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Introduction

Goal of this lecture is to show that SPH is a particle approximation
of special (hydrodynamic) solutions of a kinetic equation (the
Vlasov eq.n) which is a mean-field equation.
These considerations suggest approaches to show the convergence
of the SPH method to the solutions of the compressible Euler
eq.ns.
Similar arguments can be applied also to the Vortex method for
the 2-D incompressible Euler flow.
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The Vlasov equation

Physical system: A large, weakly interacting particle systems. f (x , v , t)
is either the fraction of particles in the cell of the phase space around
(x , v) of size dxdv , or the probability density of finding a given particle in
(x , v) ∈ Rd × Rd .

Vlasov equation:

(∂t + v · ∇x + F · ∇v )f (x , v , t) = 0.

Similar to the Liouville equation for a single particle in a force field
F = F (x , t). It is solved by the formula

f (x , v , t) = f0(Ψ−t(x , v))

where f0 is the initial datum. Ψt(x , v) = (x(t), v(t)) is the flow solution
to {

ẋ(t) = v(t)

v̇(t) = F (x(t), t)

with initial datum Ψ0(x , v) = (x , v). Also, for all smooth g ,:∫
dxdvf (x , v ; t)g(x , v) =

∫
dxdvf0(x , v)g(Ψt(x , v))
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The Vlasov equation

F is not known a priori, but depends on the solution itself, via the
selfconsistent formula

F (x , t) =

∫
dxK (x − y)ρ(y , t)dy

where

ρ(x , t) =

∫
dvf (x , v , t)

is the spatial density and K : Rd → Rd is a given kernel.
Nonlinear equation because the vector field F depends on the
solution f . K arises from a potential, namely

K (x) = −∇ϕ(x).

If ϕ is assumed to be smooth. A unique solution to the initial
value problem. If ϕ = 1/|x | Vlasov-Poisson.
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Particle systems

Consider the N particle evolution (real physical system)
ẋi (t) = vi (t),

v̇i (t) = − 1

N

∑
j=1,N
j 6=i

∇ϕ(xi (t)− xj(t))

xi (0) = xi , vi (0) = vi . i = 1 . . .N

Weak interaction, scaled force.

Empirical measure defined on the
one-particle phase space:

µN(dx , dv ; t) =
1

N

N∑
i=1

δ(x − xi (t))δ(v − vi (t))dxdv .
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Convergence

Result: If, for any smooth function g

lim
N→∞

〈µN(0), g〉 = 〈f0, g〉

for a given probability density f0, i.e.

1

N

N∑
i=1

g(xi (0), vi (0))→
∫

dxdvg(x , v)f0(x , v)

then
lim

N→∞
〈µN(t), g〉 = 〈f (t), g〉 = 0

1

N

N∑
i=1

g(xi (t), vi (t))→
∫

dxdvg(x , v)f (x , v ; t)

where f (t) solves Vlasov with initial datum f0. A sort of validation
of the Vlasov eq.n.
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Convergence

Actually µN(t) is a solution of the Vlasov equation:

d

dt
〈µN(t), g〉 = 〈µN(t), (v · ∇x)g〉+ 〈µN(t), (F · ∇v )g〉

F (x , t) = K ∗ µN(x , t) = − 1

N

∑
∇xϕ(x − xi (t))
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Isentropic Euler flow

Lagrangean form for the special pressure law p = 1
2ρ

2.
Φ̈t(x) = −∇ρ(Φt(x), t)∫
ρ(x , t)g(x) =

∫
ρ0(x)g(Φt(x))

Φ0(x) = x Φ̇0(x) = u0(x),

where g is a smooth function and Φt : Rd × R+ → Rd is the
solution flow.
The Eulerian velocity is recovered by

u(Φt(x), t) = Φ̇t(x).

Mario Pulvirenti Particles for fluids: SPH methods as a mean-field flow



Isentropic Euler flow

Next we regularize
Φ̈t(x) = −∇(δε ∗ ρ)(Φt(x), t)∫
ρ(x , t)g(x) =

∫
ρ0(x)g(Φt(x))

Φ0(x) = x Φ̇0(x) = u0(x),

The form factor δε is a positive, smooth approximation of the δ
function. Here ε is a small positive parameter such that

δε → δ

weakly, as ε→ 0.

