
Multi-phase Modelling of Violent Hydrodynamics

Using Smoothed Particle Hydrodynamics (SPH) on

Graphics Processing Units (GPUs)

A thesis is submitted to The University of Manchester for the degree

of Doctor of Philosophy in the Faculty of Engineering and Physical

Sciences

2013

Athanasios Mokos

School of Mechanical, Aerospace and Civil Engineering

2

Contents

List of Figures .. 7

List of Tables ... 18

Abstract .. 19

Declaration ... 21

Copyright statement ... 22

Acknowledgements .. 23

Nomenclature and Glossary ... 24

1. Introduction .. 26

1.1. Numerical background .. 26

1.2. Meshless Lagrangian Methods and Smoothed Particle Hydrodynamics 27

1.3. Necessity for Multi-phase Modelling .. 28

1.4. Parallel Programming and Hardware Acceleration ... 30

1.5. Study objectives .. 31

1.6. Outline of the Thesis ... 31

2. Literature Review... 33

2.1. Introduction ... 33

2.2. Meshless and Lagrangian Methods ... 33

2.3. SPH for Fluid Dynamics ... 38

2.3.1. Classical SPH implementation ... 38

2.3.2. Boundary treatment .. 38

2.3.3. Numerical stability corrections .. 41

2.3.4. Weakly Compressible and Incompressible SPH .. 42

2.4. Multi-phase Modelling with SPH ... 43

2.5. Parallel Programming .. 48

2.5.1. Using High Performance Computing... 49

3

2.5.2. Using Graphics Processing Units for Hardware Acceleration 50

2.6. GPU Acceleration with SPH ... 51

2.6.1. Texture rendering ... 51

2.6.2. CUDA Programming Extension .. 53

2.7. Applications .. 57

2.7.1. General Application ... 57

2.7.2. Breaking Waves ... 57

2.7.3. Wave Impact and Overtopping .. 58

2.7.4. Industrial Applications Including Sloshing ... 60

2.8. Concluding Remarks ... 61

3. SPH Methodology .. 62

3.1. Introduction ... 62

3.2. General Principles ... 62

3.2.1. Interpolation ... 62

3.2.2. The Smoothing Kernel ... 65

3.2.3. The Navier-Stokes Equations .. 67

3.3. Additional models for free-surface flow ... 69

3.3.1. Equation of State .. 69

3.3.2. Density filtering ... 72

3.3.3. Viscous Term ... 72

3.3.4. Time integration ... 74

3.4. Model for the Simulation of interfacial Flows .. 77

3.4.1. Equation of State .. 78

3.4.2. SPH formulation .. 79

3.5. Concluding Remarks ... 82

4. SPH on GPUs ... 83

4.1. Introduction ... 83

4

4.2. GPU Programming .. 83

4.2.1. Basic GPU architecture and capabilities .. 83

4.2.2. GPU Programming Restrictions .. 84

4.2.3. CUDA Programming Framework: Features and Limitations for Multi-phase

SPH……………………………………………………………………………………...85

4.3. The DualSPHysics Code ... 89

4.3.1. Introduction .. 89

4.3.2. Code Structure ... 90

4.3.3. Pre-and Post-Processing for DualSPHysics ... 93

4.4. Modification of DualSPHysics for the Multi-Phase Model 94

4.4.1. Updating Neighbour and Cell lists ... 95

4.4.2. Modifying Force Computation for Multi-Phase SPH .. 96

4.5. New algorithms for optimising the multi-phase treatment 98

4.5.1. Algorithm 1: Using Conditional if-statements ... 98

4.5.2. Algorithm 2: Conditional Binary Multipliers .. 99

4.5.3. Algorithm 3: Separate Particle Lists for each Phase .. 100

4.5.4. Algorithm 4: Intermediate CPU-GPU function ... 103

4.6. Hardware ... 104

4.7. Test Case 1:Still Water .. 105

4.7.1. Case Description .. 105

4.7.2. Comparison of different algorithms ... 106

4.7.3. Comparison with the single-phase model .. 115

4.7.4. Extension to three-dimensions ... 118

4.8. Test Case 2: Dry Dam Break... 126

4.8.1. Case Description .. 126

4.8.2. Runtime results .. 127

4.9. Concluding Remarks ... 130

5

5. Validation: Two Dimensional Cases ... 132

5.1. Introduction ... 132

5.2. Dry Dam Break ... 132

5.2.1. Case Evolution ... 132

5.2.2. Validation ... 134

5.3. Particle shifting strategies for weakly compressible SPH 138

5.3.1. Void formation in the multi-phase model .. 138

5.3.2. Simple shifting algorithms ... 142

5.3.3. Shifting based on particle concentration gradients .. 144

5.3.4. Modification of the Free-surface Correction ... 148

5.3.5. Shifting validation .. 156

5.4. Wet Dam Break ... 173

5.4.1. Case description ... 173

5.4.2. Differences between the experimental and numerical results.......................... 175

5.4.3. Low water layer: d0=0.018m ... 177

5.4.4. High Water Layer: d0=0.038m ... 186

5.5. Rolling Tank .. 195

5.5.1. Case Description .. 195

5.5.2. Lateral impact test case .. 198

5.6. Concluding Remarks ... 209

6. Validation: Three Dimensional Cases ... 210

6.1. Introduction ... 210

6.2. Obstacle Impact ... 210

6.2.1. Case Description .. 210

6.2.2. Validation ... 213

6.3. Concluding Remarks ... 232

7. Conclusion ... 233

6

7.1. General Conclusions ... 233

7.2. Detailed Conclusions... 234

7.2.1. Multi-phase algorithms for GPUs .. 234

7.2.2. A new particle shifting algorithm for multi-phase SPH schemes 235

7.2.3. Validation of the multi-phase scheme.. 235

7.3. Future Work .. 237

7.3.1. Alternative boundary conditions .. 237

7.3.2. Alternative Multi-phase Model .. 238

7.3.3. Further Application of the model ... 239

7.3.4. Creation of a multi-GPU code ... 239

References .. 240

7

List of Figures

Figure 2.1: Kernel boundary interaction (Ferrand et al., 2010) ... 39

Figure 2.2:Comparison of construction times of the sliced data structure in the CPU and the

GPU (Harada et al., 2007a).. 53

Figure 2.3:Illustration of a multi-GPU system with two nodes, each of them hosting two

GPUs (Valdez-Balderas et al., 2011) ... 56

Figure 3.1: Smoothing kernel example .. 63

Figure 4.1: Grid of Thread Blocks (nVidia, 2012) .. 86

Figure 4.2: Memory Hierarchy (nVidia, 2012) .. 88

Figure 4.3: Main structure of the DualSPHysics code (Crespo et al., 2011a) 90

Figure 4.4: Example of the Cell-linked List (Dominguez et al., 2010) 91

Figure 4.5: Pseudocode of the particle interaction procedure implemented on CPU and GPU

(Crespo et al., 2011a) ... 93

Figure 4.6: Neighbour Lists for single and multi-phase DualSPHysics GPU code (green

shows the previous neighbour list, while red and blue note the new lists for air and water

phase respectively) ... 101

Figure 4.7: Global and Device Kernels for multi-phase DualSPHysics GPU code for

Algorithm 3 .. 102

Figure 4.8: Global and Device Kernels for multi-phase DualSPHysics GPU code for

Algorithm 4 .. 103

Figure 4.9: Definition Sketch for Still Water Multi-phase Case ... 105

Figure 4.10:Runtime comparison of the different algorithms ... 107

Figure 4.11:Runtime difference between the four algorithms ... 108

8

Figure 4.12:Runtime comparisons between the Tesla and GeForce graphics cards.............. 109

Figure 4.13: Runtime comparison between a CPU and two different GPUs......................... 110

Figure 4.14: Percentage of the runtime taken by each part of the code for 200,000 particles

(NL = Neighbour List creation, FC = Force Computation, SU = System Update) 111

Figure 4.15: Percentage of the runtime taken by each part of the code for 2 million particles

(NL = Neighbour List creation, FC = Force Computation, SU = System Update) 111

Figure 4.16:Comparison of neighbour list creation, particle interaction & system update for

the different algorithms for simulations up to 12.5 million particles 113

Figure 4.17: Runtime comparison of the computation parts for different algorithms 114

Figure 4.18: Runtime comparison of the single and the multi-phase computations for different

GPUs .. 116

Figure 4.19: Runtime comparison of the results from Algorithms 1 and 3 with the single-

phase simulation for a constant time step of 10
-6

s an for the same number of particles 117

Figure 4.20: Speedup of the single-phase simulation compared with two multi-phase

simulations for the same number of particles .. 118

Figure 4.21: Speedup of the single-phase simulation compared with two multi-phase

simulations for the same number of particles .. 119

Figure 4.22:Runtime comparison of the different algorithms for a three-dimensional space120

Figure 4.23:Runtime difference between the four algorithms for a three-dimensional case . 121

Figure 4.24: Percentage of the runtime of the three-dimensional still water case taken by each

part of the code for 250,000 particles (NL = Neighbour List creation, FC = Force

Computation, SU = System Update) .. 122

Figure 4.25: Percentage of the runtime of the three-dimensional still water case taken by each

part of the code for 4 million particles (NL = Neighbour List creation, FC = Force

Computation, SU = System Update) .. 122

9

Figure 4.26: Computational Runtime Distribution in a Tesla M1060 (Crespo et al., 2011a)123

Figure 4.27: Runtime comparison of the force computation part of the code for different

algorithms .. 124

Figure 4.28: Runtime comparison between a CPU and two different GPUs for a three

dimensional case .. 125

Figure 4.29: Definition Sketch for Dam Break Multi-phase Case... 127

Figure 4.30: Runtime comparison of the different algorithms for the dam break test case ... 128

Figure 4.31: Runtime comparison of Algorithms 1 and 3 for different hardware for the dam

break test case .. 128

Figure 4.32: Runtime comparison of the dry dam break and the still water test cases for

Algorithms 1 and 3... 129

Figure 4.33: Percentage of the runtime of the dam break case taken by each part of the code

for 200,000 particles .. 130

Figure 4.34: Percentage of the runtime taken by each part of the code for 2 million particles

.. 130

Figure 5.1: Instances of the dry dam break case taken from a simulation with 250,000

particles .. 133

Figure 5.2: Evolution of the wave front. Comparison with experimental data and the Ritter

solution for dx/h0=0.008 .. 136

Figure 5.3: Evolution of the water column height and comparison with experimental results

for dx/h0=0.008 .. 136

Figure 5.4:Comparison of the low and high resolution simulations for the water front

evolution .. 137

Figure 5.5: Comparison of the evolution of the water height for two different resolutions .. 138

Figure 5.6: Overturning wave at 1.8s form the start of the simulation for dx/h0=0.008 139

10

Figure 5.7: Water flow at 2.1s showing the voids being created within the water flow for

dx/h0=0.008 .. 139

Figure 5.8: Multi-phase model issue demonstrated in an artificial test case following the

expansion of an air volume for dx=0.01m ... 141

Figure 5.9: Expansion of an air volume after the application of the shifting algorithm 148

Figure 5.10: Dam break flow at 2.1s after using the surface correction term of Equation (5.21)

for both phases for dx/h0=0.008 ... 150

Figure 5.11: Comparison of the reflected water flow at 1.95s for dx/h0=0.008 151

Figure 5.12: Comparison of the reflected water flow at 2.1s ... 152

Figure 5.13: Comparison of the water pressure field at 1s for two simulations a) without the

shifting algorithm b) with the shifting algorithm ... 153

Figure 5.14: Comparison of the water pressure field at 2s for two simulations a) without the

shifting algorithm b) with the shifting algorithm ... 153

Figure 5.15: Water flow at different instants for simulation with shifting but without free-

surface correction in either phase .. 154

Figure 5.16: Water flow at 2.1s with the shifting algorithm used only for the air phase 155

Figure 5.17:Comparison of the water flow at 2.5s... 156

Figure 5.18:Comparison of the water column height for a)a simulation with both the air and

the water phase shifted and b) a simulation with only the air being shifted for dx/h0=0.008 157

Figure 5.19:Definition sketch for the second dry dam break case ... 158

Figure 5.20:Comparison of the pressure field at t√(g/h0)=2.98 for dx/h0=0.002 without

density re-initialisation for a) Colagrossi and Landrini (2003) b) present model without

shifting c) present model with shifting only in the air phase d) shifting in both phases e)

single-phase simulation. Simulations (a)-(d) do not display the air phase for clarity 161

11

Figure 5.21:Comparison of the pressure field at t√(g/h0)=2.98 for dx/h0=0.002 with a density

re-initialisation term for a) Colagrossi and Landrini (2003) b) present model without shifting

c) present model with shifting only in the air phase d) shifting in both phases e) single-phase

simulation. Simulations (a)-(d) do not display the air phase for clarity and results for

simulation (a) are not available for situation D ... 161

Figure 5.22: Comparison of the pressure field at t√(g/h0)=2.98 for dx/h0=0.001 without a

viscosity model for a) present model without shifting b) present model with shifting only in

the air phase c) shifting in both phases. Simulations do not display the air phase for clarity162

Figure 5.23:Comparison of the overturning wave at t√(g/h0)=5.95 for dx/h0=0.002 with a

BEM solution (Faltinsen et al., 2004) without density filtering for a) Colagrossi and Landrini

(2003) b) present model without shifting c) present model with shifting only in the air phase

d) shifting in both phases e) single-phase simulation. Simulations (a)-(d) do not display the

air phase for clarity .. 165

Figure 5.24:Comparison of the overturning wave at t√(g/h0)=5.95 for dx/h0=0.002 with a

BEM solution (Faltinsen et al., 2004) with density filtering for a) Colagrossi and Landrini

(2003) b) present model without shifting c) present model with shifting only in the air phase

d) shifting in both phases e) single-phase simulation. Simulations (a)-(d) do not display the

air phase for clarity .. 166

Figure 5.25:Comparison of the overturning wave at t√(g/h0)=5.95 with a BEM solution

(Faltinsen et al., 2004) for a) present model without shifting b) present model with shifting

only in the air phase c) shifting in both phases for dx/h0=0.001 .. 168

Figure 5.26:Comparison with a level-set algorithm (Colicchio et al., 2005) for a) present

model without shifting b) present model with shifting only in the air phase c) shifting in both

phases at t√(g/h0)=6.76 for dx/h0=0.001 .. 172

12

Figure 5.27:Comparison with a level-set algorithm (Colicchio et al., 2005) for a) present

model without shifting b) present model with shifting only in the air phase c) shifting in both

phases at t√(g/h0)=7.14 for dx/h0=0.001 .. 172

Figure 5.28: Definition Sketch for Wet Bed Dam Break Case .. 173

Figure 5.29: Discrepancy between experimental and numerical results................................ 175

Figure 5.30:Screenshot of the wet dam break instance 43ms earlier 176

Figure 5.31: (a) Phase difference between the multi-phase SPH simulation and the

experimental results (b) Results after shifting the particle position according to Khayyer and

Gotoh (2010b) for dx/h0=0.0067 .. 176

Figure 5.32: Comparison of the single-phase SPH results of Crespo et al. (2008) with the

multi-phase SPH. Both simulations use the same resolution dx/d0=0.0333 177

Figure 5.33: Comparison of the experimental results to a single and a multi-phase simulation

for t=0.156s and t=0.219s for resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-

phase SPH on GPU (c) single-phase SPH on GPU. • represent experimental data 179

Figure 5.34: Comparison of the experimental results to a single and a multi-phase simulation

for t=0.281s and t=0.343s for resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-

phase SPH on GPU (c) single-phase SPH on GPU. • represent experimental data 180

Figure 5.35: Comparison of the experimental results to a single and a multi-phase simulation

for t=0.406s for resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-phase SPH on

GPU (c) single-phase SPH on GPU. • represent experimental data 180

Figure 5.36: Comparison of the experimental results to a single and a multi-phase simulation

for t=0.468s for resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-phase SPH on

GPU (c) single-phase SPH on GPU. • represent experimental data 181

13

Figure 5.37: Comparison of the experimental results to a single and a multi-phase simulation

for t=0.531s for resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-phase SPH on

GPU (c) single-phase SPH on GPU. • represent experimental data 181

Figure 5.38: Comparison of the experimental results to a single and a multi-phase simulation

for t=0.156s and t=0.281s for resolution dx/h0=0.0067. (a) Photos form experiment (b) multi-

phase SPH on GPU (c) single-phase SPH on GPU. • represent experimental data 183

Figure 5.39: Comparison of the experimental results to a single and a multi-phase simulation

for t=0.281s and t=0.343s for resolution dx/h0=0.0067. (a) Photos form experiment (b) multi-

phase SPH on GPU (c) single-phase SPH on GPU. • represent experimental data 184

Figure 5.40: Comparison of the experimental results to a single and a multi-phase simulation

for t=0.406s for resolution dx/h0=0.0067. (a) Photos form experiment (b) multi-phase SPH on

GPU (c) single-phase SPH on GPU. • represent experimental data 184

Figure 5.41: Comparison of the experimental results to a single and a multi-phase simulation

for t=0.468s for resolution dx/h0=0.0067. (a) Photos form experiment (b) multi-phase SPH on

GPU (c) single-phase SPH on GPU. • represent experimental data 185

Figure 5.42: Comparison of the experimental results to a single and a multi-phase simulation

for t=0.531s for resolution dx/h0=0.0067. (a) Photos form experiment (b) multi-phase SPH on

GPU (c) single-phase SPH on GPU. • represent experimental data 185

Figure 5.43: Comparison of the experimental results to a single and a multi-phase simulation

for t=0.156s and t=0.219s for resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-

phase SPH on GPU (c) single-phase SPH on GPU. • represent experimental data 187

Figure 5.44: Comparison of the experimental results to a single and a multi-phase simulation

for t=0.281s and t=0.343s for resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-

phase SPH on GPU (c) single-phase SPH on GPU. • represent experimental data 188

14

Figure 5.45: Comparison of the experimental results to a single and a multi-phase simulation

for t=0.406s for resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-phase SPH on

GPU (c) single-phase SPH on GPU. • represent experimental data 188

Figure 5.46: Comparison of the experimental results to a single and a multi-phase simulation

for t=0.468s for resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-phase SPH on

GPU (c) single-phase SPH on GPU. • represent experimental data 189

Figure 5.47: Comparison of the experimental results to a single and a multi-phase simulation

for t=0.531s for resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-phase SPH on

GPU (c) single-phase SPH on GPU. • represent experimental data 189

Figure 5.48: Comparison of the experimental results to a single and a multi-phase simulation

for t=0.593s for resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-phase SPH on

GPU (c) single-phase SPH on GPU. • represent experimental data 190

Figure 5.49: Comparison of the experimental results to a single and a multi-phase simulation

at the start of the computation for dx/h0=0.0067 ... 191

Figure 5.50: Comparison of the experimental results to a single and a multi-phase simulation

at 0.281s and 0.343s for dx/h0=0.0067 .. 192

Figure 5.51: Comparison of the experimental results to a single and a multi-phase simulation

at 0.406s for dx/h0=0.0067 .. 192

Figure 5.52: Comparison of the experimental results to a single and a multi-phase simulation

at 0.468s for dx/h0=0.0067 .. 193

Figure 5.53: Comparison of the experimental results to a single and a multi-phase simulation

at 0.531s for dx/h0=0.0067 .. 193

Figure 5.54: Comparison of the experimental results to a single and a multi-phase simulation

at 0.593s for dx/h0=0.0067 .. 194

15

Figure 5.55:Pressure time history for a) resonant sloshing with large amplitude hydraulic

jumps and b) non-resonant low amplitude standing wave sloshing (Bass et al., 1976) 196

Figure 5.56: Definition Sketch for the lateral impact of SPHERIC Benchmark Case 10 196

Figure 5.57: Tank Geometry and pressure sensor position of the sloshing flow tank (Souto-

Iglesias et al., 2011b) ... 197

Figure 5.58: Gravity Force applied on the horizontal axis .. 197

Figure 5.59: Expected Pressure for sensor 1 .. 198

Figure 5.60: Mapping of impact on pressure by the different phases 199

Figure 5.61: Comparison between an experiment screenshot and multi-phase simulation with

cs,w=20m/s, ... 201

Figure 5.62: Comparison between an experiment screenshot and multi-phase simulation with

cs,w=20m/s, ... 201

Figure 5.63: Comparison between an experiment screenshot and multi-phase simulations with

cs,w=20m/s, ... 201

Figure 5.64: Comparison between an experiment screenshot and multi-phase simulations with

cs,w=20m/s, ... 202

Figure 5.65: Comparison between an experiment screenshot and multi-phase simulations with

cs,w=20m/s, ... 202

Figure 5.66: Comparison between experimental and simulation results for cs,w=17m/s and

cs,a/cs,w=29 for dx/h0=0.0215 ... 203

Figure 5.67: Comparison between experimental and simulation results for cs,w=17m/s and for

dx/h0=0.0215. Investigation of the effect of the speed of sound for the air phase 205

Figure 5.68: Comparison between experimental and simulation results for cs,w=20m/s and for

dx/h0=0.0215. Investigation of the effect of the speed of sound ratio for an increased value

for the water phase ... 206

16

Figure 5.69: Comparison between experimental and simulation results for cs,w=17m/s and for

dx/h0=0.0215. Investigation of the effect of the artificial viscosity 207

Figure 5.70: Comparison between experimental and simulation results for cs,w=20m/s

cs,a/cs,w=7.5 α=0.01. Investigation for different resolutions. .. 208

Figure 5.71: Comparison between experimental and simulation results for dx/h0=0.0161 .. 209

Figure 6.1: Measurement positions for water heights and pressures in the experiment

(Kleefsman et al., 2005)... 211

Figure 6.2: Defining sketch of the domain and the experimental measuring positions (Crespo

et al., 2011a) .. 212

Figure 6.3: Initial domain of benchmark case 2 .. 213

Figure 6.4: Velocity magnitude contours of a 3-D obstacle impact flow for one million

particles with spacing dx/d0=0.0273 at a) 0.3s and b)0.6s... 214

Figure 6.5: Velocity magnitude contours of a 3D obstacle impact flow flow for one million

particles with spacing dx/d0=0.0273 at a) 0.9s and b)1.2s.. 215

Figure 6.6: Velocity magnitude contours of a 3D obstacle impact flow for one million

particles with spacing dx/d0=0.0273 at a) 1.5s b)2s and c) 3s ... 216

Figure 6.7: Comparison of the multi-phase simulation and the experiment at 0.4s and 0.56s

.. 217

Figure 6.8: Comparison of different simulations and experimental results for height probe H4

for dx/h0=0.0364 .. 218

Figure 6.9: Comparison of different simulations and experimental results for height probe H3

for dx/h0=0.0364 .. 219

Figure 6.10: Comparison of different simulations and experimental results for height probe

H2 for dx/h0=0.0364 .. 220

17

Figure 6.11: Comparison of different simulations and experimental results for height probe

H1 for dx/h0=0.0364 .. 221

Figure 6.12: Comparison of a multi-phase simulation and the results of Crespo et al. (2011a)

with the experimental results for dx/h0=0.0364 ... 222

Figure 6.13: Comparison of multi-phase simulations with (right) and without (left) the

shifting algorithm and a single-phase simulation with the experimental results for

dx/h0=0.0182 .. 224

Figure 6.14: Comparison of height results for 5×10
5
 and 4×10

6
 particles with experimental

results ... 225

Figure 6.15: Comparison between experimental and simulation results for the 4 pressure

probes in the side of the obstacle for two simulations with dx/h0=0.0364 227

Figure 6.16: Comparison between experimental and multi-phase simulation with the shifting

algorithm results for the 4 pressure probes in the side of the obstacle for two different speed

of sound ratios .. 228

Figure 6.17: Comparison between experimental and multi-phase simulation with the shifting

algorithm results for the 4 pressure probes in the side of the obstacle for two different speed

of sound ratios .. 230

Figure 6.18: Comparison between experimental and a multi-phase simulation with 3.5 million

particles without the shifting algorithm for dx/h0=0.0182... 231

18

List of Tables

Table 1: Comparison of different multi-phase models for an SPH simulation........................ 47

Table 2: Pseudocode of the Kahan summation algorithm ... 97

Table 3: Pseudocode of the equation of state at Algorithms 1 and 2 100

Table 4: GPU Information and Statistics ... 104

Table 5: General guidelines for using a multi-phase model with SPH 234

19

Abstract

Multi-phase Modelling of Violent Hydrodynamics using

Smoothed Particle Hydrodynamics (SPH) on Graphics Processing

Units (GPUs)

A thesis is submitted to The University of Manchester for the degree of Doctor

of Philosophy in the Faculty of Engineering and Physical Sciences

Athanasios Mokos, The University of Manchester, 2013

This thesis investigates violent air-water flows in two and three dimensions using a smoothed

particle hydrodynamics (SPH) model accelerated using the parallel architecture of graphics

processing units (GPUs). SPH is a meshless Lagrangian technique for CFD simulations,

whose major advantage for multi-phase flows is that the highly nonlinear behaviour of the

motion of the interface can be implicitly captured with a sharp interface. However, prior to

this thesis performing multi-phase simulations of large scale air-water flows has been

prohibitive due to the inherent high computational cost.

The open source code DualSPHysics, a hybrid central processing unit (CPU) and GPU code,

is heavily modified in order to be able to handle flows with multiple fluids by implementing a

weakly compressible multi-phase model that is simple to implement on GPUs. The

computational runtime shows a clear improvement over a conventional serial code for both

two- and three dimensional cases enabling simulations with millions of particles. An

investigation into different GPU algorithms focuses on optimising the multi-phase SPH

implementation for the first time, leading to speedups of up to two orders of magnitude

compared to a CPU-only simulation. Detailed comparison of different GPU algorithms

reveals a further 12% improvement on the computational runtime.

Enabling the modelling of cases with millions of fluid particles demonstrates some previously

unreported problems regarding the simulation of the air phase. A new particle shifting

20

algorithm has been proposed for multi-phase flows enabling the air, initially simulated as a

highly compressible liquid, to expand rapidly as a gas and prevent the formation of

unphysical voids. The new shifting algorithm is validated using dam break flows over a dry

bed where good agreement is obtained with experimental data and reference solutions

published in the literature. An improvement over a corresponding single-phase SPH

simulation is also shown.

Results for dam break flows over a wet bed are shown for different resolutions performing

simulations that were unfeasible prior to the GPU multi-phase SPH code. Good agreement

with the experimental results and a clear improvement over the single-phase model are

obtained with the higher resolution showing closer agreement with the experimental results.

Sloshing inside a rolling tank was also examined and was found to be heavily dependent on

the viscosity model and the speed of sound of the phases. A sensitivity analysis was

performed for a range of different values comparing the results to experimental data with the

emphasis on the pressure impact on the wall.

Finally, a 3-D gravity-driven flow where water is impacting an obstacle was studied

comparing results with published experimental data. The height of the water at different

points in the domain and the pressure on the side of the obstacle are compared to a state-of-

the-art single-phase GPU SPH simulation. The results obtained were generally in good

agreement with the experiment with closer results obtained for higher resolutions and

showing an improvement on the single-phase model.

21

Declaration

No portion of the work referred to in the thesis has been submitted in support of an

application for another degree or qualification of this or any other university or other institute

of learning.

22

Copyright statement

I. The author of this thesis (including any appendices and/or schedules to this thesis) owns

certain copyright or related rights in it (the “Copyright”) and s/he has given The University of

Manchester certain rights to use such Copyright, including for administrative purposes.

II. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy,

may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as

amended) and regulations issued under it or, where appropriate, in accordance with licensing

agreements which the University has from time to time. This page must form part of any such

copies made.

III. The ownership of certain Copyright, patents, designs, trademarks and other intellectual

property (the “Intellectual Property”) and any reproductions of copyright works in the thesis,

for example graphs and tables (“Reproductions”), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intellectual Property

and Reproductions cannot and must not be made available for use without the prior written

permission of the owner(s) of the relevant Intellectual Property and/or Reproductions.

IV. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP Policy
1
, in any

relevant Thesis restriction declarations deposited in the University Library, The University

Library's regulations
2
 and in The University's policy on presentation of Theses.

1
 http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-property.pdf

2
 http://www.manchester.ac.uk/library/aboutus/regulations

23

Acknowledgements

This thesis would not exist if not for the emotional and scientific support of the following

people:

 I would like to express my appreciation to Dr. Benedict D. Rogers for his continuous

support and supervision providing invaluable assistance both with mathematical

issues and with matters such as presentations, writing academic papers and critical

analysis of research problems.

 I am grateful to Professor Peter K. Stansby for his invaluable comments continuous

support and guidance for the duration of my studies.

 I would like to thank the Engineering and Physical Sciences Research Council

(EPSRC) for the financial support of this research and Dr. Benedict D. Rogers and

Professor Peter K. Stansby for arranging this fund.

