemann solution is

inserted in the SPH approximations instead of mean values between velocities and

stresses of contacting basic and surrounding particles. They demonstrated their two-

dimensional axisymmetrical code for elastoplastic media where computations were

compared with test data for perforation of steel plate by a lead projectile without

using the arti�cial viscosity.
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An alternative way of using Godunov method was presented by Cha and Whitworth

(2003). The Godunov method Particle Hydrodynamics method (GPH), which is

based on Lagrangian hydrodynamics, was computed by using a Riemann solver to

calculate numerical �ux. The GPH method is a Godunov-type upwind scheme which

converts a multidimensional problem into one-dimensional Riemann problem by cal-

culating all hydrodynamical interactions between particles on the line joining the

particles. They used di�erent SPH formulations and replaced the arti�cial viscosity

with a Riemann solver by using the resultant pressure of the Riemann solver. They

showed the stability of GPH for di�erent wavelengths and various test by performing

von Neumann stability analysis without any particle penetration and velocity shear.

For the momentum equation, Parshikov et al. (2000) and Cha and Whitworth (2003)

are identical but Parshikov et al. (2000) also perform a similar correction for the

continuity and thermal energy equations.

Vila (1999) used an Arbitrary Lagrange Euler (ALE) scheme together with the

SPH method linking the �nite volume method into the hybrid method, in particular

upwind scheme like the Godunov method in a conservative form. He introduced a

new formulation with a Godunov type �nite di�erence method followed by the review

of some results concerning the classical approximation of Eulerian equations and

presenting a new concept for use of variable smoothing length. Besides describing

the Riemann solver approach to the SPH method, in order to reduce numerical

di�usion and improve accuracy, Vila (1999) presented a higher-order extension of

the methods based on the MUSCL technique of van Leer (Toro, 2001) which is a

second-order extension of the Godunov upwind method where the piecewise constant

approximation of Gudunov's scheme is replaced by reconstructed states and derived

from averaged states obtained from the previous time step. Following the work by

Vila (1999), Marongiu et al. (2008 and 2009) showed that using SPH-ALE method

can increase stability and produce pressure �elds with much less numerical noise. A

full description of Vila's SPH-ALE method and MUSCL technique will be discussed

in Chapter 3.

Incompressible SPH

In the original simulation of water �ows using SPH, �uid is considered slightly com-

pressible since incompressibility is approximated through a sti� equation of state.

For the weakly compressible SPH, a large value for the speed of sound should be

42



chosen in order to keep the corresponding density �uctuation as small as possible

which leads to a smaller time step (Shao and Lo, 2003). Following the work done

by Cummins and Rudman (1999) and based on the approach by Koshizuka et al.

(1995) for the Moving Particle Semi-Implicit (MPS) method, Shao & Lo (2003) pre-

sented a strictly incompressible SPH (ISPH) method to simulate Newtonian and

non-Newtonian �ows with free surfaces. Shao & Lo (2003) showed the solution

for the incompressible mass conservation and Navier�Stokes equations using a pre-

diction�correction temporal scheme (explained in Chapter 3) without considering

incompressibility in the prediction step, where the incompressibility is satis�ed by

implicitly projecting the particle density onto a divergence-free space through a pres-

sure Poisson equation. This ISPH formulation preserves the linear momentum while

it does not generally preserve angular momentum which can in�uence results es-

pecially when the method is applied in the simulation of violent free surface �ows

(such as the wave breaking and post-breaking). Khayyer et al. (2008) used the

CSPH approach proposed by Bonet and Lok (1999) and the ISPH method by Shao

and Lo (2003) to introduce a Corrected ISPH (CISPH) formulation ensuring the

preservation of angular momentum.

Xu et al. (2009) have recently tested the accuracy and stability of three exist-

ing projection-based ISPH methods for Taylor-Green and vortex spin-down �ows.

They showed that ISPH based on keeping a divergence-free velocity �eld (Cummins

and Rudman, 1999), and ISPH based on keeping density invariance (Shao and Lo,

2003) may cause instabilities and numerical noise. However, the combination of

a divergence-free velocity �eld and density invariance provides accurate and stable

results with less numerical noise.

It is worth mentioning that in ISPH, the CFL (Courant-Friedrichs-Lewi) condition is

based on �uid velocity rather than speed of sound which leads to a bigger time step.

However, the complexities of solving the pressure Poisson equation is considerable

where the total amount of work during each time step is greatly increased as a result.

Choice for SPH formulation

Having described the di�erent SPH formulations above, Vila's approach of using

SPH-ALE method is the best choice of wave propagation in a channel without dis-

sipation (for more details see Guilcher et al., 2007). SPH-ALE is more stable and
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produces pressure �elds with much less numerical noise while the conservation prin-

ciples are satis�ed.

2.4 Free-surface �ow with SPH

There is a great deal of industrial interest in free-surface �ow investigations to study

coastal and o�shore hydrodynamics. For example, �ooding (O'Connor et al., 2004),

dam breaks (Stoker, 1957), wave forces (Dixon et al., 1979), the Manchester Bobber

o�shore wave energy device developed at the University of Manchester, etc. can be

classi�ed into this area of research in mechanical and civil engineering.

Simulating free-surface �ow with most Eulerian CFD methods is potentially di�cult

as explicit treatment of the free surface is required. On the other hand, one of the

main advantages of the SPH method is that it can deal with such a complex problem

where no special treatment of the free surface is needed, which combined with its

Lagrangian nature suits it to the simulation of highly nonlinear and potentially

violent �ows.

Monaghan (1994) gave some examples of SPH application to a breaking dam, a bore,

simulation of a wave maker and propagation of waves towards a beach. His approach

was based on the observation that real �uids such as water are compressible, but

with a speed of sound which is very much greater than the speed of bulk �ow.

He modelled boundaries by using boundary particles which impose forces on the

�uid. This idea is based on the fact that real boundaries are produced by atoms

or molecules which exert a force on the �uid. He also described the simulation of a

wave generator with the moving particles. His results show that SPH can be used

to simulate free surfaces without any di�culty where the particles are moved with

a correct velocity. He also showed that the boundary particles give a satisfactory

representation of boundaries, however it needed more corrections in order to conserve

angular momentum (Robinson et al., 2007).

Monaghan and Kos (1999) extended their approach numerically and experimentally

to investigate a solitary wave propagating onto and over a dry beach and returning

after striking a vertical wall. They showed that the solitary wave in experiment,

which collapses onto the beach and the jets up the wall and splashes, can be success-

fully modelled with SPH. The SPH simulations reproduce the shape and position of
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the surface in a fairly good agreement but the velocity �eld was not detailed. The

SPH method was concluded to be useful for studying wave problems.

Dalrymple and Rogers (2006) also showed waves on a beach including some im-

provements such as sub-grid scaling to handle turbulence, following Colagrossi and

Landrini (2003), Shepard �ltering to reinitialise the density of each water particle in

order to avoid unphysical behaviour at the free surface due to slight density varia-

tions being magni�ed by the equation of state. Their results are fairly satisfactory,

however more comparisons with other numerical models and experimental data were

needed.

Following the work of Vila (1999), Guilcher et al. (2007) presented the capability of

the SPH method to simulate the propagation of water waves in a tank using the ALE

Riemann solver approach in SPH and renormalisation of the kernel function. They

showed that the standard SPH method is not able to model wave propagation in a

long and deep tank and the use of Riemann solvers and renormalization techniques

brings signi�cant improvements to the standard SPH scheme such as using a bigger

Courant number and simulating waves without dissipation.

Other examples of implementing the SPH method in free-surface problems are mod-

elling of underwater landslide generated waves by Panizzo and Dalrymple (2004),

Analysing green water overtopping by Gómez-Gesteira et al. (2005), modelling dam

break behaviour over a wet bed by Crespo et al. (2008), weakly compressible and

incompressible investigation of dam break and free-surface �ow Issa (2005) and Lee

et al. (2008), etc.

As explained, use of the SPH method to simulate free-surface problems is still devel-

oping but has been applied successfully so far. In the present work, an investigation

into the propagation of waves in an intermediate depth and long channel will be

demonstrated for di�erent SPH formulations and kernel functions. It is shown that

a Riemann solver for each particle-particle interaction is the best choice of SPH ap-

proaches because, �rst, pressure �elds can be predicted satisfactorily and, second,

the standard SPH formulation may cause propagating waves to decay in the channel

(also see Guilcher et al., 2007 and Rogers and Dalrymple, 2008). This enables one

to establish a good numerical model for further investigations of bodies in waves.

45



2.5 Interaction of waves with rigid bodies with SPH

One of the most important topics, which is still mainly at the research and develop-

ment stage, is the application of SPH to �xed/�oating bodies in waves and the ocean.

There are still many knowledge gaps for �oating devices such as understanding the

behaviour of �xed/�oating bodies in linear and extreme waves.

The SPH method can be used in order to investigate the interactions between struc-

tures, such as �xed, �oating and heaving, and water waves. Investigation of the

impact of a dam break with a structure, overtopping, moving wedge, �oating bodies

are good illustrations of using the SPH method to study the interactions between

structures and waves.

2.5.1 Impact of waves with �xed objects

Monaghan et al. (2003) used SPH to study numerically the impact between a rigid

body and water and compared the results with their experiments for a rectangular

box. As the box enters the water, a vigorous spray projects �uid beyond the box,

then, as the water heaves up, it falls back on the upper surface of the box and

initiates a solitary wave. They also presented the formulation for the motion of a

rigid body and boundary forces in SPH. The SPH simulation technique reproduced

the qualitative features of the entire process and gave satisfactory results compared

to the experiments but with a small number of particles, which may not be adequate

for many situations.

Gómez-Gesteira and Dalrymple (2004) investigated the impact of a single wave gen-

erated by a dam break with a tall stationary structure with a three-dimensional

version of the SPH method. They used the method to analyse the propagation of a

dam-break wave and the force it exerts on a tall structure located in a region with

vertical boundaries, which include two parallel layers of �xed boundary particles

placed in a staggered manner. Then they compared it with experimental results to

show that the velocity �eld at a given position point was reproduced perfectly with

the model. They used the 3D version of model to reproduce a three-dimensional

phenomenon, i.e., the collision of a wave with a structure and its passing around

the obstacle and the reconstruction of the wave after passing the structure. In their

paper, they used one particle resolution and never showed the convergence study of
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the model. They added in the summary that the SPH can be used successfully to

study three-dimensional wave problems like those related to the collision between

waves and structures.

Two-dimensional SPH simulations of wedge water entries was investigated by Oger

et al. (2006) using a variable smoothing length. They showed a new technique

based on a particle sampling method and designed to evaluate �uid pressure on

solid boundaries, then extended it to the capture of freely moving body dynamics

in a �uid/solid coupling approach. They mentioned that there is no need for high

accuracy everywhere in the �uid domain but only in a given area. They proposed

a new set of SPH formulations and their results near a boundary showed some

satisfactory agreement with analytical and experimental ones. The enhanced SPH

scheme extended to the test of the impact of a free-falling wedge whose vertical linear

motion was the only degree of freedom, showing a fair agreement when compared

to analytical and experimental results. Using variable smoothing length may cause

some di�culties such as having extra terms in the SPH equations to deal with time

and space (Nelson and Papaloizou, 1994).

Shao et al. (2006) investigated the simulation of wave overtopping over a �xed

horizontal deck and the regular/irregular waves overtopping of a sloping seawall. The

computations are validated against the experimental and numerical data and a good

agreement by an incompressible SPH model. They used an algorithm implemented

by enforcing the constant particle density in the pressure projection in order to solve

the incompressible problems. The comparison between the numerical results and

experiment show a good agreement. Incompressible SPH uses a bigger time step

for the simulations in comparison with weakly compressible SPH but the model

calculates the pressure by solving a Poisson equation with the result that the total

amount of work during each time step is greatly increased.

2.5.2 Interaction of waves with free-motion objects

Maruzewski et al. (2010) used high performance computing to model a sphere im-

pacting with a free surface for di�erent resolutions. They presented di�erent smooth-

ing lengths and showed that the wet surface does not cover the bottom half of the

sphere for the biggest smoothing length (82000 particles and a smoothing length of

0.09m). However, the results for a large number of particle (1235000 particles and

47



a smoothing length of 0.025) is in agreement with the experimental data of Laverty

(2003) but it is expensive in terms of CPU cost requiring super computers. The

CPU cost could be cheaper if either the particle re�nement (Lastiwka et al., 2005)

or variable smoothing length (Bonet and Rodriguez-Paz, 2005) was used.

Rogers et al. (2008) studied �oating bodies in the surf zone using the SPH method.

They used the SPHysics code with a Riemann solver to present results for a) a

�oating box in the surf zone under the forcing action of periodic waves, and b) a

comparison with experiments for the movement of a caisson breakwater in 2D. Their

results for the �oating box appear to give sensible behaviour with box eventually

sliding back and forth on the bed with each wave without any comparison with

experiments. However, the simulation of the caisson breakwater was in a good

agreement with the experimental data but the horizontal force on the block was

noisy which has been recently improved upon in later work by using an improved

static-dynamic friction model (Rogers et al., 2010).

SPH simulation of �oating body forces by regular waves was presented by Monenti

et al. (2008). The comparison between their experimental measurements and SPH

results were promising, however wave crests were underestimated. They explained

that the accuracy of the results could be improved by increasing the number of

degrees of freedom for the �oating body. They also used the mirror particle technique

for the boundaries which are di�cult address for complex geometries.

Doring et al. (2004) presented the SPH simulation of �oating bodies in waves.

They used the standard SPH equations to investigate wedge water entry and wave

interaction with a box. Their results for wedge water entry were compared with the

available experimental data of Petterson et al. (1998) in terms of the vertical and

angular acceleration time history which were in promising agreements. They also

showed waves entering a �oating box which was initially located at a distance from

the free surface. The results for the �oating box are promising in relation to our

consideration of validation work.

Campbell and Vignjevic (2009) investigated extreme wave loading on o�shore struc-

tures using coupled Finite Element-SPH. They �rst showed the equilibrium of two

�oating objects. These results were promising in comparison with other CFD meth-

ods but they obtained a di�erent phase and amplitude for a rectangular box. They

also showed wave loading on 3-D structures without any validation.

48



As explained, there is limited knowledge of the impact of waves with �xed, forced and

free-motion objects in the literature. In this work, an investigation of �xed/heaving

bodies will be presented in two and three dimensions. Furthermore, to circumvent

the need for a simulation with an extremely large number of particles, variable

distributions of particle mass will be used thereby avoiding complicated issues related

to particle re�nement (Lastiwka et al., 2005) or variable smoothing length (Bonet

and Rodriguez-Paz, 2005).

2.6 Résumé

The work presented herein uses the meshless Smoothed Particle Hydrodynamics

(SPH) in order to investigate �xed/heaving bodies in waves. The major advantage

of using SPH is that no treatment of the free-surface is required which combined with

its Lagrangian nature allows us to simulate highly nonlinear and potentially violent

�ows. The desired �ow �eld can be generated allowing us to study integrated e�ects

like forces and responses. However, in order to conduct proper analysis, the accuracy

of predictions, numerical convergence and computational e�ciency are important

and need to be quanti�ed.

Further to the advantages of meshless methods, the increasing popularity and suit-

ability of SPH to �uid mechanics, particularly in free-surface �ow, o�ers good

prospects for simulating wave energy devices. Previously conducted research ef-

forts on the simulation of wave impact on �xed/heaving objects are very limited in

relation to the capabilities of the SPH method.

Here, it will �rst aim to compare di�erent SPH formulations and kernel equations for

wave propagation. This will enable one to choose e�ectively the best alternatives for

modelling �xed/heaving objects in waves. Moreover, a new method will be demon-

strated to avoid simulations with extremely large number of particles, especially in

3D problems.
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Chapter 3

The SPH methodology

The Smoothed Particle Hydrodynamics (SPH) method is a meshless and Lagrangian

solver which can be used for free-surface hydrodynamics problems. In this chapter,

theoretical and mathematical details of the SPH method are introduced.

3.1 De�nition of particles

Here, SPH is used as a technique to obtain approximate numerical solutions of the

equations of �uid dynamics by replacing the �uid with a set of particles. Mathemat-

ically, the SPH particles are expressed as interpolation points where properties of

the �uid can be calculated. On the other hand, and in a physical sense, the �uid can

be discretised by a �nite number of macroscopic volumes of �uid, which are de�ned

in a continuum mechanics formalism. In SPH each �uid particle i is characterised

by a mass mi, density ρi, pressure Pi, velocity vi and volume ωi updated at each

time step. Much of the basic material mentioned herein was developed in Gingold

and Monaghan (1977) and Lucy (1977), and can be found in summary in Monaghan

(1992, 2005).
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3.2 Mathematical formulation

3.2.1 Basics of the method

The basis of the Smoothed Particle Hydrodynamics method (SPH) uses an integral

interpolation of a function Φ, de�ned over a domain of interest Ω, allowing Φ to be

estimated in terms of its values in the surrounding domain. The value of Φ at the

location r can be written as a convolution product of the function Φ:

Φ(r) =

∫
Ω

Φ(ŕ)δε(r− ŕ)dŕ, (3.1)

where the summation is obtained by integrating over the whole domain Ω and dr is a

di�erential volume element. The Dirac function δε is approximated by a smoothing

function W (r-ŕ) called the smoothing kernel. Therefore Φ(r) is weighted integral

interpolation of the function Φ at the point r, denoted < Φ(r) >:

Φ(r) ≈ < Φ(r) >=

∫
Ω

Φ(ŕ)W (r− ŕ)dŕ. (3.2)

A Taylor series around r can be used for Φ(r) in order to determine the accuracy of

the above equation

Φ(ŕ) = Φ(r) + (ŕ−r).∇Φ(r) +O
(
| r− ŕ |2

)
, (3.3)

where ∇Φ(r) is the �rst derivative of Φ. The combination of Equations (3.2) and

(3.3) gives (Monaghan, 2005)

< Φ(r) >= Φ(r)

∫
Ω

W (r− ŕ)dŕ +∇Φ(r).

∫
Ω

(ŕ−r)W (r− ŕ)dŕ +O
(
| r− ŕ |2

)
. (3.4)

On the other hand, if the kernel function W is spherical, i.e.

W (r− ŕ) = W (| r− ŕ |) (3.5)

then the terms of the order O (| ŕ− r |) in Equation (3.4) will vanish. Meanwhile,

the order of | ŕ − r | is generally similar to the order of the smoothing length, h,

therefore Equation (3.4) becomes (Monaghan, 1992)

< Φ(r) >= Φ(r)

∫
Ω

W (| r− ŕ |) dŕ +O(h2). (3.6)
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Moreover, since ∫
Ω

W (r− ŕ)dŕ = 1, (3.7)

thus

< Φ(r) >= Φ(r) +O(h2). (3.8)

this equation shows that the leading-error is proportional to h2 and leads to a second-

order accuracy in space for SPH discretisations (Ellero et al., 2002) . Thus

Φ(r) =

∫
Ω

Φ(ŕ)W (r− ŕ)dŕ +O(h2). (3.9)

3.2.2 Transition to a discrete domain

The transition to a discrete domain is obtained by approximating the integral of the

Equation (3.9) by a summation

Φ(r) =
∑
j

mj

ρj
ΦjW (r− rj), (3.10)

where Φj denotes the value of Φ at the point occupied by particle j. The summation

sign includes all particles j that constitute the �uid domain and the volume element

dŕ is replaced by the particles volume mj/ρj.