〈δε, g〉 → 〈δ, g〉 = g(0)
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Isentropic Euler flow

The connection with the Vlasov equation. Set

F (x , t) = −∇
∫
δε(x − y)ρ(y , t)dy .

The initial (hydrodynamical) datum

f0(x , v)dxdv = ρ0(x)δ(v − u(x)).

Then, setting
(Φt(x), Φ̇t(x)) = Ψt(x , u(x)),

the time evolved measure f (x , v , t)dxdv satisfies∫
f (x , v , t)g(x , v)dxdv =

∫
f0(x , v)g(Ψt(x , v))dxdv

=

∫
dxdvρ0(x)δ(v − u(x))g(Ψt(x , v))

=

∫
dxdvρ0(x)g(Φt(x), Φ̇t(x))
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Isentropic Euler flow

In particular:∫
f (x , v , t)g(x)dxdv =

∫
ρ(x , t)g(x)dx =

∫
dxρ0(x)g(Φt(x)).

Namely Vlasov for hydro data is the regularized Euler
(Lagrangean).
The particle approximation is the SPH method.

Note that

f (x , v)dxdv = ρ(x , t)δ(v − u(x , t)),

where u(x , t) and ρ(x , t) satisfies Euler (Eulerian) only locally in
time.
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SPH

The SPH model in the present context is a N-particlle system
verifying 

ẋi (t) = vi (t),

v̇i (t) = − 1

N

∑
j=1,N
j 6=i

∇δε(xi (t)− xj(t))

xi (0) = xi , vi (0) = u0(xi ). i = 1 . . .N

and

µN(dx , t) =
N∑

i=1

δ(x − xi (t))dx .
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SPH

According to the results of Theorem 1 in Section 2, we have that

µN(dx , t)→ ρ(x , t)

weakly, as N →∞ for a fixed ε, where ρ is transported by the flow.

Mario Pulvirenti Particles for fluids: SPH methods as a mean-field flow



SPH

General case α 6= 0.
Φ̈t(x) = −ρα∇ρ(Φt(x), t)∫
ρ(x , t)g(x) =

∫
ρ0(x)g(Φt(x))

Φ0(x) = x Φ̇0(x) = u0(x),

Regularized version
Φ̈t(x) = −(δε ∗ ρ)α∇(δε ∗ ρ)(Φt(x), t)∫
ρ(x , t)g(x) =

∫
ρ0(x)g(Φt(x))

Φ0(x) = x Φ̇0(x) = u0(x),
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SPH

The SPH method can be suitably modified
ẋi (t) = vi (t),

v̇i (t) = − 1

N

∑
j=1,N
j 6=i

(
1

N

∑
k=1,N
k 6=i

∇δε(xi (t)− xk(t)))α∇δε(xi (t)− xj(t))

xi (0) = xi , vi (0) = u0(xi ). i = 1 . . .N

Mario Pulvirenti Particles for fluids: SPH methods as a mean-field flow



SPH

Results:
The method: L. Lucy (1977), J.J. Monaghan (1992).
The mean field limit for the Vlasov equation : R.L. Dobrushin
(1979)
Convergence for α = 0: K. Oelschliiger (1991), Di Lisio (1995)
For α 6= 0 Di Lisio, Grenier, P. (1998) .......
Removing the regularization δε → δ at level of Euler equation,
namely the stability of E. eq.n w.r.t. pressure regularization: Di
Lisio, Grenier, P. (1998) .
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The vortex model

The Euler equation in the plane for the vorticity
ω = ω(x , t) = ∂x1u2 − ∂x2u2 (wich is a scalar quantity in the present
context) :

(∂t + u · ∇)ω(x , t) = 0.

Here x = (x1, x2) ∈ R2, t ∈ R+ and u = u(x , t) ∈ R2. divu = 0, implies
that

u = ∇⊥ψ, ψ = −∆−1ω.

Explicitly:

u = K ∗ ω, K (x) = ∇⊥g(x) = − 1

2π

x⊥

|x |2
,

where

g(x) = − 1

2π
log |x |

is the fundamental solution for the Poisson equation in the plane.
Vlasov-like equation
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The vortex model

Particle model:
ẋi (t) =

1

N

∑
j=1,N
j 6=i

K (xi (t)− xj(t))

xi (0) = xi , i = 1 . . .N.

Smooth the singularity K → Kε and prove convergence. Remove
the singularity ε→ 0.
Huge literature.
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