 I am thankful to all the members of the SPH and Hydrodynamics- expert group for

their continuous support throughout weekly meetings and especially to Mr. Georgios

Fourtakas for his continuous support for both numerical and theoretical matters and

Dr. Stephen Longshaw for his assistance in computational issues.

 I would like to thank the University of Manchester academic, support and IT staff for

providing excellent and informative workshops and for their technical and

administrative support.

 I would like to thank the people at University of Vigo for their support with using the

DualSPHysics code as well as their hospitality, with special acknowledgements for

Mr. Jose M. Dominguez and Dr. Alejandro C. Crespo. I would also like to thank Dr.

Steven Lind of Manchester Metropolitan University for his assistance.

 I will not forget the people I was sharing an office with at the university and I thank

them for their daily support and for brightening up my day.

 My thanks go to all the friends I have made during my stay in Manchester and

especially to Mr. Ioannis Asproulias, Miss Joanna Peppers and Mr. Antonios Xenakis

for their invaluable help and support.

 And last, but not least, I would like to express my gratitude to my family, who

provided me with enormous emotional support and encouragement over the years.

24

Nomenclature and Glossary

Symbol Definition

A Arbitrary function

As Shifting parameter

cs Speed of sound

C Particle concentration

CCFL CFL number

Csh Empirical shifting constant

dx Particle spacing

d0 Height of the water layer

D Diffusion coefficient

e Energy

f Applied forces

g Gravity force

h Smoothing length

h0 Initial height of the water column

H Height of the domain

i Particle where the interpolation is performed

j Neighbouring particle

i, j, k Unit vectors

L Length of the domain

m Particle mass

M Mach number

n, s, b Normal, tangent and binormal vectors to the free surface

N Number of neighbouring particles

O Truncation error

p Particle pressure

q rij/h

r Coordinate vector

R Shifting vector

Re Reynolds number

t Time

u Velocity

W Smoothing kernel

W
~

 Zeroth order corrected kernel

X Background pressure

a Artificial viscosity coefficient

as Shifting magnitude

a Cohesion coefficient

aD Kernel normalisation factor

β Second artificial viscosity parameter

γ Polytropic index

δε Dirac function

δrs Shifting distance

Δt Time step

25

ε Effective region of the Dirac function

μ Dynamic viscosity

o Laminar kinematic viscosity

Π Artificial viscosity term

ρ Particle density

ρ0 Reference density

Ω Domain of interest in the interpolation of function A

Term Definition

Artificial Viscosity
Additional term in the momentum equation simulating the viscous

forces among the particles

CPU Central Processing Unit

CUDA
Compute Unified Device Architecture is a framework for

programming GPUs

DualSPHysics Hybrid CPU-GPU code for fluid simulations using SPH

ISPH Incompressible Smoothed Particle Hydrodynamics

GPU
Graphics Processing Units are dedicated graphic units used here for

hardware acceleration

MPI Message Parsing System transferring data between CPUs

OpenCL Open Computing Language is a framework for programming GPUs

OpenMP
Open Multi-Processing is a protocol allowing shared memory

programming between CPUs

SM Streaming Multiprocessors are a basic computing unit of the GPU

Smoothing Kernel Interpolating function used in SPH

Smoothing Length Defines size of the kernel influence

SPH Smoothed Particle Hydrodynamics

SPHERIC SPH European Research Interest Community

Tensile Instability SPH phenomenon where negative pressures cause particle attractions

WCSPH Weakly Compressible SPH

XSPH Additional term for particle reordering

26

1. Introduction

1.1. Numerical background

Violent free-surface hydrodynamic flows exist in various industrial and research fields such

as coastal and nuclear engineering. They include a diverse range of problems such as

overturning or breaking waves and potentially explosive multi-phase pipe flow. Of particular

importance is the interaction of the flows with various structures, such as coastal defences,

tank walls or ship hulls. An accurate calculation of the potential impact forces generated by

the violent flows is essential in designing a structure to maintain its integrity and avoid

potential failure. The impact forces can be obtained either by an experiment or by a numerical

simulation and predicting the behaviour, the velocity and density profile of the waves and

especially their pressure field is a very important aspect of hydrodynamics. This study will

focus on modelling water flows, but the research can be expanded to other Newtonian fluids

such as oil, if their unique characteristics and attributes are taken into account.

The simulation of flows involving the interaction of different fluids is now commonplace.

Understanding and predicting the motion of such multi-phase mixtures is of paramount

importance for both natural and industrial phenomena.

The interface between two homogeneous fluids is one of the most important and interesting

aspects of a multi-phase flow. A violent free surface occurs if the interface between the two

fluids constantly changes, is not well defined and mixing between them occurs.

Using an experiment as a means of predicting fluid behaviour has the unquestionable

advantage of being a real flow. In many cases however, conducting an experiment is either

impossible or impractical, either because of the high cost (monetary or time allocation issues)

involved with prototyping and testing, or because using a scale model does not allow for the

observation of the more complex phenomena.

Using a numerical simulation for the prediction of a water flow, on the other hand, offers a

more versatile option as virtually every flow can be simulated. It is also a less cost-intensive

option depending on the hardware needed and the domain used can be of the same size as the

real case, while there is explicit control over the input conditions. Setting up and analysing a

simulation can be done in a relatively short time, as well as running multiple cases with

27

different parameters. A wealth of experimental data is now also available for these flows, but

the numerical models used to describe them are still lacking in comparison.

The major issue with any numerical simulation method is the dependence on the use of

numerical models in order to simulate the flow behaviour. Computing complex flows by

directly solving the governing equations is, in most cases, either impossible or extremely

time-consuming, so the use of numerical models that simplify the mathematical process is

necessary.

The numerical study of fluid flows is classified under the mantle of Computational Fluid

Dynamics (CFD). This includes a wide range of methods that solve the governing Navier-

Stokes equations as well as numerical models focusing on particular aspects of the fluid flow,

such as turbulence or the viscosity. This particular study will focus on using meshless

methods and in particular Smoothed Particle Hydrodynamics (SPH) in order to simulate air-

water flows using novel hardware acceleration of graphics processing units (GPUs) as this

allows for a more direct simulation of large cases with complex geometries and parameters,

without setting up an expensive and time-consuming experimental installation.

1.2. Meshless Lagrangian Methods and Smoothed Particle

Hydrodynamics

Implementations of CFD can be based either on an Eulerian or a Lagrangian description. In

the Eulerian concept, the observer remains fixed in time as the flow is moving and the fluid

quantities are functions of time and space. Any fluid variable f can be expressed at a fixed

spatial point x as f(x,t). This is the most common approach used in CFD.

Eulerian methods which encompass finite volumes, finite differences or finite elements are

based on the concept of a mesh. A mesh is an arrangement of vertices, edges and faces used

to map an object or domain. The flow quantities are calculated on the mesh node points

which are fixed on space and time. Creating a mesh can be a complex, difficult and expensive

task, especially when dealing with highly deformable flows or geometries with singularities.

For the flows simulated in the present study, the creation of a mesh would require a

significant amount of time, sophisticated algorithms and computational resources (Sussman

et al., 1994). The free surface in violent air-water flows is rapidly changing, requiring a

constant remeshing of the domain and due to the different state of each phase an explicit

28

treatment of the surface is also needed (Belytschko et al., 1998). In addition, the high

velocities and dynamic pressure and density fields require a high resolution.

The other option for simulating a flow is the Lagrangian approach. Unlike the Eulerian one,

the observer here is moving at the same velocity as the flow following each element as it

moves in space and time. A flow variable f would then be expressed as a function of the

starting point in space x0 and the time variable as f(x0,t). It is not as widely used as the

Eulerian approach, but interest has increased in the past 20 years.

Lagrangian methods are only now gaining traction because of the advancement of the

available computational power and the decrease of the associated cost. Following a moving

fluid element in time requires a large number of calculations increasing as the resolution

increases, especially when calculating pairwise distances and forces. Only in the last few

years has the hardware become capable of sustaining large Lagrangian simulations.

Lagrangian methods do not need the construction of a mesh. The fluid is instead represented

as constantly moving node points, which resemble fluid volumes, such that they can represent

a macroscopic flow. This makes them ideal for flows with large deformations, such as free-

surface flows. An overview of the most prevalent Lagrangian methods will be given in

Chapter 2.

1.3. Necessity for Multi-phase Modelling

In the majority of free-surface flows involving water, the air phase coexists next to the water

surface. This occurs in most natural flows, including oceans and rivers. Additionally, a large

number of industrial flows include interactions between air and water such as pipe flows and

plunging waves. This study will focus on air-water flows at standard temperature; no heat

exchange or phase changes will take place in the system.

In several of these cases, the effect of the air phase can be ignored, if the flow is characterised

by low velocities and no or very little mixing occurs between the two phases. However, in

cases where the flow becomes violent and highly transient, significant mixing between the

two phases occurs and the effect of the air on the water flow cannot be ignored.

An example of the air affecting the water phase is the air entrainment, where an air volume is

trapped within a water flow and moves with it. As a result it alters the velocity and pressure

field of the water and, in case of an impact, the force exerted by the water. Modelling air

29

entrainment is therefore vital when designing a coastal structure, a ship hull or a pipe.

Another example is water aeration, whether that is for creating drinkable water, to increase

the oxygen content in the flow or to treat sewage, removing foreign substances such as

chlorine.

In this study, the focus will be on simulating violent flows with a highly transient and not

clearly defined free surface where significant mixing occurs in the interface. The role of the

air is then extremely important and it cannot be ignored. It is also an area where the

numerical models have not yet reached the accuracy of an experiment as highly complex

phenomena occur in the flow. Simulating both flows simultaneously presents then a

considerable challenge.

The difficulty in simulating the air-water flows occurs from the vastly different properties of

the two fluids as a result of them belonging to different states. At standard temperature and

pressure, the difference in their densities is three orders of magnitude. There is also a large

difference in their speeds of sound and the air is a highly compressible fluid as compared to

the incompressible water.

The interface between them is usually defined by the surface tension present in the water,

which maintains continuity of the interface for low velocity flows. Its effect however, is not

as important in the cases studied in this report. If the necessary conditions are met, air water

flows can also become turbulent and their chaotic nature makes these flows considerably

more difficult to simulate.

The difference in their qualities makes the use of an identical numerical model for both

phases unlikely. In practice, when using an Eulerian method, it is common to solve each

phase separately, whilst treating the interface with a fraction method such as volume-of-fluid

(VOF) or a curve tracking method such as the level-set algorithm. The mesh constructed in

the interface (usually unstructured) would also need to be moving in order to capture the

evolving interface.

Lagrangian methods on the other hand can represent different fluids simply as different sets

of node points. They can use similar models for the two fluids, but extra terms in modelling

the air phase or treating the interface are usually needed. These extra terms are easier to

integrate in a code and their computation requires less time than constructing an unstructured,

moving grid.

30

Multi-phase models on Lagrangian methods however, are still relatively new with interest of

them increasing after the turn of the century. As a result, although research in this topic is

increasing many issues still remain unsolved. One particular issue is the inability of running

multi-phase cases with high resolutions due to the high computational runtimes required.

1.4. Parallel Programming and Hardware Acceleration

Running a simulation can be potentially time consuming depending on the complexity of the

flow, the size of the domain and the duration of the case. Additional concerns are the

resolution used for the computation and especially the numerical model used. As mentioned,

Lagrangian models have a high computational time although they do not need the creation of

a mesh.

The length of time required for a complete simulation is further increased when modelling the

air phase. Not only do the qualities of air such as the high compressibility require a smaller

time step but the size of the computational domain is increased with a finer resolution needed

for the interface. For all these reasons a traditional serial computer code is usually insufficient

to accurately simulate an air-water flow.

To improve this situation, the advancement of the computer science has allowed the creation

of parallel programs, where the code is simultaneously executed by multiple processors.

These communicate and exchange information with each other, handling only a fraction of

the total data and greatly increasing the speed of the computation.

Massively parallel systems with hundreds or thousands of processors can also be used. They

can significantly speed up the computation and handle an increased amount of data, allowing

for finer resolutions. For Lagrangian methods there has been significant research in this field,

with many codes being developed, greatly reducing the runtime required. However, there is

not so far a code for massively parallel systems using a multi-phase model.

Graphics Processing Units (GPUs) have recently emerged as a viable tool for scientific

computing due to their ability to process large quantities of data and their lower purchase and

maintenance costs compared to conventional HPC clusters. Their massively parallel

architecture is an ideal fit for the Lagrangian methods used in this study enabling the

modelling of finer resolutions. The emergence of dedicated programming frameworks, such

as CUDA (Compute Unified Device Architecture) and OpenCL (Open Computing Language)

has also greatly reduced the complexity associated with their programming.

31

1.5. Study objectives

The main objective of this thesis is to develop a simulation program for air-water interaction

in violent free-surface flows including a multi-phase model to increase the accuracy of the

simulation. To achieve that, use of parallel programming and hardware acceleration using

graphics processing units forms a core objective of this work; the result will be the reduction

of the necessary computational time allowing not only an increase in particle resolution but

realistic test cases to be performed.

Therefore, the objectives of this research can be summarised as:

 Implementation of a multi-phase model in an SPH GPU code

 Implementation of techniques for further reduction of computational runtime

 Optimisation of the GPU multi-phase execution algorithms

 Simulation of a variety of test cases in 2D and 3D with multiple resolutions to

demonstrate the robustness of the code

 Comparison with the corresponding single-phase simulation and experimental data

1.6. Outline of the Thesis

This introductory chapter is immediately followed by a review of the published literature that

will examine the foundations and the most recent advances in meshless and Lagrangian

methods, focusing in particular in the SPH method. The publications regarding the advances

in multi-phase modelling using SPH will be examined closely. Chapter 2 will also include an

examination on the current state of parallel programming, especially regarding the use of

GPUs as a means for accelerating the execution.

Chapter 3 will focus on the theoretical and mathematical background of the SPH method,

with special attention being given to multi-phase schemes and especially the model chosen

for the simulation of interfacial flows (Colagrossi and Landrini, 2003). The next chapter will

examine the acceleration of SPH programs using GPUs, analysing issues and practices

related to this approach as well as the GPU DualSPHysics code (Gomez-Gesteira et al., 2012)

used in the present study. The changes regarding the application of a multi-phase model as

well as different methods regarding the optimisation of the code are documented. Runtime

results regarding two cases and comparing the CPU and GPU versions of the code will be

32

presented. The effects of the cases’ extension to 3D on the runtime of the simulation will also

be outlined.

In Chapter 5 compressibility issues in high resolutions and the treatment of the air particles is

discussed and the use of a shifting algorithm (Xu et al., 2009, Lind et al., 2012b) is proposed

as a solution. This chapter also presents a number of test cases used to validate the code and

test its robustness. A dam break test case is compared to experiments and the corresponding

single-phase simulation. The dam break is performed with both a dry (Koshizuka and Oka,

1996, Colagrossi and Landrini, 2003) and a wet bed where the movement of the gate is also

included (Janosi et al., 2004). The final 2D test case is a rolling tank, also compared to

experiments (Botia-Vera et al., 2010).

The accuracy of the code will also be tested for cases extending in the three dimensional

domain. The violent impact of the water flow on an obstacle will then be investigated with

the results being compared to both experimental data (Kleefsman et al., 2005) and a single-

phase SPH simulation (Crespo et al., 2011a). The final chapter will then finish with a

discussion of the results being presented and recommendations for future improvements and

extension of the work.

33

2. Literature Review

2.1. Introduction

The aim of the present literature review is to assess recent advances in meshless methods,

especially smoothed particle hydrodynamics (SPH). Different meshless methods will be

reviewed and compared, followed by analysing the evolution of the SPH method and its

application on fluid dynamics. Special attention will be given to the existing multi-phase

methods for SPH and their applications in air-water flows. This investigation will also present

the technologies used for parallel programming and program acceleration, in particular

graphics processing units (GPUs) and their use with SPH.

2.2. Meshless and Lagrangian Methods

Numerical methods such as the finite element method are defined at distinct points connected

by a computational grid or mesh. This is based on the Eulerian concept of the flow where the

observer is stationary. The interaction between the different points of the grid allows us to

define efficiently mathematical operators such as the derivative, which leads to an efficient

computation of the governing equations (in the case of fluid dynamics the Navier-Stokes

(NS) equations).

However, in a case where significant deformation can appear, such as a violent fluid flow or a

simulation of a structural failure process where points in the mesh need to be destroyed, the

grid needs to be constantly remeshed, which is a very expensive process (Belytschko et al.,

1996). In addition, treatment of discontinuities in a domain is also an issue, especially if their

position and alignment changes (Nguyen et al., 2008). A classic example is a free surface

flow, where the border changes over time and can be extremely fragmented.

Meshless methods were created in order to address exactly these problems (Belytschko et al.,

1996). They are based on the Lagrangian concept of flow, where the observer and the flow

are moving with the same velocity. The domain is entirely simulated with nodes or particles

that are interpolation points for the fluid properties to be computed (Monaghan, 2005). The

Lagrangian nature of these methods makes them ideal for the treatment of discontinuities due

to their similarity with molecular dynamics (Hoover, 1998).

34

Meshless methods in their current form originated about 30 years ago when the vortex

method (Chorin, 1973) and the smoothed particle hydrodynamics method (Gingold and

Monaghan, 1977, Lucy, 1977) were introduced. However, research on this subject for the

next 20 years was limited, until the advances in computer science allowed meshless methods

to be used in practical applications, resulting in significant advances.

A summary of the main meshless methods will now be presented. We are interested in

macroscopic applications, so methods such as Molecular Dynamics (MD), which are used in

mesoscopic and microscopic applications are outside of the scope of this work, despite being

meshless methods. The method used in the present study is smoothed particle hydrodynamics

and the reasons will be explained later in the chapter.

 Vortex methods as they are currently used, were first proposed by Chorin (1973),

(1978) and are used for the simulation of turbulent flows. Work on vortices however,

has started much earlier with the calculation of Kelvin-Helmholtz instabilities

(Rosenhead, 1931). The Navier-Stokes (NS) equations are considered in terms of the

vorticity variable and discretised the vorticity instead of the velocity field (Barba et

al., 2005). The pressure is not explicitly solved but as the momentum equation is

substituted by a vorticity transport equation by the application of the curl, the pressure

is eliminated (Speziale, 1987). The velocity is then computed as an integral over the

vorticity field, corresponding to the Biot-Savart law. The method proposed by Chorin

was based on creating single point vortices. However, singularities can appear when

the distance to the point vortex becomes very small, so the method is more often used

with “blobs” with finite widths (Perlman, 1985).

Simulating flows with the vortex methods became accessible after the creation of the

fast multipole method (FMM) (Greengard and Rokhlin, 1987) which offered a fast

solution to the N-body problem. Practical applications of the vortex method include

flows around a cylinder (Koumoutsakos and Leonard, 1995, Smith and Stansby, 1988,

Ploumhans and Winckelmans, 2000) a shock tube (Cottet et al., 2000) or the

penetration of a blade into a vortex core (Marshall and Grant, 1996). Acceleration of

the simulation using GPUs has also been possible (Rossinelli et al., 2010). The vortex

method is most efficiently used with homogeneous infinite flows; its main issue

however, is the lack of accuracy due to the distortion of the Lagrangian field in

complex flows (Barba et al., 2005).

35

 The Element-Free Galerkin (EFG) method was proposed (Belytschko et al., 1994) as

an improvement on the Diffuse Element Method (DEM) proposed 3 years earlier

(Nayroles et al., 1991). The DEM method replaces the FEM interpolation between the

grid points with a Moving Least Squares local interpolation (Nguyen et al., 2008).

The EFG method enhances this approach using Lagrange Multipliers to impose the

boundaries and is based on the full form of the derivatives instead of assuming them

as constants (Belytschko et al., 1994). Since it uses the weak form an auxiliary cell

structure is used to define the quadrature points, so the method is not entirely

meshless (Chen et al., 2001).

The main disadvantage of the EFG method is its high computational cost (Belytschko

et al., 1996). It has been extensively used for simulating discontinuities such as

progressive cracking and fractures (Belytschko et al., 1995, Lu et al., 1994, Fleming

et al., 1997) or thin plate analysis (Krysl and Belytschko, 1995).

 The Reproducing Kernel Particle Method (RKPM) was originally introduced by Liu

et al. (1995b). It originates from wavelet methods and attempts to correct the lack of

consistency present in other meshless methods, especially their deficiencies close to

the boundaries. The interpolation is similar to the SPH one, however, the function is

treated as a window function and its coefficients are connected to the integral window

transform (Liu and Chen, 1995). Scaling functions used to create wavelets are

proposed as suitable candidates for the approximation. A correction function is used

close to the boundaries (Liu et al., 1995b).

The RKPM has been used for structural dynamics (Liu et al., 1995a) and large

deformation analysis (Jun et al., 1998, Chen et al., 1997) and metal forming

problems (Chen et al., 1998). It has also been combined with an MLS algorithm (Liu

et al., 1997).

 The Meshless Local Petrov-Galerkin (MLPG) is a weak form method presented in

1998 (Atluri and Zhu, 1998). The weak form is computed locally eliminating the need

for a background mesh as in EFG, while the Petrov-Galerkin method allows it to be

simplified. The test function is not rigidly selected and different approaches can be

used, leading to different MLPG schemes (Atluri and Shen, 2002). Cases solved with

this approach include plate deformation (Qian et al., 2004), convection-diffusion

36

problems (Lin and Atluri, 2000) and the incompressible NS equations (Lin and Atluri,

2001). An issue with this technique is the difficulty in imposing boundaries (Atluri

and Zhu, 2000).

 Dissipative Particle Dynamics (DPD) is a method derived from Molecular Dynamics

(MD) modified in order to tackle issues with time and space scales applicable to

hydrodynamic problems (Hoogerbrugge and Koelman, 1992). It was later adapted to

ensure thermal equilibrium, as the earlier scheme was not conserving energy (Espanol

and Warren, 1995). Particles move according to Newton’s laws but the interparticle

interactions allow for much greater scales.

The DPD method can be parallelised using an MPI implementation (Sims and Martys,

2004). The method has been used in different fields such as hydrodynamics (Espanol,

1995), colloidal suspensions (Boek et al., 1997) or modelling concrete flow (Sims and

Martys, 2004).

 The Finite Pointset Method (FPM) was introduced in 1996 (Onate et al., 1996a) and is

based on point collocation for evaluating the hydrodynamic properties’ derivatives.

To construct the approximation functions a multitude of techniques can be used

including Least Square approximation (LSQ), Weighted Least Square approximation

(WLS) or Moving Least Squares (MLS). The technique has mainly been used for

fluid mechanics problems such as modelling the compressible flow around an air foil

(Onate et al., 1996b) or free-surface problems (Vacondio and Mignosa, 2009). Multi-

phase simulations have also been performed (Tiwari and Kuhnert, 2007).

 The Moving Particle Semi-implicit method (MPS) was introduced by Koshizuka and

Oka (1996) for the simulation of incompressible free-surface flows. It is based on

integral interpolation to approximate the strong form of the governing equations.

Unlike SPH, however, the differential operator is based on a local weight averaging

process rather than the gradient of a kernel function. The time scheme used is a semi-

implicit prediction-correction process.

A corrected MPS method has been proposed (Khayyer and Gotoh, 2008) and work

has also been done in correcting the spurious pressure calculation that was one of the

issues of this method (Khayyer and Gotoh, 2010a). The MPS method has been mainly

37

used in fluid problems such as breaking waves (Khayyer and Gotoh, 2008,

Koshizuka et al., 1998) but has also found use in other areas such as heat transfer

(Zhang et al., 2006).

 The Smoothed Particle Hydrodynamics (SPH) is one of the first meshless methods to

be developed (Gingold and Monaghan, 1977, Lucy, 1977). It is based on integral

interpolation of the variable properties and the continuous media appear as discrete

points in the domain (particles). The particles’ properties are then interpolated

(“smoothed”) over a predetermined distance using a kernel function. Contributions of

neighbouring particles are weighted according to their distance.

The method was initially introduced to tackle astrophysical phenomena such as star

formation (Katz, 1992) and collision (Rasio and Shapiro, 1991) but was since adapted

for solid mechanics and used for problems such as impact simulations (Benz and

Asphaug, 1994), brittle solids (Gray et al., 2001, Benz and Asphaug, 1995), metal

forming (Bonet and Kulasegaram, 2000) and fragmentation (Randles and Libersky,

1996). It has also seen extensive use in fluid dynamics, especially in free-surface

flows (Monaghan and Kos, 1999, Monaghan, 1994, Shao and Lo, 2003). Multi-phase

models, which will be further discussed shortly, have also been developed (Colagrossi

and Landrini, 2003) and an active effort is being undertaken to reduce the

computational cost of the method, which is one of its drawbacks (Crespo et al.,

2011a). Recently, the SPH and MPS methods have been shown to be equivalent under

certain conditions (Souto-Iglesias et al., 2013).

In this study, the main interest lies in computing violent air-water flows. Flows of this kind

are quite complex and include a free surface with numerous discontinuities. SPH creates a

free surface for two interacting fluids directly and its particle-based scheme is ideal for the

treatment of discontinuities (Monaghan, 2005) so it is a very attractive method for a large

deformation analysis. In addition, a variety of models and corrections have been added to the

classical implementation improving the accuracy and leading to a robust and mature method.

38

2.3. SPH for Fluid Dynamics

2.3.1. Classical SPH implementation

As mentioned before, SPH was developed in order to tackle astrophysical problems (Lucy,

1977, Gingold and Monaghan, 1977), in particular non-axisymmetric phenomena. It is still

being widely used in the astrophysics field where large codes have been developed allowing

simulations with hundreds of millions of particles (Springel, 2005). It was then quickly

adapted with a scheme that conserved angular and linear momentum for fluid dynamics

(Gingold and Monaghan, 1982).

SPH is a meshless particle method where the derivatives are found by integral interpolation

(Monaghan, 1992). It allows the expression of the material properties such as density or

pressure using local quantities at discrete Lagrangian locations. The interpolation is local at

an area around a particle. Gradients can then be computed as the interaction between a pair of

particles. A smoothing kernel is used to quantify the effect of the neighbouring particles. The

method can be applied to both fluids and solids.

As a Lagrangian method, SPH is more suitable to simulate the large nonlinear deformations

and the rapid flow movement than a traditional Eulerian method such as the finite volume

method, which requires a very fine, adaptive mesh. This is ideal for fluid simulation and SPH

has been used, as mentioned, extensively in this field to simulate both compressible and

incompressible flows (Monaghan, 2005).

SPH, however, is not a method without issues. The classical SPH formulation described

above suffers from accuracy and stability problems (Colagrossi and Landrini, 2003), in part

due to the particle distortion (Koumoutsakos, 2005) and it does not have linear consistency

near the boundaries (Belytschko et al., 1996). In addition, applying the SPH to hydrodynamic

problems requires the inclusion of boundaries, which are not present in astrophysics.

2.3.2. Boundary treatment

The truncation of the kernel near the boundaries is a serious problem for SPH. The value of

any particle depends on the values of its neighbouring particles and since an interpolation is

used, the number of particles is directly related to the accuracy of the computation. This

reliance on the kernel however, becomes a problem when the particle is close to the

39

boundary. As shown in Figure 2.1, for a particle close to the boundary, the kernel extends

beyond the computational domain where no particles are present.

Figure 2.1: Kernel boundary interaction (Ferrand et al., 2010)

Several methods have been proposed for addressing the boundary issue. A potential scheme

is to extend the computational domain in order to include a number of fictitious boundary

particles (Monaghan, 1994). These have the attributes (such as density and mass) of the fluid

that is being modelled, but unlike the fluid particles, their motion or stationary character is

prescribed. It has also been reported that exchanging density contributions among the fluid

and boundary particles tends to assist capturing pressure peaks (Morris et al., 1997).

This method, while simple, has a number of significant drawbacks. It needs a large number of

additional particles to prevent particles exiting the domain and complete the kernel (Di

Monaco et al., 2009), increasing the computational time. As it will be discussed later, an

important problem of this method is that the fluid particles tend to penetrate the wall and

escape from the computational domain.

The large number of boundary particles however, means that the fluid particles near the

boundary have more neighbours and the kernel support is not truncated (Morris et al., 1997).

The solution however, is now influenced by the values of the boundaries with the fluid

particles next to the solid wall having a tendency to remain close to their initial positions,

even if their neighbouring particles are moving (Monaghan and Kajtar, 2009a).