Thus, the value of the quantity Φ relative to the particle i located at the point rij

can then be written as the following

Φi =
∑
j

mj

ρj
ΦjWij, (3.11)

where

Wij = W (ri − rj), (3.12)

and rij is the distance between particle i and j which is

rij = ri − rj. (3.13)

52



Figure 3.1: De�nition of the particle vector rij

3.2.3 Gradients

Basic formulation

The di�erentiable form of the interpolation of the function Φ according to Equation

(3.11), leads the kernel function to be also di�erentiable. Therefore, one can write

the gradient of the scalar �eld Φ relative to the particle as

(∇Φ)i =
∑
j

mj

ρj
Φj∇iWij (3.14)

where the quantity ∇iWij denotes the gradient of kernel taken with respect to i -

coordinates as

∇iWij =

(
∂

∂xi
i +

∂

∂yi
j +

∂

∂zi
k

)
Wij, (3.15)

where i, j and k are unit vectors in their coordinate directions. One can understand

that it is not necessary to use a grid to evaluate the gradient of a scalar �eld since

it is a function of the kernel gradient which is analytically known.

Other formulations

According to the following mathematical expressions

ρ∇(Φ) = ∇(ρΦ)− Φ∇ρ, (3.16)

∇(Φ) = ρ∇(
Φ

ρ
)− 1

ρ
Φ∇ρ, (3.17)
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and by considering Equation (3.14), two forms of the gradient of a scalar �eld are

obtained:

(∇Φ)i =
1

ρi

∑
j

mj(Φj − Φi)∇iWij, (3.18)

(∇Φ)i = ρi
∑
j

mj(
Φi

ρ2
i

+
Φj

ρ2
j

)∇iWij. (3.19)

There are several forms of scalar �eld gradients in the literature (see Monaghan,

1992). Equation (3.18) has the well-known feature of presenting the zero gradient

of a constant �eld of Φ. Similar expressions can be used for the the divergence of a

vector �eld and tensors (Vila, 1999, and Monaghan, 2005).

3.3 The kernel function

3.3.1 Fundamental properties: axioms

As mentioned before, an interpolation kernel over the whole domain Ω must satisfy

the following ∫
Ω

W (r− ŕ)dŕ = 1, (3.20)

where W > 0. Here, the smoothing length, h, which is similar to an average cell size

in Eulerian codes, is de�ned in order to characterise the spatial discretisation of the

problem. The above equation can be written in the discretised form of∑
j

W (r− rj)
mj

ρj
= 1. (3.21)

One the other hand, when the parameter h (the smoothing length) tends to zero,

the kernel function must tends to the Dirac distribution

lim
h→0

W (r− ŕ) = δε(r− ŕ). (3.22)

Moreover, the kernel function must be at least once di�erentiable and its derivative
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Figure 3.2: Neighbours of particle i within the kernel

must be continuous in order to avoid large �uctuations which a�ect the solutions

(Gingold & Monaghan, 1982 and Issa, 2005).

3.3.2 The smoothing length

The smoothing length, which is analogous to an average cell size, characterises the

spatial discretisation of the problem in SPH. In SPHysics, the optimum value of the

smoothing length is found to be h = 1.34 (e.g. see Rogers et al., 2010) where 4
is the initial particle spacing and the summation Equation (3.10) is restricted to

particles j, which are considered as the nearest neighbours of particle i within the

kernel (Figure 3.2).

Quinlan et al. (2006) investigated the truncation error for the approximation of

the kernel function which depends on both the smoothing length h and the ratio

of particle spacing to smoothing length 4/h. For one dimensional analysis they

showed that reducing h and keeping constant 4/h leads to a decrease of error as

h2 until a limiting discretisation error, which is independent of h, is reached. If h

is kept constant while reducing 4/h, where the number of neighbours per particle
is increased, the error will decrease depending on the rate of the kernel function's

smoothness. Quinlan's et al. (2006) numerical investigations indicated that the

results are also true for three dimensions.
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3.3.3 Kernel formulations

Generally, a kernel function can be written as

Wij =
$

hκ
f
(rab
h

)
, (3.23)

where $ and κ are the normalisation contact and the number of dimensions, re-

spectively. $ is employed in order to ensure the condition of (Equation 3.20) in the

continuous domain. Concerning the function f, several formulations are available in

the literature. The second order (quadratic) kernel function is de�ned as

Wij =
$

hκ

 3
16
q2 − 3

4
q + 3

4
q ≤ 2

0 q ≥ 2
, (3.24)

where q denotes the ratio rij/h, and
$
hκ

is 2
πh2 and 5

4πh3 in 2D and 3D, respectively

(Monaghan and Lattanzio, 1985). The advantage of using a second-order kernel are

the simplicity and cheap computational cost. However, it is not suitable for physical

processes needing higher-order interpolation to capture important e�ects.

Monaghan (1992) de�ned the third-order kernel based on spline function as

Wij =
$

hκ


1− 3

2
q2 + 3

4
q3 0 ≤ q ≤ 1

1
4
(2− q)3 1 ≤ q ≤ 2

0 q ≥ 2

, (3.25)

where the term $/hκcan be
2

3
,

10

7π2
,

1

π3

in one, two and three dimensions, respectively. The cubic spline kernel has a maxi-

mum in its gradient at the particle centre which can lead to tensile instability, and

has to be corrected, according to Monaghan (2000), in order to avoid particle clump-

ing. (see section 3.3.4) but it approximates the Gaussian kernel very closely while

it has a compact support, meaning that interactions are zero for q > 2. Also, the

second derivative of the cubic spline kernel is continuous.

In the same way, a fourth and �fth order spline kernels are de�ned in the literature

(see Morris et al., 1997). Using higher order kernel may have a disadvantage of

expensive computational cost in comparison with the cubic spline kernel (Morris et

al., 1997).
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3.3.4 Tensile instability

A one-dimensional von Neumann analysis of the SPH method was conducted by

Swegle and Attaway (1995). They have found that the SPH method su�ers form

a tensile instability when negative pressures which attract particles occur. The

instability does not result from the numerical time integration algorithm, but rather

from an e�ective stress resulting from a non-physical negative modulus produced

by the interaction between the constitutive relation and the kernel interpolation.

In other words the nature of original particle di�erential equations is changed by

the kernel interpolation in spatial discretisation. The condition of the criterion for

stability is deducted as (Monaghan, 2000)

W q
ij.τ > 0, (3.26)

where W q
ij is the second derivative of the kernel function and τ is the particle stress,

negative in compression and positive in tension. Both derivation of above relation

are independent of the viscous term modelling and the temporal integration scheme.

Generally, it has been proved that a more universal instability criterion can be ob-

tained by considering the system potential energy. The tensile instability is inherent

to the cubic and quintic kernels. However, more recent research by Robinson et al.

(2008) suggest that the cause of tensile instability is due to the behaviour in the

frequency domain.

Since the cubic kernel is used for most problems of this research an assessment

of tensile instability is needed, especially at the interface of di�erent particle size

introduced in Chapter 5.

3.3.5 Removing tensile instability

Kernel improvement

As mentioned in the previous session, tensile instability occurs when the �rst deriva-

tive of either the cubic or quintic kernels goes to zero with q. To overcome this issue

other types of kernel can be implemented. However, as described later, the cubic

kernel is found to be the best choice of kernel function for propagation of waves in

a channel.
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Arti�cial pressure

Monaghan (2000) revealed that the kernel instability can be removed if the repulsive

force is written in terms of the kernel. The pressure gradient term present in the

momentum Equation (3.34) is thus modi�ed according to

Pj
ρ2
j

+
Pi
ρ2
i

−→ Pj
ρ2
j

+
Pi
ρ2
i

+ Cfκij (3.27)

where the function fij is de�ned as

fij =
Wij

W∆

(3.28)

and n must be positive and C is determined from a dispersion relation (Monaghan,

2000 and Issa, 2005) according to the pressure and density of particle i or j. ∆

corresponds to the initial spacing of particles. Monaghan (2000) also showed that

for the �uid dynamics, where h = 1.3∆ and κ = 4, the repulsive force increases

by a factor of ∼ 23 as rij decreases from ∆ to zero. The tensile instability is only

palliated by this correction but the instability is still there.

3.4 SPH governing equations

3.4.1 Governing conservation equations

The basic governing equations of weakly compressible �ow are based on the following

two fundamental physical conservation laws

• Conservation of mass

• Conservation of momentum

Therefore, the rates of change of velocity, density and position are expressed by the

Euler equations in the following Lagrangian form:

dρ

dt
= −ρ∇.v, (3.29)
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dv

dt
= −1

ρ
∇P + g, (3.30)

dr

dt
= v. (3.31)

where v is the velocity, ρ is the density, P is the pressure and g is the body force

per unit mass. In general, P can be described as a function of ρ.

The SPH version of these equations are described in the next sections.

3.4.2 Standard SPH formulation

SPH continuity equation

The SPH continuity equation can be obtained in two ways as shown below:

• Equation (3.9) is used to �nd the natural formulation of the continuity equa-

tion, where Φ corresponds to the density ρ (Monaghan, 2005)

ρi =
∑
j

mjWij, (3.32)

• In the classic Lagrangian formulation, the continuity equation can be written

as
dρ

dt
= −ρ∇v = −∇(ρv) +∇ρ.v, (3.33)

where the operator d/dt denotes a Lagrangian derivative. Using Equation

(3.11) leads the SPH form of continuity to be deduced as

dρi
dt

=
∑
j

mjvij.∇iWij, (3.34)

with vij = vi − vj (Monaghan, 2005).

From a compressible point of view, since the number of the particles is constant

the mass of the system is conserved according to Equations (3.32) and (3.34) ,

therefore the mass of each particle is constant throughout the calculations. From an

incompressible point of view, velocity divergence is not identically zero and therefore
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both equations are not exactly conservative (Issa, 2005). Moreover, because the

kernel gradient should be calculated for momentum equation (see section 3.4.2),

using Equation (3.34) can be a best choice since the kernel gradient can be calculated

in one subroutine.

SPH momentum equation

The momentum conservation equation in a continuum �eld is

dv

dt
= −1

ρ
∇P + g, (3.35)

where P and g refer to pressure and external forces, respectively.

Gingold and Monaghan (1982) obtained the original form of SPH momentum equa-

tion by converting the acceleration equation into the SPH as

(∇P )i =
∑
j

mj
Pj
ρj
.∇iWij, (3.36)

such that

dvi
dt

= − 1

ρi

∑
j

mj
Pj
ρj
.∇iWij + g (3.37)

However, symmetrisation of pressure gradient can be achieved by rewriting the term

∇P/ρ as

∇P
ρ

= ∇
(
P

ρ

)
+
P

ρ2
∇ρ. (3.38)

Hence, using SPH interpolation rules, the above equation becomes (Monaghan, 2005)

dvi
dt

= −
∑
j

mj

(
Pj
ρ2
j

+
Pi
ρ2
i

)
.∇iWij + g. (3.39)

Arti�cial Viscosity

Arti�cial viscosity is a common way proposed by Monaghan (1992) to model the

e�ect of viscosity in SPH. The arti�cial viscosity, Πij, is added to the momentum

equation as
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dvi
dt

= −
∑
j

mj

(
Pj
ρ2
j

+
Pi
ρ2
i

+ Πij

)
.∇iWij + g, (3.40)

where dri
dt

= vi.

Πij =


−λvisc̄ijµij

ρ̄ij
vijrij < 0

0 vijrij > 0
, (3.41)

with

µij =
hvijrij
r2
ij + ι2

, (3.42)

c̄ij =
ci + cj

2
, (3.43)

ρ̄ij =
ρi + ρj

2
. (3.44)

ι2 = 0.01h2 and λvis is a free parameter that can be changed according to each

problem. Here, ci and cj are the speed of sound of particle i and j, respectively.

Monaghan (1997) introduced a new arti�cial viscosity in order to handle shocks in

high Mach numbers. This arti�cial viscosity is de�ned as

Πij = −Kυsig(i, j)vij
ρ̄ij

.
rij
rij
, (3.45)

where

υsig(i, j) = ci + cj − 2vij.
rij
rij
, (3.46)

and K is an arbitrary constant. The new arti�cial viscosity is not taken to the

account in this investigation since the problems studied here are not with high Mach

numbers.

Laminar Viscosity

The simpli�ed laminar viscosity introduced by Morris (1997) is given by

(
ν0∇2v

)
i

=
∑
j

mj

 4ν0rijvij

(ρi + ρj)
(
| rij |2 +ι2

)
 .∇iWij, (3.47)
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where υ0 is the kinematic viscosity of laminar �ow (= 10−6m2/s) and is added to

the momentum equation as

dv

dt
= −1

ρ
∇P + g + ν0∇2v, . (3.48)

Position of particles

The position of particle i can be obtained by considering the de�nition of the velocity

as (Monaghan, 2005):

dri
dt

= vi. (3.49)

XSPH method

It is e�cient to obtain the particle position according to the XSPH method since it

keeps the particle orderly in the absence of viscosity. Therefore, the above equation

is corrected

dri
dt

= vi + %
∑
j

mj (vj − vi)

ρ̄ij
Wij︸ ︷︷ ︸,

corrective term

(3.50)

where

ρ̄ij =
ρi + ρj

2
and 0 ≤ % < 1. (3.51)

Here, the particle equation is modi�ed with an average velocity characteristic of the

neighbourhood of particle i. XSPH has the capability of increasing dispersion in the

simulation of nearly incompressible �ows in order to avoid situations where parti-

cles clump together due to numerical viscosity. Thus, particles stay more ordered

(Monaghan, 1992, 1994 & 1995).

There are two velocities when the XSPH method is used, one results from the mo-

mentum equation and the second corresponds to r.h.s of Equation (3.50). Therefore,

the velocity used in the continuity equation (Equation 3.34) must be the corrected

velocity in order to ensure the consistency of Navier-Stokes equations (Issa, 2005).

It was proved by Colagrossi and Landrini (2003), and Panizzo (2004) that, just as

the local velocities are averaged in the XSPH term, the averaging of the densities
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helps ensure that the free surfaces are smooth and physically acceptable. It can be

one of the reasons that Shepard �ltering (see Dalrymple and Rogers, 2006) is used.

3.4.3 Arbitrary Lagrange Euler (ALE) formulation in SPH

Vila (1999) used an Arbitrary Lagrange Euler (ALE) method together with the

SPH method linking the �nite volume method into the hybrid method, in particular

upwind scheme like the Godunov method. Use of SPH-ALE is an alternative to

arti�cial viscosity which solves a Riemann problem between each particle pair.

Conservative Riemann Formulation

In Vila's (1999) paper, he derived the SPH equations in ALE by starting from the

following PDE in conservative form was stated

Lϑ + divF (r, t,Φ) = S, (3.52)

where Φ is the vector of conserved variables, the subscript ϑ is a regular vector �eld,

F is a �ux vector, S represents source terms and Lϑ is the transport operator given

by:

Φ→ Lϑ(Φ) =
∂Φ

∂t
+
∑ ∂

∂r
(vΦ) . (3.53)

Therefore in 1-D
∂Φ

∂t
+
∂(uΦ)

∂x
+
∂F

∂x
= S, (3.54)

which is

∂Φ

∂t
+ Φ

∂u

∂x
+ u

∂Φ

∂x
+
∂F

∂x
= S, (3.55)

or in turn

DΦ

Dt
= −

[
Φ
∂u

∂x
+
∂F

∂x

]
+ S. (3.56)

Vila (1999) de�ned the particle approximation as
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Πh(f) =
∑
j

ωj(t)fjW (r− rj), (3.57)

which is equivalent to Equation (3.11)

f(r) =
∑
j

mj

ρj
fjW (r− rj) = Πh(f), (3.58)

where the volume of each particle is

ωi(t) =
mi

ρi
. (3.59)

(note Πh here is not the same as arti�cial viscosity in Equation (3.40) ).

He also showed the gradient of a function as

∇Πh(f)i =
∑
j

ωj(t)fj∇Wij, (3.60)

For symmetrical formulation designed to give equal and opposite reactions between

interacting particles, this is replaced by

∇Πh(f)i =
∑
j

ωj(t)(fi + fj)∇Wij, (3.61)

The particles move along the paths given by the particle velocities.

The de�nition of the particle approximation and derivatives (Equations 3.57 and

3.61) in now substituted into Equation (3.52) and then the equations of conservation

become

dri
dt

= vi, (3.62)

dωi
dt

= ωi∇vi, (3.63)

d

dt
(ωiΦi) + ωi

∑
j

ωj (F (ri, t,Φi) + F (rj, t,Φj)) .∇Wij = ωiSi. (3.64)

Here, the de�nition of conserved variables and �uxes in given by
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Φ =

 ρ

ρu

ρw

 , Fx =

 0

P

0

 Fz =

 0

0

P

 , (3.65)

to derive the conventional SPH equations. Thus Equation (3.64) becomes

d

dt
(ωiρi) = 0, (3.66)

d

dt
(ωiρivi) + ωi

∑
j

ωj (Pi + Pj) .∇Wij = ωiSi, (3.67)

if the value of ωiρi = mi is taken constant then the above equations become similar

to standard SPH equations.

Consider now the gradient of the kernel de�ned as

∇iWij =
∂W

∂q
∇iq, (3.68)

∇iWij =
∂Wij

∂xi
i +

∂Wij

∂zi
k =

∂W

∂q

(
∂q

∂xi
i +

∂q

∂zi
k

)
, (3.69)

where q = rij/h and rij = |ri − rj| so that

∂q

∂xi
=

1

h

∂rij
∂xi

(3.70)

and

∇iWij =
∂Wij

∂xi
i +

∂Wij

∂zi
k =

1

h

∂Wij

∂q

ri − rj
|ri − rj|

= −Dθijnij, (3.71)

where

nij =
(ri − rj)

|ri − rj|
, (3.72)

is the unit vector joining points i and j (Figure 3.3) and

Dθij = Dθ(rij). (3.73)
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Figure 3.3: One dimension Riemann problem between interacting points

Hence, the governing conservation Equation (3.64) can be written as

d

dt
(ωiΦi)− ωi

∑
j

ωj (Fi + Fj) .nijDθij = ωiSi. (3.74)

The interactions between the particles i and j are computed along the direction nij

connecting ri with rj. All features are introduced naturally at ra,ij =
ri+rj

2
, and the

conservation law related to the direction nij becomes:

∂Φ

∂t
+

∂

∂r
(F (rij, t,Φ) .nij) = Si. (3.75)

In accordance with Godunov-type methods, it is natural therefore to replace:

(F (Φi) + F (Φj)) .nij

by a numerical �ux of �nite di�erence scheme, 2N (nij,Φi,Φj) , which is required to

satisfy

(1) N(n, u, u) = F (u).n

(2) N(n, u, w) = −N(−n,w, u)/
(3.76)

To formulate a Riemann solver, the 2-D Eulerian equation can be considered in the

conservative form and in the absence of source terms with a regular vector transport

�eld v0 as given by Vila (1999)

Lv0 +
∑ ∂

∂r

(
F l
E(Φ)− v0,lΦ

)
= 0, (3.77)

where l denotes the coordinates and the �uxes are given by
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FE,x(Φ) =

 ρu

P + ρu2

ρuw

 FE,z(Φ) =

 ρw

ρuw

P + ρw2

 , (3.78)

Thus, Equation (3.77) written as

∂

∂t
(Φ)+

∂ (u0Φ)

∂x
+
∂ (w0Φ)

∂z
+
∂

∂x

(
FE,x(Φ)− u0Φ

)
+
∂

∂z

(
FE,z(Φ)− w0Φ

)
= 0, (3.79)

is better written as

∂

∂t
(Φ) +

∂

∂x
(FE,x(Φ)) +

∂

∂z
(FE,z(Φ)) = 0. (3.80)

or more fully as

∂

∂t

 ρ

ρu

ρw

+
∂

∂x

 ρu

P + ρu2

ρuw

+
∂

∂z

 ρw

ρuw

P + ρw2

 = 0, (3.81)

which is the more recognisable 2-D Eulerian conversation law excluding source terms.

