Smoothed Particle Hydrodynamics

Or how I learnt to stop worrying and love Lagrangians

Daniel Price, Monash University, Melbourne, Australia Keynote @ SPHERIC VIII, June 4th-6th 2013, Trondheim, Norway

SPH starts here...

What is the density?

Not the SPH density estimate

The SPH density estimate

Resolution follows mass

 $\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{v}$

From density to hydrodynamics

$$L_{sph} = \sum_{j} m_{j} \left[\frac{1}{2} v_{j}^{2} - u_{j}(\rho_{j}, s_{j}) \right] \qquad \text{Lagrangian}$$

$$+ \frac{P}{\rho^{2}} d\rho \qquad \text{Ist law of thermodynamics}$$

$$+ \nabla \rho_{i} = \sum_{j} m_{j} \nabla W_{ij}(h) \qquad \text{density sum}$$

$$+ \frac{P}{\rho^{2}} d\rho \qquad \text{Lagrangian}$$

 $\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \frac{\partial L}{\partial \mathbf{v}} \end{pmatrix} - \frac{\partial L}{\partial \mathbf{r}} = 0 \qquad \text{Euler-Lagrange equations} \\ = & \text{equations} \\ \frac{\mathrm{d}\mathbf{v}_i}{\mathrm{d}t} = -\sum_j m_j \left(\frac{P_i}{\rho_i^2} + \frac{P_j}{\rho_j^2} \right) \nabla_i W_{ij}(h) \qquad \begin{pmatrix} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = -\frac{\nabla P}{\rho} \end{pmatrix}$

What this gives us: Advantages of SPH

- An exact solution to the continuity equation
- Resolution follows mass
- ZERO dissipation
- Advection done perfectly
- EXACT conservation of mass, momentum, angular momentum, energy and entropy
- A guaranteed minimum energy state

Zero dissipation - Example I.

Propagation of a circularly polarised Alfvén wave

Zero dissipation - example II: Advection of a current loop

first 25 crossings

1000 crossings (Rosswog & Price 2007)

Fig. 3. Gray-scale images of the magnetic pressure $(B_x^2 + B_y^2)$ at t = 2 for an advected field loop $(v_0 = \sqrt{5})$ using the \mathscr{E}_z^{α} (top left), (top right) and \mathscr{E}_z^{c} (bottom) CT algorithm.

Fig. 8. Magnetic field lines at t = 0 (left) and t = 2 (right) using the CTU + CT integration algorithm.

2 crossings (Gardiner & Stone 2005)

grid

SPH

Zero dissipation...

From density to hydrodynamics

$$L_{sph} = \sum_{j} m_{j} \left[\frac{1}{2} v_{j}^{2} - u_{j}(\rho_{j}, s_{j}) \right] \qquad \text{Lagrangian}$$

$$du = \frac{P}{\rho^{2}} d\rho \qquad \text{1st law of thermodynamics}}$$

$$Here we assume that density is differentiable and that the entropy does not change$$

$$\nabla \rho_{i} = \sum_{j} m_{j} \nabla W_{ij}(h) \qquad \text{density sum}$$

Zero dissipation...

Must treat EVERY discontinuity

Must treat discontinuities properly...

Agertz et al. 2007, Price 2008 and too many others

1.8

1.6

1.4

1.2

Viscosity only

Viscosity + conductivity

This issue has nothing to do with the instability itself It is related to the treatment of the contact discontinuity

dissipation terms need to be explicitly added

The key is a good switch

Figure 2. As Fig. 1, but for SPH with standard ($\alpha = 1$) or Morris & Monaghan (1997) artificial viscosity, as well as our new method (only every fifth particle is plotted). Also shown are the undamped wave (*solid*) and loweramplitude sinusoidals (*dashed*). Only with our method the wave propagates undamped, very much like SPH without any viscosity, as in Fig. 1.

6 Lee Cullen & Walter Dehnen

Figure 6. Steepening of a 1D sound wave: velocity and viscosity parameter vs. position for standard SPH, the M&M method, our new scheme, and Godunov particle hydrodynamics of first and second order (GPH, Cha & Whitworth 2003), each using 100 particles per wavelength. The solid curve in the top panel is the solution obtained with a high-resolution grid code.

Switch for artificial viscosity: Cullen & Dehnen (2010)

What this gives us: Advantages of SPH

- An exact solution to the continuity equation
- Resolution follows mass
- ZERO dissipation
- Advection done perfectly
- EXACT conservation of mass, momentum, angular momentum, energy and entropy
- A guaranteed minimum energy state

Exact conservation: Advantages

Orbits are orbits... even when they're not aligned with any symmetry axis.

Exact conservation: Disadvantages

Orszag-Tang Vortex in MHD (c.f. Price & Monaghan 2005, Rosswog & Price 2007, Price 2010)

What this gives us: Advantages of SPH

- An exact solution to the continuity equation
- Resolution follows mass
- ZERO dissipation
- Advection done perfectly
- EXACT conservation of mass, momentum, angular momentum, energy and entropy
- A guaranteed minimum energy state

The minimum energy state

The "grid" in SPH...