An alternative method is the use of repulsive forces based on Lennard-Jones potential

(Monaghan, 1994). This method simulates the solid wall as particles which exert strong

40

repulsive forces in order to prevent the fluid particles from exiting the domain. The force is

applied along the normal direction to the wall and is dependent on the distance between the

fluid and the boundary particle. The force describes the interaction between atoms and is used

in molecular physics (Kulasegaram et al., 2004). This method effectively eliminates the

chance of particles escaping the domain, since the repulsive force will become infinite if the

particle reaches the boundary points (Monaghan, 1994). It also has the advantage of being

able to adapt to any geometry that is required. However, the interpolation is not completed

with new particles so the inconsistency near the boundaries is not addressed and the repulsive

force is not linked to the physical properties of the fluid and is dependent on empirical

parameters (Marongiu et al., 2007).

Another frequently used boundary treatment is the ghost particle method. The computational

domain is extended by creating mirror particles of the existing fluid particles, which would

have the same physical properties (Randles and Libersky, 1996, Libersky et al., 1993). For a

plane wall, this is similar to a symmetry condition. However, it is very difficult for complex

geometries or for intersecting boundaries, such as corners. When simulating a curved wall for

instance, a geometry transformation would be necessary, while when simulating a corner

separate treatment of the faces is required (Le Touzé et al., 2006).

Børve (2011) presented a generalised ghost particle method which generates a different

number of ghost particles for each fluid particle. The method aims to keep the mass density in

the kernel radius of a particle constant, regardless of the area of the kernel that is outside the

domain by varying the mass of ghost particles.

In order to combine the advantages of the methods and to eliminate their disadvantages,

hybrid approaches have also been proposed such as a hybrid of fictitious and ghost particles

(Colagrossi et al., 2009). In this approach, the fictitious particles are created in the beginning

of the computation and an MLS interpolation method is used to obtain the necessary values.

Ferrari et al. (2009) proposed a hybrid method combining repulsive wall forces and mirror

particles. In their approach, the fluid particles’ density and pressure are affected by the mirror

particles, which are not affected by the neighbouring fluid particles. An improvement to his

work was proposed by (Vacondio et al., 2012) who introduced a more complete support for

the fluid particles. His work has been further improved in regards to its first and zeroth-order

consistency (Fourtakas et al., 2013b).

41

Kulasegaram et al. (2004) proposed a semi analytical approach which consists of

renormalizing the density field with respect to the void area in the kernel. The momentum

equation was then reworked (De Leffe et al., 2009) and a semi-analytical scheme for

computing the correction term was proposed (Feldman and Bonet, 2007). Finally, Ferrand et

al. (2010) (2013) proposed a new time scheme to compute the renormalisation term and an

extension for complex boundaries.

Overall, boundaries can be an awkward issue for SPH and solutions are still being

investigated and developed.

2.3.3. Numerical stability corrections

To address the stability and accuracy issues, several corrections and models have been

proposed. One of the earliest corrections proposed was by Lucy (1977) who used a bulk

viscosity to prevent integration errors. That scheme however, did not conserve angular and

linear momentum. A different scheme was then proposed (Monaghan and Gingold, 1983)

using an artificial parameter to stabilise the algorithm, later revised to allow the simulation of

high Mach number shocks (Monaghan, 1992). The scheme is similar to the von Neumann-

Richtmyer artificial viscosity (von Neumann and Richtmyer, 1950) and introduces dissipation

to prevent particles from penetrating each other (Monaghan, 1989).

The dissipation and the shear viscosity (Liu and Liu, 2003) introduced in the flow by this

scheme can be detrimental to the accuracy of the results (Cha and Whitworth, 2003) but at

the time of writing it is the most widely used viscosity correction for SPH (Liu and Liu,

2003). Monaghan has also proposed a different correction deriving from the dissipative terms

of the Riemann solver (Monaghan, 1997), while a different laminar scheme has been

proposed and tested for low Reynolds numbers (Morris et al., 1997). Numerical simulation of

the viscous term in the NS equations is also possible (Takeda et al., 1994).

Regarding turbulent flows, discrete equations have been developed for both the mixing length

model (Violeau and Issa, 2007a) and two-equation turbulence models including the k-ε

(Violeau and Issa, 2007a) and the k-ω (Issa et al., 2009) models. The k-ε model has been

found to provide better velocity profiles than the mixing length model for a hydraulic jump

(De Padova et al., 2010). They will not be used in the current study, as modelling turbulence

is beyond its scope.

42

Apart from the viscous term, there have been attempts to also correct the kernel and gradient

functions. Following the kernel corrections in the RKPM method (Liu et al., 1997), Bonet

and Lok (1999) presented separate and mixed gradient and kernel corrections to the classical

SPH approach, improving the accuracy near the boundaries. Their approach, however, did not

conserve angular momentum.

An alternative approach for maintaining stability is the use of an approximate Riemann

solution to determine the interaction between a pair of particles, especially the velocity and

stresses in the contact surface (Vila, 1999). Using an Arbitrary Lagrange-Euler description, it

was showed that this is a moving Riemann problem and using the equivalent steady Riemann

problem it is possible to link the SPH method to the Finite Volume method. At this point

however, the method ceases to be fully Lagrangian (Marongiu et al., 2010).

A known issue with the SPH method is that particles under tensile stress have unstable

motion. This issue is called tensile instability and can result in particle clumping. It is greatly

dependent on the second derivative of the kernel function (Swegle et al., 1995). Several

schemes have been proposed for its correction including the use of specifically designed

kernels (Morris, 1996), the use of additional stress points (Randles and Libersky, 2000, Dyka

and Ingel, 1995) or the use of an artificial force (Monaghan, 2000, Gray et al., 2001).

2.3.4. Weakly Compressible and Incompressible SPH

The approaches and schemes detailed so far are part of the so called weakly compressible

SPH (WCSPH), in which incompressible flows are approximately treated as slightly

compressible (Monaghan, 1992). The compressibility is enforced by the use of a low Mach

number and a state equation is used to algebraically link the pressure and the density. The

equation that has been widely used was proposed by Batchelor (1967).

The issue with the weakly compressible approach lies in the prediction of the density and

pressure via the equation of state. A density renormalisation scheme utilising a zeroth order

MLS function (a Shepard filter (Shepard, 1968)) is usually applied (Colagrossi and Landrini,

2003). This leads to a local averaging of particle densities and has insignificant effect on the

accuracy of the results (Dalrymple and Rogers, 2006). The first order MLS correction can

also be applied (Colagrossi and Landrini, 2003).

Schemes have also been proposed to treat the fluid as fully incompressible. The

incompressible SPH schemes are based on the projection method (Chorin, 1968, Cummins

43

and Rudman, 1999) and are using a Poisson equation in order to find the pressure values

(Shao and Lo, 2003, Hu and Adams, 2007). Under this approach an intermediate velocity is

projected in a divergence and curl-free domain. A different approach uses kinematic

restrictions to impose incompressibility instead of the Poisson equation (Ellero et al., 2007).

An improved scheme was proposed by Xu et al. (2009) who incorporated a shifting algorithm

in order to correct the error caused by the irregular distribution of the particles and the kernel

behaviour. The particles are slightly shifted in position and the hydrodynamic variables are

updated using the Taylor series. The algorithm was improved by Lind et al. (2012b) who

used a Fickian-based algorithm to compute the shifting position and incorporated a correction

for the free surface. Skillen et al. (2013) also looked at the relationship of the shifting

algorithm with the CFL time step condition.

2.4. Multi-phase Modelling with SPH

As mentioned, SPH, as a Lagrangian method can be effectively used in order to simulate

violent flows where Eulerian methods can be difficult to apply, such as wave breaking or a

potentially explosive multi-phase pipe flow. Most of these violent flows, however, are

primarily defined by the interaction of multiple phases which need to be taken into account in

a simulation.

One of the great advantages of SPH is that including more than one fluid is relatively

straightforward, as it is possible to assign a separate set of particles to each phase with

different equations of state (Monaghan, 2005). Handling the interactions among them

however, is greatly dependent on their phase and the ratio of their hydrodynamic properties

such as the density. Treatment of the interface may be necessary but compared to the Eulerian

methods surface tracking is relatively easy with no need for a finer resolution. The increased

number of particles however, has a significant impact on the computational runtime. This

study will focus on simulating flows between two different fluids. Simulating solids and their

interaction with fluids is beyond the scope of this research.

Extensive research has already been conducted in the field of multi-phase modelling with

SPH. Schemes have been proposed for both liquid-gas and liquid-liquid flows. The first

research publicised, was, to the best of the author’s knowledge, a model regarding dusty

gases that was published in 1995 (Monaghan and Kocharyan, 1995).

44

The first publication regarding the interaction of multiple fluids simulated gravity currents

flowing in a ramp (Monaghan et al., 1999) which used the classical SPH formulation, treating

each fluid as a separate set of particles, without any corrections at the interface. Results were

satisfactory but the density ratio between the fluids (water and saltwater) was very small

(never larger than 1.15). This scheme is not suitable for fluids with large density ratios (fluid-

gas flows) as several instabilities in the area between the two substances are developed due to

the high density gradient at the interface (Colagrossi and Landrini, 2003).

Simulation of the interactions between fluids with high density ratios was investigated by

Nugent and Posch (2000). The Van der Waals (vdW) pressure equation was considered and

the interatomic forces were translated to an attractive force among the particles. This force

acts at the interface due to the high density gradient but is negligible in the bulk of the fluid.

The authors note that instabilities may appear in the interface and propose the use of a larger

smoothing length in order to eliminate this issue.

A similar method was also used by Colagrossi and Landrini when they proposed a new

scheme for the computation of interfacial flows. The use of a similar attractive force in the

lighter fluid was suggested to prevent particle dispersion at the interface (Colagrossi and

Landrini, 2003). A new form of the SPH approximation and the viscous term was proposed

for free-surface flows. The equation for the conservation of density used a different

formulation which is non-conservative (Hu and Adams, 2006). A density re-initialisation

term was also used.

For the different fluids, the same equation of state is used (Batchelor, 1967), modified for the

lighter fluid. Due to the density ratio the speed of sound used for the lighter fluid in this

equation needs to be significantly larger. This leads in turn to a significantly smaller time step

as the stability of the method is linked to the speed of sound. This method was applied to a

dam break case with air-water flow and the results were in good agreement with other

numerical methods.

A different approach was followed by Hu and Adams (2006). The density is not affected by

the volumes of neighbouring particles, but only the particle’s own volume. The particles’

specific volume is the primary hydrodynamic variable in this approach, replacing the density

in the new discrete SPH equations proposed. For the viscous term, instead of the artificial

viscosity (Monaghan and Gingold, 1983) an approximation of the inter-particle shear stress is

used. A surface tension term using a colour function is also included.

45

Test cases examined included a capillary wave and a Couette flow. The model appeared to be

in good agreement with both experimental results and analytical solutions even in cases with

large density ratios. The main disadvantage is the complexity of the model. Estimating the

local curvature and the normal to the surface is computationally costly and may lead to errors

when the surface is not well defined, such as a free-surface flow (Tartakovsky et al., 2009,

Morris, 2000). Boundaries could also be a significant issue if the geometry complexity is

increased.

The previous work was followed by the proposition of a model for incompressible fluids (Hu

and Adams, 2007) using the projection formulation similar to those described in section

2.3.4, introducing an intermediate time step for the velocities and the position. These values

are then modified at the full time step to ensure the zero-density-variation and the velocity-

divergence-free condition. For the computations at the interface, averaged hydrodynamic

values leading to von Neumann boundary conditions are used (Cummins and Rudman, 1999).

The incompressible model was improved in 2009, when the authors introduced a constant

density approach (Hu and Adams, 2009) in order to model flows with high density ratios. As

with the previous model complexity, the computational resources needed and the flow at the

free surface are serious issues (Grenier et al., 2009).

Grenier et al. (2009) proposed a model that combines the specific volume approach of Hu

and Adams with the Colagrossi and Landrini scheme. The same equation is used for both

phases and an additional repulsive force is used with the pressure gradient. They also propose

a different density re-initialisation scheme. A surface tension term based on a colour function

and a viscous term (Flekkoy et al., 2000) modified to conserve angular momentum

(Monaghan, 2005) are used. The method is used to simulate an air bubble rising in water and

gravity currents.

Another approach considered was based on a SPH – finite volume hybrid, different to

previous models (Leduc et al., 2009). More specifically, an ALE description with a

conservative form of the Euler equations is used so the inter-particle interaction is a one-

dimensional Riemann problem. If the particles belong to different fluids a correction is used

for the lighter fluid. Two surface tension models were considered: the Continuum Surface

Force (CSF) model (Brackbill et al., 1992) and the Local Laplace Pressure Correction

(LLPC). Results showed that the LLPC model is more accurate, while the CSF model

depends on predicting the curvature of the surface (Rogers et al., 2009).

46

The method was later improved using a preconditioned Riemann solver (Leduc et al., 2010).

The preconditioning was used to treat the artificial diffusion caused by the ALE formulation

in the previous model, especially near the interface. The method was tested with the dam

break test case and the results were improved compared to the previous model, but more

testing is needed.

An approach with an additional repulsion term for the lighter fluid was also proposed by

Monaghan (2011) later improved by Monaghan and Rafiee (2013). The new term substitutes

the artificial viscosity term (Monaghan and Pongracic, 1985) and is dependent on the density

ratio between the fluids. Similar to the methods presented previously (Colagrossi and

Landrini, 2003, Grenier et al., 2009), this algorithm uses a higher speed of sound for the fluid

with the lower density but its actual value is smaller allowing for a larger time step. The

major issue with this approach is its empirical nature and the need for a different

configuration for each problem.

Shao (2012) presented a new method for the treatment of incompressible fluids. In this

approach two methods are proposed, with two different ways of treating the interface. The

first model is coupled; the SPH equations do not separate the fluid phases and in order to treat

the interface, a standard ISPH treatment is used (Shao and Lo, 2003). For the second model,

the fluids are decoupled, meaning that each phase is treated separately and they interact with

each other by exchanging shear stress and pressure.

A combination of an incompressible and a weakly-compressible method was presented by

Lind et al. This approach has been used in air-water flows, where the air is modelled as a

compressible gas, while the water uses an incompressible approach (Lind et al., 2012a, Lind

et al., 2013). To couple these two methods, the incompressible phase provides a velocity

boundary condition while the compressible gas creates a pressure boundary condition for the

liquid. Separate time step sizes are employed in each phase, with the incompressible time step

ten times larger than the compressible one (Lee et al., 2008).

In this study, a gas phase needs to be simulated. In that regard, only the multi-phase models

that are capable of simulating a compressible phase will be considered. A short comparison

of the main multi-phase models for an air-water SPH simulation can be seen in Table 1.

47

Simulation of interfacial

flows (Nugent and Posch,

2000), (Colagrossi and

Landrini, 2003)

+ Successfully simulates violent air-water flows

+ Easy to parallelise on a GPU

- Dependence on empirical parameters

- Very small time step required for stability

Macroscopic and mesoscopic

flows (Hu and Adams, 2006,

2007, 2009)

+ Conserves linear momentum

+ Successfully simulates violent air-water flows

+ Extended to incompressible SPH

- Difficult implementation on a GPU

- Expensive treatment of the free surface

Hamiltonian interface SPH

simulation (Grenier et al.,

2009)

+ Quick convergence

+ Conserves linear momentum

- Difficult implementation on a GPU

- Dependence on empirical parameters

Lagrangian particle model

(Tartakovsky et al., 2009)

+ Easy to parallelise on a GPU

- Dependence on empirical parameters

- Untested for violent flows

Multi-phase flow using

acoustic Riemann solver

(Leduc et al., 2009, 2010)

+ Successfully simulates violent air-water flows

+ Explicit treatment of the free surface

- Requires the creation a Riemann solver

- Difficult implementation on a GPU

Repulsive term model

(Monaghan, 2011, Monaghan

and Rafiee, 2013)

+ Easy to parallelise on a GPU

- Dependence on empirical parameters

- Issues with high density ratios

Combination of WCSPH and

ISPH (Lind et al., 2012a,

2013)

+ Successfully simulates violent air-water flows

+ Accurate modelling of the pressure field

- Requires an incompressible solver

- Difficult implementation on a GPU

Table 1: Comparison of different multi-phase models for an SPH simulation

48

2.5. Parallel Programming

SPH is a modelling method with extremely high computing requirements. This is due to the

large number of calculations needed to simulate the interactions between the particles

(Viccione et al., 2008). Computing power is still not sufficient for SPH simulations to run

quickly, especially when compared to methods such as finite elements or finite volumes.

In order to achieve sufficient accuracy with SPH, a large number of particles is needed

increasing the necessary time for the completion of the simulation. Considering that real

cases need potentially millions of particles to be modelled, the conventional computational

time for such cases can be prohibitive (Crespo et al., 2011a). This locks us in a vicious cycle

where either accuracy or time need to be sacrificed in order to complete the computation.

This is especially true with a multi-phase SPH program. The time step for the lighter fluid

can be significantly smaller than the step for the other phase (Colagrossi and Landrini, 2003).

It will be discussed later in this review, that paradoxically under certain conditions a gas

phase can potentially require a time step that is two orders of magnitude smaller,

exponentially increasing the computational runtime.

Also, when modelling a multi-phase case the number of particles has naturally increased

compared to the single-phase case as an additional area of the domain needs to be modelled.

In certain cases, where multiple spatial scales are present such as coastal engineering

problems (Dominguez et al., 2013a) the particle number can increase multiple times. The

increase is even larger if we are modelling the case in three dimensions as the number of

particles increases, even without changing the resolution.

Therefore, if modelling of large cases is to be possible hardware acceleration is necessary

(Crespo et al., 2011a). In order to overcome the hardware limitations, we can use parallel

computing. In the past, executing the code could only be done in serial sequence, i.e. for an

instruction to be executed, all the previous ones had to have been completed. With parallel

programming, however, program sections are given to separate nodes and executed

simultaneously, significantly reducing the computational cost. Using a parallel approach is

ideal for a Lagrangian method such as SPH. Different nodes can be used to update the values

of different particles in the domain simultaneously.

49

2.5.1. Using High Performance Computing

The first possible step in incorporating some form of parallelism is to fully use the cores and

the memory available in a system. Most computer processors today possess some degree of

parallelism with the system memory available to each core simultaneously, so with parallel

computing the processing power of each core can be assigned to creating multiple threads

executing the code in parallel. The data are then uploaded in the shared memory so they can

be accessed and modified by each thread.

OpenMP (Open Multi-Processing) is a set of compiler directives and library routines that

allow programming languages to take advantage of shared memory architecture (Dagum and

Menon, 1998). In a program using OpenMP there are two different sections, a serial and a

parallel one. The serial code is executed consecutively in a master thread while the parallel

code divides the master thread into a number of slave threads which are then assigned to

different processors. Each thread is executed separately from each other and when the

parallelised code ends, the threads return to the main thread which executes the rest of the

program (synchronisation).

When running an OpenMP code memory can be either shared, meaning that every thread has

access to it, or thread-private. The latter is useful when a thread is changing a specific set of

data (Clark, 1998). Using this method allows for an easy implementation for parallelism in an

existing code but it is functionally limited due to the need for shared memory (Vajda, 2011).

The shared memory can create extensive synchronisation and data overwriting issues when a

large number of processors are accessing it, while flow dependency in the code can render

some parts impossible to execute in parallel (Suess and Leopold, 2008).

The next step to parallelism is to create a massively parallel system by connecting several

processors through a network. This allows us to use thousands of cores and to decrease the

computational time even further. MPI (Message Passing Interface) is a communications

protocol that supports point-to-point as well as collective communication among computers

and has already been used for simulating SPH applications (Rabczuk and Eibl, 2003, Ferrari

et al., 2009, Guo et al., 2013). Each computation consists of a number of processes which are

launched at the beginning. Each process is running separately, running its own copy of the

50

process with access to a local memory. The processes can exchange information by using the

MPI subroutines (Gropp et al., 1994, Guiffaut and Mahdjoubi, 2001).

The logical extension is to interconnect systems with hundreds of thousands of processors

using high speed protocols such as infiniband, creating a supercomputer. They are placed in

close proximity to each other (e.g. in a computer cluster), saving considerable time

transferring data and making it possible for the processors to synchronise their work. Another

approach that is slowly gaining traction is distributed computing, where discrete machines are

connected via a network; each machine executes a number of smaller tasks that are then

uploaded in the network and integrated in the main solution.

It is important to note that the speed-up of the parallelisation is not linear. Using twice as

many processors will not halve the computational time due to limited memory bandwidth as

well as Amdahl’s law, which dictates that the speed-up of a program is dependent on the

portion of the program which can be parallelised (Amdahl, 1967).

While using a massively parallel CPU system will significantly decrease the computational

time, its cost can be prohibitive. Obtaining the processors needed, as well as sufficient space

to store them is extremely expensive. The cost of connecting the machines and their

maintenance costs, especially the energy and the cooling required are also quite significant

(McIntosh-Smith et al., 2012).

Another limiting factor is the interaction among the computers. Even if they are connected

with the largest bandwidth possible (which naturally increases the cost), the communications

with each other as well as the memory create limits to the speed of the computation. Indeed,

modern processors can usually compute data faster than they can be transferred, while there

is also the matter of synchronisation.

Creating a massively parallel CPU cluster, while effective, is a costly investment with large

energy requirements. For this reason, the Graphic Processing Units (GPUs) have recently

emerged as an alternative viable programming medium. They have a massively parallel

architecture, which is highly suitable for a Lagrangian method.

2.5.2. Using Graphics Processing Units for Hardware Acceleration

GPUs are specialised hardware designed to process large quantities of data to be displayed on

computer screens in real time. Primarily used for video games and image processing

51

applications, their massively parallel architecture means they have emerged as an attractive

tool for scientific computing. Along with dedicated programming language framework, such

as CUDA (Compute Unified Device Architecture) and OpenCL (Open Computing

Language), general purpose graphics processing units (GPGPUs) have recently emerged as a

viable alternative to HPC due to lower purchase and maintenance costs (Herault et al., 2010).

The unique architecture of GPUs makes them particularly suitable for computationally

intensive simulations using Lagrangian methods such as SPH. The large number of multi-

processors on a GPU enables speed-ups close to two orders of magnitude compared to a

single CPU code (Crespo et al., 2011a). A problem with GPUs is that they are not as suitable

for data-intensive applications. The data must fit on the memory of the GPU which has

currently, on the high-end cards, an upper value of 6GB which is much smaller than the CPU

RAM (as well as more expensive) and cannot be upgraded.

A major breakthrough in the use of GPUs as a computing tool came in 2007 with the release

of the CUDA programming language. Developed by nVidia, CUDA did not use rendering

operations to model mathematical equations but functioned as an extension to the C/C++

language handling the communication and data transfer from the CPU to the GPU and vice

versa. The open industry standard OpenCL, which was released in late 2008, also followed

this approach.

However, at present OpenCL is less suitable for scientific programming as CUDA is a better

optimised and developed choice to further reduce the computational time. Moreover, a large

number of libraries and algorithms have been ported to CUDA, while third-party wrappers

for other programming languages have been released allowing for greater flexibility.

Therefore, this project uses the CUDA language as a means of communication between the

CPU and GPU.

2.6. GPU Acceleration with SPH

2.6.1. Texture rendering

The first work on using GPUs to accelerate SPH was performed by Amada et al. (2004).

Their program was developed before the release of CUDA and OpenCL, so they used the

OpenGL texture rendering approach. Their program was not coded exclusively on the GPU;

52

the initialisation of the variables as well as the creation of a neighbour map of the particles

took place on the CPU and were transferred to the GPU.

In order to transfer the neighbour map on the GPU, a texture map structure was used which

also contained the attributes of each particle. The SPH equations are then executed on the

GPU by using this texture map as a reference. In order to handle the particle collision, they

also created a triangle mesh using the attribute and boundary texture.

Simulations were conducted using the CPU-GPU approach and were compared to a CPU-

only approach. The GPU was in general about 2 times faster than the CPU. A small number

of particles were however used for their simulations and a larger speed-up was expected

when the particle resolution is increased. Speed-up can also be increased if a larger portion of

the program was parallelised and sent to the GPU.

The next simulation on a GPU was by Kolb and Cuntz (2005). They also used texture

mapping in order to store the necessary data for the computation. Unlike the previous work

however, the whole computation is performed on the GPU. The CPU was only used for

loading and storing the variables.

In order to map the particles 5 texture arrays were created with two of the arrays used to map

the velocities and two more for the particle position. The last array stored the particle

constants. The authors found that the output and input arrays for the computation should be

different, so for the position and velocities one array was acting as input and the other as

output with their role reversed in each time step.

The authors also performed a three dimensional simulation using the texture rendering of the

graphics card. The texture output in this graphics was two dimensional so the authors divided

the three dimensional computation into a series of two dimensional slices. Communication

among the slices was performed using a trilinear approximation scheme, which introduced an

interpolation error in the computation.

The first major computation on SPH using GPUs was performed by Harada et al. in 2007,

shortly before the CUDA compiler was released (Harada et al., 2007b, Harada et al., 2007a).

They used the texture format to store the particle attributes, constructing the data texture

exclusively in the GPU. Hence, the memory transfer to the CPU which would significantly

slow down the computation was avoided. In their simulation, great attention was given in

producing the same computational burden for each processor. For this reason, the

53

computation region is divided in slices, which have one dimension less than the domain. A

dynamic grid was then developed for locating the particles, which the authors found to be the

most efficient way to use memory.

The authors performed computations with different particle numbers and found that the GPU

had a consistently lower runtime than the CPU. They found that as the particle spacing is

decreasing the discrepancy between the two versions is increasing. It was also shown that

dynamic allocation of the particles is more computationally efficient than a rigid grid for a

sliced data structure and large particle numbers.

Figure 2.2:Comparison of construction times of the sliced data structure in the CPU and the GPU (Harada et al.,

2007a)

In the latter model, Harada et al. used a three-dimensional grid for the creation of a neighbour

list, reducing the cost of searching for neighbouring particles. Since GPUs use a 2-D texture,

the neighbour list was again divided into a series of slices placed in texture memory. Data

was exclusively stored in the GPU memory to speed up the computation. With these

improvements, Harada et al. reported that the computation on the GPU was 28 times faster

than the computation on the CPU for 260,000 particles (Harada et al., 2007b).

2.6.2. CUDA Programming Extension

The release of the CUDA compiler made GPU simulations much easier, offering a greater

chance to improve the computational speed. Crespo et al. (2009) and Hérault et al. (2010)

presented a comparison of a GPU with a CPU code. In order to take advantage of the CUDA

architecture and optimise the program the authors followed these guidelines:

54

 The use of memory is optimised, by loading data from the shared GPU memory

instead of the global memory whenever possible.

 The data transfers to and from the CPU are minimised.

 Only the variables necessary for solving the equations are copied to the GPU memory.

 Variables are stored sequentially, reducing the number of transfers.

 Constants are saved in a subset of the global memory called constant memory, where

the access is faster.

The computation of a logical function in a GPU is much slower than a numerical function.

Therefore, an effort to eliminate these functions and replace them with equivalent numerical

statements was made. Extensive use of reduction operations to reduce the number and the

size of the variables was also being performed.

Crespo et al. (2009)compared several versions of the GPU code with a CPU only approach

and found that between the fastest versions of the code the GPU had a speed-up of about 11-

12. The use of a neighbour list also increased the computational time considerably in both

approaches. A large cause of slowdown for the GPU code was the copying of the memory

between the host and the GPU device.

Hérault et al. (2010) developed an SPH program using the CUDA programming language,

called GPU-SPH, by developing the existing SPHysics code. They also found that in order to

have the highest performance on GPUs, data stored in the shared memory must be maximised

and the calls to the global memory must be minimised. They also found that the position of

data in the memory had an effect on the performance. Storing data required by the same

processor in memory addresses close together offered a better performance.

Access to the global memory has a latency compared to the share memory. In order to

minimise this latency and prevent the threads from remaining idle, each thread processes only

one particle and the functions are designed to perform independent numerical instructions

while waiting for the memory access to be completed. Conditional instructions were also

minimised, not only in order to improve the performance, but also to avoid overwriting data

due to the lack of synchronisation of the processors (Herault et al., 2010).

Running the code on several GPUs reveals that the neighbour list as well as the time step is

greatly dependent on the memory, since performing the mathematical arguments requires the

loading of particle data from the memory. In every case, the GPU code shows an

55

improvement in performance over the CPU code. However, the compared CPU code is not

optimised and the GPU speed-up gained is expected to be reduced by half when the CPU

code is optimised.

Oger et al. (2010) proposed the acceleration of an existing parallel CPU code by translating a

part of it to GPU code. This strategy means that the overall speed-up will be limited by

Amdahl’s law (Amdahl, 1967). To prevent data access conflicts and to reduce the possibility

of computational errors, the authors also proposed that each thread will compute only one

particle. They note however, that this method may cause latency due to the discontinuous

memory access.

The authors implemented a method for particle sorting based on Peano-Hilbert space filling

curves. They will allow the projection of the multi-dimensional data to a one-dimensional

curve, which will give the most efficient positioning of the particle data in the memory, so

that the access latency is minimised.