Incorporating the one-dimensional Riemann problem

Vila (1999) also noticed that conservative formulation by the SPH method leads to

the appearance of one-dimensional Riemann problems between pairs of neighbouring

points. Thus, the Riemann problem has to be solved between particle i and j in

one-dimensional set of conservation laws (see Figure 3.3, whose initial condition is

discontinuous at the mid-point (Marongiu, 2008)):
∂
∂t

(Φ) + ∂
∂x

(
FE(Φ).nij − v0

a,ij(xij, t).nijΦ
)

= 0

Φ(x, 0) =

Φi x < 0

Φj x > 0

, (3.82)

Since a Lagrangian calculation is performed, the transport �eld v0(x, t) must be

treated in order to apply the technique developed for shock-capturing techniques.

Therefore, if we consider the classical Riemann problem for the Eulerian equations

(which does not include the e�ect of the velocity �eld v0)
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∂
∂t

(Φ) + ∂
∂x

(FE(Φ).nij) = 0

Φ(x, 0) =

Φi x < 0

Φj x > 0

, (3.83)

which has the exact solution (to the �non-moving Riemann� problem) of ΦE,a,ij =

ΦE,a,ij

(
x
t
; Φi,Φj

)
. The solution of the above is given byΦE =

(
x+X0(t)

t
; Φi,Φj

)
X0(t) =

∫ t
0

v0(xa,ij, T ).nijdT
, (3.84)

which is the solution to the �moving Riemann� problem. The solution to Φa,ij can

be obtained using any of the techniques developed for approximate Riemann solvers

available in the literature. The approximation solution will be given later in sections

3.4.3 and 3.4.3.

System of discrete conservation laws

The �ux between the particles can be evaluated with the solution Φa,ij

λ0
ij = v0

ij(xij, t).nij

Φλ
a,ij = Φij

(
λ0
ij

)
= Φa,ij

(
λ0
ij,Φi,Φj

)
Na,ij (Φi,Φj) = Fa,ij

(
Φλ
a,ij

)
− v0

ij ⊗ Φλ
a,ij

Na,ij (nij,Φi,Φj) = Na,ij (Φi,Φj) .nij

, (3.85)

where λ0
ij is the projection of the local velocity �eld onto the direction vector nij

between each particle, subscript a denotes the result from the approximate Riemann

solver, and Na,ij is the �ux between each particles.

The terms in the above equation can be written more fully as

v0
ij ≈

1

2

(
v0
i + v0

j

)
=

1

2
[(uii + wij) + (uji + wjj)] , (3.86)

λ0
ij = v0

ij.nij =
(ui + uj) (xi + xj) + (wi + wj) (zi + zj)

2 |ri − rj|
, (3.87)
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Φλ
a,ij = Φij,i

(
λ0
ij

)
= Φa,ij

(
λ0
ij,Φi,Φj

)
=

[
ρa,ij

(ρv)a,ij

]
(3.88)

Na,ij (Φi,Φj) = Fa,ij
(
Φλ
a,ij

)
− v0

ij ⊗ Φλ
a,ij (3.89)

with

Na,ij (nijΦi,Φj) = Na,ij (Φi,Φj) .nij =

[
ρa,ij

(
va,ij − v0

ij

)
Pa,ij + ρa,ijva,ij

(
va,ij − v0

ij

) ] . (3.90)

The particle approximation of conservation Equations (3.64) and (3.74) become

d

dt
(ωiΦi) + ωi

∑
j

ωj2Na,ij (Φi,Φj) .∇Wij = ωiSi, (3.91)

d

dt
(ωiΦi)− ωi

∑
j

ωj2Na,ij (Φi,Φj) .nijDθij = ωiSi. (3.92)

Thus, the governing equations become

dri
dt

= vi
dωi
dt

= ωi∇.vi
d
dt

(ωiρi) + ωi
∑
j

ωj2ρa,ij (va,ij − v0)∇Wij = 0

d
dt

(ωiρivi) + ωi
∑
j

ωi2
[
Pa,ij + ρa,ijva,ij ⊗

(
va,ij − v0

ij

)]
∇Wij = ωiS.

(3.93)

where the Kronecker product is de�ned in 2-D as:

va,ij ⊗
(
va,ij − v0

)
=

[
ua,ij (ua,ij − u0) wa,ij (ua,ij − u0)

ua,ij (wa,ij − w0) wa,ij (wa,ij − w0)

]
. (3.94)

Here and opposite to the standard SPH equations, d
dt

(ωiρi) = d
dt

(mi)6= 0, so that the

mass of particles are not constant.

De�nition of the Riemann problem

The Riemann problem includes a discontinuity located at x0 in space where
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Figure 3.4: Initial discontinuity in density in 1-D

Φ(x, t) =

ΦL x ≤ x0

ΦR x > x0

, (3.95)

where the subscripts L and R denote left and right states, respectively (Toro, 2001).

For instance, Figure (3.4) shows a simple discontinuity in density.

Figure (3.5) clearly shows the structure of the solution of the Riemann problem,

which is de�ned as all the states from left to right regions, on the x-t plane for

one-dimension where a shock wave propagates to the right while a rarefaction wave

propagates to the left (Figure 3.5.a). A possible wave pattern in solution of the

Riemann problem can be displayed as a single line for shock propagation to the

right and rarefaction wave spreading out to the left (Figure 3.5.b). However, the

unknown region between the left and right waves is divided by the middle wave into

two sub-regions star and speci�ed a region called star region. The middle wave is

always a contact discontinuity while the left and the right waves are either the shock

or rarefaction waves depending on the initial conditions (see Toro, 1997).
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Figure 3.5: a) Propagation of initial discontinuity at time t = t1, b) Evolution of
discontinuity in density

Solution of the Riemann problem

There is no exact closed-form solution to the Riemann problem for ideal gases, or

for much simpler models such as the isentropic and isothermal equations hence ap-

proximate Riemann solvers have been a large area of research (Toro, 2001). The

Harten-Lax-van Leer (HLL) Riemann solver approach is based on estimating the

smallest and largest signal velocities in the solution of the Riemann problem. In

this approach, intermediate waves such as contact discontinuities are ignored. The

Harten-Lax-van Leer-Contact (HLLC or HLL for contact wave) approximate Rie-

mann solver is a modi�cation of the basic HLL scheme to account for the in�uence

of intermediate waves (Toro, 2001). Considering the following conservation law in

1-D

∂Φ

∂t
+
∂F

∂x
= 0, (3.96)

where the vector of conserved variables and �uxes are given by

Φ =

[
ρ

ρu

]
and F =

[
ρ

ρu2 + P

]
. (3.97)
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Figure 3.6: Evolution of the wave system for Riemann problem with contact surface

Recalling equation (3.64), the initial state now is considered as

Φ(x, 0) =

QL x < 0

QR x > 0
, (3.98)

where L and R denote the left and right states, respectively. Figure (3.6) shows the

evolution of the wave system for Riemann problem with contact surface where the

left and right initial states QL and QR are separated by a star region which also

contains a contact discontinuity between the states Q∗L and Q∗R.

Initial estimation of pressure and velocity in the star region are computed from linear

theory

P ∗ = 1
2

(PL + PR) + 1
2

(uL + uR) (ρ̂ĉ) ,

u∗ = 1
2

(uL + uR) + 1
2

(PL + PR) / (ρ̂ĉ) ,
(3.99)

where ρ̂ = 1
2

(ρL + ρR) and ĉ = 1
2

(cL + cR). Here, c is the local speed of sound. The

value of velocities at left and right states are then obtained by projecting onto the

the line rij. For example in 2-D for the left (L) state:

[
uL

wL

]
=

[
cos θ sin θ

− sin θ cos θ

][
ui

wi

]
, (3.100)

where cos θ =
xij
rij

and sin θ =
zij
rij
.

In the star region, the �uid properties are de�ned as
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P ∗L = P ∗R = P ∗,

u∗L = u∗R = u∗ = S∗,

v∗L = vL, w∗L = wL,

v∗R = vR, w∗R = wR.

The left and right wave speed and �uxes are given by

SL = uL − cLΥL (3.101)

SR = uR + cRΥR (3.102)

F∗L = FL + SL (Q∗L −QL) (3.103)

F∗R = FR + SR (Q∗R −QR) (3.104)

where

ΥK =


1 P ∗ ≤ PK Rarefaction√

1 + γ+1
2γ

(
P ∗

PK
− 1
)

P ∗ > PK Shock
, (3.105)

K=R, L for right and left states, respectively. The �uid property states within the

star region are therefore:

Q∗K = ρK

(
SK − uK
SK − S∗

)
1

S∗

vK

wK

 . (3.106)

Thus the solution is given by

QHLLC =



QL x/t < SL

Q∗L SL < x/t < S∗

Q∗R S∗ < x/t < SR

QR SR

, (3.107)

while the �uxes are given by
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FHLLC =



FL x/t < SL

F∗L SL < x/t < S∗

F∗R S∗ < x/t < SR

FR SR

. (3.108)

where the value of velocities at the mid point, va,ij, are obtained from inverse pro-

jection. For example in 2-D

[
ua,ij

wa,ij

]
=

[
cos θ − sin θ

sin θ cos θ

][
uHLLC

wHLLC

]
. (3.109)

Higher order extension for the Riemann problem

The MUSCL (Monotone Upstream-centred Schemes for Conservation Laws) is a

second order extension of the Godunov upwind method, which is necessary in order

to avoid massive dissipation. In this method, the piecewise constant approximation

of Godunov's scheme is replaced by reconstructed states and derived from averaged

states obtained from the previous time-step. For each particle, using a slope limiter

(β-limiter), reconstructed left and right states are obtained and used to calculate

�uxes at the mid-points. These �uxes can, in turn, be used as input to a Riemann

solver, following which the solutions are averaged and used to advance the solution

in time (Vila, 1999 and Toro, 2001). De�ning the gradient constructed variable

di�erences as 4Φi = ∇Φi.
1
2
rji

4Φj = ∇Φj.
1
2
rij

, (3.110)

the left and right Riemann states either side of the midpoint are then de�ned byΦL
i = Φi +4Φi

ΦR
j = Φj −4Φj

, (3.111)

where 4Φi and 4Φj are given by

4Φi,4Φj =

max [0,min (β4Φi,4Φj) ,min (4Φi, β4Φj)] 4Φj > 0

min [0,max (β4Φi,4Φj) ,max (4Φi, β4Φj)] 4Φj < 0
, (3.112)
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If either 4Φi or 4Φj is found to have a value greater than 1
2
|Φi − Φj|, then 4Φi

and 4Φj are further limited to 1
2
|Φi − Φj|. This is done to ensure that the values

of ΦL
i and ΦR

j always lie between the values of Φi and Φj. The left and right states

are used as the discontinuous states for the individual Riemann problem between

particles i and j. For a full description an understanding of Riemann solvers, the

reader is referred to Toro (2001). As is well known for Riemann solvers and higher-

order schemes, results can be sensitive to the choice and value of the limiter (Rogers,

2001).

3.4.4 Equation of State

In weakly compressible SPH, pressure is calculated by the equation of state of Tait

de�ned as the following in �uid dynamics (Batchelor, 1967)

Pa = B

[(
ρa
ρw

)γ
− 1

]
, (3.113)

where

B =
ρwc

2
s

γ
, (3.114)

ρw and cs are the reference density and numerical speed of sound, respectively.

The choice of γ = 7 makes pressure very sensitive to density variation. Therefore,

when the particles are approaching each other, their pressure increase dramatically

and consequently the particles will repel each other through the pressure gradient.

Through this equation, when density equals the reference density, pressure goes to

zero. It consequently ensures the zero pressure condition relative to a free surface

(Issa, 2005).

This equation also implies that the �uid is compressible, and that there is a speed

of sound c2
s = ∂P/∂ρ set (by changing the value of B) to be at least ten times the

maximum wave velocity to be modelled (Monaghan, 1992).

3.5 Time integration

3.5.1 Time step

Determination of time step depends on some conditions as the followings
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Internal and external forcing terms

This condition is applied to ensure that the particles do not get very close to the

neighbours during their movement when they experience external and internal forces

δtforces = min

√(
h

| fi |

)
, (3.115)

where fi denotes internal or external forces associated to particle i per unit mass

(Monaghan, 1999).

Combination of CFL and viscous conditions

The combination of CFL and viscous conditions gives

δtCV = min
i

(
h

cs + µi

)
, (3.116)

where

µi = max
j

(
hvijrij

r2
ij

)
. (3.117)

Final time step choice

The �nal time step denoted δt is then expressed as

δt = Crmin(δtforces, δtCV ), (3.118)

where Cr is the Courant number.

3.5.2 Time integration schemes

Generally, the continuity, momentum and position equations can be written as
dρi
dt

= Gi

dvi
dt

= Fi

dri
dt

= Hi

, (3.119)
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where G, F and H corresponds to the r.h.s of each equation. There are several

methods used in order to obtain parameters such as predictor-corrector scheme and

symplectic scheme.

Predictor-Corrector scheme

In this method, the second order scheme in time is used in order to update the values

of parameters at the time level n+1. First, the accelerations term at the time level

n+ 1
2
are calculated 

ρ
n+ 1

2
i = ρni + ∆t

2
Gn
i

v
n+ 1

2
i = vni + ∆t

2
Fn
i

r
n+ 1

2
i = rni + ∆t

2
Hn
i

, (3.120)

calculating P n+1/2 using ρn+1/2.

These values are then corrected using forces at the half step
ρ
n+ 1

2
i = ρni + ∆t

2
G
n+ 1

2
i

v
n+ 1

2
i = vni + ∆t

2
F
n+ 1

2
i

r
n+ 1

2
i = rni + ∆t

2
H
n+ 1

2
i

, (3.121)

and �nally the values are calculated at the end of time step as
ρn+1
i = 2ρ

n+ 1
2

i − ρni
vn+1
a = 2v

n+ 1
2

i − vni

rn+1
a = 2r

n+ 1
2

i − rni

, (3.122)

and the updated pressure at the time n+1, P n+1 is calculated from (3.113) by using

the value of density at the time n+1, ρn+1.

Time integration in the absence of dissipation (symplectic)

Because the SPH algorithm reduces the original continuum partial di�erential equa-

tions to sets of ordinary di�erential equations, any stable time stepping algorithm

for ordinary di�erential equations can be used. A symplectic integrator (see Mon-

aghan, 2005 and Leimkuhler et al., 1997) can be used to preserve the properties of
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the Lagrangian equations when there is no dissipation. This method is often known

as kick-drift-kick form of time stepping where the kick is the change in velocity by

the force and drift is the change in coordinate moving with initial velocity. In this

case, �rst, the value of density and position acceleration are calculated at the middle

of time step as ρ
n+ 1

2
i = ρni + ∆t

2
Gn
i

r
n+ 1

2
i = rni + ∆t

2
Hn
i

, (3.123)

then P n+ 1
2 is calculated from ρn+ 1

2 . Second, F
n+ 1

2
i is obtained by a sweep over the

particles and �nally vn+1
i = v

n+ 1
2

i + ∆t
2

F
n+ 1

2
i

rn+1
i = r

n+ 1
2

i + ∆t
2

vn+1
i

. (3.124)

Now Gn+1
i is calculated using vn+1

i and rn+1
i and then pressure is calculated form

ρn+1 .

3.6 Boundary conditions

For modelling bodies in SPH there must be some form of boundary condition at a

solid wall to prevent particles crossing the impermeable boundary. There are now

several techniques available in the literature, e.g. using ghost particles (Colagrossi

and Landrini, 2003), using stationary particles (Shao and Lo, 2003), dynamic bound-

ary conditions (Gómez-Gesteira & Dalrymple, 2004 and Crespo et al., 2007), using

repulsive forces (Monaghan and Kos, 1999 and Rogers et al., 2008), a �ux-based

boundary conditions (De Le�e et al., 2009) or particle boundary force (Kajtar and

Monaghan, 2009). Each have their own advantages and disadvantages, for example,

techniques such as the ghost particles method become unwieldy when there are cor-

ners or surfaces of higher curvature (this has been improved recently by Colagrossi

et al., 2009). The technique of using stationary water particles to represent the solid

body can create very large unphysical boundary layers which can only be overcome

using very small 4 (initial particle spacing) with the obvious penalties in terms of

computational cost (Rogers and Dalrymple, 2008). The dynamic boundary condi-

tion of Gómez-Gesteira and Dalrymple (2004) and Crespo et al. (2007) has recently
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been improved with the implementation of the correction proposed by Hughes and

Graham (2010). In this work, the following two boundary conditions will be used.

3.6.1 Repulsive boundary condition

In this work, the repulsive boundary condition, developed by Monaghan and Kos

(1999) and modi�ed by Rogers et al. (2008) is used due to the ease of implementation

for complex boundaries and particle feedback interactions. In this case, the boundary

exerts forces on the �uid particles and the force experienced by a water particle,

acting normal to the wall, is given by

f = n.R(ψ)P (ξ)ε(z, u⊥), (3.125)

where n is the unit normal, R(ψ) is the repulsive function of the distance ψ, which

is the perpendicular distance of the particle from the wall, and is expressed as

R(ψ) = A
1
√
q

(1− q) , (3.126)

where the coe�cient A is

A =
1

h
0.01c2

i . (3.127)

The function P (ξ) is chosen so that a water particle experiences a constant repulsive

force as it travels parallel to the wall

P (ξ) =
1

2

[
1 + cos

(
2πξ

∆b

)]
, (3.128)

where ξ is the projection of interpolation location ξi onto the chord joining the

two adjacent boundary particles and ∆b is the distance between any two adjacent

boundary particles.

Finally, the function ε(z, u⊥) is a modi�cation to Monaghan and Kos's (1999) original

suggestion and adjusts the magnitude of the force according to the local water depth

and velocity of the water particle normal to the boundary

ε(z, u⊥) = ε(z) + ε(u⊥), (3.129)

where
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ε(z) =


0.02 z ≥ 0

| z
d
| +0.02 −d ≤ z < 0

1 | z
d
|> 1

, (3.130)

and

ε(u⊥) =


0 u⊥ > 0

|20u⊥|
cs

| 20u⊥ |< cs

1 | 20u⊥ |> cs

, (3.131)

in this case, z is the elevation above the local still-water level d,u⊥is the velocity of

the water particle projected onto the normal expressed by

u⊥ = (vWP − vBP ).n, (3.132)

where the subscripts WP and BP refer to water and boundary particles, respectively

(Monaghan & Kos, 1999 and Rogers et al., 2010). Unless stated, repulsive boundary

conditions are used in our investigations.