SPH gradients 101

$$A_{a} = \sum_{b} \frac{m_{b}}{\rho_{b}} A_{b} W_{ab}$$

$$\overrightarrow{\nabla A_{a}} = \sum_{b} \frac{m_{b}}{\rho_{b}} A_{b} \nabla W_{ab}$$

$$\nabla A_{a} = \sum_{b} \frac{m_{b}}{\rho_{b}} (A_{b} - A_{a}) \nabla W_{ab}$$

$$\chi_{\mu\nu} \nabla^{\mu} A_{a} = \sum_{b} m_{b} (A_{b} - A_{a}) \nabla W_{ab}$$

$$\chi_{\mu\nu} = \sum_{b} m_{b} (x^{\mu} - x^{\mu}) \nabla^{\nu} W_{ab}$$

$$\frac{\nabla A_{a}}{\rho_{a}} = -\sum_{b} m_{b} \left(\frac{A_{a}}{\rho_{a}^{2}} + \frac{A_{b}}{\rho_{b}^{2}}\right) \nabla W_{ab}$$

BAD

Exact constant

Exact linear

Huh?

What happens to a random particle arrangement?

$$\frac{\mathrm{d}\mathbf{v}_i}{\mathrm{d}t} = -\sum_j m_j \left(\frac{P_i}{\rho_i^2} + \frac{P_j}{\rho_j^2}\right) \nabla_i W_{ij}$$

SPH particles know how to stay regular

Why better gradients are a bad idea

Abel 2010, Price 2012

$$\frac{\mathrm{d}\mathbf{v}_i}{\mathrm{d}t} = \sum_j m_j \left(\frac{P_i - P_j}{\rho_j^2}\right) \nabla_i W_{ij}$$

Improving the gradient operator leads to WORSE results

Corollary: Better to use a worse but conservative gradient operator

Corollary: Need positive pressures

$$MHD$$

$$S_{ij} = \left(P + \frac{B^2}{2\mu_0}\right)\delta_{ij} - \frac{B_i B_j}{\mu_0}$$

This is known as the tensile instability in SPH: occurs when net stress is negative

Smoothed Particle Magnetohydrodynamics

Price & Monaghan 2004a,b,2005, Price 2012

$$\begin{split} L_{sph} &= \sum_{b} m_{b} \left[\frac{1}{2} v_{b}^{2} - u_{b}(\rho_{b}, s_{b}) - \frac{1}{2\mu_{0}} \frac{B_{b}^{2}}{\rho_{b}} \right] \\ &\int \delta L \mathrm{dt} = 0 \\ \delta \rho_{b} &= \sum m_{c} \left(\delta \mathbf{r}_{b} - \delta \mathbf{r}_{c} \right) \cdot \nabla_{b} W_{bc}, \\ \delta \left(\frac{\mathbf{B}_{b}}{\rho_{b}} \right) &= -\sum_{c}^{c} m_{c} (\delta \mathbf{r}_{b} - \delta \mathbf{r}_{c}) \frac{\mathbf{B}_{b}}{\rho_{b}^{2}} \cdot \nabla_{b} W_{bc} \\ \frac{dv_{a}^{i}}{dt} &= -\sum_{b} m_{b} \left[\left(\frac{S^{ij}}{\rho^{2}} \right)_{a} + \left(\frac{S^{ij}}{\rho^{2}} \right)_{b} \right] \nabla_{a}^{j} W_{ab}, \\ S_{ij} &= \left(P + \frac{B^{2}}{2\mu_{0}} \right) \delta_{ij} - \frac{B_{i}B_{j}}{\mu_{0}} \end{split}$$

Compromise approach gives stability

Børve, Omang & Trulsen (2001)

2D shock tube

Why you cannot use "more neighbours": The pairing instability

N_{neigh} should NOT be a free parameter!

i.e., cannot just increase the ratio of smoothing length to particle spacing with the Bspline kernels

pairing occurs for > 65 neighbours for the cubic spline in 3D

2D shock tube: M6 quintic

- use smoother M6 quintic kernel truncated at 3h instead of 2h (NOT the same as "more neighbours" with the cubic spline)
- Resolution length given by different kernels scales with standard deviation of the kernel (Dehnen & Aly 2012, Leroy & Violeau 2013)

Pairing + Wendland kernels Dehnen & Aly (2012)

- pairing depends on Fourier transform of the kernel
- Wendland Kernels: Fourier transform positive definite, hence no pairing, but are always biased
- B-splines: Fourier transform changes sign, pairing occurs at large neighbour number, but errors much smaller than Wendland for same number of neighbours