The hybrid scheme proposed by Oger et al. is focused on the interaction among particles and

specifically at the momentum and continuity equations since it is the main cost of the

computation. This part of the code is sent to the GPU connected to the CPU with CUDA

memory directives avoiding the need to rewrite CPU code, while the CPUs themselves

communicate using parallel directives (Oger et al., 2010). Each CPU can host a different

GPU allowing for the use of multiple GPUs in a single computation.

The authors tested the SPHERIC dam break benchmark and found that for a single precision

code with 155,000 particles, the speed-up achieved is 1.86 (Oger et al., 2010). For the double

precision code the speed-up is reduced and is equal to 1.1 overall. These results clearly show

that in order for the speed-up to be important the entire code needs to be translated to the

GPU.

Following upon their previous work, Crespo et al. (2010) presented a dual CPU-GPU code,

DualSPHysics, which is based on the existing SPHysics code. This code can be run as a

CPU-only code or as a GPU code controlled by a CPU part using both C++ and CUDA to

merge the implementation of the CPU and the GPU code. Parts of the code are shared

between the two versions making it easier to compare the computational time.

The authors used a dynamic memory system to create the neighbour list and optimise the data

transfer and also found that the format of the output files affects the computation. For one

56

million particles setting the output format to binary files instead of ASCII will give a 20%

increase in computational runtime.

This code is currently being improved (Crespo et al., 2011a, Crespo et al., 2011b). A cell-

linked system has been introduced as well as a reduction algorithm for the calculation of the

new time step. The radix sort algorithm for CUDA is used for the creation of the neighbour

list (Dominguez et al., 2011). The DualSPHysics code will be analysed further in the next

chapter.

As mentioned before the entire particle data set needs to be loaded to the GPU memory

because loading main computer RAM is one or two orders of magnitude slower. Valdez-

Balderas et al. (2011) have proposed a massively parallel SPH scheme that will allow the use

of multiple GPUs in a SPH computation.

Figure 2.3:Illustration of a multi-GPU system with two nodes, each of them hosting two GPUs (Valdez-Balderas et al.,

2011)

The scheme proposed is based on the DualSPHysics code, which is extended with MPI

directives and a ‘volume domain decomposition scheme’ in order to allow communication

among the GPUs as illustrated in Figure 2.3. A different portion of the computational domain

is assigned to each GPU which then analyses every particle in its domain. This approach is

different to that of Oger et al. (2010) in that a more low-level approach is being used since

the program is written in CUDA instead of applying directives to the GPU.

At each time step, particle data needs to be exchanged between the different GPUs. Similar to

other parallel SPH implementations each sub-domain has a ‘halo’, an area within 2h distance

from the neighbouring sub-domain boundary (Valdez-Balderas et al., 2011). To update the

57

particles in the sub-domain area, the radix sort algorithm is used. When looking at the results,

the authors found that the cost of the CPU communication is the main cause of latency and is

naturally increasing as the number of nodes is increasing.

The MPI-CUDA code has recently been improved and simulations at a large scale have been

possible. Dominguez et al. (2013a) presented a simulation of an oil rig with over a billion

particles. The simulation was possible due to the introduction of dynamic load balancing

(Dominguez et al., 2013b) in the code and the improvement of the communication and data

exchange among the CPU and GPU systems.

2.7. Applications

2.7.1. General Application

Using a multi-phase model represents a significant investment of computational resources

and a large number of alterations to the code, in addition to its need for parallel programming

and hardware acceleration. To justify its use over the single-phase model, it needs to be

applied to natural and industrial flows that involve significant interactions between the two

phases, whether that are mixing, air entrainment or simply the alterations in the pressure and

density field occurring by the interactions.

For natural flows, interactions between the water and the air occur in any water body. Most of

these interactions such as standing waves occur for very low velocities, where the air phase

does not affect the water significantly and can therefore be modelled with a single-phase

model. If the velocities however increase and the interaction becomes violent, the air phase

has a significant role in the flow evolution (Grenier et al., 2009).

2.7.2. Breaking Waves

A wave reaching a critical point in its amplitude and subsequently transforming large

amounts of wave energy in turbulent kinetic energy is called a breaking wave. Four types of

breaking waves exist (Wiegel, 1992): spilling, plunging collapsing and surging breakers.

Breaking waves can occur in any body of water and in any position as long as the wave

amplitude is sufficient. They mostly appear in shallow water areas such as beaches as their

amplitude increases because of the interaction with the ocean floor (Peregrine, 1967). They

are highly non-linear phenomena and finding an analytical solution is possible only for

idealised conditions (Lin et al., 1999).

58

All breaking waves include some degree of mixing with the air phase. Visually, this is

indicated by the appearance of foam, which is formed by trapped air pockets inside the water

flow. The least mixing occurs in the surging waves, while the plunging breakers and to a

lesser degree the collapsing breakers can trap large pockets of air when the crest falls

forward. The entrained air can remain inside the water flow for a considerable amount of

time.

2.7.3. Wave Impact and Overtopping

The main reason for modelling breaking waves is their interaction with the shoreline and the

offshore structures. When reaching the shore the still water level is increased. The vertical

increase is called the wave run-up and determines the area that is affected by the wave

(Kobayashi, 1997). The prediction of the run-up is essential for predicting sediment transport

and preventing shore erosion (Masselink and Puleo, 2006). For this study however, the most

interesting aspect of the run-up is the interaction with - and the potential overtopping - of

coastal structures.

 Overtopping over coastal structures can cause serious property damage as well as endanger

human lives. It is a very complex turbulent flow involving numerous phenomena including

wave shoaling and wave breaking. Reflected waves and the onshore wind conditions may

also have an effect (Hu et al., 2000). Experimental results are limited to flume experiments

which cannot cover the full range of the phenomenon, so research has focused on numerical

models (Titov and Synolakis, 1998, Hubbard and Dodd, 2002).

SPH is a potentially powerful tool for simulating structure overtopping due to its ability to

track the free surface, while it can deal with vorticity and turbulence (Dalrymple and Rogers,

2006). The multi-phase model can be used to further enhance the accuracy of the simulation

by taking into account the influence of the wind conditions and, in the case of breaking

waves, predict the effect of air entrapment.

Overtopping is not only an issue for coastal structures but for ships and offshore installations

as well. If the height of the waves is large enough the water can flow on the deck damaging

equipment and endangering the crew. The phenomenon is named green water loading

(Buchner, 1996). Using a single-phase SPH simulation (Gomez-Gesteira and Dalrymple,

2004) and (Dalrymple and Rogers, 2006) have modelled the overtopping of a flat plate.

59

Another aspect of the wave-structure interaction is the impact force of the wave on the

structure, particularly important when designing coastal defence structures. The effect can be

modelled in a laboratory, however, the flow becomes especially complex when the air is

mixed with the water flow (Peregrine and Thais, 1996). The air is of particular importance

because of its compressibility. At small scales, the air phase has relatively little compression

while in large-scale application the pressure can reach several atmospheres, causing major

reductions in the entrained air volumes (Bullock et al., 2004).

Numerical methods have been widely used to simulate the impact force, including SPH

(Gomez-Gesteira and Dalrymple, 2004, Crespo et al., 2011a). The air phase has been

simulated mainly using the VOF method to track the free surface (Wemmenhove, 2008) or a

pressure-impulse model (Wood et al., 2000). The research field is not saturated; a massively

parallel application of a meshless multi-phase model will facilitate a simulation with high

resolution while treating the air as a compressible fluid allowing for the complex phenomena

present to be represented numerically.

The impact force greatly affects offshore structures since they are constantly subjected to

waves impacting on the supporting structure. The impact depends on the weather on this

location and it can be particularly high in cases such as storms (Kleefsman et al., 2005). The

structures are in fact designed on the principle of the hundred-year wave, a statistically

created wave which may appear at a certain location once per century (Holthuijsen, 2007).

The concern for the offshore structures does not only apply to instantaneous impact but also

to the fatigue from the oscillatory load by the ocean waves (Wirsching, 1984).

However, the greatest impact forces and the greatest property damages occur by the tsunami

waves. Tsunamis are earthquake-generated sea waves that, when propagating near the

shoreline, display significant height increase due to the offshore bathymetry. The resulting

wave can travel inland for significant distances causing great material damage and potentially

endangering human lives. Research focus has been shifted to predicting their run-up near the

shore in order to more effectively design appropriate coastal defences and mitigate potential

damage (Li and Raichlen, 2002).

An interesting phenomenon appearing in breaking waves that can also potentially generate

large pressures, albeit only in a local scale, is the flip-through. The wave is impacting at a

vertical wall but the air is not necessarily trapped (Lugni et al., 2006). The phenomenon is

characterised by a rapid rise in the water level near the wall; a vertical jet is being formed and

60

is rising upwards with such speed that prevents the face of the wave from impacting with the

wall directly (Peregrine and Cooker, 1990, Bredmose et al., 2010). Despite the lack of direct

impact the resulting flow can create high pressures in the wall region with accelerations up to

2000g (Peregrine and Cooker, 1990).

2.7.4. Industrial Applications Including Sloshing

Violent air-water flows do not only appear in large-scale flows occurring at large water

bodies such as the ocean. They are a common occurrence in any flow involving air and water

regardless of their volumes. They are also present in several industrial applications, including

the flow inside half-filled tanks and pipes and mixed air-water flows.

Sloshing refers to the movement of a liquid inside another object, which is also under motion.

The slosh is affected by the depth of the liquid in the vessel, as well as the size of the vessel

and the type of movement it is subjected to. The sloshing effect changes the weight

distribution of the liquid and the forces exerted on the wall. This case has several applications

in modern engineering including ships and trucks transporting liquids (oil and gasoline in

particular) (Faltinsen et al., 2000) as well as aircraft and spacecraft tanks (Reyhanoglu,

2003). At a smaller scale, sloshing effects are present in every fuel tank found in an

automobile.

Of particular interest is also the gas–liquid flow inside a pipe. The form this flow takes

depends on a number of different parameters, such as flow velocity and temperature, the

buoyancy of the gas bubbles and the shape and alignment of the pipe (Nicklin, 1962). The

flow can be however categorised using different flow patterns depending on whether the pipe

is vertical or horizontal (Hewitt, 1982).

Regardless of the size of the gas bubbles, in vertical flows, the mixing between the two

phases is significant and the liquid flow can be either continuous or discontinuous. For

horizontal pipes separation of the flow is greater due to the effect of the gravity but mixing

can still occur depending on the velocity of the flow (Hewitt, 1982).

As a method, SPH is capable of simulating a bubble flow (Colagrossi and Landrini, 2003).

However, any flow involving bubbles is a surface tension dominated problem. In order to

predict correctly bubble separation and continue the simulation for a significant length of

time, the use of an additional surface tension model is necessary (Rogers et al., 2009). Such

models have already been developed, including a model simulating the surface force

61

(Brackbill et al., 1992), a colour function (Morris, 2000) and an acoustic

Riemann solver (Leduc et al., 2010).

Another process involving significant mixing of air and water flows is aeration. It is achieved

by passing the air through the liquid via a diffuser or passing the liquid through air via

fountains or cascades. Aeration is primarily used for treating industrial wastewater or

increasing the amount of oxygen in the water (Bin, 1993). It is also used for producing

smooth flows in faucets and aerated drinks. Creation of the latter is a very complicated

process involving the infusion of the liquid with carbon dioxide and resulting in a bubble

flow.

2.8. Concluding Remarks

This study will use the SPH formulation in order to simulate violent free-surface flows. Its

meshless and Lagrangian nature make it ideal for nonlinear and violent cases as the free

surface can be treated using only simple correction algorithms. The aim is to use the multi-

phase formulation in order to simulate air-water flows in various fields such as coastal and

nuclear engineering. Sufficient research has also been performed for multi-phase flows,

allowing us to treat the density difference between the two fluids. Understanding the

interactions between the different fluids is essential for these cases which include a diverse

range of applications such as overturning waves and potentially explosive multi-phase pipe

flow.

Successfully simulating these high-order phenomena requires an enormous number of

particles, especially when using a multi-phase model. In order to simulate these particles the

use of some form of parallel implementation of the program is necessary. This study will use

GPUs as a tool for improving performance as they have proven to be as effective as

massively parallel computer clusters, while being more cost-effective. Implementation on the

GPU will be performed using the CUDA programming framework as it is currently the most

developed and mature method as well as having been used extensively with SPH.

62

3. SPH Methodology

3.1. Introduction

The aim of the present chapter is to present the basic SPH methodology and models used in

this study. The chapter will focus on the classical and the weakly compressible SPH

formulation as well as the improvements and algorithms used in this study including the

shifting algorithm. Special attention will be given to the model chosen for the simulation of

interfacial flows (Colagrossi and Landrini, 2003).

3.2. General Principles

3.2.1. Interpolation

SPH is a Lagrangian method that does not require a mesh or a grid. The material is

represented by local quantities at discrete Lagrangian locations, called particles. The

simulation is advanced in time by computing the new position and properties of the particles

using a time integration scheme. This can be applied to both fluids and solids.

The basis of the SPH formulation is an integral interpolation (Lucy, 1977, Gingold and

Monaghan, 1977) of a function A(r) defined over the domain Ω. The value of the function A

is given at point r using a convolution product where the summation is obtained over the

domain Ω:

Ω

ε ΩAδA d)()()(rrrr . (3.1)

In Equation (3.1) dΩ is a differential volume element and δε is the Dirac function with an

infinitesimally narrow region ε:

2/

2/2/

2/

0

/1

0

lim)(
0

εx

εxε

εx

εxδ
ε

ε

 .

(3.2)

However, the Dirac delta function is infinitesimally narrow so it cannot be used in a

computation. SPH approximates the delta function with the smoothing kernel W, another

weighting function that approximates the delta function. The smoothing kernel depends on

two quantities:

63

 The interpolation distance (distance between the particles)

 The smoothing length h, which is a characteristic length representing the extent of the

kernel support and is linked to the distance between the particles. It is usually a

constant but approaches using variable smoothing length have been developed

(Gingold and Monaghan, 1982, Price and Monaghan, 2004). The radius of influence

of the kernel is commonly twice the smoothing length to preserve the numerical

stability of the method (Balsara, 1995). An example can be seen in Figure 3.1.

Figure 3.1: Smoothing kernel example

The SPH interpolation, now signified by the parentheses, becomes:

Ω

ΩAWA d)()()(rrrr . (3.3)

It can be discretely approximated with a summation:

N

j j

j

jjii
ρ

m
AhWA

1

)(),()(rrrr , (3.4)

where N is the number of particles within the kernel limits, j denotes a neighbouring particle

while i signifies the particle where the interpolation is centred. The volume element dΩ is

essentially the volume of each particle and is replaced by the mass-density ratio. The new

value of function A at the point ri can be computed by the weighted summation of the

adjacent points. The equation can be rewritten as follows:

j j

j

jiji
ρ

m
AWA , (3.5)

2h

Radius

of influence

SPH

Particles

r

64

where the subscript i or j denotes a value at the point occupied by the corresponding particle

and:

),(hWW jiij rr . (3.6)

Based on Equation (3.4) we can find the formula directly for a gradient:

ijij

N

j j

j

i WA
ρ

m
A

)()(
1

rr

,

(3.7)

where the term ijiW denotes the gradient of the smoothing kernel with respect to the

coordinates of particle i:

ij

iii

iji W
zyx

W

 kji , (3.8)

where i, j and k are unit vectors in their coordinate directions. However, using Equation (3.7)

for a function A will give a non-zero answer for the gradient, leading to significant errors

(Monaghan, 1992). For that reason, we can use the following mathematical identity to

compute the SPH gradient:

ρAAρAρ)(. (3.9)

This identity leads to the following formulation for the SPH gradient:

N

j

ijiij

j

j

i WAA
ρ

m
A

1
. (3.10)

When modelling the forces between the particles neither the first, nor the second formula

discussed in Equations (3.7) and (3.10) give an equal and opposite reaction (Monaghan,

1992). To create a gradient with these attributes the following identity can be used:

ρ
ρ

A

ρ

A

ρ

A

2

)(. (3.11)

This identity leads to the following formulation for the SPH gradient:

65

N

j

iji

j

i

j

j

ji W
ρ

A

ρ

A
mA

1
22 . (3.12)

The error of the integral interpolation can be found using a Taylor series expansion function

A(r΄) around r (Monaghan, 1992) the first two terms of which are displayed here:

 2
)()()()(rrrrrrr OAAA . (3.13)

For the last term, the second-order truncation error, the order of the distance between

positions r and r΄ is generally similar to the order of the smoothing length h. If we use the

SPH interpolation in Equation (3.13) we can derive:

 2d),()()(d),()()(hOΩhWAΩhWAA
ΩΩ

 rrrrrrrrr . (3.14)

The smoothing kernel is an even function with respect to r and therefore, the

),()(hW rrrr is an odd function (Liu and Liu, 2003), making the second term equal to

zero. Moreover, due to the kernel properties, which will be described in the next section, the

first integral is equal to unity, leading us to:

 2)()(hOAA rr . (3.15)

We can then see that the basic SPH interpolation is at least second-order accurate. This result

assumes that the integrals can be applied to the entire volume specified by the smoothing

length. Near the boundary this does not apply, leading to reduced accuracy and possible

numerical instabilities.

3.2.2. The Smoothing Kernel

The smoothing kernel is a function that needs to be chosen by the user. The kernel must tend

to the delta function as the smoothing length approaches zero:

)(),(lim
0

rrrr

δhW
h . (3.16)

The kernel function should also be symmetric and equal to zero outside of its sphere of

influence (which commonly of radius ±2h). It must be a differentiable function with a

continuous derivative, with its integral in the interpolation region Ω being unity:

66

Ω

ΩW 1d)(rr . (3.17)

There are several functions that fulfil these requirements. To ensure that the kernel integral is

equal to unity, a normalisation factor αD which differs depending on domain dimensions is

used. The kernel is written using a non-dimensional variable q which is the particle distance

over the smoothing length. The formulation, expressed along a single dimension, is:

h

rr
q

 . (3.18)

Some common kernel choices include:

 Gaussian kernel, which is a very stable function even for high orders of derivatives

(Liu and Liu, 2003), but is very expensive computationally as it is an infinite series:

3Dfor /1

2Dfor /1

1Dfor /1

 where),(
3

22

hπ

hπ

πh

αeαhrW D

q

D . (3.19)

 the Schoenberg (1946) family of splines, which are piece-wise polynomials that

approximate the Gaussian kernel instead of the Dirac function making them

computationally cheap. There are several polynomials of different orders but the most

commonly used is the cubic spline (Monaghan, 2005) although recently the quintic

spline has also been used e.g. (Lind et al., 2012b). The equation for the cubic spline

is:

3Dfor /1

2Dfor 7/10

1Dfor 3/2

 where

2q1 2
4

1

 10
4

3

2

3
1

),(
3

2

3

32

hπ

hπ

h

α

q

qqq
αhrW DD . (3.20)

 Quadratic kernel, which is a low-order polynomial and therefore computationally

cheap. It has no extremum on its gradient, but has reduced accuracy because of its low

order.

67

3Dfor 4/5

2Dfor /2

1Dfor 4/3

 where
4

3

4

3

16

3
),(

3

22

hπ

hπ

h

αqqαhrW DD . (3.21)

 Wendland (1995) quintic kernel, which has high order and can capture higher-order

effects with improved accuracy, but is computationally expensive due to its high

order. The equation is:

 3Dfor 8/7

2Dfor 4/7

1Dfor 4/3

 where12
2

1),(
3

2

4

hπ

hπ

h

αq
q

αhrW DD

 . (3.22)

For this project it is necessary to capture the more complex phenomena, such as overturning

wave fronts so the use of a high-order kernel is necessary. The quintic kernels (spline and

Wendland) offer a good middle ground between accuracy and required computational

resources. Of these two 5
th

 order kernels, the Wendland kernel will be used for this study

since the quintic spline is a piece-wise polynomial and therefore less suitable for GPU

programming as it will be explained in Chapter 4.

3.2.3. The Navier-Stokes Equations

In this study air-water flows are investigated. These flows are composed solely by fluids so

they can be described by the Navier-Stokes (NS) equations. The equations expressing

conservation of mass and momentum are given by:

u ρ
t

ρ

d

d
, (3.23)

 ug
u

11

d

d
 oρν

ρ
p

ρt
, (3.24)

u
ρ

p

t

e

d

d
,

(3.25)

where ρ is density, o is laminar viscosity, u is velocity, p is pressure, g signifies the external

forces, e is energy and t is time. Body forces apart from gravity are not present, while in the

energy equation only the changes in the thermal energy due to pressure differences are taken

into account. Equations (3.23), (3.24) and (3.25) are the Navier-Stokes equations.

Using Equation (3.5) and substituting the function A with the density ρ it is possible to

approximate the particle density (Monaghan, 1992):

68

j

ijji Wmρ . (3.26)

The SPH interpolation of the velocity gradient can be derived by using Equation (3.10)

leading to the SPH version of the continuity equation:

N

j

ijijij Wm
t

ρ

1d

d
uu . (3.27)

Equation (3.27) is a difference formula that can correctly give the gradient of a constant field.

It does not, however, ensure the incompressibility of the flow as the velocity divergence only

approaches zero (Issa, 2005).

However, using Equation (3.10) for the momentum would not give an equal and opposite

reaction between each set of particles and therefore would not conserve angular and linear

momentum. The SPH gradient presented in Equation (3.12) will be used instead:

g
u

N

j

iji

j

i

j

j

j W
ρ

p

ρ

p
m

t 1
22d

d
. (3.28)

Solving the energy equation is done in a similar way to the momentum to give:

N

j

ijiij

j

i

j

j

j W
ρ

p

ρ

p
m

t

e

1
22d

d
u . (3.29)

In the present study, the flows being simulated are adiabatic and no change of temperature

occurs inside the system. Therefore, the energy equation is not needed for the simulation and

will not be used in this study.

Particles can be moved by simply using:

i
i

t
u

r

d

d
. (3.30)

Equations (3.27) and (3.28) are the classical SPH formulation used to solve the flow

problems. To solve them however, one more condition needs to be satisfied: the mass of all

particles within the system should remain constant:

69

0
d

d

t

mi

. (3.31)

3.3. Additional models for free-surface flow

3.3.1. Pressure Computation

In order to close the SPH system presented earlier, an equation linking the pressure and the

density is necessary. This is called an equation of state and can include either an algebraic or

a differential formulation and differs depending on the phase of the material. For liquids and

more specifically water there is a choice of 3 possible solutions:

a. Tait’s equation of state adapted for fluid dynamics (Batchelor, 1967):

 1

0

0

2
γ

is
i

ρ

ρ

γ

ρc
p ,

(3.32)

where ρ0 is the reference density (for example in cases involving water in atmospheric

conditions, we assume the reference conditions for temperature at 298K and density

equal to 1000 kg/m
3
) cs is the speed of sound when the liquid density is equal to the

reference density and γ is the polytropic index, depending on the material (7 for

water). The subtraction of unity in the equation can remove the boundary effect for

free-surface flows (Liu and Liu, 2003).

The large value of the polytropic index in fluids leads to a very sensitive formulation

where small density variations can lead to large pressure fluctuations, regardless of

the properties of the fluid. The compressibility of the equation depends on the speed

of sound. Density variations are on the order of the Mach number squared

(Monaghan, 1994):

2

2

2

max

0

~ M
c

u

ρ

ρΔ

s

 .
(3.33)

Hence, by keeping the Mach number in the region of 0-0.1, compressibility effects are

on the order of 1% or less. As it will be shown on the next section however, the speed

of sound is directly linked to the time step; using the actual value will result in a

minuscule time step unsuitable for simulations. Hence, considering the balance

between the size of the time step and the desirable incompressibility of the fluid, the

70

speed of sound is selected relative to the maximum fluid velocity so that the density

variations are kept below 1%.

b. A second option is a compressible equation of state, first introduced in SPH by

(Morris et al., 1997):

 0

2 ρρcp isi . (3.34)

This equation lacks the high order polynomial present in Tait’s equation and is, as a

result computationally faster and without the large pressure fluctuations. However, the

fluid has a more compressible behaviour and the same restrictions apply to the speed

of sound; increase of its value leads to a prohibitively small time step. Morris et al.

(1997) propose a speed of sound value that allows for a density variation of 3%. The

speed of sound should also be of the same order as the largest of the following factors:

δ

FL

δL

Vν

δ

V
cs

00

2
2 ,,~ , (3.35)

where δ is the density variation, ν0 is the kinematic viscosity, V and L are velocity and

length scales respectively and F is a body force per unit mass. The first factor

corresponds to the one used in Tait’s equation while the other two represent the

viscous and body forces respectively.

c. The last option is to use a differential equation to ensure incompressibility, the

pressure Poisson equation (PPE) (Lind et al., 2012b):

*

Δ

11
i

i
t

p
ρ

u

 (3.36)

where *u is an intermediate velocity obtained by advancing the solution over one

time-step but ignoring the pressure. This is the equation used in incompressible SPH

(ISPH) as it enforces the incompressibility of the fluid. Solving an SPH system with

the Poisson equation requires different methodology such as the projection method

(Cummins and Rudman, 1999) and is computationally very expensive. For free-

surface flows, issues that lead to flow instabilities have been reported and a correction

71

is needed for this equation to be used in such a case (Lind et al., 2012b, Khayyer et

al., 2008).

From the three solutions to link the density and pressure, the first one (Tait’s equation) will

be selected for use in the present study, despite the large pressure variations. Ensuring the

incompressibility of the water phase is essential in this study due to its interaction with the air

which is a compressible phase. Therefore, Morris’ equation, which allows for some

compressibility in the liquid phase, cannot be used.

The Poisson equation would be suitable for these cases but the computational cost associated

with discretising and solving an additional differential equation is prohibitive. There are also

issues with the parallelisation of its discretised form due to the second order derivative;

achieving an efficient algorithm with a massively parallel GPU system is something that, to

the author’s knowledge has not been investigated before.

Apart from water, in this study the modelling of air is necessary. For gases the basic equation

of state is the ideal gas law:

iii eγρp)1((3.37)

where ρ is density, p is pressure, e is the thermal energy and γ is the polytropic index,

depending on the material (1.4 for air). Simulating a system using the ideal gas law would

then require solving the energy equation. There are several other possible formulations for

gases depending on their temperature and state such as the Van der Waals equation of state:

 im

m

i RTβV
V

α
p

2
 (3.38)

where Vm is molar volume, R is the universal gas constant and T is the temperature. The

substance-specific constants α and β can be calculated from the material properties at the

critical point. However, the gas used in the cases studied is air in atmospheric conditions with

no minimal change in its temperature. Therefore, approximating it as an ideal gas would be

sufficient. It has already been used as a basis for a multi-phase SPH model by Tartakovsky et

al. (2009).

However, to avoid solving the energy equation, Colagrossi and Landrini (2003) have

proposed the use of Tait’s equation of state for the air phase. As it will be explained in the

72

next section with more details, using different speed of sounds and a correction term it is

possible to model air-water interaction without solving the energy equation.

3.3.2. Density filtering

Using Tait’s equation of state, the pressure results have significant amounts of noise due to

the reliance on the polytropic index which has large values for liquids. To solve this problem,

density filtering is used where the density is re-initialised every few time steps (usually in the

order of fifty). The correction happens using either a zeroth or a first order filter. The

frequency of filtering needs to be carefully considered; applying it too frequently will

eliminate the time evolution of the density.

A zeroth order filter, also called the Shepard filter, is a quick correction of the density field

that is constantly applied every few time steps throughout the computation (Shepard, 1968):

j

ijj

new

i Wρρ
~

(3.39)

where the zeroth order correction is:

j j

j

ij

ij

ij

ρ

m
W

W
W
~

(3.40)

The other option is to use a Moving Least Squares (MLS) scheme which is a first order

correction that accurately reproduces the linear variation of the density field (Lancaster and

Salkauskas, 1981).

Using the MLS filter requires inverting a 4x4 matrix for 3D (or a 3x3 matrix for 2D) for each

fluid particle in the domain (Colagrossi and Landrini, 2003). This is a significant

computational expense, especially since this procedure needs to be applied every few time

steps. For that reason we will use the zeroth-order correction, the Shepard filter, which is a

faster technique producing adequately accurate results.