3.6.2 Particle boundary Force

The particle boundary force proposed by Kajtar and Monaghan (2009) is another

type of boundary condition where there is no need to calculate normals as the re-

pulsive boundary condition, which makes the boundary conditions easy to be imple-

mented. The force/mass on �uid particle j due to boundary particle k is expressed

as

fjk =
1

γf

(
V 2
max

rjk − ι

)
rjk
rjk

Wjk
2mk

mj +mk

, (3.133)

where Vmax is the estimated maximum speed, Wjk is the 1D Wendland kernel, m is

the particle mass , ι is chosen in order to prevent particle penetration and the factor

γf is used to ensure that by changing the space of boundary particles the force on

the �uid is invariant.

3.6.3 Moving boundaries

For modelling moving boundaries, in theory, all boundary particles experience an

equal and opposite force to the repulsive force that they exert on surrounding �uid
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particles. By summing the contributions exerted on the boundary particles for an

entire body, the force and hence motion of the �oating body can be evaluated (Rogers

et al., 2010). Herein, following the technique of Monaghan et al. (2003) for modelling

the �oating body using the repulsive boundary particle technique the objects are

treated as rigid bodies. The force on each boundary particle is computed by summing

up the contribution from all the surrounding water particles within the surrounding

kernel. Hence, boundary particle k experiences a force per unit mass given by

fk =
∑
i∈WPs

fki, (3.134)

where fki is the force per unit mass exerted by water particle i on boundary particle

k. By the principle of equal and opposite action and reaction, the force exerted by

a water particle on each boundary particle is given by

mkfki = −mifik. (3.135)

This is useful since during the simulation we only actually compute the repulsive

force, fik, exerted by the boundary particle k on water particle i. Hence, using the

equation below, we can estimate the force exerted on the moving body. For the

�oating body, we use the equations of basic rigid body dynamics. The total force on

the body is then calculated as

ftotal =
∑
k∈BPs

mkfk. (3.136)

For the �oating body, we use the equations of basic rigid body dynamics. The

equations of motion of the body in the translational and rotational degrees of freedom

are given by

M
dV

dt
=
∑
k∈BPs

mkfk, (3.137)

I
dΩI

dt
=
∑
k∈BPs

mk (rk −R0) , (3.138)

where I is the moment of inertia, V is the velocity of the object, ΩI is the rotational

velocity of the object whose direction is perpendicular to the object motion and R0
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is the position of the centre of mass. Equations (3.137)and (3.138)are integrated in

time to predict the values of V and ΩI or the beginning of the next timestep. Each

boundary particle that describes the moving body has a velocity given by

vk = V + ΩI × (rk −R0) (3.139)

The boundary particles within the rigid body are then moved by integrating Equa-

tion (3.139) in time. It can be shown that this technique conserves both linear and

angular momentum (Monaghan et al., 2003).

3.7 Summary

In this chapter, the theoretical and mathematical features of the SPH method were

shown. Most of the formulations and features of SPH presented in this chapter are

essential to be used in the following chapters for solving numerical problems for

this thesis. The next chapters will present 2-D investigations of wave propagation in

intermediate depth and weakly compressible water, wave loading on a submerged and

�xed cylinder and generated by a heaving cylinder. Moreover, The 3-D investigation

of a heaving cone and Manchester Bobber wave energy device will be also presented

in the following chapters.
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Chapter 4

Investigation of wave propagation

and wave-body interaction in 2D

4.1 Introduction

In this chapter, the numerical results for various two-dimensional test cases are

simulated for wave propagation with and without body interaction in a channel.

First the solution for �ow due to vertical plate moving in a channel is compared with

an analytical solution and other numerical simulations. This will be followed by an

investigation of wave propagation in an intermediate depth and weakly compressible

water tank using di�erent SPH formulations and kernel functions. The comparison

between the experimental data of Dixon et al. (1979) and SPH results for wave

loading on a �xed, partially submerged cylinder will be presented with a careful

attention to the force along each direction exerted by �uid particles to the body in

still water. Finally, surface waves generated by a 2-D heaving cylinder of di�erent

wave period and stroke will be compared with the experimental data of Yu and

Ursell (1961).

4.2 Wavemaker theory

A wavemaker is any device whose prescribed motion produces surface waves in a

channel or basin with a free surface. A piston type wavemaker is a classical example
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of wavemakers which can be located in one end of a long rectangular water tank

oscillating at a prescribed frequency (Dean and Dalrymple, 2000). Consider a piston

wavemaker with a stroke, s, which has a horizontal displacement and velocity of the

boundary wall described as:

Xpaddle =
s

2
sinσt (4.1)

Upaddle =
s

2
σ cosσt, (4.2)

where T is a wave period and σ is wave frequency de�ned as

σ2 = gk tanh kd. (4.3)

Here, d is the water depth and k is wave number inversely related to wavelength,

de�ned as

k =
2π

L
, (4.4)

where L denotes the value of wave length given at depth d by

L = L0 tanh kd, (4.5)

where L0 is deep-water wave length expressed by:

L0 =
gT 2

2π
. (4.6)

The main objective of this part of research is to investigate wave propagation in

intermediate deep and weakly compressible water where

π

10
< kd < π.

More information about wavemaker theory can be found in Dean & Dalrymple

(2000).

4.3 Numerical Solution

Here to ensure clarity of which SPH formulation is being used and investigated, we

repeat the speci�c equations being solved.
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4.3.1 Standard SPH formulation

Recalling Equation (3.34), the standard SPH equations are expressed as:

dri
dt

= vi
dρi
dt

=
∑
j

mjvij.∇iWij

dvi
dt

= −
∑
j

mj

(
Pj
ρ2
j

+ Pi
ρ2
i

+ Πij

)
.∇iWij + g

, (4.7)

where ri, vi Pi and ρi denote position, velocity, pressure and density of particle i,

respectively. Here

Πij =


−λvisc̄ijµij

ρ̄ij
vijrij < 0

0 vijrij > 0
, (4.8)

with µij =
hvijrij
r2
ij+ι

2 , c̄ij =
ci+cj

2
, ρ̄ij =

ρi+ρj
2

, where ι2 = 0.01h2 and λvis is a free

parameter that can be changed according to each problem, which is 0.05 for our

simulations. Here, ci and cj are the speed of sound of particle i and j, respectively.

4.3.2 The SPH-ALE scheme

As described in the previous chapter, Vila (1999) proposed the following formula-

tions in an Arbitrary-Lagrangian Eulerian (ALE) form in SPH by recalling Equation

(3.93):

dri
dt

= vi
dωi
dt

= ωi∇.vi
d
dt

(ωiρi) + ωi
∑
j

ωj2ρa,ij (va,ijj − v0)∇Wij = 0

d
dt

(ωiρivi) + ωi
∑
j

ωi2
[
Pa,ij + ρa,ijva,ij ⊗

(
va,ij − v0

ij

)]
∇Wij = ωiS

, (4.9)

where subscript a denotes the result from the approximate Riemann solver, super-

script 0 denotes the �eld value (i.e. the value at the particle itself). The interaction

between each particle pair is solved as a 1-D Riemann problem, so that the solution

at the mid-point ra,ij is va,ij , Pa, ρa a for velocity, pressure and density, respectively.

In the code SPHysics , this Riemann problem is solved using an HLLC approximate
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Riemann solver using MUSCL-based upwinding with a general β-limiter described

in full detail in the previous chapter.

In addition to the above formulations, the symplectic time stepping (Leimkuhler et

al., 1997 and Monaghan, 2005), repulsive boundary conditions (Monaghan and Kos,

1999 and Rogers et al., 2008), second-order (Monaghan and Lattanzio, 1985) and

third-order (Monaghan, 1992) kernel functions will be used.

4.4 Flow due to a vertical plate moving in a channel

For �ow due to a vertical plate moving in a channel, one can consider a semi-

in�nite channel of water depth d initially set at rest. Then at t = 0 the plate at

x = 0 instantaneously starts moving with uniform velocity U or uniform acceleration

where the impulsive motion leads to a jet of water travelling up the face of the plate.

Peregrine (1972) showed that the free surface evaluation caused by a vertical plate

with zero gravity, which is singular at origin, can be expressed analytically by

z = −2Ut

π
ln
[
tanh

(πx
4d

)]
, (4.10)

where t is very small time and U = 1m/s.

The numerical simulation is conducted in a channel of length 2m and depth 0.5m

where the total number of particles for the initial particle spacing of 0.01m and

0.005m are 10,200 and 41,000, respectively. For this problem, the cubic kernel and

repulsive boundary condition are used.
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a) b)

c) d)

Figure 4.1: Particle distribution for �ow due to a vertical plate moving in a chan-
nel using standard SPH formulation and cubic kernel function after a) t=0.04s b)
t=0.08s c) t=0.12s d) t=0.16s, 4 = 0.005m
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a) b)

c) d)

Figure 4.2: Particle distribution for �ow due to a vertical plate moving in a channel
using SPH-ALE formulation and cubic kernel function after a) t=0.04s b) t=0.08s
c) t=0.12s d) t=0.16s, 4 = 0.005m
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a) b)

Figure 4.3: Horizontal velocity for particles for �ow due to a vertical plate moving in
a channel using standard SPH formulation and cubic kernel function after t=0.16s
a) Standard SPH b) SPH_ALE, 4 = 0.005m, (same colour scale as Figure (4.2) )

Figures (4.1) to (4.2) show distribution of particles, coloured according to their

horizontal velocity, for �ow due to a vertical plate moving in a channel using dif-

ferent SPH formulations (Standard SPH & SPH-ALE) after a) t=0.04s b) t=0.08s

c) t=0.12s d) t=0.16s in the absence of the gravity. According to Figure (4.3), it is

clear that using the standard SPH formulation causes a separation from the wall in

comparison with the SPH-ALE formulation and consequently a discrepancy in the

magnitude of the horizontal velocity at the free surface near the paddle.

Figures (4.4) and (4.5) display the comparisons between the surface pro�les for

di�erent SPH formulations, the incompressible SPH (ISPH) data of Xu (2009) and

analytical solution for �ow due to a vertical plate after a) t=0.4s b) t=0.8s c) t=0.12s

d) t=0.16s, using di�erent initial particle spacing, 4. The comparisons are in good

agreements for positions of X −Xpaddle > 0.05m however for X −Xpaddle < 0.05m

there is a discrepancy due to the way we de�ned the free surface which does not

work perfectly near the wall (see Appendix A) whereas ISPH uses a di�erent surface

particle identi�cation. Furthermore, as mentioned before, the original formulation

proposed by Peregrine (1972) is singular at the origin which is also the reason for

having a discrepancy at the wavemaker. It is worth mentioning that Peregrine's

idea is based on potential �ow whereas here the simulation is based on the no-slip

boundary conditions.

For this problem, it is di�cult to draw any conclusion for the best choice of SPH for-

mulation for free-surface problems, however, it seems the standard SPH formulation

underestimates velocity at the free surface near the paddle.
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a)

b)

c)

d)

Figure 4.4: Comparison between the surface pro�les for di�erent SPH formulations,
ISPH and analytical solution for �ow due to vertical plate after a) t=0.04s b) t=0.08s
c) t=0.12s d) t=0.16s, 4 = 0.01m
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a)

b)

c)

d)

Figure 4.5: Comparison between the surface pro�les for di�erent SPH formulations,
ISPH and analytical solution for �ow due to vertical plate after a) t=0.04s b) t=0.08s
c) t=0.12s d) t=0.16s, 4 = 0.005m
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4.5 Absorption of waves at the boundary in SPH

4.5.1 Theory of Sponge layer proposed by Larsen and Dancy

(1983)

Generating waves inside the computational domain may causes re�ections at bound-

aries. These re�ections may also lead to standing waves which cause unphysical

behaviour of waves at the boundaries. Larsen and Dancy (1983) proposed the use of

a so-called �sponge layer� in Finite Di�erence Scheme (FDS) to damp waves at the

boundaries in the interval x > xs. The original equation of sponge layer is expressed

by

ζ(x) =

exp
[
(χ
−x
∆ − χ−xs∆ ) lnα

]
x > xs

1 0 ≤ x ≤ xs
, (4.11)

where α is a constant depending on the number of grid lines in the layer (suggested

to be α = 2 or α = 5 , ∆ is the grid spacing and

χ = 1 + rsponge + exp

(
− 1

rsponge

)
, (4.12)

where rsponge = 1.

Due to the di�erences between the SPH method and FDS, the value of the constant

α should be changed in order to get a su�cient damp at the boundary in the SPH

simulations. Here, we propose two values as α = 1.001 or α = 1.01. Figure (4.6)

shows the function ζ(x) versus the length of the sponge layer for two di�erent values

of α.

4.5.2 Absorption of waves with a lower order of Riemann

solver approximation

An alternative way to damp waves at the boundary is to change the order of the

Riemann solver approximation from second to �rst by gradually decreasing the value

of β-limiter described in the previous chapter, i.e. from β = 1 to β = 0 since the

�rst order Riemann solver is known to be highly viscous.
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Figure 4.6: Values of ζ(x) for di�erent values of α

4.6 Creating linear waves with a paddle

The investigation of wave propagation in intermediate, deep and weakly compressible

water is conducted in this section, using the standard SPH and SPH-ALE formula-

tion. The numerical domain of length 40m and height 1m is shown in Figure (4.7)

where waves of 2s period are generated with a paddle at the left boundary and ab-

sorbed by a sponge layer of length 3m, at the right boundary. The water particles

are initially in a still condition and then the paddle starts moving in a horizontal

direction producing regular and linear waves. The total number of particles for the

initial particle spacing of 0.04m and 0.02m are 25,500 and 102,000, respectively.

4.6.1 Simulation of wave propagation using standard SPH

formulation

Figures (4.8) and (4.9) show the wave propagation using the standard SPH equations

for di�erent initial particle spacing, each at two sample times. It is clearly shown

that using standard SPH formulation will cause dissipation in progressive waves.

Figure (4.10) displays the comparison of surface pro�le using the standard SPH

formulation and analytical solution for 4 = 0.02m at a) t=10s, b) t=15s which is
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Figure 4.7: Schematic of surface wave generated by a paddle

in good agreement in terms of phase for the �rst three waves but underestimates the

wave magnitude as the waves propagate along the tank.

4.6.2 Simulation of wave propagation using SPH-ALE formu-

lation and second-order kernel

Figure (4.11) displays the pressure distributions for waves generated by a paddle

using SPH-ALE and 2nd-order quadratic kernel at a) t=10s, b) t=15s where the

waves are clearly seen to dissipate along the channel, which is also shown in Figure

(4.12) for the surface pro�le comparison of SPH with the analytical solution. The

reason can be due to the kernel gradient which is linear and �rst order. The wave

dissipation can be improved by using the 3rd-order cubic kernel, which approximates

the Gaussian kernel closely.

4.6.3 Simulation of wave propagation using SPH-ALE formu-

lation and cubic spline kernel

Using the SPH-ALE formulation and cubic kernel leads the waves to propagate along

the channel without any dissipation. The pressure distributions for two sample times

are shown in Figure (4.13) where waves produced by the paddle propagate towards

the end of the tank without any dissipation and absorbed by the sponge layer which

is located 3m from the right boundary.
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a)

b)

Figure 4.8: Pressure distributions for waves generated by a paddle using standard
SPH formulation and cubic kernel at a) t=10s, b) t=15s,4 = 0.04m. Note distorted
scale
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a)

b)

Figure 4.9: Pressure distributions for waves generated by a paddle using standard
SPH formulation and cubic kernel at a) t=10s, b) t=15s 4 = 0.02m. Note distorted
scale
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a)

b)

Figure 4.10: Surface pro�les for waves generated by a paddle using and standard
SPH formulation and cubic kernel at a) t=10s, b) t=15s, 4 = 0.02m
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a)

b)

Figure 4.11: Pressure distributions for waves generated by a paddle using SPH-ALE
and 2nd-order quadratic kernel at a) t=10s, b) t=15s, 4 = 0.02m. Note distorted
scale
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a)

b)

Figure 4.12: Surface pro�les for waves generated by a paddle using SPH-ALE and
2nd-order kernel at a) t=10s, b) t=15s, 4 = 0.02m
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a)

b)

Figure 4.13: Pressure distributions for waves generated by a paddle using SPH-ALE
and 3rd-order cubic kernel at a) t=10s, b) t=15s, 4 = 0.02m. Note distorted scale
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a)

b)

Figure 4.14: Surface pro�les for waves generated by a paddle using SPH-ALE and
3rd-order cubic kernel at a) t=10s, b) t=15s, 4 = 0.04m
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a)

b)

Figure 4.15: Surface pro�les for waves generated by a paddle using SPH-ALE and
3rd-order cubic kernel at a) t=10s, b) t=15s, 4 = 0.02m
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The surface pro�le produced by the SPH-ALE formulation can also predict the linear

wave theory, shown in Figures (4.14) and (4.15) for two di�erent initial particle

spacing, in terms of magnitude and phase.

In comparison with the use of arti�cial viscosity in the standard SPH formulation,

the upwinding provided by the Riemann solver is found to be more stable and give

better results than the standard SPH. Moreover, according to Guilcher et al. (2007),

higher values for λvis in Equation (4.8) leads to an increased damping, whereas lower

values for λvis causes instabilities near the wavemaker. Furthermore, the pressure

distribution in SPH-ALE is more uniform whereas the arti�cial viscosity creates

some noise in the simulations. The reason may be found in the momentum equation

(Equation 4.7) where any error in density may lead to �uctuations in momentum

equation, due to the 1/ρ2 term, whereas in the original SPH-ALE of Vila (1999) this

will not happen.

The cubic kernel is used for all the following simulations in this thesis.

4.7 Fixed cylinder in still water

The �rst step of studying bodies in waves is to investigate the vertical and horizontal

forces in still water and examine if the right force values can be obtained along each

direction. A tank of 5m length and 2m height is chosen and a half-submerged circular

cylinder of 1m diameter is located in the middle of channel. Here, the initial particle

spacing is 4=0.02m.

Figure (4.16) and Figure (4.17) show the particles distribution initially and at t=5s,

respectively. As seen in the �gures the particles reorganise their positions, especially

around the body, and remain symmetric to the centre of the tank. Figure (4.18)

indicates the variation in time of the horizontal force and vertical force minus the

exact buoyancy component divided by buoyancy component in still water where the

values for the dimensionless forces become zero. However, the magnitude of the

vertical force for the �rst second of time is varying as particles reorganise themselves

around body. Similar results can be obtained using di�erent cylinder submergence

depths.

103



Figure 4.16: Particle distribution of still water at t=0

Figure 4.17: Particle distribution of still water at t=5s
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Figure 4.18: Normalised horizontal and vertical forces versus time for still water
problem

4.8 Wave loading on a partially submerged and �xed

cylinder

Wave forces on partially submerged, �xed cylinders in two dimensions measured by

Dixon et al. (1979) are used for comparison for di�erent wave amplitude and cylinder

submergence.