How to stop worrying and love Lagrangians

From density to hydrodynamics

Γ -1

$$L_{sph} = \sum_{j} m_{j} \left[\frac{1}{2} v_{j}^{2} - u_{j}(\rho_{j}, s_{j}) \right] \qquad \text{Lagrangian} \\ + \frac{P}{\rho^{2}} d\rho \qquad \text{Ist law of thermodynamics} \\ + \frac{P}{\rho^{2}} d\rho \qquad \text{Ist law of thermodynamics} \\ + \nabla \rho_{i} = \sum_{j} m_{j} \nabla W_{ij}(h) \qquad \text{density sum} \\ + \frac{P}{\rho^{2}} d\rho \qquad \text{Lagrangian} \\ + \frac{P}{\rho^{2}} d\rho \qquad$$

 $\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \frac{\partial L}{\partial \mathbf{v}} \end{pmatrix} - \frac{\partial L}{\partial \mathbf{r}} = 0 \qquad \text{Euler-Lagrange equations} \\ = & \qquad \text{equations} \\ \text{of motion!} \\ \frac{\mathrm{d}\mathbf{v}_i}{\mathrm{d}t} = -\sum_j m_j \left(\frac{P_i}{\rho_i^2} + \frac{P_j}{\rho_j^2} \right) \nabla_i W_{ij}(h) \qquad \begin{pmatrix} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = -\frac{\nabla P}{\rho} \\ \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = -\frac{\nabla P}{\rho} \end{pmatrix}$

Example I: Variable h

Springel & Hernquist 2002, Monaghan 2002, Price & Monaghan 2004b, 2007

$$\rho_{a} = \sum_{b} m_{b} W(\mathbf{r}_{a} - \mathbf{r}_{b}, h_{a}) \quad \text{* nonlinear equation for h, rho}$$

$$h_{a} = \eta \left(\frac{m_{a}}{\rho_{a}}\right)^{1/n_{dim}} \quad \text{* requires iterative solution} \quad \text{* can solve to arbitrary precision}$$

$$\frac{d\mathbf{v}_{a}}{dt} = -\sum_{b} m_{b} \left[\frac{P_{a}}{\Omega_{a}\rho_{a}^{2}}\nabla_{a}W_{ab}(h_{a}) + \frac{P_{b}}{\Omega_{b}\rho_{b}^{2}}\nabla_{a}W_{ab}(h_{b})\right]$$

$$\Omega_{a} = \left[1 - \frac{dh_{a}}{d\rho_{a}}\sum_{c} m_{c}\frac{\partial W_{ab}(h_{a})}{\partial h_{a}}\right]$$

Example II: Hyperbolic divergence cleaning

Dedner et al. 2002, Price & Monaghan 2005, Tricco & Price 2012

$$\left(\frac{\mathrm{d}\mathbf{B}}{\mathrm{d}t}\right)_{clean} = -\nabla\psi$$

$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = -c^2(\nabla \cdot \mathbf{B}) - \frac{\psi}{\tau}$$

these combine to give diffusive wave equation for propagation of divergence errors:

Divergence cleaning (not from Lagrangian)

7224

T.S. Tricco, D.J. Price/Journal of Computational Physics 231 (2012) 7214–7236

Example II: Divergence cleaning

Price & Monaghan 2005, Tricco & Price 2012

$$L_{sph} = \sum_{b} m_{b} \left[\frac{1}{2} v_{b}^{2} - u_{b}(\rho_{b}, s_{b}) - \frac{1}{2\mu_{0}} \frac{B_{b}^{2}}{\rho_{b}} - \frac{\psi_{b}^{2}}{2\mu_{0}\rho_{b}c_{b}^{2}} \right]$$

$$\int \delta L dt = 0$$
ADD PHYSICS
$$\left(\frac{d\mathbf{B}}{dt} \right)_{clean} = -\rho_{a} \sum_{b} m_{b} \left[\frac{\psi_{a}}{\rho_{a}^{2}\Omega_{a}} \nabla_{a} W_{ab}(h_{a}) + \frac{\psi_{b}}{\rho_{b}^{2}\Omega_{b}} \nabla_{a} W_{ab}(h_{b}) \right]$$

$$\frac{d\psi_{a}}{dt} = -\frac{c_{a}^{2}}{\Omega_{a}\rho_{a}} \sum_{b} m_{b} (\mathbf{B}_{b} - \mathbf{B}_{a}) \cdot \nabla_{a} W_{ab}(h_{a}) - \frac{\psi_{a}}{\tau_{a}}$$

Magnetic jets from young stars

Tricco & Price 2012, Price, Tricco & Bate 2012

this explodes without divergence cleaning!

Conclusions

- Lagrangian approach gives a powerful way of both deriving and understanding SPH formulations
- Both advantages and disadvantages of SPH can be understood in this context

Summary: Advantages and disadvantages of SPH

Advantages:

- Resolution follows mass
- Zero dissipation until explicitly added
- Exact and simultaneous conservation of all physical quantities is possible
- Intrinsic remeshing procedure
- Does not crash

Disadvantages:

- Resolution follows mass
- * Dissipation terms must be explicitly added to treat discontinuities
- Exact conservation means linear errors are worse
- Need to be careful with effects from particle remeshing
- Does not crash