3.3.3. Viscous Term

The momentum equation has so far been treated only in its inviscid form. To take the viscous

term into account, an artificial term was proposed in order to model the effects (Monaghan

and Gingold, 1983, Monaghan and Pongracic, 1985):

73

0

0

 0

jiji

jiji

ij

ijijij

ij ρ

βμμca

Π
rruu

rruu
 (3.41)

where ijρ and ijc are the mean value of the density and the speed of sound between particles i

and j respectively and α, β, and μij are parameters. The first two are empirical and depend on

the case, while the latter one is given by the equation:

22 01.0 hr

h
μ

ij

ijij

ij

ru
 (3.42)

In fluid dynamics the parameter β is usually not taken into account (Monaghan, 1992). This

model has been used extensively in SPH for problems with low to medium Mach numbers

(Monaghan, 2005). For high Mach numbers a different form of the viscosity was proposed

based on the first dissipative term in shock simulations from Riemann solvers:

2

 ,
ji

ij

ijij

ijijsig

ij

ρρ
ρ

ρ

Ku
Π

r

ru

(3.43)

where K is a parameter (with a value of approximately 0.5) and usig is a signal velocity given

by the following equation:

ij

ij

r

r
u ijsjsisig βccu

(3.44)

This viscosity was tested for the dam break case studied in Chapter 5, but it was found that it

significantly restricts the movement of particles in cases without high Mach numbers,

simulating water as a more viscous fluid. In addition, an issue may arise with the equation of

state where the speed of sound is selected to correspond to low velocities, so it will not be

used in this study.

The artificial viscosity term is added to the momentum equation:

g
u

N

j

ijiij

j

i

j

j

j
i WΠ

ρ

p

ρ

p
m

t 1
22d

d
 (3.45)

Another approach to modelling the viscous term was proposed by Morris et al. (1997) for

laminar flows. They did not directly model the second order derivative due to the errors in the

74

interpolation for low resolutions (Brookshaw, 1985) but used a combination of a standard

SPH derivative with a finite difference approximation:

 W

4
iji2

02

ijji

ijij

j

jio

ρρ

ν
mν

r

ru
u

(3.46)

The momentum equation then becomes:

iji2

0

1
22

W
4

d

d

ijji

ijij

j

j

N

j

iji

j

i

j

j

j
i

ρρ

ν
mW

ρ

p

ρ

p
m

t r

ru
g

u

(3.47)

Both the first artificial viscosity term and the laminar viscosity have been used in the cases

presented in this study producing results with minimal differences. For the GPU code, since

the accuracy of the viscous term is not the focus of this work and using the laminar viscosity

is slightly more computationally expensive, the artificial viscosity term is preferred for the

majority of the cases herein as will be shown in the next chapter.

3.3.4. Time integration

The time integration scheme that will be used should be at least a second-order accurate time

scheme since a meshless method with moving interpolation points is being used. Four

different time integration schemes were considered in this study and tested using a small

FORTRAN code:

a. Symplectic model: The first one is a general symplectic scheme for an arbitrary

function A (which in our case could be the velocity, the coordinates or the density). It

is often known as the kick-drift-kick scheme where the kick is the velocity changing

according to the force and drift is the coordinate changing with the initial velocity

(Omidvar, 2010). It depends on two steps with a first evaluation being initially

executed at half step for the density and the coordinates:

n

i

n

i

n

i
t

ρt
ρρ

d

d

2

Δ2/1

n

i

n

i

n

i
t

t

d

d

2

Δ2/1 r
rr

(3.48)

75

For the second step is the inter-particle forces are again obtained at the half step and

the velocity and coordinates can be updated:

12/11

2/12/1

i

2

Δ

2

Δ

n

i

n

i

n

i

n

i

n

i

n

t

t

vrr

Fvv

 (3.49)

The values for the new density can then be computed using the velocity and the

coordinate values:

1

2/11

d

d

2

Δ

n

i

n

i

n

i
t

ρt
ρρ (3.50)

b. Velocity Verlet model: This is a formulation adapted from Molecular Dynamics

(Verlet, 1967). Normally, the variables are calculated by the following equation:

t

A
tAA

n

in

i

n

i
d

d
Δ211 (3.51)

For the particle position Equation (3.51) changes slightly as the contribution of the

inter-particle forces is taken into account:

t
tt

n

in

i

n

i

n

i
d

d
Δ5.0Δ 21 u

urr (3.52)

The equations used in this scheme are therefore not coupled, so every few steps (on

the order of 40 steps) the variables are computed using an Euler step in order to

prevent the time integration diverging:

t

A
tAA

n

in

i

n

i
d

d
Δ1 (3.53)

c. Leap-frog scheme: The equations followed in this scheme are different depending on

the variable advancing in time. In particular, the velocity is computed at the half-step

using its gradient at the full step and the time steps of both the current and the

previous step. The velocity at the current step can then be calculated as the mean

value of the velocities at the current and previous half step while the new particle

position is calculated using the velocities at the half step. The density, on the other

76

hand, is the only variable in this scheme that can be updated without using the half

step (Butcher, 2003).

d. Runge-Kutta 4
th

 order integrator (RK4): This is a higher order method using multiple

midpoints at the time step in order to eliminate lower-order error terms (Butcher,

1964).

In this study the time integration scheme used is the symplectic model. The RK4 model is

more accurate, but the SPH equations need to be solved 4 times before proceeding to the time

step, while the other methods examined only need at most two iterations. This offsets the

increased time step size that can be achieved with this model. SPH has already a high

computational cost as a method so adding the RK4 model will result in a very slow

computation that will be unfeasible for large particle numbers.

The velocity Verlet model does not require the two iterations of the symplectic scheme, but

the decoupling of the equations is a potential problem. The number of time steps the alternate

formulation needs is not well defined and depends on the problem as well as the number of

particles. The introduction of an arbitrary constant should be avoided whenever possible as

the SPH scheme used in this study already includes a number of empirical constants, as it will

be shown in the next section when detailing the multi-phase model.

The reasons for selecting the symplectic scheme over the leap-frog are purely computational.

Creating a scheme that is based on two identical steps as opposed to a half step scheme solely

for the momentum equation is simpler in a massively parallel system. In addition, the

DualSPHysics code being used (detailed in Chapter 4) already includes a version of the

symplectic model optimised for GPU architectures.

After the selection of the time integration scheme an appropriate time step must be selected.

Due to the violent nature of the cases investigated using a constant time step is impossible;

the conditions in the domain are constantly changing. A variable time step will then be used,

based on the Courant-Friedrichs-Levy (CFL) condition.

There are three restrictions for selecting the time step. It can be dictated by the inter-particle

forces (Monaghan, 1989) or the viscous conditions (Monaghan and Kos, 1999). The time step

based on the forces is applied to ensure that particles do not move close to their neighbours:

77

i
i

f
f

h
t minΔ

,
 (3.54)

where fi is the internal or external forces applied to particle i. The restriction based on viscous

forces is essentially based on the particle velocity and is given by the equation:

2
max

minΔ

ij

ijij

j
s

i
v

h
c

h
t

r

ru

.

(3.55)

A time step based on the artificial viscosity term in Equation (3.41) has also been proposed

(Monaghan, 1989, Monaghan, 1992):

ij
j

ss

i
cv

μβcαc

h
t

max6.0

minΔ
.

(3.56)

For the flows considered herein, the coefficient β in the last option is zero. The final time step

is then selected as the smallest of the three and is multiplied by the CFL constant CCFL:

 cvvf
i

CFL tttCtΔ Δ,Δ,Δmin
.

(3.57)

For the simulations performed in the current study, it was found that the time step is primarily

defined by the restrictions imposed by either the forces or the particle velocity, with the

viscosity restriction having minimal to no effect on the simulation. The velocity restriction,

due to the high speed of sound for the air phase, was the primary factor; however, on

situations such as a wall impact, the large forces exerted on the particles further reduced the

time step.

3.4. Model for the Simulation of interfacial Flows

For the simulations presented herein, we will be using the SPH formulation of Colagrossi and

Landrini (2003) as this is a multi-phase SPH scheme has been proven effective with

simulating violent air-water mixtures (Rogers et al., 2009). Importantly, it is also the most

78

straightforward to implement using CUDA on a GPU and hence investigate optimisation

strategies and devise algorithms that will allow us to further reduce the computational time.

3.4.1. Equation of State

For an air-water mixture the Colagrossi and Landrini (2003) multi-phase model uses a simple

procedure for predicting the interaction between water following on from the work of Nugent

and Posch (2000), who propose the use of a modified version of Tait’s equation of state

(Batchelor, 1967) for incompressible and inviscid fluids:

 2

0

0

2

1 ρaX
ρ

ρ

γ

ρc
ρp

γ

s

 . (3.58)

In this equation, X signifies the constant background pressure, a small pressure applied

throughout the domain for numerical reasons, while the last term is a model of the cohesion

forces between the particles of the same fluid with a being a cohesion coefficient. This term

was first proposed by Nugent and Posch (2000) and the calculation of the coefficient is based

on the properties of the different phases and the characteristic length of the domain:

L
ρ

ρ
ga

Y

X

2

,0

,0
5.1 , (3.59)

where ρ0,X and ρ0,Y are the initial densities of the two phases (water and air in this case). It is

quite similar to the repulsive force term proposed by Monaghan (2011). Initially, it was

proposed using the equivalent van der Waals parameter as the cohesion coefficient, but the

accuracy was less than satisfactory so Equation (3.59) was used (Nugent and Posch, 2000).

The characteristic length is an empirical coefficient that depends on the dimensions of the

domain and the initial particle distance.

Colagrossi and Landrini (2003) used this term only for the fluid with the smaller density

(which was usually a gas). The heavier fluid used Equation (3.32) for linking pressure and

density. The purpose of this extra term is to prevent possible dispersion of the lighter fluid in

the heavier especially with large density ratios and prevent the fragmentation of the interface

by increasing the inter-particle forces in the phase it is applied.

79

As mentioned the equation of state heavily depends on the speed of sound. For the heavier

fluid the speed of sound is selected in order to limit its compressibility. An initial value of the

speed of sound can be found by Colagrossi and Landrini (2003):

Y

Y
Ys

X

X
Xs

ρ

γp
c

ρ

γp
c

,0

0
,

,0

0
, ,

,

(3.60)

where p0 is an initial pressure of the domain. Based on this equation, and substituting the

actual speed of sound for a gas and a liquid (air and water for example) we can notice that the

initial pressure values would not be on the same order of magnitude creating severe pressure

discontinuities at the interface. In addition, the lighter fluid (the air) would be relatively less

compressible than the heavier one (the water).

In order to remedy this situation the use of an unphysical value for the speed of sound is

proposed. In order for the pressures at the interface to be similar the lighter fluid will be

modelled by a higher sound speed in contrast to their actual physical values. In that sense, the

speed of sound is now a coefficient determining the compressibility of the fluid that is being

modelled rather than the actual physical quantity. The ratio of the different values can be

found by Equation (3.61) assuming equal initial pressure:

YX

XY

Ys

Xs

γρ

γρ

c

c

,0

,0

,

,
 . (3.61)

When determining a value for the speed of sound, the compressibility restriction in the value

of the Mach number outlined by Equation (3.33) also needs to be taken into consideration.

Suitable values for the speed of sound can then be found. However, since the stability of the

method is directly linked to the speed of sound the higher speed for the lighter fluid means a

decrease in the time step to prevent numerical instability. The time step is significantly

decreased as the density ratio is increased, leading to large increases in the computational

runtime.

3.4.2. SPH formulation

Colagrossi and Landrini (2003) show that the standard SPH formulation is not applicable in

the multi-phase flows we are investigating, due to the large density discontinuity in the

interface. The reason is the squared density term present in the SPH approximation of the

80

momentum equation presented in Equation (3.28). With a large density ratio (the air-water

ratio, for example is 1:1000), severe errors occur in the interpolation at the interface, leading

to numerical instability.

To remedy this situation the following formulae have been used as proposed by Colagrossi

and Landrini (2003):

Continuity:

j j

j

ijijii
i

ρ

m
Wρ

t

ρ

d

d
uu , (3.62)

Momentum:

j j

j

ijiji

i

i

ρ

m
Wpp

ρt

1

d

du
. (3.63)

The differences are the use of the density ratio in the continuity equation and the use of a

different pressure gradient for the momentum equation (Bonet and Lok, 1999, Randles and

Libersky, 1996). The new pressure gradient greatly diminishes the effect of the density

discontinuities at the interface and is variationally consistent with the classical form (Bonet

and Lok, 1999).

Following the work of Nugent and Posch (2000) on the equation of state, the use of an extra

term in the momentum equation for the lighter phase is proposed. This term is also

characterised by the cohesion coefficient and serves the same purpose: preventing the

dispersion of the air particles in the water phase and the fragmentation of the interface. It is

also only used for the lighter phase and the new momentum equation is (Colagrossi and

Landrini, 2003):

 iji

j

j

a

j

j

iji

j

ji

i

i W
ρ

m
ρa

ρ

m
Wpp

ρt
 22

1

d

du
. (3.64)

Additional corrections have also been introduced to the velocity and the velocity divergence

in order to improve the accuracy. For the velocity, the XSPH velocity correction, introduced

by Monaghan (1989) is being used. This correction uses a mean velocity, originated from the

velocities of the neighbouring particles. This equation is not used in the momentum equation,

but rather in the equations for the position and the density:

81

2

Δ ij

j

ji

ij

j

i W
ρ

mε
 uuu (3.65)

Equation (3.65) is only used between particles of the same phase, ignoring the contribution of

the other phase. This is also the case for the velocity divergence correction which is given by:

 ij

j

ji

ij

j

ij

j

ji

ij

j

i W
ρ

m
W

ρ

m
 uuuuu ΔΔ (3.66)

The velocity divergence correction has minimal effect in free-surface flows (Monaghan,

1994) but is necessary when modelling bubble flows (Colagrossi and Landrini, 2003). A

significant computing cost is involved with using this correction, as it must be applied for

every particle. Rogers et al. (2009) found that the effect of this correction was insignificant

both for the accuracy of the results and for the stability of gravity-driven simulations. For the

XSPH velocity correction it was found that for the high resolutions used in this study, its

impact was minimal and it has not been used for any of the simulations presented here.

A re-initialisation of the density field using a first-order interpolation scheme (moving least

squares) was also proposed. The MLS scheme has already been mentioned in Section 3.3.2,

but it requires the inversion of a 3x3 or a 4x4 matrix, greatly increasing the computational

time. Therefore, the zeroth order correction for the density – the Shepard filter given in

Equation (3.39) – will be used instead.

A different viscous term, modifying the artificial viscosity term of Monaghan and Pongracic

(1985) is also proposed. The modified term is based on the work of Balsara (1995):

22

01.02 h

kk
hμ

ji

jijiji

ij

rr

rruu

(3.67)

hc
k

sii

i

i
/10 4

uu

u
 (3.68)

This viscous term is a computationally intensive formulation to implement because of the

divergence and curl terms which require the calculation of velocity gradients. Testing this

term, it was found that the accuracy is not significantly increased since it is still based on the

empirical coefficient a , which needs to be changed for each different case. Therefore, the

original implementation of the artificial viscosity will still be used.

82

3.5. Concluding Remarks

In this chapter the multi-phase model and the formulations that will be used in this study were

detailed. Due to the relative simplicity and ease of implementation on GPUs, the Colagrossi

and Landrini (2003) multi-phase model for the simulation of interfacial flows will be used

with the modified equation of state and the NS SPH formulation. The artificial viscosity term

by Monaghan and Pongracic (1985) and the zeroth-order density re-initialisation density filter

(Shepard, 1968) will be used to ensure the numerical stability of the simulation.

In Chapter 5 the need for a particle shifting algorithm (Xu et al., 2009, Lind et al., 2012b,

Skillen et al., 2013) will also be tested for a multi-phase weakly compressible SPH

formulation. Finally, a predictor-corrector scheme will be used for the time integration of the

code with a variable time step restricted by the inter-particle forces and the viscous conditions

of the simulation. The next chapter will present the implementation of this approach to the

CUDA programming framework, as well as the steps taken for its optimisation.

83

4. SPH on GPUs

4.1. Introduction

This chapter presents the use of the CUDA programming framework for multi-phase SPH

and the basic principles for an efficient and optimised parallel program on a GPU device.

First, the structure and capabilities of the DualSPHysics code used in the present study are

analysed and the modifications required in order to simulate a range of multi-phase cases are

described. Different programming algorithms for the acceleration of the multi-phase

simulations on graphics processing units (GPUs) are proposed. Their runtime results are

examined in the end of this chapter for cases that enable evaluation of the GPU algorithms for

multi-phase SPH: still water and a dam break case.

4.2. GPU Programming

4.2.1. Basic GPU architecture and capabilities

Graphics processing units (GPUs) are specialised hardware designed to process large

quantities of data for displaying graphics on computer screens in real time. Primarily used for

video games and image processing applications, their massively parallel architecture means

they have emerged as a viable tool for scientific computing with architecture quite different

to CPUs. Along with dedicated programming languages, such as CUDA (Compute Unified

Device Architecture) and OpenCL (Open Computing Language), general purpose graphics

processing units (GPGPUs) have been extensively used for accelerating scientific

computations.

Their primary use as a graphics rendering tool means that they are specialised for compute-

intensive operations, ideal for meshless simulations which require extensive pairwise

calculations. Compared to a CPU, a larger portion of the transistors on the chip is devoted to

the Arithmetic Logic Unit (ALU) as opposed to data caching and flow control.

The difference in priorities can be seen in their parallel architecture. CPUs are characterised

by multi-threaded cores, where each thread acts semi-independently. A GPU is based on

single instruction multiple thread (SIMT) cores where the cores are much more dependent on

an overarching command structure. This architecture makes them ideal for data-parallel

computations where the same part of the program is executed simultaneously on many data

84

elements. Such computations are characterised by an emphasis on arithmetic operations – a

high arithmetic intensity – which comprise the majority of the simulation runtime.

For meshless applications, using the SIMT approach is advantageous for the computation as

each particle requires an identical treatment. If, for example, it is assumed that a GPU has

400 cores (which is a number representative of most modern scientific GPUs) and each core

has 32 threads (this is only assumed for simplification of the example, the number of threads

per core depends on the data that is being processed) each computing the interactions of a

single particle, then it is possible to compute data for 400×32=12800 particles

simultaneously.

A memory structure is also present in the GPU; the global memory is shared among the

multiprocessors, but each processor also has a shared memory where all its cores have access.

The cores are all executing instructions in parallel, so synchronisation is a major issue and

particular care must be taken when the cores are accessing or overwriting data.

On the GPU, there is a very high transfer rate between the memory and the processor,

especially the transfer from the shared memory to the threads, which is at least an order of

magnitude greater than the transfer rate between the global memory and the threads. The

access time for data from the global memory however, is still smaller than accessing the main

memory of the CPU. Transferring data to the CPU is a very slow process due to the low

bandwidth compared to the memory bus (nVidia, 2012).

There are other memory subsets on the GPU: the constant memory and the texture memory.

The first is a part of the global memory, but the values stored in that part, as the name

implies, remain constant throughout the computation. It has a high transfer rate, but a small

capacity (around 32KB). The texture memory is mainly used for graphics options and is able

to store and transfer 2-D data arrays with a high speed. Using texture memory for storing

numerical data, however, is difficult, due to the unique formatting these arrays require, which

is based on spatial locality. Texture memory can also be used for filtering data.

4.2.2. GPU Programming Restrictions

A restriction of the GPUs is that the data simulated must fit on the GPU memory which

currently, on the high-end cards, has an upper value of 6GB. The memory is then much

smaller than the CPU RAM (as well as more expensive) and cannot be upgraded. This means

85

that the data that can be used with a GPU-based program are limited and that GPUs are not as

suitable for data-intensive applications.

This produces a programming challenge: in order to optimise the program the data needs to

be stored in the GPU memory and for better optimisation exclusively in the shared memory.

However, the latter is rather small so it must be used as efficiently as possible to avoid

accessing the global memory. Data loading from the main CPU memory must also be

minimised due to the lower transfer rate.

Moving data from the CPU to the GPU and vice versa is a low bandwidth operation that takes

significant time. In most cases (Herault et al., 2010), transferring the code exclusively to the

GPU with the CPU only handling data control operations allows for lower runtimes, even if

the tasks transferred are not inherently suited for parallel execution.

Another drawback of the GPU is that the computation of a logical function is slower than a

numerical function. This is due to the selectively small amount of transistors devoted to data

flow control in comparison to the ALU. Therefore, an effort to eliminate these functions and

replace them with equivalent numerical statements should be made. This is especially

important for a multi-phase simulation, where distinguishing between the different phases is

vital due to the different terms and conditions employed for each phase.

Regarding the precision of the simulation, using either single or double precision is possible.

Using double precision however, emphasises the drawbacks of the GPU: the added bytes

required to store double precision variables limit the potential number of particles that can be

simulated and the added flow control required significantly reduces the computational speed.

In addition, due to the necessity for a high graphics output, GPU configuration gravitates

towards the single precision option.

4.2.3. CUDA Programming Framework: Features and Limitations for

Multi-phase SPH

As mentioned in Chapter 2 there are two existing frameworks for programming GPUs for

scientific simulations. In this study, the tool being used in order to utilise the full potential of

the GPUs will be the CUDA programming framework. It is based on the C/C++

programming language, with added features taking advantage of the parallel architecture.

CUDA also handles any data transfers between the GPU and CPU.

86

The basic computing resource of a GPU can be considered the CUDA thread. These threads

are organised into blocks which then form a computing grid, creating the basic internal

hierarchy of a GPU card as shown in Figure 4.1:

Figure 4.1: Grid of Thread Blocks (nVidia, 2012)

Threads in a block can cooperate when solving the same problem, where each block executes

the associated commands individually, but multiple blocks can be executing the same part of

the code. This leads to a hybrid system that uses coarse-grained parallelism in the block level

and fine-grained parallelism in the thread level within each block. This approach ensures the

scalability of the code as blocks can be freely assigned depending only on the simulation.

Considering the GPU hardware, each graphics card consists of several streaming

multiprocessors (SMs). Threads within a block can only belong to the same processor; this

creates an upper limit to the number of threads in each block. Within each block, they are

organised by the multiprocessors in warps, each containing 32 threads. The number of

threads in a block is, as a result, a multitude of 32, but the actual size of the block differs

depending on the graphics card used and the case simulated.

87

Threads do not operate individually. When executing the code execution, the instructions are

issued to each warp, not each thread individually. Threads within each warp then execute

identical commands but for different elements in the domain (for a meshless method like SPH

that would be different particles). This can be a problem with conditional statements, whose

result can differ within the warp, leading to some threads having additional operations to

perform, delaying the execution of the entire warp. Minimising the possibility of branching

and limiting the amount of data necessary for the execution so that the shared memory is

sufficient, are essential parameters for the optimisation of the code.

The number of blocks and warps within each multiprocessor depend on the kernels running

and the memory amount each one is using. Among the warps, the multiprocessor has a

specific portion of 32-bit registers for communication and data control, whose number is

another limitation to the warps available to the processor. The amount of registers and

memory available to each graphics unit are a function of the compute capability of the device.

Better usage of the available resources includes then optimising the number of blocks and

warps assigned to each kernel and minimising the latency between each warp command

through synchronisation.

A different memory is associated with each level of thread hierarchy, shown in Figure 4.2.

Each thread has a private local memory, but each thread in a block is also participating in a

shared memory, which enables them to cooperate. These memories are on the same transistor

chip as the thread, so transferring data has low latency and high bandwidth. The shared

memory can be accessed simultaneously by the threads but care has to be taken to avoid data

conflicts.

The data capacity for these two memories is limited, so most of the data is stored in the

global GPU memory, which can be read by any grid but its access time for a thread is at least

an order of magnitude longer than the shared memory. The constant and texture memories are

also included in this subset but can only be written by the CPU and not by the GPU itself.

88

Figure 4.2: Memory Hierarchy (nVidia, 2012)

At a user level, application of the GPU resources depends on a hierarchy of user-defined

functions and shared memories as well as synchronisation commands. The CUDA

programming model separates execution calls to the GPU device from commands to the CPU

host, which enables the creation of hybrid CPU-GPU programs. CUDA also distinguishes

between the CPU and GPU memories and handles the transferring of the data.

These are accomplished by additional commands added to the existing C/C++ code. To

enable the parallel aspect, CUDA provides each block and each thread within it with unique

IDs. The program execution is scheduled by a series of C/C++ functions, called kernels. The

kernels are executed in parallel multiple times by multiple CUDA blocks.

89

Kernel hierarchy is organised in three different levels. The host qualifier declares a kernel

being executed and called by the CPU, while a global kernel is called by the CPU, but

executed by the GPU, while the device kernel is called by and executed by the GPU. The

latter cannot exist as a separate function and must be nested within a global kernel. It is

possible for multiple device kernels to exist within a global one.

Based on this hierarchy, global kernels are mostly used for preparing variables for the

computation as well as loading data from the global to the shared memory and vice versa,

while the device kernels are used for the bulk of the numerical operations. Ideally, data used

in the device kernels should be stored only in the local and shared memory to minimise

accessing time. Device and global kernels should be designed while taking into consideration

the inherent parallelism of the GPU as well as the possibility of asynchronous execution. On

the contrary, host functions are more suitable for handling serial workloads.

Kernels can be launched asynchronously with the control returning to the host before the task

has been completed. Concurrent kernel execution is possible as well. The possibility of

asynchronous execution depends on the size of the kernel and the resources needed with

larger kernels being more likely to operate individually. Control in asynchronous execution is

achieved through streams, a string of orders executed sequentially.

4.3. The DualSPHysics Code

4.3.1. Introduction

The aim of this project is to create and implement a new multi-phase model for Smoothed

Particle Hydrodynamics (SPH) using Graphical Processing Units (GPU). For this reason, the

DualSPHysics code, developed by the University of Vigo in collaboration with the University

of Manchester has been used (Gomez-Gesteira et al., 2012). The version used in the present

study is 2.01.

The code consists of two parts: a pure CPU approach written in C++ and a hybrid CPU-GPU

approach utilising the CUDA framework. This has been selected in order to offer versatility,

enabling a CPU-based SPH simulation even when a CUDA-enabled card is not available.

Comparison of the CPU and GPU results are also straightforward. The DualSPHysics code

has been developed from the SPHysics FORTRAN code, but not all the models and

capabilities of the parent code have been transferred thus far.

90

The CPU and CPU-GPU codes are not completely separate with some parts of the code being

shared between the two versions. These parts are coded in C++ and are executed on the CPU

and involve loading the initial configuration of the simulation as well as saving the results to

an appropriate file designated by the user.

4.3.2. Code Structure

The DualSPHysics GPU SPH simulation consists of three main steps: (i) creation of the

particle neighbour list, (ii) particle interaction and (iii) the variable update at the end of the

time step. This whole system is constantly repeated until the end of the simulation. To ensure

the maximum efficiency for the GPU and to create a more intuitive program each thread

computes data only for a single particle at a time.

The structure of the code is similar for both approaches and can be seen in Figure 4.3:

Figure 4.3: Main structure of the DualSPHysics code (Crespo et al., 2011a)

The CPU implementation of the DualSPHysics code has been optimised based on the

experience acquired from the SPHysics FORTRAN code. However, the main focus of this

study is the hybrid CPU-GPU approach due to the lower runtimes and the capability for

simulating a larger number of particles. As we can see from Figure 4.3 particle pre-

processing and storing is handled by the CPU, while all the other code is being run on the

device as per the guidelines given earlier to minimise CPU-GPU interaction.

91

i) Neighbour list construction

In each time step, in order to create the neighbour lists and perform the force computations,

access to a large quantity of data requires a large use of GPU memory. The access order of

this data, as well as the way they are stored in the GPU shared memory is important for the

reduction of the computational runtime. As shown by Hérault et al. (2010) and Crespo et al.

(2010) storing data required by the same thread in neighbouring memory addresses has a

positive impact on performance.

Finding the neighbouring particles in SPH requires computing pair-wise distances which can

be a very expensive computational procedure and is unfeasible for large domains due to the

large number of particles involved. The DualSPHysics code uses the cell-linked list approach

(CLL) (Dominguez et al., 2010) where the domain is divided into cells whose dimension is

the kernel radius such that particles are stored according to the cell to which they belong (see

Figure 4.4). This approach ensures that any particle in a cell needs to look for its

neighbouring particles only in the adjacent cells and not the whole domain. The downside is

the greater memory requirement (Dominguez et al., 2010).

Figure 4.4: Example of the Cell-linked List (Dominguez et al., 2010)

Due to the large deformations present in many SPH simulations the particles’ initial order, as

well as the cell in which they belong will change during the computation. For maximum

speed up on a GPU, reordering of the particle lists according to their new position enables the

access order to the data to be optimised every time step (the reordering uses the THRUST

algorithm which is included in the intrinsic CUDA libraries). The main hydrodynamic

variables of the particles are also re-ordered using the same approach.

92

ii) Force computation

The next step in the SPH simulation is to solve the momentum and continuity equations

calculating the forces among the particles as well as the new pressure. The equation of state

used is Tait’s weakly compressible equation of state (Batchelor, 1967). In general, the

original DualSPHysics uses the classical SPH equations (Equations (3.27) and (3.28) with the

addition of the Shepard filter (Shepard, 1968), presented in Equation (3.39) and the XSPH

velocity correction by Monaghan (1989).