4.8.1 Experimental data for progressive wave loading on a

cylinder

The experiment data of Dixon et al. (1979) are used in order to validate the SPH

results for a �xed and partially submerged cylinder. Dixon et al. (1979), �rst,

presented the theory of wave forces followed by a modi�cation of vertical force theo-

retical formulation. Then, the force on a circular cylinder was calculated using linear

wave theory for di�erent water levels. In this work, we use their wave frequency and

various wave amplitudes and axis depths. Table (4.1) shows their results, which will

be used here, for di�erent relative axis depths and relative amplitudes. The relative

amplitude and axis depth are the ratio between the amplitude and axis depth, and

the cylinder diameter, respectively. These experiments were done for the relative

wave length (wave length divided by the diameter of cylinder) of 15.62.
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Figure 4.19: Schematic �gure of the wave loading on a partially submerged cylinder

Relative Relative Experimental Theoretical
amplitude axis depth CM Frms Frms

0.10 0.00 1.86 0.062 0.063
0.50 0.00 1.73 0.264 0.284
0.20 -0.10 1.81 0.112 0.115
0.20 -0.20 1.72 0.101 0.099
0.20 -0.30 1.78 0.087 0.074
0.30 -0.40 1.31 0.118 0.116
0.30 -0.50 1.25 0.089 0.093

Table 4.1: Force coe�cients and Root-Mean-Square relative forces for di�erent test
cases (after Dixon et al, 1979)

4.8.2 SPH results for progressive wave loading on a cylinder

Figure (4.19) shows the schematic of the SPH domain where waves of 1s period are

generated with a paddle at the left boundary and absorbed by a sponge layer of

length 1m at the right boundary. The sponge layer is implemented by changing

the order of the Riemann solver approximation from second to �rst by gradually

decreasing of the value of β-limiter in Equation (4.9), i.e. from β-limiter=1 to β-

limiter=0. A cylinder with a diameter of 0.1m is located in the middle of the channel

that is 6m in length and 0.5m in depth, and the axis depth below mean water level,

d
′
, varies. The initial particle spacing is 4=0.02m. Figure (4.20) shows the particle

distributions at two sample times. The wave propagation near the cylinder has

clearly been altered by the presence of the cylinder. Since the simulations are single

phase (i.e. only water particles) the compressibility of air around the cylinder is not

taken into account. The zoomed images of the particle distributions are presented
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Relative
amplitude

Relative
axis depth

SPH
Frms

Experimental
Frms

0.10 0 0.075 0.062
0.50 0 0.259 0.264
0.20 -0.1 0.115 0.112
0.20 -0.2 0.120 0.101
0.20 -0.3 0.109 0.087
0.30 -0.4 0.149 0.118
0.30 -0.5 0.179 0.089

Table 4.2: Comparison of SPH dimensionless rms force, normalised by submerged
buoyancy force, with experiment for di�erent relative wave amplitude (a/D) and
axis depth (d//D)

in Figure (4.21).

In order to compare the forces obtained by the SPH method with the experimental

data, the dimensionless root mean square (rms) vertical force is calculated as

Frms =

√√√√ 1

n

n∑
k=1

F 2
k , (4.13)

where Frms is the root mean square force, Fk is the total vertical force component

at each time steps (evaluated by summing the force contribution from nearby �uid

particles) divided by the weight of water displaced by a totally submerged cylinder

in still water, and n is the number of timesteps.

Table (4.2) shows the comparisons of dimensionless rms force between the SPH re-

sults and the experimental data presented by Dixon et al. (1979) for di�erent relative

axis depths and relative amplitudes. The relative amplitude and axis depth are de-

�ned as the ratio between the amplitude and axis depth to the cylinder diameter,

respectively. As shown in the table, one can see that the experimental and SPH

results are in reasonable agreement especially for the half submerged cylinder. The

results show promising agreement for the more submerged cylinder cases, but with a

discrepancy that might be due to problems with the experimental data as discussed

in Westphalen et al. (2009). The convergence test will be shown in Section (5.5).
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a)

b)

Figure 4.20: Particles for half submerged cylinder with relative amplitude of 0.5 at
a) t=5s, b) t=7.5s
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a)

b)

Figure 4.21: Particles for half submerged cylinder with relative amplitude of 0.5 at
a) t=5s, b) t=7.5s, zoomed �gures
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4.9 Surface waves generated by a heaving cylinder

Here, surface waves generated by a 2-D heaving cylinder of di�erent wave period

and stroke will be compared with the experimental data of Yu and Ursell (1961).

4.9.1 Experimental data for heaving cylinder

Yu and Ursell (1961) measured surface waves generated by a heaving cylinder. In

their paper, they also presented linearised theory for this problem where a half

submerged cylinder is forced to oscillate vertically in still water in a channel of in�nite

length. They derived theoretical formulations for the surface wave motion and force

coe�cient of a heaving cylinder. Experimentally, they performed measurements in a

channel of length 30m with the cylinder at mid length. Their comparisons between

theoretical and experimental wave amplitudes, using the ratio:

RA =
Wave amplitude at infinity

Amplitude of motion of cylinder
, (4.14)

were in good agreement although the experimental values were in general a few

percent lower than the theoretical values. Here, we validate our results using the

experimental values of the amplitude ratio for di�erent wave periods. For our nu-

merical simulations, the wave amplitude at in�nity is an amplitude of a wave which

is far from the boundaries and the body to avoid the physical e�ects (e.g. for a

wave with a period of 0.76s the third wave is considered to be at in�nity). Table

(4.3) shows the experimental amplitude ratio for di�erent wave periods and cylinder

strokes.

Cylinder stroke (cm) Wave period (s) Experimental RA

1.23 0.69 0.610
1.23 0.76 0.543
1.23 0.84 0.514
1.23 0.93 0.451
0.91 0.50 0.810
0.93 0.45 0.852

Table 4.3: Experimental amplitude ratio for di�erent wave periods and cylinder
strokes (after Yu and Ursell, 1961)
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Figure 4.22: Schematic of surface wave generated by a heaving cylinder

4.9.2 SPH results for surface waves generated by a heaving

cylinder

The numerical domain is shown in Figure (4.22) where waves are generated by a

heaving cylinder at the centre of the channel and propagate towards both ends of

the channel, which is 12m in length and 0.58m in depth. Waves are absorbed by

sponge layers of length 1.5m at the boundaries. As for the �xed cylinder, the sponge

layer can be implemented on both sides of the tank by changing the order of the

Riemann solver approximation from second to �rst by gradually decreasing the value

of the β-limiter in Equation (4.9), i.e. from β-limiter=1 to β-limiter=0. The cylinder

is initially half submerged and then starts oscillating in a vertical direction in simple

harmonic motion with small amplitude. The initial particle spacing and the diameter

of cylinder are 4=0.02m and D=0.15m, respectively. The stroke of the cylinder is

small in the experiment in order to simulate the small-amplitude wave of the theory,

and yet was large enough to generate waves with height which could be measured

accurately. Figure (4.23) shows pressure distributions for a heaving cylinder with

a stroke of 1.23cm and a period of 0.76s. Also, the zoomed images of the particle

distributions are presented in Figure (4.24) for two sample times. It is clear from

the Figures (4.23) and (4.24) that waves generated by the heaving cylinder travel

along the channel without any dissipation and absorbed by the sponge layer.

The comparisons of the surface pro�le between the linear theoretical free surface for

the present wave period and depth and our SPH results at t=10s are presented in

Figures (4.25) and (4.26) for di�erent wave periods, where the agreement is close.

Note that the domain length is chosen to be 16m for the period of 0.84s.
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a)

b)

Figure 4.23: Pressure distributions for a heaving cylinder with the stroke of 1.23cm
and a period of 0.76s at a) t=5s, b) t=10s. Note distorted scale
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a)

b)

Figure 4.24: Pressure distributions for a heaving cylinder with the stroke of 1.23cm
and a period of 0.76s at a) t=5s, b) t=10s. Note distorted scale
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Figure 4.25: Comparison of surface pro�le between analytical and SPH results for a
heaving cylinder with the stroke of 1.23cm and a period of 0.76s at t=10s

Figure 4.26: Comparison of surface pro�le between analytical and SPH results for a
heaving cylinder with the stroke of 1.23cm and a period of 0.84 at t=10s
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Cylinder
stroke
(cm)

Wave
Period
T(s)

SPH Coarse
RA

(4=0.02m)

SPH Finer
RA

(4=0.01m)

Experimental
RA

1.23 0.69 0.63 0.60 0.610
1.23 0.76 0.58 0.53 0.543
1.23 0.84 0.49 0.51 0.514
1.23 0.93 0.42 0.44 0.451
0.91 0.50 0.87 0.83 0.810
0.93 0.45 0.89 0.84 0.852

Table 4.4: Comparison of SPH wave amplitude with experiments for di�erent wave
periods and cylinder strokes

As suggested by Yu and Ursell (1961) to compare with the experimental data, we use

the amplitude ratio, RA theoretically de�ned at in�nity, Equation (4.14), at three

wavelengths from the cylinder. This avoids nonlinear a�ects around the cylinder.

The SPH amplitude ratio for a heaving cylinder with the stroke of 1.23cm and

a period of 0.76s is RA,SPH = 0.58 , which is close to the experimental value

RA,Exp = 0.543 . Table (4.4) shows that the experimental and SPH results for

the amplitude ratio with di�erent wave periods and cylinder strokes are in good

agreement. Using �ner resolution shows an improved agreement in all cases, how-

ever using �ner resolution needs a large number of particles, increasing computer

time.

This is not trivial in SPH as it is computationally expensive, hence achieving this

e�ciently will be the topic of the next chapter.

4.10 Summary

In this chapter, �rst, the analytical results for a plate moving horizontally in a

channel were compared with two forms of SPH formulations and the ISPH data of

Xu (2009). The results found to be in a good agreement with the ISPH data and

analytical solutions.

An investigation into wave propagation in a long tank of intermediate deep was con-

ducted using the standard and SPH-ALE formulations with di�erent kernel func-

tions. It was shown that using the SPH-ALE formulation and cubic kernel would

give the best results, comparing the results with the linear wave theory.
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Moreover, surface waves interacting with a �xed cylinder and generated by a heaving

cylinder were investigated using the SPH method. The SPH method was success-

fully used to predict wave propagation in a channel applied to loading a partially

submerged and �xed circular cylinder for various wave amplitudes and axis depths.

For the half- submerged cylinder the agreement with the experimental data for root

mean square force is within 2%. For the submerged cylinder, the results also show

promising agreement.

We also compared our SPH results and available experimental data for surface waves

generated by a heaving cylinder for di�erent cylinder strokes and wave periods, which

were in a very good agreement. We also presented the comparisons of the surface

pro�le between the linear theoretical free-surface where the agreement was close.

However, obtaining a more accurate answer for the free-surface pro�le in 2D and

capturing the entire three dimensional �ow �elds would require a large number of

particles. This may be di�cult and time consuming for capturing the entire three

dimensional �ow �elds. In the following chapters, variable particle mass will be

de�ned in order to avoid expensive CPU cost.
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Chapter 5

Variable particle mass for 2-D wave

body interaction

5.1 Introduction

E�cient computing of the free-surface motion, in particular to capture highly non-

linear waves, would require a simulation with a large number of particles which

is extremely time consuming in SPH. In this chapter, after the description of the

numerical setup, �rst the need for variable particle mass will described. Then, the

variable mass distribution of particles is employed to simulate the still water problem

for di�erent mass ratios, looking carefully at the kernel instability and hydrostatic

pressure. Finally variable mass distribution of particles will be employed for wave

loading on a �xed, partially submerged cylinder of Dixon et al. (1979) and for the

heaving cylinder case of Yu and Ursell (1961) described in the previous chapter.

5.2 Numerical setup

In this chapter, the SPH-ALE formulation of Vila (1999) are used for all the simula-

tions using an HLLC approximate Riemann solver and MUSCL-based upwinding as

described in Chapter 3. In Chapter 4 the cubic kernel function (Monaghan, 1992)

was found to be the best choice of kernel function (see Section 4.6.3). The symplectic
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Figure 5.1: Replacing a particle with a mass m with four lighter ones with a mass
m/ 4

time stepping method (Leimkuhler et al., 1997 and Monaghan, 2005) is used. More-

over, in order to prevent a water particle crossing a solid boundary, the repulsive

boundary condition described in Section (3.6.1) is used.

5.3 The need for variable particle mass

To reduce the particle number, previous SPH studies have recommended using vari-

able smoothing lengths (Bonet and Rodriguez-Paz, 2005) or particle re�nement (see

Nelson & Papaloizou, 1994 and Lastiwka et al., 2005). There can be conservation is-

sues using particle re�nement and there are extra terms to deal with time and space

varying smoothing lengths. Here, instead of variable smoothing length or particle

re�nement, a pre-de�ned variable mass distribution is used with re�ned particles in

a selected area (i.e. around the circular cylinder) where a heavier particle with a

mass of m is replaced typically with four lighter ones with a mass m/4 (Figure 5.1).

Here, the value of the smoothing length is kept constant at the original value of the

larger particles.

Since the cubic kernel is used without changing the smoothing length, an assessment

of tensile instability at the interface of di�erent particle size is needed. To circumvent

this, there are some techniques suggested in the literature to overcome the kernel

instability such as using other kernel formulations and adding an arti�cial pressure

(Monaghan, 2000). The cubic kernel function, which approximates the Gaussian

kernel function, is found to be the best choice for propagation of waves in a channel

(see Chapter 4), but this is well known to have kernel instability issues. Monaghan
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(2000) demonstrated that the kernel instability can be virtually removed if a pressure

correction is used. In the SPH-ALE formulation, this is achieved by replacing the

pressure Pa in the ALE scheme in Equation (4.9) with

Pa + Cfκij, (5.1)

where κ > 4 , C = Ci + Cj and

fij =
Wij

W4
, (5.2)

where 4 is the initial particle spacing in the neighbourhood of particle i. The

kernel instability correction is activated depending on the mass of two interacting

particles. Here Ci and Cj have no direct physical meaning but represent instead

a numerical correction for the well-known tensile instability issue mentioned above

where the kernel gradient tends to zero as rij → 0. In the formulation used here, the

decreasing kernel gradient leads to a reduction in the pressure experienced between

particles in Equation (3.93), soCi and Cj enable recovery of this pressure

5.4 Assessing still water with variable mass distri-

bution of particles

Before using this scheme for dynamic problems, it is important to assess the pre-

diction of still-water conditions. The numerical domain for an example still-water

problem is shown in Figure (5.2) where the lighter particles are initially located in

region 2 while the heavier particles are in region 1. The channel is 2m in length

and water depth is 1m. The box of lighter particles is symmetric about the central

vertical axis.

Here, we use an investigation of hydrostatic pressure to determine appropriate values

of Ci and Cj, where the mass ratio of 1:4 (since it is easier to be implemented), shown

in Figure 5.1), is used. Figure (5.3) displays the comparison between the exact and

SPH hydrostatic pressure at t=5s where Ci = 0.01Pi and Cj = 0.2Pj ; pressures are

in acceptable agreement. There is a discrepancy near the bed (z → 0) where there

is a noticeable error due to a lack of a complete kernel support. This region is not
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Figure 5.2: Schematic of still water problem using variable distribution of particles

important in our simulations and so no remedy is attempted. However, these Ci and

Cj values lead to particle clumping at the interface of lighter and heavier particles.

Results with an increased value of Ci = 0.05Pi keeping Cj = 0.2Pj are shown in

Figure (5.4). There is a very small pressure error at the interface of two regions which

is simply due to the introduction of the small arti�cial pressure to the momentum

equation. The particle clumping (an example is shown later) still occurs with the

value of Ci = 0.05Pi.

Figure (5.5) shows that as the value of Ci increases to 0.1Pi the pressure error will

grow at the interface while the particle clumping exists at some part of the interface.

Increasing the value of Ci to 0.15Pi avoids particle clumping at the interface of the

lighter and heavier particles but Figure (5.6) shows that this signi�cantly a�ects

the pressure at the interface. Here, the maximum error in pressure pro�le can be

estimated as 10%, which occurs at the lower interface of light and heavy particle

regions shown in Figure (5.2).

To examine the degree of clumping, Figure (5.7) shows the dependence of the ratio

of minimum particle spacing to initial particle spacing on Ci, where Cj = 0.2Pj for

all cases. At t=5s the value of 50% for
[

min(rij)

4

]
describes the particle spacing in

the lighter mass region where the initial particle spacing is half the initial particle

spacing in the heavier mass region. This plot shows the particle clumping signi�-
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Figure 5.3: Comparisons between the exact and SPH hydrostatic pressure for Ci =
0.01Pi and Cj = 0.2Pj at t=5s

Figure 5.4: Comparisons between the exact and SPH hydrostatic pressure for Ci =
0.05Pi and Cj = 0.2Pj at t=5s
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Figure 5.5: Comparisons between the exact and SPH hydrostatic pressure for Ci =
0.1Pi and Cj = 0.2Pj at t=5s

Figure 5.6: Comparisons between the exact and SPH hydrostatic pressure for Ci =
0.15Pi and Cj = 0.2Pj at t=5s
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Figure 5.7: Percentage of minimum particle spacing over initial particle spacing
versus Ci where Cj = 0.2Pj
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a)

b)

Figure 5.8: Particle distribution for still water problem for the mass ratio of 1:4 at
a) t=0 and b) t=10s with the initial particle distance of 0.02m

cantly increases (i.e.
[

min(rij)

4

]
decreases) at the interface region when the value of

Ci decreases. By examining Figure (5.7) and comparing with the hydrostatic pres-

sure distributions in Figures (5.3) to (5.6), we can see that choosing the value of

Ci = 0.1Pi produces minimum clumping (i.e. marginally less than 50%) while still

producing accurate hydrostatic pressure in Figure (5.6) in the area of interest. We

use Ci = 0.1Pi and Cj = 0.2Pj in our simulations.

The next step of this section is to assess still water with variable mass distribution

of particles. Figures (5.8) to (5.11) display di�erent plots of particles in still water,

initially and after 10s, where the variable mass distribution of particles is used.

Figure (5.8) shows the particle con�guration where the mass ratio of 1:4 is used. The

particles stay stable and symmetric about the vertical axis after 10 seconds without

any clumping or unphysical mixing at the interface, thus preserving the still-water

condition. At the free surface, there is some very small movement or deformation

due to lack of kernel completeness.

The stability of the particles can be also assessed using a diagonally-slanted dis-

tribution shown in Figure (5.9). The mass ratio is kept 1:4 and a particle in the
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a)

b)

Figure 5.9: Particle distribution for still water problem for the mass ratio of 1:4 at
a) t=0 and b) t=10s with the initial particle distance of 0.05m

a)

b)

Figure 5.10: Particle distribution for still water problem for the mass ratio of 1:16
at a) t=0 and b) t=10s with the initial particle distance of 0.05m
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a)

b)

Figure 5.11: Particle distribution for still water problem for the mass ratio of 1:4:16
at a) t=0 and b) t=10s with the initial particle distance of 0.05m

diagonally-slanted region can be replaced by four lighter particles according to Fig-

ure (5.1). Figure (5.9) proves that lighter particles do not move or mix due to the

irregular interface so that the particles remain close to the original position. How-

ever, better results can be achieved using a �ner resolution. For the above problems

the time step (Courant number, Cr=0.2) is half of the original time step (Cr=0.4).

Employing the mass ratio of 1:16 is the next step to check the limitation of mass ratio

for the cubic kernel function. Figure (5.10) shows particle clumping at the interface

of the regions after 10s due to the tensile instability since the initial distance between

the lighter particles and therefore kernel gradient is far smaller than for the mass

ratio of 1:4, shown in Figure (5.8). Adding more arti�cial pressure may cause other

numerical issues such as a signi�cant error in hydrostatic pressure.

However, if the domain of interest is divided into three regions and the mass dis-

tribution of particles decreases in steps, �rst from m to m/4 and then from m/4

to m/16, clumping of particles at the interface does not occur (Figure 5.11). The

reason may be due to the arti�cial pressure (Equation 5.1) added to the momentum

equation which increases gradually across di�erent regions. Moreover, gradual di-
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Figure 5.12: An example error of the horizontal particle positions for diagonally-
slanted mass distribution

minishing of the kernel gradient from one region to another may cause the particle

stress between the particles to decrease slowly across di�erent regions. Here, the

time step (Cr=0.1) is a quarter of the original time step (Cr=0.4) for the uniform

coarse distribution of particles. Having three regions of mass distribution, however,

may in�uence the CPU cost in some problems since �rst a smaller time step would

be used and second there are more particles interacting within the lighter particle

kernels than for the problem illustrated in Figure (5.8). This case shows that a

pre-de�ned nested distribution of particles possibly has a more expensive CPU cost.

In order to assess the convergence of the method in still water one can de�ne a global

relative error (GRE) Rx (Zhou et al., 2001) which is

Rx =

√√√√ ∑
i∈WPs

(
xni − xn−1

i

xni

)2

, (5.3)

where n denotes the time step and xi is the position of particle along the x-direction.

Figure (5.12) displays the error of the horizontal particle positions for diagonally-

slanted mass distribution (shown in Figure 5.9). We consider the simulation to have

reached steady state when Rx < 4 × 10−5. This is an arbitrary value to examine
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particle motion in still water chosen when the particles are not moving (Zhou et al.,

2001).

As a result, investigation of using variable mass distribution of particles demonstrates

that variable mass distribution of particles can successfully be implemented for still

water when the mass ratio is 1:4. Similar results may be obtained using a ratio of

1:3. On the one hand, using the cubic kernel function may lead the particles to

clump at the interface and on the other hand, the cubic kernel was found to be the

best choice for wave propagation with uniform particle mass.

In the next sections, a variable mass distribution will be used for a pre-selected area

where high resolution is desirable, for example around the cylinders described in the

previous chapters.

5.5 Investigation of wave loading on a partially sub-

merged and �xed cylinder using variable mass

distribution of particles

In this case, the variable particle mass is used around the �xed and partially sub-

merged cylinder of Section (4.8), where the cylinder is located at the middle of a

tank with a 6m length and 0.5m depth (Figure 4.19) and waves of 1s period are

generated with a paddle at the left boundary and absorbed by a sponge layer of

length 1m at the right boundary. The initial particle spacing is 4=0.02m.

Figure (5.13) displays the initial distribution of particles where the lighter particles

are located near the cylinder, where high resolution and consequently more particles

are needed.

Figure (5.14) shows the particle distributions at two sample times where the lighter

particles are located around the cylinder. The waves appear to have passed from

one region to another without loss of form at the interface and the wave propagation

near the cylinder is altered by the presence of the cylinder. Moreover, there is no

mixing between the particles with di�erent masses at the interface.

In Figures (5.15) to (5.17) the SPH time histories of normalised vertical force over

one wave period are compared with the experimental data for two relative axis
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Figure 5.13: Initial distribution of particles near cylinder according to the mass

depths (a/D = 0.5 and d//D = 0 and a/D = 0.2 and d//D = −0.3 and three dif-

ferent resolutions: coarse uniform distribution 4=0.02m(Figure 5.15), �ne uniform
distribution 4=0.01m (Figure 5.16) and variable mass distribution (Figure 5.17).

It is clearly shown that the SPH results agree with the physical experiment in terms

of phase, however, the vertical force is slightly noisy. Noisy force pro�les are typical

in many SPH simulations, e.g. see Delorme et al. (2007). Also, we can see that

during the second half of the wave period for half-submerged cylinder, there is some

discrepancy between the experimental and numerical forces but it should be noted

that similar behaviour was exhibited by a �nite volume code (Westphalen et al,

2009). This discrepancy shown in Figure (5.15) for the second half of the period of

half-submerged cylinder has taken place when the wave is falling below the cylinder

(Figure 5.14.a), where the number of water particle interactions is less.

In Figure (5.15), for a smaller wave amplitude (a/D = 0.2 and d//D = −0.2)

the results for vertical force are noisy when using a coarse resolution. However,

the results for a �ner resolution (4=0.01m) demonstrate the convergence of wave

loading on a submerged cylinder using uniform mass distribution of particles (Figure

5.16), which is also demonstrated for the variable mass distribution in Figure (5.17).
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a)

b)

Figure 5.14: Particles for half submerged cylinder with relative amplitude of 0.5 at
a) t=5s, b) t=7.5s) using variable mass distribution of particles
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a)

b)

Figure 5.15: Normalised vertical forces on �xed cylinder using coarse and uniform
resolution (4=0.02m) for a) a/D = 0 and d//D = 0.5 b) a/D = 0.2 and d//D =
−0.3
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a)

b)

Figure 5.16: Normalised vertical forces on �xed cylinder using �ne and uniform
resolution (4=0.01m) for a) a/D = 0.5 and d//D = 0 , b) a/D = 0.2 and d//D =
−0.3
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a)

b)

Figure 5.17: Normalised vertical forces on �xed cylinder using variable particle mass
distribution (4coarse=0.02m) for a) a/D = 0.5 and d//D = 0 , b) a/D = 0.2 and
d//D = −0.3
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Numerical Model
Uniform coarse
distribution of

particles

Uniform �ne
distribution
of particles

Variable mass
Distribution
of particles

Number of Particles 7800 30240 11900

CPU cost 15 hours 3 days 1 day

Table 5.1: Comparison of using di�erent particle resolutions for wave loading on a
half submerged and �xed cylinder

Table (5.1) demonstrates the CPU costs of di�erent techniques on a single processor

for wave loading on a half submerged and �xed cylinder, which proves the e�ciency

of using variable mass distribution, that is using the mixed mass achieves virtually

comparable accuracy but with fewer particles and hence a reduced CPU cost of only

1 day.

5.6 Variable mass distribution of particles around

the heaving cylinder

Here, the variable mass distribution is employed to the heaving cylinder test case

described in Section (4.9), where the cylinder with a diameter of D=0.15m is located

in channel in 12m length and 0.58m depth (Figure 4.22). The cylinder is initially

set to be half submerged in still water and starts oscillating in the vertical direction

to generate waves with small amplitude towards the boundaries. The waves are

then absorbed by the sponge layers at the boundaries. The initial particle spacing

is 4=0.02m.

The area of particles with lighter mass is chosen similar to Figure (5.13) in the

previous section, where high resolution is desirable.

Figures (5.18.a) and (5.18.b) show the case of the heaving cylinder at two di�erent

times for the cylinder with the stroke of 1.23cm and a period of 0.76s, where the area

of lighter-mass particles is located in the vicinity of the cylinder, which is important

for studying the �ow pattern around the cylinder. The zoomed �gures of the problem

are shown in Figure (5.19).

A comparison between the surface pro�les for the analytical solution and the com-

bined mass SPH approach for two sample wave periods are shown in Figure (5.20)
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Numerical Model
Uniform coarse
distribution of

particles

Uniform �ne
distribution
of particles

Variable mass
Distribution
of particles

Number of Particles 18500 71000 22300

SPH RA 0.58 0.54 0.53

CPU cost 2days 5days
2days and 15

hours

Table 5.2: Comparison of using di�erent particle resolutions for the wave period of
0.76s and the cylinder stroke of 1.23cm

and Figure (5.21). The comparison of SPH and analytical surface pro�le con�rms

that using variable mass distribution does not a�ect the form of the free-surface

pro�le.

Here, for instance, a heaving cylinder with the stroke of 1.23cm and a period of

0.76s, the amplitude ratio of Equation (4.14) (see Section 4.9) can be calculated

as RA,SPH = 0.53 which also gives us a satisfactory result in comparison with the

experimental data of RA,Exp = 0.543. The number of particles used in this case was

22300 compared to the 18500 particles used for the uniform coarse resolution results

shown in Figure (4.23) which gave RA,SPH = 0.58. With a uniformly �ne resolution

(not shown here), 71000 particles are required needing 5 days of CPU time on a single

processor giving RA,SPH = 0.54. Using a single-CPU machine, the computation time

for the variable mass distribution case was only 2 days and 15 hours for the extra

resolution compared to 2 days with the coarse distribution. Therefore, the scheme

o�ers a computational advantage and is hence a more e�cient technique to model

the wave propagation from the cylinder. Figure (5.22) demonstrates the convergence

of the variable mass distribution of particles, where

Error =
| RA,SPH −RA,Exp |

RA,Exp

(5.4)

The results for di�erent techniques are summarised in Table (5.2) for a heaving

cylinder with the stroke of 1.23cm and a period of 0.76s.

The comparisons of SPH wave amplitude between uniform coarse and �ne distribu-

tion of particles and variable mass distribution of particles for di�erent wave periods

and cylinder strokes are shown in Table (5.3), which demonstrates satisfactory agree-

ment. Generally, the �ner resolution results are in better agreement than the coarse
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a)

b)

Figure 5.18: Pressure distributions for a heaving cylinder with the stroke of 1.23cm
and a period of 0.76s at a) t=5s, b) t=10s. Note distorted scale
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a)

b)

Figure 5.19: Pressure distributions for a heaving cylinder with the stroke of 1.23cm
and a period of 0.76s at a) t=5s, b) t=10s. Note distorted scale
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Figure 5.20: Comparison of surface pro�le between analytical and SPH results for
a heaving cylinder with the stroke of 1.23cm and a period of 0.76s at t=10s. Note
distorted scale

Figure 5.21: Comparison of surface pro�le between analytical and SPH results for
a heaving cylinder with the stroke of 1.23cm and a period of 0.84 at t=10s. Note
distorted scale
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Figure 5.22: Convergence test of a heaving cylinder with the stroke of 1.23cm and
a period of 0.76s at t=10s, for the coarse resolution 4=0.02m and for the �ne
resolution 4=0.01m using di�erent mass ratio

resolution as expected, but using variable mass gives a signi�cant improvement in

the coarse results but without the computational expense of the �ner resolution.

Table (5.4) indicates the comparisons between the theoretical and numerical force

coe�cient σF (de�ned as the ratio between the maximum vertical force over the prod-

uct of the maximum acceleration and cylinder mass) for di�erent numerical runs,

which are in promising agreement. It shows that using a coarse distribution of par-

ticles overestimates the force coe�cient. However, if the variable mass distribution

of particles is used around the heaving cylinder the results improve. That is due to

the larger number of particles used around the cylinder in comparison with uniform

coarse distribution of particles. The table also demonstrates the sensitivity of the

values to the β-limiter of Equation (3.112) explained in Chapter 3 for di�erent test

cases. For instance, the value of the β-limiter (e.g. for the heaving cylinder problem

with the stroke of 1.23cm and a period of 0.76s) was chosen as 1.5 for the uniform

coarse particle distribution and variable mass distribution of particles. A β-limiter

of 1.3 was found to be the best choice for a uniform �ne particle distribution. In

general, the value of β in the limiter is well known to a�ect numerical results (for

example see Hirsch, 1998), where β = 1 gives the Minmod limiter which is known to

give di�usive results while β = 2 gives the Superbee limiter which can give unphysi-

cally sharp pro�les. Previous work in the context of Riemann solvers for the shallow
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Cylinder
stroke
(cm)

Wave
Period
T(s)

Experimental
RA

Uniform
coarse

distribution
of particles

RA

Uniform �ne
distribution
of particles

RA

Variable
particle
mass RA

1.23 0.69 0.610 0.63 0.60 0.62
1.23 0.76 0.543 0.58 0.54 0.53
1.23 0.84 0.514 0.49 0.51 0.52
1.23 0.93 0.451 0.42 0.44 0.43
0.91 0.50 0.810 0.87 0.83 0.84
0.93 0.45 0.852 0.89 0.84 0.82

Table 5.3: Comparison of SPH wave amplitude between uniform distribution of
particles and variable mass distribution of particles for di�erent wave periods and
cylinder strokes

water equations using a �nite volume scheme (for example see Rogers, 2001) has

shown similar behaviour where for standing waves in a basin, too small a value of

β(≈ 1) can lead to decay of free-surface waves, while too large a value β(≈ 1.5) can

lead to the unphysical behaviour of the wave amplitude increasing with time. Table

(5.4) demonstrates that while the results are in reasonable agreement, the results

are quite sensitive to the chosen value of β, and that a future improvement would

be to identify a suitable alternative to the β-limiter.

Cylinder
stroke
(cm)

Wave
Period
T(s)

Theoretical
σF

Uniform
coarse dis-
tribution
of particles

Uniform
�ne distri-
bution of
particles

Variable
mass dis-
tribution
of particles

σF β σF β σF β

1.23 0.69 0.58 0.72 1.50 0.65 1.30 0.63 1.50
1.23 0.76 0.59 0.75 1.50 0.68 1.30 0.65 1.50
1.23 0.84 0.61 0.78 1.40 0.73 1.15 0.66 1.40
1.23 0.93 0.63 0.79 1.40 0.71 1.15 0.66 1.40
0.91 0.50 0.72 0.95 1.40 0.91 1.20 0.83 1.43
0.93 0.45 0.70 0.95 1.50 0.92 1.30 0.81 1.55

Table 5.4: Comparison between the theoretical and numerical force coe�cient σF
using di�erent particle resolutions, di�erent wave periods and cylinder strokes
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5.7 Summary

In this chapter, variable particle mass distribution was introduced in order to reduce

computer time. It was shown that how �ne resolution around the body and coarse

resolution further away can be used to improve accuracy, while maintaining a uniform

kernel size. Variable particle mass distribution avoids the conservation issues with

particle re�nement suggested by Feldman and Bonet (2007) and dealing with time

and space by using variable smoothing length. The method was tested in still water,

showing hydrostatic pressure, for di�erent mass ratio where a mass ratio of 1:4 proved

e�ective but increasing to 1:16 caused particle clumping and instability.

The results for variable mass around cylinder in regular waves also showed good

agreement for the force history in comparison with the experimental data.

Variable mass distribution of particles was tested for the heaving cylinder problem

showing that converged solutions could be obtained with much lower computational

costs than with particles of uniform mass. We also show that how the results can

be sensitive to the chosen value of β-limiter.
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Chapter 6

Surface waves generated by an

Oscillating 2-D wedge and 3-D cone

6.1 Introduction

For simulation of wave energy devices, �rst it is important to be able to calculate

the forces on a moving body and the surface elevations around it correctly. In

this chapter the SPH method is used to investigate waves generated by a bobbing

2-D wedge and 3-D cone. This will include a summary of the experimental data

provided by Drake et al. (2009) followed by the simulations of an oscillating 2-D

wedge, initially set in still water using two forms of boundary conditions described in

Section (3.6): repulsive boundary condition (Monaghan and Kos, 1999 and Rogers

et al., 2008) and particle boundary force (Kajtar and Monaghan, 2009). Then, the

force comparison between the SPH results and experimental data for 3-D heaving

cone will be shown. The use of variable particle size will be shown for 3-D heaving

cone, which is used in a pre-selected area and avoids the need for particle re�nement.

6.2 Numerical setup

The SPH-ALE formulation (Vila, 1999) are used for all the simulations in this chap-

ter with the cubic kernel function (Monaghan, 1992) and symplectic time stepping

method (Leimkuhler et al., 1997 and Monaghan, 2005). Two forms of repulsive
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boundary condition (Monaghan and Kos, 1999 and Rogers et al., 2008) and parti-

cle boundary force (Kajtar and Monaghan, 2009) are also used to simulate the 2-D

bobbing wedge. For the 3-D bobbing cone only repulsive boundary condition (Mon-

aghan and Kos, 1999 and Rogers et al., 2008) will be used as it will be shown that the

force of Kajtar and Monaghan (2009) produces noisy results. All the formulations

are fully described in Chapter 3.

6.3 Experimental data

In this work, we use the experimental data of Drake et al. (2009) in order to validate

our SPH results. Drake et al. (2009) experimentally investigated the motion of a

cone, which is forced to oscillate vertically in still water in a wave tank, and compared

the results for force and surface elevation with linear and non-linear theory. The cone

was located centrally in the tank with a depth of 1.01m. The cone draught was 148

mm, equal to the waterline radius in the case of a right circular cone. The vertical

motion of the cone z(t) followed the form of a Gaussian wave packet de�ned by:

z(t) = A
N∑
n=1

Z(σn) cos [σn(t− t0)]4σn, (6.1)

where

Z(ωn) =
1

ς
√

2π
exp

[
−(σn − σ0)2/2ς2

]
, (6.2)

ς = σ0/2π, 4σn = 2σ0/N , central circular frequency σn = n4σn, A is the largest

excursion from the still water level, σ0 denotes the central frequency of the Gaussian

wave packet in rad/s, were given by κπ/3. For our SPH simulation A is chosen to

be +50mm, the number of frequency components N is 50, and κ is 3, 7 and 9. In

accordance with the suggestion of Drake et al. (2009), the force results are compared

with the experimental data in non-dimensional form as F/ρgπR2A where F is the

time varying component of the vertical �uid force, ρ is the density of fresh water,

g is the acceleration due to gravity, R is the cone radius at the waterline (equal to

the draught for a right circular cone). Time is expressed in non-dimensional form by

dividing through by the period that corresponds with the central frequency of the

wave packet. For example for κ = 3 the central frequency and corresponding period
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Figure 6.1: Vertical motion of the cone vs time according to Equation (6.1) when
κ = 3 and A = 0.05m

are calculated as πHz and 2s, respectively. Figure (6.1) displays the motion of the

cone where κ = 3.

6.4 2-D Heaving wedge

The 2-D numerical domain is shown in Figure (6.2) where waves are generated by a

wedge, bobbing according to Equation (6.1) and initially set to have a zero velocity,

at the centre of the channel of length 4m and depth 1m, and propagate towards

both ends of the channel. Waves are absorbed by sponge layers of length 0.8m at

the boundaries implemented as before by changing the order of the Riemann solver

approximation from second to �rst by gradually decreasing the value of the β-limiter

in Equation (3.112), i.e. from β =local value to β = 0. The initial particle spacing

is 4 = 0.02m. Figure (6.3) displays the initial distribution of particles.

6.4.1 Results using repulsive boundary condition

Figure (6.4) shows the pressure for 2-D heaving wedge using the repulsive boundary

condition as described in Section (3.6.1), at (a) t=2s, (b) t=3.5s, where κ and A
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Figure 6.2: Schematic of surface wave generated by a heaving cone

Figure 6.3: Initial particle distribution for 2-D bobbing wedge, 4 = 0.02m
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used in Equation (6.1) are chosen to be 9 and +0.05m, respectively. The waves,

generated by the Gaussian wave packet motion of the wedge, are clearly seen to

propagate towards the walls and be absorbed at the boundary. Figures (6.5) and

(6.6) display force comparison between the SPH results and experimental data for

2-D wedge, shifted backward by 2.3s in order to have the maximum excursion at t=0

for two initial particle spacing. The agreement is in a good agreement in magnitude

and phase. This simulation takes about one day on single CPU.