A choice can be made between two different models for both the viscous term and the kernel

function. For the former, the artificial viscosity term (Monaghan and Gingold, 1983,

Monaghan and Pongracic, 1985) and the laminar SPH viscosity (Morris et al., 1997) are

available. The latter includes the SPS turbulence model introduced by Dalrymple and Rogers

(2006). It is not used in the computations outlined here as turbulence is beyond the scope of

this study. For the kernel, the cubic spline function (Schoenberg, 1946) and the Wendland

quintic kernel (Wendland, 1995), given by equations (3.20) and (3.22) respectively, are both

available. The latter will be used in this study for reasons explained in Section 3.2.2.

To create boundaries, DualSPHysics uses the fictitious boundaries approach (Crespo et al.,

2007) mentioned in Section 2.3.2, creating new particles with the hydrodynamic attributes of

the fluid. This method takes advantage of the parallel nature of the GPU, as each boundary

particle can be treated by a single thread. Their treatment is identical to the fluid particle,

excluding the momentum equation, so their inclusion does not greatly increase the

complexity of the system.

An important difference between the CPU and the GPU SPH solver is the application of the

kernel symmetry. This kernel attribute extends symmetry to the pair-wise particle forces so

that when calculating the interaction of a particle with his neighbour, the force exerted by

each article on its neighbour has the same magnitude but opposite direction. For the CPU, the

kernel symmetry can be used to update two particles in a single iteration of the solver. This

approach cannot be used on the GPU because of the simultaneous access to memory from

parallel threads. We can see the difference in the code in Figure 4.5.

93

Figure 4.5: Pseudocode of the particle interaction procedure implemented on CPU and GPU (Crespo et al., 2011a)

iii) System update

The last part of the code deals with updating the hydrodynamic variables of the system as the

simulation advances in time. A variable time step is used with the particle forces and the

particle velocity restricting the maximum time step value allowed. Two second-order time

schemes can be used: the velocity Verlet scheme (Verlet, 1967) and the symplectic scheme

(Dullweber et al., 1997). Used in this study is the second scheme, which was detailed in

Section 3.3.4.

During the update process, the particle data are occasionally saved in the CPU. The format of

the files for saving the particle data affects the computation runtime and files of smaller size,

such as binary files correspond to a lower runtime.

Regarding the file structure of the code, both the CPU and the GPU code have been separated

to several files and subroutines, which are interconnected and called by the main routine

when and if they are needed. This modular approach allows for an easy understanding of the

code as well as simplifying the issue of adding additional models or features to the code.

4.3.3. Pre-and Post-Processing for DualSPHysics

Before the start of the computation however, an input needs to be created. The DualSPHysics

code uses files provided by a pre-processing program, called GenCase. The GenCase

program uses an XML file to define the initial geometry and configuration of the case as well

as provide the DualSPHysics code the initial parameters needed for the simulation. GenCase

also allows for the simulation of floating bodies as well as particle motion can be simulated.

To allow the visualising of the simulation results as well as facilitating their analysis, several

additional programs are supplied with the DualSPHysics code for visualisation

(BoundaryVTK, PartVTK) and data analysis (MeasureTool, IsoSurface). These tools are also

used in the present study.

94

The DualSPHysics code has already been used to simulate a number of free-surface flows,

giving good agreement with validation data. This includes validation using the SPHERIC

benchmark test case 2 (Kleefsman et al., 2005), a 3-D dam break over an obstacle, which

tracks the evolution of the free surface as well as the forces exerted on the obstacle. The

experimental results were compared to several simulations with different resolutions and the

results were satisfactory (Crespo et al., 2011b, Crespo et al., 2011a). The DualSPHysics code

has also been used for simulating sediment suspension (Fourtakas et al., 2013a) as well as

computing the forces exerted on a beach by large waves (Barreiro et al., 2013). Compared to

a single-core CPU simulation, DualSPHysics can give speed-ups of up to 2 orders of

magnitude (Crespo et al., 2011a).

4.4. Modification of DualSPHysics for the Multi-Phase

Model

The DualSPHysics code described so far is only able to simulate single-phase cases,

significantly restricting its usability and the number of applications that is possible to

simulate. By applying a multi-phase model, the program becomes more robust and versatile

and the benefits, such as the decrease of the computational runtime, gained by the use of the

GPU can be applied to multi-phase problems.

The application of DualSPHysics to multi-phase problems greatly benefits from the

additional processing power and increase in parallelism offered by the GPU as simulating

multiple phases is usually associated with a larger number of particles and a larger domain. In

addition, interaction among the phases leads to high-order flow phenomena, which need a

high particle resolution to be simulated accurately.

In order to implement the multi-phase model, several changes to the single-phase program

need to be implemented. These changes do not alter the main program structure, preserving

the limited communication between CPU and GPU and the improvements gained over the

CPU-only implementation. Modifications focus instead on the inclusion of the new terms

advocated by the Colagrossi-Landrini model for the second phase and the optimisation of the

code as deemed necessary by these changes. The required changes have been implemented in

both the CPU and the GPU code.

The time-stepping algorithms present in DualSPHysics (Verlet and symplectic) and the part

of the code that updates the particle values for the new time step have not been significantly

95

altered. The only change in this part is in the calculation of the new time step value. The time

step restrictions outlined in Section 3.3.4 will be calculated twice and updated for both phases

with the smallest time step being selected for the new iteration.

4.4.1. Updating Neighbour and Cell lists

Before changing the main DualSPHysics code, the pre-processing tool GenCase has been

modified in collaboration with the University of Vigo in order to support input for multiple

fluids. The modified version allows us to define the initial geometry of both fluids as well as

some initial reference attributes such as the speed of sound and the initial density. The

different phases are created as separate volumes within the computational domain. The new

modified pre-processing tool can be used with both the multi-phase and the initial version of

the code.

The introduction of the reference attributes necessitated changes in their treatment compared

to the single phase as they were considered as constants in the initial code. However, as the

neighbour and cell lists are updated, these values would need to be reordered using the

THRUST algorithm every time step, which is costly computationally. Instead, these values

were stored in the constant memory, which offers a lower latency.

Despite being defined as different volumes in the pre-processing tool, particle data in the

main code is stored in a single array for each hydrodynamic variable. The program is

however already able to distinguish between boundary and the fluid particles using the data

provided by GenCase and the code can create separate cell and neighbour lists depending on

the nature of the particle. This difference also allows the use of different CUDA kernels for

each list. This approach eliminates the use of conditional statements, which introduce

branching in the code and potentially limit the speed of the computation.

The same principle can be applied to a second fluid phase. The number of particles belonging

to either water or air can be extracted by the pre-processing tool; particles do not change

phases during the computation. It is then possible to create separate cell and neighbour lists

for each phase enabling the use of separate CUDA kernels.

There are however advantages to treating the fluid particles as a single list, such as a reduced

complexity of the code, launching a smaller number of CUDA kernels and handling a smaller

amount of data. In addition, despite the extra terms, treatment of the different phases is

fundamentally similar, unlike the boundaries. In that case, the creation of the cells in the

96

multi-phase code would follow an identical approach to the single-phase code: they are

created in order to optimise data access for the CUDA kernels. As a result a cell can

potentially contain both air and water particles.

4.4.2. Modifying Force Computation for Multi-Phase SPH

The main change in the force computation part of the DualSPHysics code is updating the

equation of state to the forms specified by the multi-phase model and mentioned in Section

3.4.1. The Navier-Stokes equations are also updated to the new forms, outlined in Section

3.4.2 but there is an additional numerical consideration:

Solving the momentum and continuity equations requires a summation of all the

contributions of the neighbouring particles. If the values of these contributions have large

differences it is possible, when using the single precision, for the final value to be incorrect

due to the round-off error by the finite memory associated to each variable. This error is

proportional to the number of variables being summed so it increases as the particle

resolution also increases.

When including the air phase, the difference between the values for each variable can be

several orders of magnitude, especially in some cases such as the density. This leads to the

smaller values being ignored, an error that propagates through the computation. Due to the

equation of state, which for water includes raising a value to the seventh power, small

differences in density can account for large variations in the pressure field.

To ensure then that the summation is correct, the Kahan summation algorithm has been

introduced (Kahan, 1965) as suggested by Longshaw (2013). This algorithm uses a separate

variable to record small error (a running compensation) which is then added to the final

summation value. With this algorithm the error is independent of the number of variables

being summed and only depends on the floating-point precision (single, in this study). The

algorithm is displayed in the following table:

97

function KahanSum(input)

 sum = 0.0

 comp = 0.0

 for i = 1 to number_of_input_values

 x = input[i] - comp

 y = sum + x

 comp = (y – sum) – x

 sum = y

 return sum

end

// Summation value and output variable

// Running compensation

// Correct input value using the compensation

// Calculate new summation

// Calculate new compensation (ideally

equals 0)

Table 2: Pseudocode of the Kahan summation algorithm

Implementing the summation algorithm for the cases presented herein led to a decrease in the

summation error by 1-2% depending on the number of particles and the case examined.

Results did not show any significant improvement, indicating that the summation error is too

small to significantly alter the results of the computation.

Apart from the issue of solving the Navier-Stokes equations, a different issue arises when

considering the treatment of the particles within the kernels that perform the force

computation operations. The new equations require separate treatment for each phase and a

means to facilitate that must be found. There exist two possible solutions for this issue:

i) The initial code differentiates among the particles in each cell by using the thread

number. The index number of each thread within a block is unique and since each

block operates independently, accessing different sets of data and each thread

computes only the values for a single particle; the resulting particle number is

unique.

Applying this approach for multiple fluids is not possible for a single list, as the

thread number constantly changes. In this case, DualSPHysics also assigns to each

particle a unique identification number (referred to as IDs herein). These IDs are

stored in a separate array which remains constant even when the particles are

reordered. Using the particle IDs it is possible to differentiate between the phases;

however, additional conditional statements are required.

98

ii) Using the thread number for the different cases is possible in the event of multiple

cell and neighbour lists. The CUDA kernels launched in this case, however, must

have as input particles of a single phase only, otherwise conditional statements are

required and any advantage of using multiple lists is negated. Restricting the

kernel input can potentially lead to a sub-optimal arrangement of the particle data

in the GPU memory, increasing the access and loading times and reducing the

CUDA kernel occupancy.

The solutions proposed each have unique advantages and disadvantages. Implementing either

of these approaches require significant alterations in the code. In addition these alterations

will have to be consistent with the neighbour lists created earlier. Investigation of the

methods described led to the creation of four new algorithms spanning the entire structure of

the code. These algorithms are presented in the next section.

4.5. New algorithms for optimising the multi-phase

treatment

At the beginning of this study no answer to the optimal treatment of a multi-phase case was

available. An investigation into this matter was deemed necessary as lower computational

runtimes is the biggest advantage offered by the use of a GPU, leading to higher resolution

cases. For that reason four different algorithms were investigated to answer the issues

described. A more detailed discussion of these algorithms follows.

4.5.1. Algorithm 1: Using Conditional if-statements

The DualSPHysics code includes every fluid particle in a single list even when a second

phase is being introduced. As mentioned, with the default scheme for distinguishing among

particles this approach will lead to significant errors as different terms are needed for each

phase. One solution is the use of conditional if statements.

With the data of the particle generation it is possible to create a simple, yet effective filter

which will separate the phases based on the particle IDs (these remain constant throughout

the computation). This filter mainly needs to be applied during the calculation of the equation

of state and the momentum equation, as their forms are different depending on the phase of

the primary particle.

99

This algorithm has the advantage of being relatively simple; retaining the cell and neighbour

lists of the original program without increasing the number of times the THRUST algorithm

is called. The changes in the structure of the original code are also limited, retaining the

minimal interaction between the GPU and the CPU.

The main problem of this approach is an issue inherent with GPU programming, using logical

and conditional statements is time consuming. The conditional statement needs to be used

every time the equation of state is computed or any interaction among particles is being

computed, its total number of executions in each time step being over twice the number of

particles in the system, adding a considerable overhead time.

Another issue is the complexity of the main CUDA kernel. In DualSPHysics, several main

functions of the code (neighbour search, calculation of the Navier-Stokes equations) are

performed in a single kernel. This CUDA kernel now includes the ID filter for each phase

and the multi-phase model increasing the memory and the resources (threads, registers) the

GPU needs to provide for its computation.

Such a large kernel means that a concurrent launch with other CUDA kernels is almost

impossible due to the amount of blocks needed for its execution. It is also probable the large

amount of data, which depends on the number of particles, cannot be loaded into the shared

memory and must be directly accessed form the GPU global memory with a lower

bandwidth. This kernel may very well act as a bottleneck for the whole system.

4.5.2. Algorithm 2: Conditional Binary Multipliers

An alternative approach makes use of conditional operators instead of if statements. A

conditional operator in CUDA/C++ evaluates a binary expression returning a value

depending on its result. This value can then be stored in a new variable. Similar to the first

algorithm, we then use the particle IDs to change its outcome and distinguish between the

different phases via the operator.

Since the conditional operator is a multiplication operation, this is a faster alternative to if

statements when selecting a single value for a given phase and is the preferred approach in all

cases for applying a single-value that is uniform for an individual phase. Importantly for

GPU, it limits the branching between the threads.

100

As an example, Table 3 shows the use of a binary multiplier for the computing the pressure in

the equation of state:

Original code: Modified code:

If (ParticleID<CT.WaterLimitID){

 Pressure=B*(powf(Rhop/CT.RhopWater,

 CT.GammaWater)-1.0f)+X

Else

 Pressure=B*(powf(Rhop/CT.RhopAir,

 CT.GammaAir)-1.0f)-CL*Rhop^2+X

Endif

PhaseSwitch=(ParticleID<CT.WaterLimitID?

0:1);

Rhop0=CT.RhopWater*(1-

PhaseSwitch)+CT.RhopAir*PhaseSwitch;

Gamma=CT.GammaWater*(1-

PhaseSwitch)+CT.GammaAir*PhaseSwitch;

Pressure=B*(powf(Rhop/Rhop0, Gamma)-

1.0f)-CL*Rhop^2+X

Table 3: Pseudocode of the equation of state at Algorithms 1 and 2 where CT denotes a fluid constant

The values changing through the particle IDs in this statement can be simple integer numbers

so the additional amount of data being processed is minimal. It is similar to the first approach,

meaning that the changes required to the code are small and the interaction between the CPU

and GPU are still minimal.

The most important issue compared to the first approach is the increased number of

computations. All the interactions between the particles use this approach, including the

momentum equation and the equation of state. In the code, this translates to six additional

operations per particle and nine additional computations for each of its neighbours for each

iteration. Considering that the aim is the simulation of millions of particles, this is a

significant load even if arithmetic operations on the GPU are fast.

This approach investigates whether removing branching and simplifying the conditional

statements will counterbalance the addition of more operations. Note that, because of the

small changes from the first approach, the issue of a complex, resource-intensive kernel

remains.

4.5.3. Algorithm 3: Separate Particle Lists for each Phase

The resources inside each GPU (threads, registers and blocks) are finite. Using a single

CUDA kernel that performs all the operations involved in a single iteration of an SPH

computation is a potentially inefficient and prohibitive use of the GPU resources. Therefore,

using a CUDA kernel that loads particle data to the GPU device, determines the neighbour

101

lists and performs all fluid particle interactions inside the domain has the potential to impact

the simulation severely.

As mentioned when discussing the first algorithm, it is possible for a bottleneck to be formed

when the GPU needs to dedicate all its resources to computing this kernel. The computational

time is then defined by the speed in which this kernel is being executed, regardless of any

other optimisations within the code. This situation becomes progressively worse as the

number of particles increases. This is a result of a unified cell and neighbour list.

Similarly for data transfer between GPU and CPU, when accessing the device kernel

transferring more data means that the GPU memory needs to be accessed multiple times

during the iteration. Furthermore, if the GPU shared memory is insufficient for the data, the

program will need to access data in the global memory, whose access time is much slower

(Herault et al., 2010).

To reduce the data processing required by the CUDA kernel, the particle lists for the different

phases can be separated (similar to sorting the fluid particles from the boundary particles in

the original DualSPHysics code). Splitting the cell list of the fluid particles in smaller,

distinct ones for each phase and creating a different neighbour list for each particle as it

interacts with different phases is an option that can potentially remove that bottleneck.

Figure 4.6 shows the differences between this approach and the previous two algorithms.

Similar to the original DualSPHysics code, the first algorithms have one list for all fluid

particles, while the new multi-phase scheme has separate lists for each phase.

Original Neighbour List Modified Neighbour list

Figure 4.6: Neighbour Lists for single and multi-phase DualSPHysics GPU code (green shows the previous neighbour

list, while red and blue note the new lists for air and water phase respectively)

The cell lists are created at the beginning of each iteration on the GPU after the particles are

reordered following the system update from the previous time step. The different cell lists

Water

Air Air

Water

102

allows the use of a separate global CUDA kernel for each phase which computes the particle

interactions. Within each of these global CUDA kernels, there are additional device kernels

(only called and executed by the GPU) which compute the interactions with the neighbour

lists of the different phases. This is displayed in Figure 4.7.

CPU Code

Create Neighbour

Lists for Water

Particles

Create Neighbour

Lists for Air Particles

Calculate

interactions

with water

neighbours

Calculate

interactions

with air

neighbours

Calculate

interactions

with boundary

neighbours

Calculate

interactions

with water

neighbours

Calculate

interactions

with air

neighbours

Calculate

interactions

with boundary

neighbours

Global Kernels

Device

Kernels

Figure 4.7: Global and Device Kernels for multi-phase DualSPHysics GPU code for Algorithm 3

This reduces the computational expense since the appropriate formulation is known a priori

for each different phase-phase interaction, e.g. air-water and water-water, because the

majority of conditional statements have now been removed. When the particles are

interacting, we explicitly know the phase of each one due to the thread number of each

particle and the different CUDA kernel used, removing the need for the particle ID filter of

Algorithm 1 or the binary multiplier of Algorithm 2.

This approach is more complicated than Algorithms 1 and 2, with several new CUDA kernels

and significant changes to the structure of the original DualSPHysics code. To reduce the

computational runtime, the computational cost of launching new kernels should be less than

the speed-up gained by eliminating conditional statements and reducing the complexity of the

global kernels (e.g. for a two-phase flow one new global kernel and four new device kernels

will be used).

Using multiple particle lists means that each particle list must be re-ordered every iteration.

As mentioned previously, DualSPHysics uses the THRUST routine for particle list reordering

to create cell and neighbour lists for efficient processing. In this new algorithm, the THRUST

GPU

U

103

routine will now be called multiple times in each time step increasing the data handling but in

theory leading to an improved performance. Furthermore, with the new global kernels called

by the CPU host, there is more thread synchronisation that can potentially delay the

execution.

A prerequisite for this approach is to ensure that the cell lists being created only contain

particles of the same phase. Since the THRUST algorithm is still used for each phase, the

access time for the particle data is also optimised for each phase, not for the whole

computational domain. In fractured, violent domains this could be an issue near the interface

with unequally formed cells that delay the construction of the neighbour list.

4.5.4. Algorithm 4: Intermediate CPU-GPU function

To avoid the time consuming CPU-GPU global kernel calls of Algorithm 3, a new function

that connects the CPU and the global kernels is introduced. This new kernel minimises

interaction between the CPU and GPU with only one global kernel called per iteration. The

old global kernels are reconfigured as device kernels being called by the new, intermediate

function solely on the GPU as shown in Figure 4.8.

CPU Code

Calculate

interactions

with water

neighbours

Calculate

interactions

with air

neighbours

Calculate

interactions

with boundary

neighbours

Calculate

interactions

with water

neighbours

Calculate

interactions

with air

neighbours

Calculate

interactions

with boundary

neighbours

Global Kernel

Device

Kernels

Intermediate

function

Create Neighbour

Lists for Water

Particles

Create Neighbour

Lists for Air Particles

Figure 4.8: Global and Device Kernels for multi-phase DualSPHysics GPU code for Algorithm 4

GPU

U

104

The major issue with this approach is the potential for increased code branching within the

intermediate function. A new conditional statement is required in the intermediate function to

separate the cell lists of the different phases, which were handled by different global kernels

in Algorithm 3, as device kernels cannot assign separate computing resources for each phase.

However, the internal structure of the old global kernels has not been modified from

Algorithm 3, such that the particle lists for each phase with their advantages are retained.

This leads to extra computational load for some threads and subsequent delays with

synchronisation. This approach tests whether minimising CPU-GPU interaction is more

important than minimising branching among the threads.

4.6. Hardware

Two different GPUs have been used to validate the GPU multi-phase code, an nVidia

GeForce GTX570 and a Tesla S2050. Both are based on the Fermi architecture, but the Tesla

S2050 is a dedicated scientific computation device, whereas the GeForce GPU is appropriate

for computer graphics and gaming. The performance attributes of these particular cards are

summarised in Table 4. The CPU used for the comparison is the Intel Xeon E5507, with

32GB of RAM and a clock speed of 2.27GHz.

 GeForce GTX 570 Tesla S2050

Compute Capability 2.0 2.0

Processor Cores 15(480 CUDA Cores) 14 (448 CUDA Cores)

Clock Rate (MHz) 1560 1150

Global Memory (MB) 1279 2687

Memory Clock (MHz) 1900 1550

Memory Bus Interface (bit) 320 384

Memory Bandwidth (GB/s) 152 148

Table 4: GPU Information and Statistics

The major difference between the GPU cards is the global memory available during

computation as well as the size of the memory bus. With the Tesla card a simulation of 14 to

16 million particles can be performed depending on the algorithm used, while the particle

limit of the GeForce card is 6.6 million particles.

105

4.7. Test Case 1: Still Water

4.7.1. Case Description

Here we use a simple test case of still water in a tank to investigate the speedup of the GPU

multi-phase code while maintaining quiescent conditions. A volume of water has been placed

inside a square vessel of dimension 4 m with a water depth of 2 m, filling exactly half of the

domain. Above the water the tank is filled with air. The only external force applied to the

tank is gravity. The domain used has the same dimensions as the one used for the next test

case, the dam break by Koshizuka and Oka (1996). A sketch of the tank can be seen in Figure

4.9:

Figure 4.9: Definition Sketch for Still Water Multi-phase Case

This is a very simple case but an important one for Lagrangian methods regardless.

Compared to the Eulerian formulation, mesh-free methods using a moving frame of reference

struggle to maintain a zero-velocity domain. The still water case is then a suitable method for

testing the algorithm to identify any problems or errors in the code. It is especially important

in this case, due to the single precision used throughout the computation inherent to the

GPUs. The case omits bottom friction in the tank, since this would damp any potential

movement masking the errors present (Vacondio et al., 2012).

Air

Water

4 m

4 m

2 m

106

4.7.2. Comparison of different algorithms

This is a useful case for comparing the runtime of the different algorithms. The lack of fluid

movement and the small forces present in the domain mean that the time step is almost

exclusively directed by the relatively high speed of sound in the air phase and, as a result,

remains nearly constant.

Figure 4.10 shows the computational time to run the simulation for 1 second of physical time

where each algorithm was executed on both GPU cards for a range of particle numbers from

2000 to 12.5 million (note due to memory constraints, the GeForce card only simulates 4.5

million particles maximum). The results show that Algorithms 3 and 4, which use the

separate particle lists, have the shortest computational runtimes and the difference among the

algorithms is increasing when particle numbers are increased. When simulating 12.5 million

particles, the greatest difference between the fastest and the slowest algorithms is

approximately 8.5% of the simulation runtime.

Comparing Algorithm 1, which predominantly uses conditional if-statements, and Algorithm

2, which uses binary multipliers, Figure 4.10 shows only marginal differences in runtime.

The faster simulation also depends on the number of particles, with Algorithm 4 being

initially faster. The situation is reversed when further increasing particle numbers. Algorithm

3 has a more constant interaction between the CPU and GPU which will be independent of

the number of particles. The intermediate function of Algorithm 4 uses limited code

branching which may account for its greater runtime at 12.5 million particles.

107

(a) GeForce

GTX570

(b) Tesla

S2050

Figure 4.10:Runtime comparison of the different algorithms

The runtime difference for the algorithms has also been plotted in Figure 4.11. The runtimes

are compared to the slowest algorithm for each simulation; Algorithm 4 for the low

resolutions and Algorithm 2 for the higher. The results show that the time gained by using

Algorithms 3 or 4 is on the order of 5-10% form Algorithm 2 and Algorithm 1 if more than 2

million particles are used. The runtime gain is computed using:

108

slow

algslow

t

tt
η

100 , (4.1)

where tslow is the runtime of the slowest algorithm, compared to the algorithm with runtime

talg. The result is given as a percentage.

The results for the particle lists are confirmed when comparing the effect of the choice of

GPU card as shown in Figure 4.12. Running the still water test case on the (slower) GeForce

card gives a similar trend with Algorithm 3 being the fastest, even though GeForce

simulations can only accommodate a fraction of the particles of the S2050. It is interesting to

a) GeForce

GTX570

b) Tesla

S2050

Figure 4.11:Runtime difference between the four algorithms

109

note that for lower numbers of particles, Algorithms 1 and 2 have a very significant

advantage especially for the GeForce GTX570 card.

The percentage difference however does not mean the improvements gained by Algorithms 3

and 4 are insignificant. The runtime for the higher resolutions increases at an exponential rate

for either card, as can be observed in Figure 4.12 resulting in the longer simulations taking

days to finish. That increase means that any advantage in the higher resolutions potentially

translates to several hours or even days needed for the computation.

Figure 4.12:Runtime comparisons between the Tesla and GeForce graphics cards

Comparing the results of the GPU simulations to a CPU-only computation we find that there

is a significant speed up gained as shown in Figure 4.13. The simulation was performed using

different numbers of particles up to 12.5 million, which was the limit of the GPU memory.

Figure 4.13(b) shows that the speed up for simulations for both GPU cards where the speed

up is typically on the order of 40-80. The Tesla card has a speed up approximately twice that

of the GeForce GPU which is not surprising given that the Tesla architecture is specifically

designed for scientific computation.

As shown in Figure 4.13(b) the speed up provided by the GPU code for the fastest approach

(Algorithm 3) is constantly increasing as the particle count is also increasing. There is a clear

change in gradient in the speed up curves from 200,000 particles which is due to the

increased time required for the particle interaction as shown in Figure 4.16. After 2 million

particles the speed up remains constant, as the amount of data being processed negates the

advantage gained from the GPU architecture.

110

This type of comparison is unfair for the CPU since it does not have the processing power of

the GPU and because SPH is a method naturally oriented towards parallel computation. A

more apt comparison would be to an MPI or an OpenMP code, which would also be parallel.

However, this comparison is still useful as it shows the advantages of using a parallel

approach as opposed to the conventional serial code.

(a) Computational

time

(b) Speed up

Figure 4.13: Runtime comparison between a CPU and two different GPUs

When considering the individual parts of the code, the creation of the neighbour list (NL), the

force computation (FC) and the system update (SU), the difference between the

computational times required to execute this task is better illustrated in Figure 4.14 and

Figure 4.15 for 200,000 and 2,000,000 particles respectively. These figures show the

percentage of the total computational time of the GPU that is devoted to each task.

111

a) Algorithm 1 b) Algorithm 3

Figure 4.14: Percentage of the runtime taken by each part of the code for 200,000 particles (NL = Neighbour List

creation, FC = Force Computation, SU = System Update)

a) Algorithm 1 b) Algorithm 3

Figure 4.15: Percentage of the runtime taken by each part of the code for 2 million particles (NL = Neighbour List

creation, FC = Force Computation, SU = System Update)

The particle interaction is indeed the most demanding aspect of the computation. Even at

lower resolutions it requires close to 50% of the total simulation time as shown by Figure

4.14. The time allocated to force computation increases with the number of particles. This is

not the case for the two other parts of the GPU computation. Updating the system variables at

the end of each time step requires approximately the same computational effort regardless of

the resolution or the algorithm, with minor differences at the order of 1%. On the contrary,

the importance of the neighbour list function is diminishing, as shown in Figure 4.15 leading

to an over 20% reduction on the time allocated.

NL
NL

FC
FC

SU SU

SU
NL

NL

SU

FC FC

112

As shown in Figure 4.14 and Figure 4.15 between the two algorithms there is a difference in

the allocated time for the neighbour list and force computation parts of the code. This

difference is the same regardless of the resolution; the balance is shifted by 6% towards the

creation and maintenance of the neighbour list for Algorithm 3. Figure 4.16 shows a more

detailed description of the time devoted to each part as the particle resolution increases. It

confirms the behaviour seen in Figure 4.14 and Figure 4.15: inter-particle force computation

is the most demanding part of an SPH computation and the required computational resources

are increasing with the number of particles.