6.4.2 Results using particle boundary force

The pressure con�gurations for two sample times are shown in Figure (6.7) using the

particle boundary force of Kajtar and Monaghan (2009) for the wedge particles as

described in Section (3.6.2). Similar to the previous case, waves are generated by the

heaving wedge and absorbed by the sponge layers at the boundaries. However, there

is a particle separation of almost 24 from the wedge, which is also shown by Kajtar

and Monaghan (2009) . This can be due to the initial force exerted by the wedge

particles on the �uid particles, although a normalisation factor of W (0) = 1.8 was

used and a damping was produced in Equation (3.133) for the �rst 2500 time step,

in order to reach the equilibrium in the similar way to that suggested by Kajtar

and Monaghan (2009). The inconsistency is also shown in the force comparison

(Figure 6.8 and Figure 6.9) between the SPH results and experiment where the

SPH force has some noise, especially when the �uid particles are in rest (a similar

problem is seen for the �xed cone in still water). Moreover, since the boundary

force needs a normalisation to keep the �uid particles with the distance from the

boundary approximately equal to the initial particle spacing, the force on the wedge

is oscillatory for the beginning of the simulation (see Kajtar and Monaghan, 2009).

It is found that in order to reduce the oscillation in force history, there is a need to

give a high viscosity to the simulation, e.g. changing the value of β-limiter to be 0

for the whole simulation, which causes almost complete dissipation of waves in the

results.

Figures (6.10) and (6.11) demonstrate the surface pro�les for both implementations

of particle boundary force and repulsive boundary condition at two sample times.

The particle boundary force seems to produce a phase change in the surface pro�le.

This discrepancy is probably due to the unphysical and exaggerated force exerted

by the wedge particles on the �uid.
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a)

b)

Figure 6.4: Pressure for 2-D bobbing wedge with the central period of 0.66s at a)
t=2s, b) t=3.5s using repulsive boundary condition, 4 = 0.02m
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Figure 6.5: Force comparison between the SPH results and experimental data for
2-D wedge using repulsive boundary condition, 4 = 0.02m

Figure 6.6: Force comparison between the SPH results and experimental data for
2-D wedge using repulsive boundary condition, 4 = 0.01m
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a)

b)

Figure 6.7: Pressure for 2-D bobbing wedge with the central period of 0.66s at a)
t=2s, b) t=3.5s using particle boundary force, 4 = 0.02m
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Figure 6.8: Force comparison between the SPH results and experimental data for
2-D wedge using particle boundary force of Monaghan & Kajtar (2009) , 4 = 0.02m

Figure 6.9: Force comparison between the SPH results and experimental data for
2-D wedge using particle boundary force of Monaghan & Kajtar (2009) , 4 = 0.01m
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Figure 6.10: Surface pro�le comparisons using particle boundary force and repulsive
boundary condition at t=2s

Figure 6.11: Surface pro�le comparisons using particle boundary force and repulsive
boundary condition at t=3.5s
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Figure 6.12: Force comparison between the SPH results and experimental data for
3-D cone using coarse resolution (4 = 0.04m), where κ = 9 and A = 0.05m

6.5 3-D bobbing cone with uniform particle mass

distribution

The motion of a 3-D heaving cone is investigated here. The numerical simulation is

conducted in a tank 4m in width and length, and 1m in depth. Waves generated by

a bobbing cone, which is initially set to have zero velocity, at the centre of the tank

propagate towards the boundaries are absorbed by the sponge layer of length 0.8m at

the boundaries similar to the 2-D case. The cone draught is 0.15m and is equal to the

waterline radius. Figure (6.12) shows the force comparison between the SPH results

and experimental data where 4 = 0.04m and with 270,000 particles. The results are

in a good agreement in terms of the phase, however, there is an overestimation for

peaks and underestimation for troughs. The overestimation of peaks can be solved

using a �ner resolution, 4 = 0.02m with 2,080,000 particles but the troughs are

still underestimated (Figure 6.13). This is possibly due to the compressibility of air

which is not taken into account for our mono-phase simulations in addition to the

problems with the boundary conditions. Moreover, numerical viscosity is likely to

cause excessive damping in the SPH simulations. The simulations of the heaving

cone with coarse (4 = 0.04m ) and �ne resolutions (4 = 0.02m ) take 1.5 days and

12 days on 16 processors, respectively.
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Figure 6.13: Force comparison between the SPH results and experimental data for
3-D cone using coarse resolution (4 = 0.02m), where κ = 9 and A = 0.05m

6.6 Variable particle mass distribution

To reduce the particle number and consequently the CPU cost, the use of pre-de�ned

variable mass distribution was suggested in Chapter 5 where re�ned particles are

used in a selected area (i.e. here around the cone). A particle with a mass of

m is replaced typically with eight lighter ones with a mass m/8. In the original

proposal for variable particle mass in Chapter 5, the value of the smoothing length

was suggested to be constant in order to avoid the complexities of using variable

smoothing length and particle re�nement. However, for the 3-D simulations, it was

found that, for example, using a constant smoothing length of h = 1.34 may lead to

almost 400 interactions within the kernel support for the area where re�ned particles

are used, which increases the CPU cost dramatically. Here, we use a di�erent kernel

size for di�erent areas as

W̃ij =
1

2
(Wi +Wj) (6.3)

where Wi = W (rij, hi) and Wj = W (rij, hj) (Monaghan, 1992), where the normali-

sation factor in the cubic kernel function is also chosen according to the kernel size.

Similar to the discussion in the previous chapter, �rst, it is essential to assess the
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Figure 6.14: Replacing a particle with a mass m with four lighter ones with a mass
m/ 8

prediction of still-water conditions in 2-D. Figures (6.15) to (6.17) display di�erent

plots of particles in still water, initially and after 10s, where the variable mass

distribution of particles is used for di�erent mass ratios in two dimensions.

Figure (6.15) shows the particle distribution where a mass ratio of 1:4 is used initially

and after 10s. It is clear that the particles stay stable and symmetric to the vertical

axis without any clumping and mixing. There is a movement for the smaller particles

located at the interface of the regions where the smoothing length is varying.

The mass ratio of 1:16 is also employed, shown in Figure (6.16). In comparison with

what shown for the same problem and constant smoothing length in the previous

chapter, there is no clumping between the particles because the kernel size is not

constant here. However, since the smoothing length is changed rapidly from h to h/4

at the interface of the lighter and heavier particles, there is a movement of particles

at the interface.

Finally, employing the mass ratio of 1:4:16 with three di�erent smoothing length

(h, h/2, h/4), where the domain of interest is divided into three regions, is shown

in Figure (6.17) for two sample times where the particle stay stable without any

clumping and mixing. Moreover, gradual diminishing of the kernel size from one

region to another causes the particle moving at the interfaces of regions similar to

the previous problems.

As the result, employing variable particle mass with variable smoothing length is

successfully applied to the still water for the mass ratio of 1:4, 1:16 and 1:4:16 while

similar results are found for the mass ratio of 1:3 and 1:4:9. The CPU costs for

the above problems, in comparison with what discussed in the previous chapter for

constant smoothing length, is cheaper because the number of particle interactions

in the kernels with di�erent sizes are smaller than the kernels with uniform size.
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a)

b)

Figure 6.15: Particle distribution for still water problem for the mass ratio of 1:4 at
(a) t=0 and (b) t=10s with the initial particle distance of 0.02m

a)

b)

Figure 6.16: Particle distribution for still water problem for the mass ratio of 1:16
at (a) t=0 and (b) t=10s with the initial particle distance of 0.05m
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a)

b)

Figure 6.17: Particle distribution for still water problem for the mass ratio of 1:4:16
at (a) t=0 and (b) t=10s with the initial particle distance of 0.05m

6.7 3-D bobbing cone with variable particle mass

distribution

Figure (6.18) shows a vertical slice of the problem at t=0 where a particle with mass

m is replaced with eight smaller ones of mass m/8 an intermediate distance away

from the cone and twenty seven lighter ones with the mass m/27 close to the cone

as three nested regions. The area of lighter particles is chosen according the shape

of the cone.

First, it is important to study the cone in still-water conditions before any investi-

gation of dynamic problems. We choose the same numerical domain as the previous

section but without the movement of the cone. Figure (6.19) demonstrates the vari-

ation of dimensionless vertical force on the cone minus the exact buoyancy force with

time in still water using the variable mass distribution of particles. It is shown that

the value of the vertical force for the �rst second is varying as particles reorganise

themselves around the body.

Figure (6.20) shows a plot of the particles using mass ratio of 1:8:27 in the compu-
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Figure 6.18: Replacing a particle with a mass m with lighter ones with masses m/8
and m/27 for heaving cone at t=0

Figure 6.19: SPH Force on the cone in still water using variable mass distribution
of particles (4 = 0.04m)
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Figure 6.20: Pressure distributions for a heaving cone using the mass ratio of 1:8:27

Figure 6.21: Force comparison between the SPH results and experimental data for
3-D cone using the mass ration of 1:8 (2 nested regions), where κ = 9 and A = 0.05m
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Figure 6.22: Force comparison between the SPH results and experimental data for 3-
D cone using the mass ration of 1:8:27 (3 nested regions), where κ = 9 and A = 0.05m

Figure 6.23: Force comparison between the SPH results, experimental data and �nite
volume data for 3-D cone using the mass ration of 1:8:27 (3 nested regions), where
κ = 9 and A = 0.05m
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Figure 6.24: Comparison of the relative vertical motion between the SPH results
and experimental data using the mass ratio of 1:8:27 (3 nested regions), where κ = 9
and A = 0.05m

tational domain where the hydrostatic pressure distribution is evident.

Figure (6.21) and (6.22) show the comparisons of experimental data for a moving

cone with the SPH result using the mass ratio of 1:8 and 1:8:27, respectively. The

results are in a good agreement with the experimental data in terms of phase. It

can also reproduce the experimental data in the peaks, however, similar to uniform

mass distribution explained in the previous section, the SPH results underestimates

the force due to the same reasons mentioned in the previous section. The problem

with a sharp edge is well known in hydrodynamics where similar behaviour (Figure

6.23) is found for the �nite volume code, although less marked (Westphalen et al.,

2010).

The relative vertical motion can be de�ned as the free-surface elevation minus the

vertical displacement of the cone. The relative vertical motion can be normalised by

dividing by the largest excursion from the still water level, A. Figure (6.24) displays

the relative vertical motion comparison between the SPH result and experimental

data using the mass ratio of 1:8:27, which is in satisfactory agreement. There is a

small discrepancy for the troughs which may be due to the resolution. It is shown in

Figure (6.25) that the SPH result produce a better agreement with the experiment

in comparison with a FV code (Westphalen et al, 2010).
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Figure 6.25: Comparison of the relative vertical motion between the SPH results,
experimental data and �nite volume data using the mass ratio of 1:8:27 (3 nested
regions), where κ = 9 and A = 0.05m

Figures (6.26) and (6.27) show the force and surface elevation comparison of SPH

and experimental data of Drake et al. (2009) where κ = 7 (Figures 6.26) and κ = 3

(Figures 6.27). It is shown that since the velocity and the frequency of the cone when

κ = 3 is smaller than other two cases, consequently the motion is slower, the force

and surface elevation are in very good agreement, even for the troughs. Moreover, it

is found that using κ = 7 and κ = 9 would lead to a separation of �uid particles from

the body particles when the body moves up (troughs in the force pro�le), however,

since the motion is slower, the separation does not happen when κ = 3 and hence

the troughs are well estimated.

Table (6.1) demonstrates the comparison of CPU costs for di�erent particle resolu-

tions using 16 processors. It is shown that using the nested resolution (mass ratio of

1:8:27) would save the CPU cost to obtain the same result. Therefore, the scheme

o�ers a computational advantage and is hence a more e�cient technique to model

the wave propagation from the cone.
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a)

b)

Figure 6.26: a) Force b) surface elevation comparison between the SPH results and
experimental data for 3-D cone using the mass ration of 1:8:27 (3 nested regions),
where κ = 7 and A = 0.05m
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a)

b)

Figure 6.27: a) Force b) surface elevation comparison between the SPH results and
experimental data for 3-D cone using the mass ration of 1:8:27 (3 nested regions),
where κ = 3 and A = 0.05m
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Numerical
Model

Uniform
coarse

distribution
of particles

(4 = 0.04m)

Uniform
�ne

distribution
of particles

(4 = 0.02m)

Variable mass,
ratio of 1:8

(4finest = 0.02m)

Variable mass,
ratio of 1:8:27

(4finest = 0.013m)

Number
of

Particles
272,000 2,100,000 283,000 315,000

CPU cost 1.5 days 12 days 2 days 4 days

Table 6.1: Comparison of using di�erent particle resolutions on 16 processors for the
simulation of the 3-D cone

6.8 Summary

Surface waves generated by a 2-D wedge and 3-D cone moving as a Gaussian wave

packet have been investigated using the SPH method, making comparison with the

experimental data. In 2-D the results were in a good agreement with the experi-

mental data in terms of phase. However, the repulsive boundary condition seems

to work better and gives better force prediction in terms of magnitude in compar-

ison with the boundary particle force method. For the 3-D cone, the results for

the coarse resolution were qualitatively satisfactory. However, in order to improve

accuracy, a large increase in the number of particles would be necessary, which in-

creases the CPU cost markedly. In order to reduce computer time a variable particle

mass distribution was tested with �ne resolution near the body and coarser reso-

lutions further away. Variable particle mass distribution with variable kernel size

was �rst successfully investigated for 2-D still water problems. For 3-D problems

two and three level resolutions were tested. It was shown that using such variable

mass can be successfully implemented in the 3-D problem improving accuracy with

much lower computational costs than with particles of uniform mass. Moreover, the

agreement between the SPH results and experimental data was shown for the 3-D

cone using di�erent particle mass, where for a lower frequency the comparison is in

very good agreement whereas for a higher frequency there is a discrepancy for the

troughs which is due to the separation of water particles from the bottom edge of

the cone in our mono-phase simulation.
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Chapter 7

Manchester Bobber in Focused-wave

group

7.1 Introduction

The response of Manchester Bobber wave energy device in extreme waves, based on

NewWave theory of Taylor and Williams (2004), is presented in this chapter using

the SPH method with uniform and variable particle mass. The concept of NewWave

focusing is to generate several waves of di�erent amplitudes and periods which com-

bine to a localised extreme wave, with the maximum possible crest elevation, focused

at a speci�c time and location. The motion of a single heaving device is simulated

with one degree of freedom.

7.2 Experimental data

The physical tests were performed in the wavetank of Joule Centre, the University of

Manchester by Stallard et al. (2009). The tank is 18.5m long, 5m wide with a water

depth of 0.5m. The waves are generated using a piston type paddle and absorbed by

a curved surface piercing beach at the far end wall. The device is placed 3.5m from

the paddles which are located in a water depth of almost 4m. Figure (7.1) shows

the physical tank with four �oats during an experiment.
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Figure 7.1: Physical tank with four �oats in extreme waves

Figure 7.2: A single pulley-supported �oat at mid-draft with key dimensions
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Figure 7.3: Mechanical system of a single �oat experiment

A pulley-supported �oat at mid-draft is shown in Figure (7.2) indicating key dimen-

sions.

7.3 Numerical setup

A schematic arrangement of the system can be seen in Figure (7.3) where mf and

mc are the masses of the �oat and the counter weight, respectively. The horizontal

displacement of the �oat is restricted due to the vertical cables. The whole system

is attached to the superstructure and held by weights at their ends. In the physical

experiment the displacements are deduced from the angular displacement of the

pulley, σp (see Figure 7.2). During all tests no power was taken o� the system and

the friction in the pulley was compensated to be negligible. The cables are assumed

to be sti�, inextensible and always under tension.

First, it is necessary to know the relationship between the two accelerated bodies,

�oat and counter weight where the unknowns are the tension forces T1 and T2, where
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Tt = Tt1 = Tt2, and the acceleration of the system, z̈. The system equation can be

written as

z̈1 =
(mc −mf ) g + Fb

mc +mf

, (7.1)

Tt = −mc
(mc −mf ) g + Fb

mc +mf

+mcg, (7.2)

where Fb is calculated from the force exerted by the �uid particles on the body

particles (Monaghan and Kos, 1999).

Here, a focused wave group based upon the NewWave concept of Tromans et al.

(1991) and Taylor & Williams (2004) is used to de�ne the paddle motion. A focused

wave group contains a range of amplitudes and frequencies which are designed to

come into phase at a speci�c time and location (Hunt-Raby et al., 2010), which

interact and constructively interfere to build up a localised extreme wave, larger

than any individual wave created at the paddle. Therefore, the focused wave group

has distinct properties governed by input amplitude, focus location, focus time,

phase, etc.

The surface elevation η of an irregular wave is de�ned by the sum of harmonics

η =
∞∑
n=1

an cos (knx− σnt+ φn) , (7.3)

where an is the amplitude of the nth wave component and kn, σn, φn are its associated

wave number, frequency and phase. The shape of NewWave group can be calculated

from any sea spectrum by de�ning the amplitude an for each wave component (Hunt-

Raby et al., 2010).

an = AN
Sn(σ)4σn∑
n

Sn(σ)4σn
, (7.4)

where Sn(σ) is the power spectrum, 4σn is the frequency step, AN is the maxi-

mum amplitude here de�ning from the experiments. The Bretschneider spectrum

(Bretschneider, 1968) is applied for our simulation. The frequency range of 0.5σp <

σ < 3σp is divided into 50 components, N, where σp is the frequency at the spectral

peak.
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Based on Dean and Dalrymple (2000), the nth component of piston stroke sn is given

by

sn
an

=
sinh (2knd) + 2knd

2 (cosh (2knd)− 1)
, (7.5)

where d is still water depth . The piston position and velocity are thus given by

Xpaddle =
∞∑
n=1

− sn sin (−σnt+ φn) , (7.6)

Upaddle =
∞∑
n=1

snσn cos (−σnt+ φn) , (7.7)

respectively.

Here, the SPH-ALE formulation (Vila, 1999) is used along with the cubic kernel

function (Monaghan, 1992) , symplectic time-stepping method (Leimkuhler et al.,

1997 and Monaghan, 2005) and repulsive boundary conditions (Monaghan and Kos,

1999 and Rogers et al., 2008). For more information readers are referred to Chapter

3.

The numerical simulation is investigated in a tank with a length 7m, height 0.5m

and width 2m. Focused waves are generated by a motion of paddle according to the

NewWave theory of previous section and absorbed by a the sponge layer of length

1.5m at the end of the tank. The �oat of mass mf = 1.58kg is located at 3.5m from

the paddle where all the waves would come to a focus at this point. The maximum

amplitude comes to the focus at t=4.6s. The draft (the distance form the �oat

bottom to mean water level) and the peak frequency are chosen to be 85mm and

0.688Hz, respectively. For this case a counter mass of mc = 0.4kg is employed in the

�oat dynamics.
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7.4 Results for the Manchester Bobber in focused

waves

7.4.1 Manchester Bobber in waves using uniform particle mass

Figure (7.4) displays the particle distributions for waves on a single �oat at two

sample times according to the pressure, where for a better view the wall particles

are removed. In Figure (7.4.b) focused waves are generated by the paddle motion

pass through the device location and are absorbed by the sponge layer at the end

of the tank. Figure (7.5) shows a slice of the pressure distribution for the particles

with velocity vectors at a) t=3.5s, b) t=4.6s and c) t=5.2s where the motion of the

device is clearly altered by the wave propagation. The device experiences the largest

wave amplitude at b) t=4.6s (Figure 7.5.b). All the device dynamics are solved with

one degree of freedom where the device motion is limited in the vertical direction.