The algorithms can be divided in two groups, depending on whether they use separate

particle lists. The first group (Algorithms 1 and 2) which uses a single list devotes less time to

the neighbour list and more time in the force computation, while the second group

(Algorithms 3 and 4) has the exact opposite behaviour. The decrease of the time devoted to

the neighbour list does not mean that the computational runtime for this part is smaller; as

shown in Figure 4.17 both the parts of the simulation increase their runtime as the resolution

increases.

113

(a) Neighbour

List

(b) Force

Computation

(c) System

Update

Figure 4.16:Comparison of neighbour list creation, particle interaction & system update for the different algorithms

for simulations up to 12.5 million particles

114

a) Neighbour

List

b) Force

Computation

Figure 4.17: Runtime comparison of the computation parts for different algorithms

The difference in the required time for each part of the computation lies in their rate of

change, with the runtime of the force computation increasing at a faster rate. Compared to the

values of the neighbour list, this runtime is about 2-3 times larger. The difference in the

percentage devoted to each part can be directly attributed to the runtime difference;

Algorithms 1 and 2 require proportionately less time for the neighbour list and more time for

the force computation. The first result is expected as they only require reordering one particle

115

list in each time step. The second result occurs because of the elimination of conditional if-

statements from the code. Launching separate kernels takes advantage of the inherent

parallelism of the GPU, as opposed to separately checking the phase of each particle

separately every time step.

This behaviour also offers an explanation for the difference between the runtimes of the

various algorithms discussed herein. The creation of separate particle lists may increase the

time required to create the neighbour list but the limiting factor of the computation lies in

computing the particle interactions, so decreasing this runtime should be the main concern of

any optimisation in the code.

The force computation limiting the speed of the simulation is further proven by looking at the

profiling data for the GPU used in the simulation. These data were only available for the

GeForce GTX 570 card. They show that the bottleneck for the system is the number of

registers and blocks assigned to the KerComputeFluid kernel, which is the function that

calculates particle interaction between fluid-fluid and fluid-boundary particles.

This kernel must be executed for every inter-particle interaction; for a simulation with

100,000 fluid particles, if a particle has for example 20 neighbours, this kernel needs to be

executed 4 million times in each time step, since the predictor-corrector is a second order

time integration model. Another limiting factor is the data accessed each time

KerComputeFluid is executed. Limiting the number of particle interactions is impossible;

however, having multiple particle lists allows limiting the amount of data being accessed in

each execution cycle and a reduction of the commands being executed.

4.7.3. Comparison with the single-phase model

One of the greatest issues of applying a multi-phase model in SPH is the additional

computational time required, due to the increased number of particles and the reduced time

step. Depending on the model, additional equations and conditional statements for the

treatment of each phase may be required and as shown in Section 4.5 creating an optimised

algorithm is a difficult task.

As a result and as shown in Figure 4.18 the runtime of the multi-phase model is significantly

larger than the single-phase. The comparison is between the original DualSPHysics code and

the modified multi-phase version using Algorithm 3. Both cases are running an identical still

water case, with the only difference being that the multi-phase code has to additionally

116

simulate the air phase, so it has twice the number of particles. Both simulations have

however, the same resolution and the same number of water particles.

Figure 4.18: Runtime comparison of the single and the multi-phase computations for different GPUs

The difference is visible for every possible resolution with the single phase having a

noticeable speedup which increases as the particle number is increasing. This holds true for

both GPUs used in this study. A difference occurring is that the computational runtimes of

the two GPUs are much closer for the single-phase code with the GeForce card being only

slightly slower, while there is significant difference in the multi-phase simulation.

The previous observation is confirmed by the speedup, which is calculated to be around 4.2

for the Tesla card and 5.2 for the GeForce card. The difference can be attributed to the larger

amount of registers for the Tesla card, which enable the bottleneck for the system, the

KerComputeFluid kernel to be computed with a better efficiency.

With the previous comparison however, it is impossible to determine whether the difference

is primarily occurring due to the additional equations for the air particles and the restrictions

they impose on the time step or simply due to the increased number of particles. In order to

determine the effect of these restrictions a simulation using a constant time step at 10
-6

s has

been executed. The time step was selected based on the restrictions imposed by the air phase

so that both simulations will give correct and identical results. The runtimes for this

117

simulation are presented in Figure 4.19 which compares Algorithms 1 and 3 with the single-

phase simulation. The cases were executed using the GeForce 570 graphics card.

The simulation shown in Figure 4.19 uses the same number of particles for each simulation.

The initial particle distribution is also the same for each simulation, meaning that any time

difference occurs due to the additional treatment required for the air phase as well as the

computational expense needed to separate the two phases.

The results show that the expense for treating the air particles is considerable; the single-

phase simulation has a speed up around 2 compared to the two multi-phase simulations, as

seen in Figure 4.20. Compared to the multi-phase simulation with the conditional if-

statements (Algorithm 1) the speedup gained is constantly increasing although the rate of

increase is slowing; it is possible that it will eventually reach a plateau, similar to Figure

4.13(b).

Figure 4.19: Runtime comparison of the results from Algorithms 1 and 3 with the single-phase simulation for a

constant time step of 10-6s an for the same number of particles

118

Figure 4.20: Speedup of the single-phase simulation compared with two multi-phase simulations for the same number

of particles

The speed up gained by the single-phase simulation when compared to the simulation using

separate particle lists (Algorithm 3) however, is much lower with the increase rate being

effectively zero. The difference between the two algorithms illustrates that when using the

same time step, applying separate particle lists for each phase leads to a lower computational

runtime. This advantage is negated in a more complicated flow, where a variable time step is

necessary to ensure the stability of the computation.

4.7.4. Extension to three dimensions

The multi-phase model used in this study has been introduced to DualSPHysics in a way that

allows for an easy extension of the simulation to a three-dimensional space. This was also

taken into account when designing the different algorithms. In that regard, it is essential to

extend the still water simulation to the three-dimensional space. The still water simulation

will expand in the third dimension as seen in Figure 4.21. The increase in the dimensions has

been selected in order for the boundaries to not affect the majority of the fluid particles, while

allowing for a high resolution to be used.

119

Figure 4.21: Speedup of the single-phase simulation compared with two multi-phase simulations for the same number

of particles

Figure 4.22 shows the computational time to run the simulation for 1 second of physical time

for this three-dimensional case. Each algorithm was executed on both GPU cards for a range

of particle numbers from 30000 to 12 million in the Tesla card and due to memory

constraints, from 30000 to 12 million particles in the GeForce card. The results are similar to

the two-dimensional ones, presented in Figure 4.10 and show that Algorithms 3 and 4,

require the least time to complete the simulation. The difference among the algorithms is

increasing as the resolution is decreased.

The greatest differences appear when simulating 12 million particles. In that case the fastest

algorithm (Algorithm 3) requires approximately 12% less time. Compared to the two

dimensional case where the same difference was 8.5%, the benefit of separating the

computation of the different phases is more apparent here. The difference is still not as

noticeable for lower resolutions as can be seen in Figure 4.22(a)

4 m

4 m

Air

Water 2 m

1 m

x

z
y

120

(a) GeForce

GTX570

(b) Tesla

S2050

Figure 4.22:Runtime comparison of the different algorithms for a three-dimensional space

Regarding the computational runtime gained, Figure 4.23 shows that, unlike the results for

the two-dimensional case, Algorithms 3 and 4 have lower runtimes regardless of the

resolution used. Algorithm 2 is consistently slower, especially for the GeForce card, where

Algorithm 4 is consistently the fastest. The speed gains are also larger compared to the 2-D

case.

121

(a) GeForce

GTX570

(b) Tesla

S2050

Figure 4.23:Runtime difference between the four algorithms for a three-dimensional case

In order to investigate the increased difference between the two algorithms, the individual

aspects of the algorithms will be investigated. Similar to the 2-D investigation we focus on

the algorithms with the larger differences, 1 and 3 respectively. Figure 4.24 and Figure 4.25

show the percentage of time the GPU (in this case the Tesla S2050) devotes to completing

each task. As with the two dimensional results presented in Figure 4.14 and Figure 4.15 the

force computation is the most important part. It can also be observed that the creation of the

neighbour list is a more important issue for lower resolutions and for Algorithm 3 which

needs to maintain two lists.

122

a) Algorithm 1 b) Algorithm 3

Figure 4.24: Percentage of the runtime of the three-dimensional still water case taken by each part of the code for

250,000 particles (NL = Neighbour List creation, FC = Force Computation, SU = System Update)

a) Algorithm 1 b) Algorithm 3

Figure 4.25: Percentage of the runtime of the three-dimensional still water case taken by each part of the code for 4

million particles (NL = Neighbour List creation, FC = Force Computation, SU = System Update)

Unlike the two-dimensional computation however, the force computation in this case now

takes the vast majority of the time demanding over 90% of the total GPU computational time.

This is a significant increase from the previous results, where the force computation required

between 50 and 75% depending on the resolution. In contrast, the significance of the

neighbour list and the system update is vastly reduced. For the two-dimensional case,

creating the neighbour list requires a bigger investment of computational resources with the

123

time allocated to this task increased by an order of magnitude (about 25-30% for a million

particles depending on the algorithm).

Compared to the single-phase performance of DualSPHysics (Crespo et al., 2011a), shown in

Figure 4.26 the results are fairly similar with the time investment required for the neighbour

list being increased. Consequently, the time devoted to the particle interaction is slightly

diminished. The major difference between the two simulations is the increased number of

cells being created as a result of the second phase which leads to an increased number of cell

interactions. Note that the statistics shown in Figure 4.26 were calculated with a dam break

simulation, where the particles exhibit significant movement and the contents of the cells are

constantly changing.

Figure 4.26: Computational Runtime Distribution in a Tesla M1060 (Crespo et al., 2011a)

The reason for this change is the increased number of neighbouring particles, due to the fact

that the smoothing length now affects particles in a sphere instead of a circle. This creates an

increase in the number of particle interactions and the times the SPH algorithm is solved. The

neighbour list and the system update algorithm on the other hand, only increase their

computational runtime due to the number of particles without being greatly affected by the

increase in dimensions.

The increased importance of the force computation part of the code also explains the

increased difference between the two kinds of algorithms. As discussed in Section 4.7.2 and

as shown in Figure 4.17, Algorithms 3 and 4 can calculate the inter-particle forces at a lower

computational expense with dedicated particle lists for each phase. This is also confirmed by

Figure 4.27 which shows the difference in computing the force computation subroutines. The

difference observed mirrors the difference seen in Figure 4.22.

124

Figure 4.27: Runtime comparison of the force computation part of the code for different algorithms

When considering the comparison of the GPU to the CPU performance Figure 4.28(a) shows

the difference in the computational runtimes, while Figure 4.28(b) shows that a significant

speedup is obtained for both GPUs. Similar to the two-dimensional test case, the speedup

gained is higher for the Tesla card and it reaches a plateau after about 1 million particles. Due

to the increased importance of the force computation though, the runtime for the CPU

simulation has increased disproportionately to the GPU one leading to a higher speedup that

peaks at about 90.

125

(a) Computational

time

(b) Speedup

Figure 4.28: Runtime comparison between a CPU and two different GPUs for a three dimensional case

126

4.8. Test Case 2: Dry Dam Break

4.8.1. Case Description

The dam break case is a well-used benchmark for demonstrating the robustness of many SPH

schemes and for testing its applications in impulsively-started, rapidly-evolving free-surface

flows. A volume of water has been placed inside a vessel and flows only due to gravity, with

no other external forces applied. The water is interrupted by the vertical wall located

downstream with the resulting impact forcing the water to flow on the opposite direction. The

reflected wave can, depending on the velocity of the flow, create air pockets within the water

flow which significantly affect the resulting impact force and behaviour of the wave

(Peregrine and Thais, 1996).

This is a simple case, but several hydrodynamic problems are directly related to its principles,

especially wave impact problems. The latter include a diverse array of circumstances, from

slamming loads on ship hulls impacting on the water surface (Faltinsen et al., 2004), to

water-wave impacts on walls and coastal structures (Peregrine, 2003) to sloshing problems in

partly-filled tanks (Faltinsen et al., 2000). A case similar to the latter will be investigated in

Section 5.6. Of particular interest in these problems is the impact force of the waves on the

structure, as well as the water pressure and the effect of the entrained air.

Figure 4.29 shows a definition sketch where the dimensions use the same length scale as the

experiments performed by Koshizuka and Oka (1996). The actual dimensions are in line with

the computations performed by Rogers et al. (2009). The water is placed inside a completely

closed square vessel with 4m walls. There is no void inside the vessel with the remaining

space occupied by air particles. This is a dry dam break case without any water at the bottom

of the domain and the movement of the gate does not affect the water flow. As a result the

gate is considered to be removed immediately at t=0 without affecting the flow.

127

Figure 4.29: Definition Sketch for Dam Break Multi-phase Case

4.8.2. Runtime results

The dam-break test-case has been simulated with different particle resolutions. This case

displays significant water movement and has, as a result, a variable time step. Figure 4.30

shows the computational time to run the simulation for 1 second of physical time for the

different algorithms. The simulation was performed in the Tesla M2050 card. Algorithms 3

and 4 have a slightly lower computational time, confirming the results from the still water test

case. The differences among the different algorithms however, are relatively small although

not insubstantial, especially for the higher resolution.

The results from the still water case are also verified when comparing the results on different

hardware. Figure 4.31 shows the difference in runtimes between the Tesla and GeForce GPU

cards. The dedicated architecture of the Tesla card offers a significant decrease in

computational runtime regardless of the case, while the increased amount of memory

available also allows for the simulation of a larger number of particles.

Air

Water

4 m

4 m

1 m

2 m

128

Figure 4.30: Runtime comparison of the different algorithms for the dam break test case

Figure 4.31: Runtime comparison of Algorithms 1 and 3 for different hardware for the dam break test case

In comparison to the still water case shown in Section 4.7, the computational speed is slower.

The decreased time step is occurring as a result of the increase of the water flow velocity and

as a result of its interaction with the opposite wall, when the forces and pressure are rapidly

changing. The increase in inter-particle forces means that the time step is limited by Equation

(3.54) instead of Equation (3.55), which is mostly affected by the speed of sound in the air

129

phase and is the dominant restriction for the still water test case. Figure 4.32 shows the

difference between the two cases for 1 s. of physical time.

Figure 4.32: Runtime comparison of the dry dam break and the still water test cases for Algorithms 1 and 3

The difference in runtime is becoming significant after simulating 800,000 particles and the

effect is increased when moving to higher resolutions. The difference between the algorithms

is more pronounced algorithms in the dry dam break while in the still water case the

algorithms have approximately the same runtime. Using Algorithm 1 is slightly faster, but the

situation is reversed for the dry dam break, where Algorithm 3 has a lower runtime and the

difference is more noticeable.

The difference in the size of the time step depending on the point of the computation means

that identifying the average time step is a more difficult process and it will be different

depending on the length of the simulation. Indeed, simulating the overturning wave appearing

at the later stages of the dry dam break case requires a lower time step due to the complexity

of the flow.

When considering the individual parts of the code, the percentage of the time taken is given

by Figure 4.33 and Figure 4.34 for 2×10
5
 and 2×10

6
 particles, respectively. The trend follows

the one presented in Figure 4.14 and Figure 4.15 for the still water case: the force

computation is the most time-consuming part of the simulation for higher resolutions and the

130

neighbour list. The differences between the two cases are very small, in the range of 1%, so

the conclusions for the still water case can also be applied to the dam break case.

a) Algorithm 1 b) Algorithm 3

Figure 4.33: Percentage of the runtime of the dam break case taken by each part of the code for 200,000 particles

a) Algorithm 1 b) Algorithm 3

Figure 4.34: Percentage of the runtime taken by each part of the code for 2 million particles

4.9. Concluding Remarks

131

In this chapter, a description of the code being used in this study was given along with the

improvements and modifications executed in order to incorporate the multi-phase model.

Several algorithms were proposed for the optimal interaction between the phases, each with a

different focus. Testing these algorithms and their effects on the computational runtime of the

code shows an advantage if the CUDA kernels computing the particle interaction are

separated from each phase. The advantage is greater as the number of particles is increasing.

The next chapter will investigate the application of the shifting algorithm for the multi-phase

model as well as using the code for simulating some 2-D test cases such as a dam break (wet

or dry) or a rolling tank.

132

5. Validation: Two Dimensional Cases

5.1. Introduction

The next two chapters will present several cases used for validation of the multi-phase GPU

code. Test cases that would be very time consuming without a GPU code are investigated.

This chapter will cover the two-dimensional cases, while the next chapter will present a

three-dimensional case. At high particle resolutions, voids appear in the air phase. A shifting

algorithm is introduced to counter these issues. The code is validated using both wet and dry

bed dam break cases comparing them to experimental data. The evolution of a rolling tank,

partly filled with water will also be simulated. Due to the presence of air, and to reduce the

computational demands, the cases presented here are completely enclosed by boundary

particles.

5.2. Dry Dam Break

5.2.1. Case Evolution

The dam break case evaluated here has already been presented in Section 4.8 using data from

the experiment of Koshizuka and Oka (1996) and concerns the evolution of the collapse of a

water column over a dry bed. This case was selected because of its simple geometry and flow

mechanics; as a gravity-driven flow little difference is expected when changing parameters. It

will allow however, determining whether the water movement is simulated correctly, or

whether it is significantly affected by the presence of the air phase.

After the start of the simulation the water column collapses under the effect of the gravity and

constantly moves towards the right side of the domain, where, about 0.7s after the beginning

of the simulation, the flow collides with the opposite wall reducing the velocity of the toe

particles to 0. Figure 5.1a and Figure 5.1b show two instances of the simulation at 0.4s and

0.7s respectively. Following the wall interaction and as a result of the forces exerted by the

moving part of the flow, the toe position moves upwards as seen in Figure 5.1c.

a) The air phase only plays a minor role during this part of the simulation. The gravity

flow created exhibits low velocities before reaching the opposite wall leading to

minimal mixing between the air and the water phase. The interface is constantly

changing but this is not a violent flow; the free surface remains intact. Only when the

133

water toe reaches the right edge of the domain are some air particles separated from

the main air flow, as seen in Figure 5.1c in the bottom right corner.

a) 0.4s

b) 0.7s

c) 1.0s

Figure 5.1: Instances of the dry dam break case taken from a simulation with 250,000 particles

The dam break case also demonstrates some issues occurring from the use of the dynamic

boundaries (Crespo et al., 2007):

134

a) Some water particles close to the left wall have a delayed movement, separating from the

main flow. The effect is noticeable in the instances of Figure 5.1, especially in Figure 5.1(b)

and Figure 5.1(c) in the bottom right corner. The forces exerted by the boundary particles

prevent their downward movement due to the way they are positioned. This force is present

in the other fluid particles near the interface, however, in this case, the incomplete kernel and

the very low velocity of these fluid particles amplifies the error. Repulsive forces exerted by

the air particles are also significantly lower than particles with a high density, so the force

equilibrium does not make the water particles follow the main flow.

b) After the water column begins collapsing the distance between the boundaries and the

water particles increases to 1-2 times the smoothing kernel length h. It is more noticeable in

Figure 5.1(a) at the bottom near the toe of the water flow. The jump occurs due to the small

number of water particles in the flow toe. The repulsive forces from the boundary particles

overcome the repulsion from the air phase and the water flow moves slightly upwards till

equilibrium is maintained.

5.2.2. Validation

When executing the experiment (Koshizuka and Oka, 1996), the authors were interested in

measuring the toe position of the wave and the height of the flow. The position of the toe was

measured until the water reached the opposite wall, while the height is the depth of water at

the left wall, where the water flow was located initially at t=0 and it is measured for the first

1.2s of the simulation. The reason for measuring these two quantities is to assess the velocity

with which the water spreads and the rate of fall for the water column (Martin and Moyce,

1952).

To compare the results to the Koshizuka and Oka (1996) experiment, the length and height of

the water flow as well as the computational time have been non-dimensionalised according to

the following equations (Rogers et al., 2009):

0/*Position Toe hxX , (5.1)

02/*Height Water hhH , (5.2)

0/2* Time nalComputatio hgtt , (5.3)

where h0 is a characteristic length of the case, selected here to be equal to the initial height of

the water column (Koshizuka and Oka, 1996). The particle spacing dx used in this case can

135

be non-dimensionalised with the initial height of the water column h0. For the simulation

presented, the value used is dx/h0=0.008 while the speed of sound for the water has been

selected in order to ensure that the Mach number is less than 0.1 (Monaghan, 1994). For this

case it can be found using the Equation:

010 ghcsw , (5.4)

while the speed of the sound for the air phase can be found by the Equation (3.61). The

Reynolds number can be calculated using the initial height of the water column as

characteristic length, while the maximum propagation speed can be found by 0gh so the

value of the Reynolds number is ~3×10
6
.

Figure 5.2 shows the results for the non-dimensionalised toe position while Figure 5.3 shows

the comparison for the height of the water column. The results are compared to a single-phase

simulation using the DualSPHysics code with the same particle size.

The toe position results are also compared to the analytical solution by Ritter (1892). The

solution considered was a horizontal channel with smooth walls, where the water flow breaks

instantaneously. The equations for the wave front celerity and for the dimensionless free-

surface profile are given:

02 ghc , (5.5)

2
*

*
1 if *32

*

*

t

X
H

t

X
 (5.6)

where c is the wave front celerity and the dimensionless variables are given by Equations

(5.1)-(5.3). This is a frictionless solution predicting a higher speed than expected for a real

fluid in contact with a rough wall.

136

Figure 5.2: Evolution of the wave front. Comparison with experimental data and the Ritter solution for dx/h0=0.008

Figure 5.3: Evolution of the water column height and comparison with experimental results for dx/h0=0.008

Figure 5.2 and Figure 5.3 show a generally good agreement for the evolution of the water

flow with the experimental data, however, the flow is moving slightly faster than the

experimental results. The results are replicated by the single-phase DualSPHysics code with

the differences between the two simulations being exceedingly small. A difference was not

expected; in the first stage of the dam break case, there is no mixing between the two phases.

This result shows that the multi-phase code can reproduce a propagating water flow and has

similar accuracy to the original single-phase DualSPHysics code for a flow primarily

governed by the water phase.

A disparity between the experimental and the numerical results for the height of the water

column appears in the latter half of the simulation, slightly before the water flow reaches the

137

opposite wall (which happens at 3*t). The discrepancy is due to the dynamic boundary

particles used in both codes (Crespo et al., 2007) with the water particles close to the wall

having a delay in their movement artificially increasing the height of the water flow. The wall

effect extends to a distance ~20h from the boundaries.

The case has also been simulated using particle spacing dx/h0=0.004 which corresponds to a

particle number close to one million. Figure 5.4 and Figure 5.5 show the results in

comparison with the experimental data and the earlier multi-phase simulation with

dx/h0=0.008. For the evolution of the water front, the behaviour is as observed in Figure 5.2;

the velocity of the water flow is slightly faster than the experimental results, with the high

and the low simulation exhibiting almost identical behaviour. The results are only marginally

better for the high resolution.

The result for the multi-phase simulation is, at best, only marginally improved for the higher

resolution even when comparing the height of the water column in Figure 5.5. This is linked

to the boundary issue presented in Section 5.2.1 with the delay caused by the boundary

particles being present regardless of the resolution. The results presented in Figure 5.4 and

Figure 5.5, in addition to the results shown in Figure 5.2 and Figure 5.3 show that the

parameters of the water flow are relatively insensitive both to the resolution and the whether

the air-phase is being modelled, at least for the early stages investigated here.

Figure 5.4:Comparison of the low and high resolution simulations for the water front evolution

138

Figure 5.5: Comparison of the evolution of the water height for two different resolutions

5.3. Particle shifting strategies for weakly compressible

SPH

5.3.1. Void formation in the multi-phase model

While the initial stages of the dam break test case provided close agreement for height and

toe position (as compared to the experiments of Koshizuka and Oka (1996)), an issue arose

when simulating large numbers of particles (over 200,000) which persists regardless of the

resolution used.

Specifically, when the water reaches the opposite wall, it is eventually reflected and starts

moving towards the opposite (or left-hand wall), creating a plunging wave in the process. The

reflection wave is created at about 1.7s from the start of the simulation and after a further 0.1

seconds, the overturning wave shown in Figure 5.6 reaches the water at the base of the

domain creating an air pocket trapped in the water flow in the process.

139

Figure 5.6: Overturning wave at 1.8s form the start of the simulation for dx/h0=0.008

As the simulation progresses further, the air pocket is moving with the water flow; its shape

constantly changing. At high resolutions however (dx/h0=0.008), the air particles are unable

to quickly adapt to the changing form and as a result voids, areas completely devoid of

particles, are formed as seen in Figure 5.7, shown at 2.1s. The shape and size of the voids

depends on the number of particles and they persist throughout the existence of the air

pocket, except in cases where the pocket becomes small enough for the existing particles to

adapt to it.

Figure 5.7: Water flow at 2.1s showing the voids being created within the water flow for dx/h0=0.008

140

Apart from the voids, the interface in the air pocket also shows significant problems. The air

phase is attempting to maintain its interface, creating a thin layer of particles in the areas

bordering the water phase. Interaction with the water phase is as minimal as possible, as a

result of a void about 2h that has been created in the interface separating the two phases.

The formation of the voids is due to the treatment of the air phase by the multi-phase model

with the inclusion of the cohesion term, see Equations (3.58) and (3.64), the resolution or

particle size and the use of single precision enforced because of the GPU. The adhesion term

ensures a smooth interface between the two phases by adding a force among the air particles

to prevent unphysical mixing at the interface.

A side-effect of the cohesion force is the tendency of the air particles to remain adjacent to

each other. So, when the pocket size and form change rapidly however, this force prevents

the particles from separating from each other and adapting to the new shape, leading to the

voids shown in Figure 5.7. In effect, the use of the cohesion term, in conjunction with the use

of the same equation of state as the water phase, lead to the treatment of the air as a highly

compressible liquid. Hence, the air phase cannot expand if a void is present. A different

formulation such as those described in Section 2.4 might avoid this, but here we use the

formulation of Colagrossi and Landrini (2003) for ease of implementation on GPU.

The voids are only present at high resolutions with initial particle spacing, dx/h0, smaller than

0.008 and they are not dependent on the number of particles but rather on their volume and

the inter-particle distance. The higher volume of the particles means that less are needed to

eliminate the voids in the air pocket, which is of the same size regardless of the simulation

parameters. The increased radius of the smoothing kernel at the lower resolutions also

increases the particles’ movement range without breaking the free surface and explains why

the issue is not observed at lower resolutions.

A secondary issue also arises as shown in Figure 5.7. The spray created by the water flow

splashing against the opposite wall is now falling vertically back towards the main water

body. The isolated water particles have created a zone of size 2h among them and the other

phase so that no interaction is possible. This behaviour is initiated by the use of the Shepard

filter which is computed only between particles of the same phase, but is maintained by the

inability of the air phase to cover the resulting void, even though the Shepard filter is used

infrequently.

141

In order to eliminate the voids, the empirical parameters of the Colagrossi and Landrini

(2003) model were investigated and a large number of configurations tested. They did not,

however, have a significant effect on the behaviour of the air particles with the voids

remaining. Modifying the speed of sound for the water phase enabled slightly finer

resolutions to be used, but the voids quickly re-appeared.

The behaviour of the air particles can be further examined by creating an artificial test case: a

volume of air particles is placed in a domain away from the boundaries and without the effect

of the gravity field as shown in Figure 5.8(a). If a constant background pressure is enforced

on the air particles, the expected behaviour is a uniform expansion of the initial volume in

order to cover the entire domain. This is not the case as demonstrated in Figure 5.8(b), where

a constant background pressure of 100Pa was applied to 20,000 particles with particle

spacing dx=0.01m.

a) Initial particle arrangement b) Particle arrangement after 0.2s

Figure 5.8: Multi-phase model issue demonstrated in an artificial test case following the expansion of an air volume

for dx=0.01m

Figure 5.8(b) shows the air particles clumping together as the initial volume is forced to

expand due to the pressure gradient. The form of the volume as it expands is not random; the

particles are attempting to normalise their pressure gradient (as is the expected behaviour)

while maintaining a regular particle distribution and their particle concentration (number of

particles in each area) gradient to 0. There is no particle diffusion being observed, which

142

would lead the particles to areas of lower concentration. The particles instead remain in the

streamlines created by the flow.

The particular arrangement in Figure 5.8(b) allows the internal particles to maintain a

concentration value of 1, despite having an incomplete kernel. This is achieved only

numerically by the altered particle positions. The lack of complete symmetry in the final

particle position is due to the single precision of the GPU and the use of Tait’s equation of

state, where small density variations are translated to a substantial pressure difference and

particle movement.

To eliminate the voids, the air particles must be forced to move to areas of lower particle

concentration so their behaviour will approximate that of a real gas. The particles should be

able to switch from one streamline to another and the particle clustering needs to be avoided.