Figures (7.6) and (7.7) represent the comparison of SPH results and experimental

data for the device response using uniform particle mass. The maximum wave ampli-

tude produces the second peak in the device-response pro�le at t=4.6s or t/Tp=3.2.

The results are in agreement in terms of phase and magnitude. However, the SPH

result for the coarse simulations seems to be oscillatory because the number of �uid

particles interacting with the device is small (see Figure 7.5) whereas for the �ner

resolution the response is considerably smoother. Moreover, according to Figures

(7.5.a) and (7.5.c), there are particle separations from the object which would cause

the discrepancy in the troughs in Figures (7.6) and (7.7). In order to achieve a

smoothed pro�le of device response, the number of �uid particles around the device

has to be considerably more, which is expensive for the SPH simulations. The �rst

and second peaks are reproduced by the SPH results, however, SPH underestimates

the third peak, where the reason can be due to the following: First, the experi-

ment was conducted with six degrees of freedom in 3-D whereas here the results are

achieved according to the motion of the �oat in the vertical direction (one degree of

freedom). Second, numerical viscosity is likely to cause excessive damping as for the

cone. Similar results to the SPH for the third peak have been achieved for the third

peak using a �nite volume code (Westphalen et al., 2010).
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a)

b)

Figure 7.4: Focused waves on a single �oat at a) t=3.5s, b) t=4.6s
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a)

b)

c)

Figure 7.5: A slice of particles with velocity vectors for focused waves on a single
�oat at a) t=3.5s, b) t=4.6s, c) t=5.2s. Note velocity vectors are scaled as 0.3 of
the original value
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Figure 7.6: Comparison of SPH result and experimental data for the device response
using uniform particle mass, (4 = 0.04m)

Figure 7.7: Comparison of SPH result and experimental data for the device response
using uniform particle mass, (4 = 0.02m)
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Figure 7.8: Replacing a particle with a mass m with lighter ones with masses m/8
and m/27 for Bobber at t=0

7.4.2 Manchester Bobber in waves using variable particle mass

Figure (7.8) shows a vertical slice of the problem at t=0 where a particle with mass

m is replaced with eight smaller ones of mass m/8 an intermediate distance away

from the Bobber and twenty seven lighter ones with the mass m/27 close to the

Bobber as three nested regions. The area of lighter particles is close to the shape of

the Bobber. Figures (7.9) shows the �oat response in focused waves for a mass ratio

of 1:8 with two nested regions coloured according to the pressure of particles, where

lighter particles are pre-located around the �oat. It is clearly shown that the waves

pass through the nested regions without any problems.

Figure (7.10) displays the particle pressure for a slice of problem at t=4.6s, the time

that the highest wave focused on the Bobber, using variable particle mass with mass

ratio of 1:8:27. From this �gure it is clear that particles travel on the �oat whereas

this was not shown in Figure(7.5) with a uniform coarse distribution. Moreover, the

particle velocity vectors are shown in Figure (7.11) for the mass ratio of 1:8:27 at

a) t=3.5s, b) t=4.6s, c)t=5.2s (Note that the slice width (0.02m) includes multiple

particle into the plane). The �gure shows the separation of particles from the bottom

of the �oat which produces a discrepancy in the pro�le of �oat response shown in

Figures (7.12) and (7.13) .

Figures (7.12) and (7.13) display the comparison of SPH results and experimental
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a)

b)

Figure 7.9: Focused waves on a single �oat at a) t=3.5s, b) t=4.6s mass ratio of 1:8
with two nested regions, (4finest = 0.02m)
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Figure 7.10: A slice of particles for focused waves on a single �oat at t=4.6s using
variable particle mass with mass ratio of 1:8:27, (4finest = 0.013m)

Numerical
Model

Uniform
coarse

distribution
of particles

(4 = 0.04m)

Uniform
�ne

distribution
of particles

(4 = 0.02m)

Variable mass,
ratio of 1:8

(4finest = 0.02m)

Variable mass,
ratio of 1:8:27

(4finest = 0.013m)

Number
of

Particles
118,000 918,000 139,000 185,000

CPU cost 1 day 7 days 1.5 days 4 days

Table 7.1: Comparison of using di�erent particle resolutions on 16 processors for the
simulation of the Bobber in focused waves
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a)

b)

c)

Figure 7.11: A slice of particles with velocity vectors for focused waves on a single
�oat at a) t=3.5s, b) t=4.6s, c) t=5.2s using variable particle mass with mass ratio
of 1:8:27, (4finest = 0.013m). Note velocity vectors are scaled as 0.2 of the original
value
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Figure 7.12: Comparison of SPH result and experimental data for the device response
using mass ratio of 1:8 with two nested regions, (4finest = 0.02m)

Figure 7.13: Comparison of SPH result and experimental data for the device response
using mass ratio of 1:8:27 with three nested region, (4finest = 0.013m)
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data for the device response using mass ratios of 1:8 and 1:8:27, respectively. Similar

results to Figure (7.7) are obtained. As seen in the �gures, the third peak is still

underestimated due to the reasons explained in the previous section. Results with the

1:8:27 particle distribution are similar to 1:8 but with a slightly smoother response.

Table (7.1) demonstrates the comparison of CPU costs for di�erent particle resolu-

tions using 16 processors. It is clear that using variable mass enables large saving in

CPU cost to be made. Furthermore, comparing Figure (7.13) and (7.7), it is clear

that there is better agreement for the �rst two peaks and the �rst trough with a

�ner resolution in Figure (7.13) at a fraction of the computational cost, see Table

(7.1).

7.5 Summary

The response of a single Manchester Bobber �oat in extreme wave has been calcu-

lated in this chapter using uniform and variable particle mass in three dimensions.

The SPH results were in reasonable agreement with the experimental data of Stal-

lard et al. (2009) in terms of phase and magnitude. However, since only one degree

of freedom is taken into account for the SPH simulation, there is a discrepancy

especially for the third peak. It was also shown that using variable particle mass

improves accuracy and decreases CPU costs.
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Chapter 8

Conclusions and Recommendations

8.1 General conclusions

In this PhD thesis, state-of-the-art Smoothed Particle Hydrodynamics (SPH) was

used to present an investigation into surface waves interacting with or generated

by structures in two and three dimensions. The major advantage of using SPH

is that no special treatment of the free surface is required which is advantageous

for simulating highly non-linear �ows with possible wave breaking. Furthermore,

simplicity, robustness and relative accuracy are other advantages of using SPH for

complex problems such as surface waves interacting with structures. The open-

source code SPHysics (serial in 2-D and parallel in 3-D) was used and validated

for wave-body interactions using di�erent experimental data. The SPH method has

been found to be robust enough to simulate various wave-structure interactions.

One drawback of the SPH method is the large computational time associated with

the large number of particles desirable for good �ow de�nition, especially in captur-

ing entire three dimensional �ow �elds. Here, to compute the free-surface motion

e�ciently, variable mass distribution is employed around the cylinder where surface

waves are generated paying careful attention to avoid tensile instability with the

interpolating kernel function. This can be done by using particles of small mass and

small kernel support in regions where high de�nition is needed and particles of larger

mass elsewhere.
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8.2 Detailed Conclusions

8.2.1 Progressive waves in a 2-D tank

The standard SPH and SPH-Arbitrary-Lagrange Euler (SPH-ALE) formulations

were �rst used to study a plate moving horizontally in a 2-D channel where the

results were found to be in a good agreement with the ISPH data and analytical

solutions. However, SPH-ALE with a Riemann solver gives a better results in com-

parison with the standard SPH formulation which causes some discrepancy in the

horizontal velocity near the paddle.

Wave propagation in an intermediate depth and weakly compressible water tank has

been also investigated using the standard and SPH-ALE formulations, and di�er-

ent kernel functions, comparing with linear wave theory. This investigation showed

that using standard SPH equations would lead the waves to decay along the tank,

however, results for SPH-ALE formulation were successfully compared with the lin-

ear wave theory where waves propagate without dissipation. Moreover, the cubic

spline kernel was found to be the best choice for propagation of waves in a channel.

Therefore, the SPH-ALE formulation and cubic kernel were chosen to investigate

wave-body interactions.

8.2.2 Variable particle mass distributions

In order to reduce computer time a variable particle mass distribution is tested

with �ne resolution near the body and coarse resolution further away. In Chapter 5

variable particle mass was applied to progressive waves loading on a �xed cylinder

and waves generated by a heaving cylinder, while maintaining a uniform kernel

size, looking carefully at kernel instability and hydrostatic pressure in still water

conditions. However, in Chapter 6, it was found that for the 3-D simulations, using

a constant smoothing length would lead to a considerable number of interactions

in the kernel support for the area where re�ned particles are used, which increases

the CPU cost dramatically. Therefore, variable kernel sizes for di�erent areas were

tested for di�erent mass ratios for the 3-D problem improving accuracy with much

lower computational costs. Thus, the variable particle mass not only improves the

accuracy but also reduces the CPU costs.
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8.2.3 Surface waves interacting with a �xed cylinder and gen-

erated by a heaving cylinder

Two well-de�ned test cases, in two dimensions, of progressive waves interacting with

a �xed cylinder and waves generated by a heaving semi-immersed cylinder were

considered.

The SPH method was successfully used to predict wave propagation in a channel

applied to loading a partially submerged and �xed circular cylinder for various wave

amplitudes and axis depths. For wave loading on a half-submerged cylinder the

agreement with the experimental data of Dixon et al. (1979) for the root mean square

force is within 2%. For more submerged cases, the results show some discrepancy,

but this was also found with other modelling approaches. For the heaving cylinder,

SPH results for far �eld wave amplitude and cylinder force show good agreement

with the data of Yu and Ursell (1961) and linear wave theory for di�erent wave

periods and cylinder strokes. The results for variable mass around the cylinder also

showed good agreement for the force and surface pro�le with cheaper CPU costs.

8.2.4 Surface waves generated by a bobbing 2-D wedge and

3-D cone

Surface waves generated by a 2-D wedge and 3-D cone moving as a Gaussian wave

packet have been investigated using the SPH method and comparison was made with

the experimental data. In 2-D two forms of boundary conditions, repulsive boundary

conditions and particle boundary force, were studied and the results were in good

agreement with the experimental data in terms of phase. However, the repulsive

boundary condition seems to work better and gives better force prediction in terms

of magnitude in comparison with the boundary particle force method. For the 3-

D cone, the results were qualitatively satisfactory. Using di�erent particle mass

techniques with di�erent kernel sizes has been shown to work well, especially for

low frequencies, for the 3-D cone simulations improving accuracy with much lower

computational costs.
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8.2.5 Simulation of the �oating body of the Manchester Bob-

ber

The main objective of this PhD thesis was to study extreme waves loading on o�shore

wave energy devices. The �oating body of the Manchester Bobber is considered as

such a device which can be placed under extreme loading conditions. Here, it was

shown that the SPH method can be used in order to investigate a single Bobber

in focused waves, which is based on the NewWave theory of Taylor and Williams

(2004). The SPH simulations were shown, using uniform and variable particle mass,

for a single �oat with dynamics modelled in one degree of freedom. The results are

in good agreement with the experimental data of Stallard et al. (2009), however,

some di�erences in the magnitude of the device motion is observed.

8.2.6 Comparison of SPH results with Finite Volume

This work has been conducted as part of a joint project between the Universities of

Plymouth, Manchester, Oxford and Manchester Metropolitan University looking at

the suitability of di�erent Computational Fluid Dynamics (CFD) schemes to model

heaving wave energy devices and to understand their behaviour in real seas. Table

(8.1) demonstrates a summary of the comparisons between SPH results and the

Finite Volume (FV) scheme using Volume of Fluid (VoF) method for the di�erent

problems discussed in this thesis. For more information about FV results readers

are referred to Westphalen et al. (2009, 2010). In general SPH performs well, with

some discrepancies in the forces for troughs, but SPH is superior in determining the

free-surface location.

8.3 Limitation of validation/veri�cation

One of the main objectives of this PhD was to calculate the correct force on bodies

with di�erent shapes which can be evaluated by summing the force exerted on the

boundary particles for the entire body. Therefore, the correct force magnitude is

sensitive to the type of boundary conditions which are not yet solved properly. There

are some hints in the literature with advantages and drawbacks. For this work, the

repulsive boundary condition is found to be well suited for complex boundaries
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Numerical
modelling

SPH-ALE with
Riemann solver

Finite Volume (CFX)
with Volume of Fluid

(VoF)

Progressive
waves in 2-D

tank
Waves propagate along the

channel without any
dissipation

Waves decay in the tank

Waves
interacting with
�xed cylinder

Root mean square force is
within 2% of experimental
data for half submerged

cylinder, SPH
overestimates the fully

submerged case. The force
pro�le is noisy

CFX well estimates the
experiment for half

submerged cylinder and
overestimates the fully

submerged case. The force
pro�le is smoothed

Surface waves
generated by
3-D cone

Surface elevation and
Force is well estimated.
Troughs in force pro�le
are underestimated for

higher frequency

Surface elevation and
Force is well estimated for

lower frequency. For
higher frequency troughs

in force pro�le are
underestimated and
surface elevation is

underestimated with a
factor of two

Manchester
Bobber

For single �oat with new
shape and system with
one degree-of-freedom

results are in approximate
agreement with
experiment

For single �oat with
horizontal shape and
system with one

degree-of-freedom results
are in approximate
agreement with
experiment

Table 8.1: Comparison of SPH results with Finite Volume
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and particle interactions. However, for example for the heaving cone problem, the

author had some di�culties in choosing the right repulsive and depth functions due

to the complexities involved with the shape of the object. On the other hand, since

the simulations are single phase (i.e. only water particles) the compressibility of

air around the cylinder is not taken into account which could a�ect the results,

especially for the troughs in force pro�les.

The numerical results for small waves, e.g. the 2-D heaving cylinder, are found to

be very sensitive to the values of the β-limiter in the MUSCL scheme. This can be

improved by using other limiters e.g. van Leer limiter (Toro, 2001).

One of the drawbacks of the SPH method involves expensive CPU costs, especially

for simulating 3-D problems, in comparison with other numerical methods such as

�nite volume. Although previous SPH studies and the present work in this PhD

have recommended techniques to reduce the particle number but an expensive CPU

cost is still a disadvantage of the SPH method. Here, variable particle mass was

suggested in order to reduce the CPU costs, however, the use of variable particle

mass is limited to the problems without sloshing and breaking, e.g. the dam break

problem, where there is no mixing between particles with di�erent masses.

8.4 Recommendations for future research

Alternative boundary conditions

There are several techniques available in the literature for simulating boundaries in

the SPH method with their own advantages and drawbacks. For example, techniques

such as the ghost particles method (Colagrossi and Landrini, 2003) become unwieldy

for complex geometries, the use of stationary water particles (Shao and Lo, 2003) to

represent the solid body can create very large unphysical boundary layers and the

particle boundary force method (Monaghan and Kajtar, 2009) is only well suited

for the simulations with high viscosity. Here, using repulsive forces (Monaghan

and Kos, 1999 and Rogers et al., 2008) was found to be easy for implementing the

complex boundaries and particle feedback interactions in comparison with the ghost

particles method and stationary water particles. However, the use of normals is not

satisfactory for problems where the normals should intersect. There are some new
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techniques presented recently, such as the zero-consistent 2-D boundary condition

(Vacondio et al., 2009), an improved ghost particles method (Colagrossi et al., 2009)

and semi-analytical boundary conditions (Ferrand et al., 2010), Also, the enhanced

dynamic boundary conditions of SPHysics V.2.0 based on the correction of Hughes

and Graham (2010) could be tried as these were not available until the end of

this work; the approach would probably improve the problems with the repulsive

boundary conditions.

Simulating multiple �oating bodies of the Manchester Bobber

A simulation of the �oat of the Manchester Bobber in a focused wave group has

been shown with one degree of freedom. It is recommended that arrays of �oating

objects in linear and non-linear waves should be simulated. It is also recommended

that the full dynamics of the problem (with six degrees of freedom) should be solved

in order to simulate the actual movement of the Bobber. For future work, it is

recommended that the results for the Manchester Bobber should be compared with

the incompressible SPH code (e.g. Incompressible SPHysics) and standard SPH

(Spartacus 3-D). There is still an open question to identify the fastest response time

in an SPH �uid related to speed of sound i.e. compressibility.

Using Graphics Processing Units (GPUs)

In order to obtain more accurate results using SPH, �ner resolution is required which

needs an extremely large number of particles, which is di�cult and time consuming.

As used in this thesis, using parallel codes are an option for dealing with a large

number of particles but with expensive maintenance costs and complexities (e.g

conditioning costs, etc.). It is highly recommended to use Graphics Processing Units

(GPUs), which are highly e�cient in terms of computational and maintenance costs,

especially for the problems which need a huge number of particles. Modelling SPH

problems with GPUs has been proven to be a stable tool and accurate enough to

deal with wave interactions with structures (Crespo et al., 2010), however, the issue

of computational precision of GPUs has not yet been addressed due to hardware

limitations.
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Alternatives for pre-processing

One of the advantages of the SPH method, in comparison with the mesh-based meth-

ods, is that there is no need to construct mesh. However, at the moment, the particle

initialisation is solved by a Fortran code, which can be used for creating a limited

set of geometries and objects. Particle initialisation is therefore can be time consum-

ing for 3-D problems which need a large number of particles. Recently, some studies

have been conducted (See Mayrhofer et al., 2010 and Crespo et al., 2010) to combine

the Fortran �les with CAD �les which allows the creation of arbitrary set-up and

consequently reduces the CPU cost involved with the particle initialisation. This can

also improve the di�culties with the introducing the neighbourhoods for boundary

particles in order to calculate normals for the repulsive boundary conditions.
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Appendix A

Detecting free-surface particles

Several attempts have been proposed for detecting the free-surface particles. For

instance, Marrone et al. (2009) presented a fast algorithm for free-surface particle

detection for 2-D and 3-D simulations. This algorithm is based on two steps, �rst

particles next to free surface are detected using the properties of the renormalisation

matrix and second the particles located at the free surface and their local normals

are calculated. This algorithm cannot identify bubbles with a diameter greater than

2h.

Here, based on Gómez-Gesteira and Dalrymple (2004) approach, we use the idea of

a vertically descending density probe line to detect any particles at the free surface

on a regular grid using the kernel de�nition by using a threshold for density

ρ =
∑
j

mjWij. (A.1)

where the surface position, ηsurface, is de�ned when the estimated density, ρestimate,

�rst exceeds 1
2
ρ with a step size of 0.01h. Obviously, these positions are not neces-

sarily the position of single particles.
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Figure A.1: Surface detection using a vertically descending density probe, free sur-
face de�ned at ρestimate = 1

2
ρwater
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