The shifting models developed by Xu et al. (2009) and improved by Lind et al. (2012b) and

Skillen et al. (2013) are ideal for this situation.

5.3.2. Simple shifting algorithms

The shifting algorithm was initially proposed by Xu et al. (2009) within a divergence-free

incompressible SPH approach to prevent the instability caused by anisotropic particle

spacing. In this study, it has been used with the same intention, but has been slightly modified

in order to apply to a weakly compressible multi-phase SPH approach instead of a fully

incompressible model. This is a non-conservative approach violating momentum

conservation, due to the interpolation of the hydrodynamic variables when the shifting

occurs. However, this algorithm leads to smoother pressure fields and greater numerical

stability in the simulation.

In the approach of Xu et al. (2009), after the calculation of their new positions, the particles

are shifted across streamlines using the following equation:

isshs αCδ Rr . (5.7)

In this equation δrs is the shifting distance of particle i and Csh is an empirical constant set

from 0.01 to 1. The shifting magnitude αs is dependent on the maximum particle velocity and

the time step and is equal to their product:

tuαs Δmax . (5.8)

143

The maximum velocity is not known before the start of the simulation but an appropriate

value can be estimated with some preliminary runs. In general, the values of Csh and αs are

selected so that they are sufficiently large to prevent instability but do not affect the SPH

scheme by moving the particles far from their previous positions or altering the number of

neighbours.

The shifting vector Ri is used as a weighting function to reduce the effect of more distant

particles in a similar manner to the smoothing kernel. The shifting vector is given by the

following equation:

iM

j

ij

ij

i
i

r

r

1
2

2

nR , (5.9)

where nij is the unit distance vector between particles i and j, Mi is the total number of

neighbours surrounding the particle within the smoothing kernel and ir is the average

particle spacing among the neighbours of particle i given by:

iM

j

ij

i

i r
M

r
1

1
. (5.10)

After computing the shifting distance and the new particle positions, the velocity field can be

updated by using a Taylor series. Xu et al. (2009) suggested to use the first two terms so that

the order of the updating was consistent with that of the order of the Laplacian operator and

be computationally efficient. Considering the velocity with a Taylor expansion:

 2

iiiiiii δOuδuu rr
,

(5.11)

where iiδ r is the distance between the shifted and the original position of the particle.

The original ISPH shifting algorithm would, at this point, have been completed, but in a

weakly compressible scheme the density also needs to be updated. Initially, Equation (3.26)

was used for directly computing the density through the smoothing function. The results

however, were lacking accuracy, creating significant noise in the pressure field via the

equation of state. To calculate the new values the Shepard filter which takes into account the

density values of the neighbouring particles will be used, Equation (3.39).

144

A form of the shifting algorithm has already been proposed for weakly compressible SPH by

Shadloo et al. (2011), (2012). This approach is based on the inconsistency of the particle

distribution and aims to prevent particle clustering and allow a more accurate computation of

the hydrodynamic gradients by enforcing a more homogeneous distribution. It has also been

used with a splitting and coalescing particle scheme (Vacondio et al., 2013).

5.3.3. Shifting based on particle concentration gradients

i) Previous algorithms for free-surface flow

A treatment for the air-water interface is necessary in order to use the shifting algorithm with

free-surface flows. An improvement was proposed by Lind et al. who changed the shifting

magnitude and direction according to Fick’s law so that particles tend to shift towards areas

with lower concentration (Lind et al., 2012b), which is the expected behaviour for the air

particles. In that regard using concentration gradients, Equation (5.7) was restated as:

is CDδ r , (5.12)

where D is a diffusion coefficient that controls the shifting magnitude and C is the particle

concentration. Its value can be found by considering a von Neumann stability analysis of an

advection-diffusion equation for concentration (Lind et al., 2012b). The analysis gives the

following stability condition:

D

h
t

2

5.0Δ . (5.13)

The above equation can then be used as a means of selecting the value of the diffusion

coefficient. Lind et al. propose using the maximum value but with an additional restriction

for violent flows; the particle shifting distance cannot exceed 0.2h to prevent significant

changes in the number of neighbours as mentioned earlier.

In Equation (5.12) C is the particle concentration which can be found using the sum of the

smoothing kernel:

ij

j j

j

i W
ρ

m
C . (5.14)

The concentration gradient can be found in the same way:

145

ij

j j

j

ii W
ρ

m
CC . (5.15)

An issue that is possible to occur when using Equation (5.15) is particle clumping. Due to the

dependence on the gradient of the smoothing kernel, as the distance between a pair of

particles is reduced, the concentration gradient tends to zero and the particles tend to clump

together (Lind et al., 2012b). To correct this issue, a tensile instability correction term is used

(Monaghan, 2000):

n

ij

ij
W

W
Rf

0r , (5.16)

where fij is the correction term, R and n are constants introduced by Monaghan and r0 is the

initial distance among the particles at the start of the simulation. For the two constants the

values suggested were R = 0.2, n = 4. Equation (5.15) can now be rewritten as:

 ijij

j j

j

ii Wf
ρ

m
CC 1 . (5.17)

The effects of the shifting algorithm can be demonstrated using Taylor-Green vortices. As

demonstrated by Lind et al. (2012b), without particle shifting the particle arrangement

becomes highly distorted with the particles following individual streamlines. When the

shifting is introduced, a more regular particle distribution is maintained and Lind et al. report

a variation on the particle concentration less than 2%.

An alternative approach to defining the diffusion coefficient was proposed by Skillen et al.

(2013). They also considered the von Neumann stability analysis but imposed an additional

restriction based on the particle velocity magnitude:

i

h
t

u
Δ . (5.18)

Using Equations (5.13) and (5.18) and a CFL number of 0.5 the following formulation for the

diffusion coefficient was reached (Skillen et al., 2013):

tΔhAD
is u , (5.19)

146

where As is a parameter in the range [1,6] and
i

u is the velocity magnitude of particle i. It is

recommended to be set at the minimum possible value that would still allow for effective

shifting minimising interpolation errors. A value of 2 is recommended.

This study uses the shifting coefficient proposed by Skillen et al. (2013) described in

Equation (5.19) which is directly dependent on the particle velocity. The simpler term

proposed by Lind et al. (2012b) in Equation (5.19) is not suitable in this thesis due to the very

small time step enforced by the speed of sound in the air. This creates a large shifting

coefficient resulting in a large number of particles exiting the domain.

The term employed by Skillen et al. is a more generalised form taking into account the nature

of the flow. The shifting coefficient is different for each particle implicitly satisfying Fick’s

law, removing the need for a global shifting limit as used by Lind et al. Regardless of the

shifting coefficient used, the algorithm still violates the momentum conservation of the

particles (Skillen et al., 2013), but leads to improved accuracy.

Apart from shifting the particle position, the shifting algorithm also changes the velocity of

the particles in order to represent the velocity field more accurately. This was tested in this

study, but the results showed that the effect, especially for high resolutions is negligible. The

use of the term employed by Skillen et al. which regulates shifting distance according to the

velocity separately for each particle instead of the global constant proposed previously is, in

particular, a contributing factor to the negligibility of the velocity term of the shifting

algorithm. This is in accordance with the findings of Vacondio et al. (2013) for weakly

compressible SPH.

ii) Modified particle shifting for multi-phase weakly compressible SPH

The biggest difference between the incompressible and the weakly compressible SPH is the

treatment of the density. The constantly changing density present in this study is affected by

the particle position, but similar to the velocity field, changing the particle density according

to the new shifted position has minimal effect on the computation. This is in accordance with

the findings of Shadloo et al. (2011) and Vacondio et al. (2012), neither of whom modify the

density.

The iterations of the algorithm for the incompressible SPH utilised the mirror particle

approach while the present study uses the dynamic particles (Crespo et al., 2007). Following

147

the previous approaches the boundary particles were initially not participating in the shifting

computation, with an explicit limit enforced on the fluid particles so that exiting the domain

was not possible. However, this leads to particles clumping at the interface as they were

attempting to move to the lower concentration areas and eventually leaving the system due to

the force exerted from the other particles. Hence, the boundary particles will be used when

calculating the concentration and the concentration gradient of the particles to ensure that the

fluid particles near the edge of the domain have a complete kernel and prevent the particles

from moving in that direction. For the air particles, the boundaries may have different

density, but both the concentration and its gradient calculated use the particle volume, which

is of the same order of magnitude for each particle. Hence, Equation (5.15) will be modified

as follows:

ij

BFj j

j

ii W
ρ

m
CC

, (5.20)

where F and B denote the set of fluid and boundary particles respectively.

Further consideration must be given to the tensile instability term (Monaghan, 2000). It is

only necessary for spline kernels, being used as a supplement to the shifting algorithm in

order to compensate for the discontinuities of the quintic spline kernel used in the

incompressible SPH algorithm by Lind et al. (2012b). The present study however, uses the

quintic Wendland kernel so this correction will not be used.

This is not the only difference between this study and the investigations of Lind et al.

(2012b). In the incompressible SPH model the quintic spline kernel used has been normalised

in order to achieve higher accuracy (Oger et al., 2007). The normalisation leads to a different

form of the equations which calculate the concentration gradient (Equations (5.15) and (5.17)

omitting the particle concentration. In this study, the normalised kernel is not used due to

restricted functionality of the GPU code; therefore Equation (5.20) will be solved using the

normal kernel gradient.

The benefit gained by the application of the shifting algorithm can be demonstrated by the

artificial test case shown in Figure 5.8. Figure 5.9 shows the particle positions using Equation

(5.12) for particle shifting, Equation (5.19) for the calculation of the diffusion coefficient and

Equation (5.20) for the calculation of the concentration gradient. The particle distribution is

much smoother and the concentration is consistent. The placement of the boundaries near the

148

free surface however, is not symmetrical due to the incomplete kernel and the single

precision of the GPU.

a) Initial particle arrangement b) Particle arrangement after 0.2s

Figure 5.9: Expansion of an air volume after the application of the shifting algorithm

5.3.4. Modification of the Free-surface Correction

Apart from the improvements in determining the shifting distance and direction, Lind et al.

proposed a correction for the free surface. The use of Equation (5.12) results in a constant

movement of the particles towards the free surface due to the large concentration gradients

present at the interface. This was also confirmed by the tests made in this study. Despite

using a multi-phase model that modelled the air so that the test cases examined do not have

any surface devoid of particles, there were severe issues at the interface between water and

air particles, with the lighter phase dispersing in the heavier one.

In addition, instabilities were found in violent flows with the interface breaking and the

appearance of voids. To prevent the unphysical movement at the free surface the

concentration gradient near the surface is not controlled using the global coordinates but

rather the local tangent and normal vectors at the free surface:

 nsr n

i
n

i
s β

n

C
α

s

C
Dδ , (5.21)

149

where s and n are the tangent and normal vectors to the free surface, while βn is a reference

concentration gradient in a still free surface. The parameter αn limits the diffusion at the

normal direction of the free surface; for violent flows α is set equal to 0. However, for long

slow flows errors due to incompleteness of the kernel can potentially accumulate at the free

surface (Lind et al., 2012b). A small degree of diffusion at the normal direction is then

allowed with the parameter α set equal to 0.1.

To identify the free surface the method of Lee et al. (2008) is used with the divergence of the

particle position being computed:

j

ijiij

j

j
W

ρ

m
rr . (5.22)

The value of the divergence for a full kernel is equal to 2 for a 2-D case and 3 for a 3-D case;

for a particle at the free surface is naturally much less. The value of 1.5 is proposed as a

threshold value for a 2-D computation to locate the surface particles. This method does not

offer absolute precision, it is possible for some free surface particles to be ignored (Lee et al.,

2008), the error however appears to be small (Lind et al., 2012b).

Equation (5.21) is only suitable for a two-dimensional simulation. For the 3-D case, the

binormal vector also needs to be taken into consideration. The aim of the surface term is to

prevent the free surface from breaking by restricting shifting in the normal direction which is

orthogonal to the free surface. Following on that, the 3-D implementation shown in Equation

(5.23) should allow for shifting only on the tangent and binormal directions, treating the

normal direction in the same way as the two-dimensional implementation:

 nbsr n

i

n

ii

s β
n

C
α

b

C

s

C
Dδ

, (5.23)

where b is a unit vector orthogonal to s and n. Similarly, the threshold value of r

computed using Equation (5.23) for 3-D simulations is taken as 2.5 as used by Muhammad et

al. (2013).

The free surface is a very important issue for an air-water multi-phase model. The extra terms

introduced in the multi-phase model prevent, as mentioned, the air phase dispersing on the

water phase (Colagrossi and Landrini, 2003). The shifting algorithm has the potential to

severely disrupt the interface, especially considering that the initial algorithm devised by Xu

150

et al. (2009) had significant issues with the free surface (Lind et al., 2012b) creating

unphysical particle movement in the free surface.

The surface term should, in principle, preserve a smooth interface although there is the

possibility that the voids will not be adequately treated. The free-surface correction in

Equation (5.23) may further enhance the cohesion term for the air particles at the interface

preventing their movement and negating the advantages of the shifting algorithm. To be

effective, the shifting algorithm needs to allow the air particles to expand without displacing

the water phase, while having minimal impact on the latter.

A test will demonstrate the application of the surface term on the multi-phase model. Initially,

the dam break cases are run using the surface term in both phases, but the term is applied to

either only the water phase or neither of them. To achieve minimal interference of the shifting

algorithm with the water flow, a dam break case where the algorithm only applies to the air

phase will be run. For the dam break test case the second term in Equation (5.21) is not

needed, the flow has sufficient speed and a rapidly-evolving interface for the term to be

significant (Lind et al., 2012b) so the value of the parameter a has been set to 0.

A) Using the surface correction term for both phases

The surface correction was initially used for both phases to ensure a smooth free surface. The

smaller voids surrounding the isolated water particles are a lesser factor but when the air is

trapped in the pocket, there is no particular difference when compared to the simulation

without shifting, as observed in Figure 5.10, which is the same time instant as Figure 5.7. A

separation at the interface below the plunging wave is also noticeable.

Figure 5.10: Dam break flow at 2.1s after using the surface correction term of Equation (5.21) for both

phases for dx/h0=0.008

151

Looking at the interface and at the air pocket, there is a thin layer of particles in each phase,

forming the free surface. Particles in that layer are clustered, especially in the air phase,

preventing any particle from moving to an area of low concentration. This is due to the effect

of the surface term; removing shifting for the normal direction prevents the particles from

changing the free surface.

The air phase cannot expand properly; the surface term has a similar effect to applying

surface tension, causing it to behave entirely like a liquid and making the treatment of the

voids impossible. The effect is however, advantageous for the water phase as the free surface

is not interrupted by the shifting algorithm.

B) Using the surface term only for the water phase

When using the surface term, the dam break case does not present many differences from the

simulation without shifting at the initial stages of the flow. However, at the point where the

overturning reflected wave touches down, differences between the two simulations can be

discerned. In Figure 5.11, the air pocket created by the shifting simulation is slightly smaller

and without shifting, a small void is created at the intersecting point of the overturning wave

to the main flow. Small ripples have also begun to appear in the water surface as the spray

created by the water crashing violently on the opposite wall return to the main flow.

a) Without shifting in either phase b) With shifting in both phases and the surface

correction term only in the water phase
Figure 5.11: Comparison of the reflected water flow at 1.95s for dx/h0=0.008

152

The most significant change on the behaviour of the air particles is observed when they are

trapped within the water flow. Figure 5.12 presents a comparison between the original

simulation and the shifting algorithm without the surface correction. The removal of the

surface term has allowed the air particles to freely move to areas of lower concentration and

as a result no voids are occurring in the air pocket, regardless of the constant change in its

shape. Compared to the computation using the surface term for the air particles in Figure 5.10

this result is much closer to the expected air behaviour.

Fluid particles are more evenly spaced regardless of the phase of the neighbouring particles.

The interface is also much smoother in Figure 5.12b, while the suspended water particles are

causing disturbances as they return in the main flow in Figure 5.12a. This is most prevalent in

areas with high velocities. The resulting air pocket in Figure 5.12b has a smaller volume than

the original computation in Figure 5.12a and the particles, especially the water particles in the

interface, are more evenly spaced. The interface, following from Figure 5.12 is smoother and

better defined, with the suspended particles having minimal effect even when the number of

water particles is lower.

a) Without shifting in either phase b) With shifting in both phases and the

surface term only in the water phase
Figure 5.12: Comparison of the reflected water flow at 2.1s

The inclusion of the shifting algorithm has significant effects on the pressure field. As seen in

Figure 5.13(a) small differences in the pressure field can be seen even at 1s, Figure 5.13(b)

shows that the pressure contours are more homogeneously defined in the area close to the

interface if the new shifting algorithm is used. The flow displayed in Figure 5.13(a) at t=1s

shows some pressure fluctuations, especially where the water is rising as the number of water

particles in that area is significantly smaller. In contrast, using the shifting algorithm restricts

these fluctuations at the highest point of the flow.

153

More differences can be seen in Figure 5.14, which depicts the simulations at 2s, shortly after

the air entrainment. Small voids begin to appear in Figure 5.14a, and the pressure around the

bubble shows a significant and sudden decrease. A small decrease in pressure around the

bubble can be also seen in Figure 5.14b, but it is much smaller and smoother. In Figure 5.14a,

of note are the discontinuities that appear in the left side of the domain, at the starting point of

the water column and a general decrease in pressure close to the boundaries which does not

appear in Figure 5.14b.

(a) (b)

Figure 5.13: Comparison of the water pressure field at 1s for two simulations a) without the shifting algorithm b)

with the shifting algorithm

(a)

(b)

Figure 5.14: Comparison of the water pressure field at 2s for two simulations a) without the shifting algorithm b)

with the shifting algorithm

C) Removing the surface correction term for both phases

154

Examining further the role of the surface term on the shifting algorithm, a simulation using

shifting particle positions for both phases, but without the surface term, was executed. The

results, shown in Figure 5.15 produced a different profile for the water phase. Its behaviour

after it is reflected from the contact with the right wall is not consistent with the expected

dam break results (Colagrossi and Landrini, 2003). Specifically, the toe of the reflected wave

collapses almost immediately on the main flow, resulting in a very small air pocket being

created when compared to Figure 5.11. The resulting splash occurs then much earlier that it is

supposed to, with the expected behaviour seen in Figure 5.15, trapping a large air volume in

the process.

a) Flow at

1.85s

b) Flow at

2.35s

Figure 5.15: Water flow at different instants for simulation with shifting but without free-surface correction in either

phase

The reason for this behaviour is the large shifting distance permitted for the water particles.

The movement of the water flow due to gravity results in large forces being exerted on the air

particles as a result of the greater mass of the water particles. The resulting movement of the

air phase creates zones of low concentration. In the previous shifting simulations, the air

155

particles would then move towards their former positions, minimising the resulting

concentration gradient.

Without the restriction of the free surface correction, however, the water particles are now

free to move to these zones similar to the air particles. This behaviour results in a further

displacement of the air particles in the next time step due to the new forces exerted,

eventually resulting in the profiles seen in Figure 5.15. In essence, the shifting algorithm

exacerbates the existing water movement due to the gravity force beyond what is physically

possible, while the air particles provide minimal resistance. This behaviour is also

encountered if the surface term is only applied to the air phase.

D) Use of the shifting algorithm only for the air phase

The use of the surface correction is then essential in restricting the water movement when the

shifting algorithm is used. An additional possibility however, is to avoid the use of the

shifting algorithm entirely when computing the water phase. The profile for the water phase

produced by the original multi-phase model in Figure 5.12a is similar to the profile given in

Figure 5.12b and shifting the particle positions for the air phase should avoid the creation of

voids or the disturbances at the interface.

Indeed, the results presented in Figure 5.16 show that the majority of these errors are

addressed even without shifting the water particles. Voids are not created; neither within the

air pocket, nor within the main air flow and the interface remains relatively smooth. The only

issue occurs in the secondary splash-up caused by the plunging water wave. Due to the effect

of the spray it is not as well defined and there is significant mixing between the two phases.

Figure 5.16: Water flow at 2.1s with the shifting algorithm used only for the air phase

156

The splash-up continues to be less defined as the simulation progresses. Figure 5.17 shows

the evolution of the splash-up. The use of the shifting algorithm allows for the free surface to

remain undisturbed, while without shifting the forces exerted by the air phase disperse the

splash-up due to the small number of water particles present.

a) Shifting

algorithm only

used for the air

particles

b) Shifting in

both phases

with the

surface term

applied only

in the water

phase

Figure 5.17:Comparison of the water flow at 2.5s

5.3.5. Shifting validation

To determine whether the multi-phase simulation still gives the correct results even after

using the shifting algorithm and whether the algorithm needs to be used in the water phase,

the dam break test case described in Section 5.3 will be used.

i) Height and toe position

The results presented in Figure 5.18 show the height of the water column as it collapses; they

are presented for two simulations both of which use the shifting algorithm in the air phase.

The water phase however, is treated only for one of the two simulations. The results are also

compared with the experimental data of Koshizuka and Oka (1996) and the multi-phase

simulation without any shifting treatment, presented in Section 5.3.2.

157

(a)

(b)

Figure 5.18:Comparison of the water column height for a)a simulation with both the air and the water phase shifted

and b) a simulation with only the air being shifted for dx/h0=0.008

As seen in Figure 5.18, differences between the multi-phase simulations are minimal. When

using the shifting algorithm, there is a very slight deviation in the middle, but in general the

shifting algorithm has no significant effect in the water flow. This is an expected result for

the dry dam break case, since the water movement and velocity is dictated by the gravity

forces, while the air-water interaction has a lesser effect, especially in the early stage of the

flow as seen in Section 5.3.2 where the multi-phase and single-phase results displayed no

significant differences as well. It also shows however, that the shifting algorithm cannot

correct the error introduced by the fictitious boundary particles.

Apart from the height of the water column, the toe position of the water flow can also be

compared with experimental data. The results are similar to the ones presented in Figure 5.2

and Figure 5.4 with very slight deviations only appearing when using the shifting algorithm

158

in the water. It can then be concluded that in the dry dam break flow for the water phase,

shifting the air or the water particles does not significantly alter the flow, introducing errors

or improving the results.

ii) Effects of shifting on pressure field

The benefits gained from using the shifting algorithm are more visible in the later stages of

the flow especially when the overturning wave and the resulting splash-up are created as seen

in Section 5.4.4. However, the experiment by Koshizuka and Oka (1996) does not have

information for the later stages of the flow. In that regard, a different dry dam break case has

been executed. This case was first simulated by Colagrossi and Landrini (2003) using their

multi-phase model and an incompressible boundary element method (BEM) by Faltinsen et

al.(2004) and includes numerical results regarding the overturning wave. The case has also

been simulated by Lind et al. (2012a).

The basic elements of the flow as well as the driving forces behind the flow are the same as

the dry dam break by Koshizuka and Oka (1996). The difference lies in the dimensions of the

water column and the tank, specifically the distance between the two walls. The definition

sketch is shown in Figure 5.19, where the dimensions are dependent on the height of the

water flow h0. Colagrossi and Landrini (2003) set the geometric parameters for this case as

l0/ h0=2, H/ h0=3 and L/ h0=5.366.

Figure 5.19:Definition sketch for the second dry dam break case

The other parameters of the flow are also provided by Colagrossi and Landrini (2003) as a

function of the water column height. In their simulation they used 39072 fluid particles, 4900

of which were used for the water flow resulting in particle spacing dx/h0=0.002. The speed of

h0

L

l0 H

Air Phase

Water

Phase

159

sound used for this case is 9.10/ 0, ghc ws and 155/ 0, ghc as
while the smoothing

length and the time step are set as
2

0 1069.2/ hh and 4

0 1051.4Δ ght respectively.

The simulation was tested for different configurations, each one using different values of the

density re-initialisation term and the artificial viscosity. It is important to note that these

terms are not the same as the current study. Colagrossi and Landrini (2003) used the density

re-initialisation of an MLS filter as described in Section 3.3.2 and for the artificial viscosity

the term proposed by Monaghan and Pongracic (1985) was used but modified according to

the work of Balsara (1995).

To identify the effect of shifting on the pressure fields and compare it with a reference

solution, various combinations of shifting density filtering and viscosity are investigated. The

results for the different configurations are first presented for an instance at 98.2/ 0 hgt .

In this particular study, the height of the water column H was selected as 1m so the

corresponding time is 0.95s. The instants are before and after the impact of the water front

against the vertical wall at the right side of the domain. The results are presented in Figure

5.20 and Figure 5.21.

The results presented are (a) from the simulation by Colagrossi and Landrini (2003) and three

multi-phase simulations with different applications of the shifting algorithm: in simulation (b)

the flow is untreated, simulation (c) uses the shifting algorithm only for the air phase, while

in simulation (d) both phases are shifted. Simulation (e) shows the corresponding results of a

single-phase simulation using the original DualSPHysics code. Simulations (a)-(d) do not

show the air phase for clarity.

A) No density filter

Removing the density re-initialisation from the simulation has an apparent effect on the

pressure field as seen in the first column of Figure 5.20. While the pressure contours are

maintained close to the initial position of the water column, the toe of the flow shows a noisy

field, especially close to the boundaries. The results using the DualSPHysics code, with or

without the multi-phase model and the shifting algorithm are however, less noisy than the

results of Colagrossi and Landrini (2003). The particle spray is also not observed for the

simulation (a); it occurs in every other instance. The reason for this discrepancy lays in the

boundary particles, while simulation (a) uses a mirror particle approach, simulations (b)-(e)

160

use the fictitious boundaries approach by Crespo et al. (2007). Due to the high pressures and

forces generated by the impact the noise is also worse at the right side of the domain.

B) No viscosity model and no density filter

Removing both the viscosity model and the density re-initialisation term results in a noisy

pressure field with no distinct pressure contours as seen in the second column of Figure 5.20.

Areas that have a smaller number of water particles or are near the free-surface tend to be

more affected from this noise. The results are quite similar between every simulation, with

only the single-phase showing a pressure field with lower values. The removal of the

viscosity model increases the pressure noise generated, especially in areas with a sufficient

number of particles. The spray is again only observed for the DualSPHysics simulations.

C) No viscosity model

The first column in Figure 5.21 shows the results for a simulation which does not use any

viscosity model. For 98.2/ 0 hgt the pressure contours are well represented without many

differences between the simulations, although simulations (a) and (e) show a lower pressure

field compared to the others. The issue with the boundaries moving the fluid particles

upwards is also observed here; it is especially prevalent in simulation (e). Of note are the

differences in the rising water: the Colagrossi and Landrini (2003) simulation has progressed

further but no spray has been created. For the single-phase model the rising water is pushed

away from the wall under the effect of the boundary particles.

D) Use of both viscosity model and density filter

The results obtained when using a density filtering term are similar as shown in the second

column of Figure 5.21, regardless of the particle viscosity. Results for this case by Colagrossi

and Landrini (2003) are not available. The pressure contours are well-defined and the field is

relatively pressure-free. Use of the shifting algorithm does not create significant differences;

few fluctuations in the pressure filed can only be seen in simulation (c). The behaviour of the

rising water is the same as observed in the previous simulations with a water spray being

created and the particles being pushed away from the wall.

For the resolution and the parameters used in this case, the shifting algorithm does not have

any immediate effects on the results obtained. The pressure is instead greatly dependent on

the density filtering to maintain a noise-free filed. The evolution of the flow does not show

161

any large changes, but the choice of boundary conditions does affect the spray and the rising

flow on the right-hand wall after the impact.

(a)

(b)

(c)

(d)

(e)

 I. Artificial viscosity model a=0.03 II. No viscosity model
Figure 5.20:Comparison of the pressure field at t√(g/h0)=2.98 for dx/h0=0.002 without density re-initialisation for a)

Colagrossi and Landrini (2003) b) present model without shifting c) present model with shifting only in the air phase

d) shifting in both phases e) single-phase simulation. Simulations (a)-(d) do not display the air phase for clarity

(a)

(b)

(c)

(d)

(e)

 III. No viscosity model IV. Artificial viscosity model a=0.03
Figure 5.21:Comparison of the pressure field at t√(g/h0)=2.98 for dx/h0=0.002 with a density re-initialisation term for

a) Colagrossi and Landrini (2003) b) present model without shifting c) present model with shifting only in the air

phase d) shifting in both phases e) single-phase simulation. Simulations (a)-(d) do not display the air phase for clarity

and results for simulation (a) are not available for situation IV

P/ρgh0

P/ρgh0

162

Figure 5.22 shows the result for the same test case but with the particle distance halved

increasing the particle number to 160,000. The new smoothing length is then
2

0 103.1/ hh

and the particle spacing is dx/h0=0.001. The parameters for the equation of state remain the

same as in Colagrossi and Landrini (2003) and the previous simulations. The results are

presented for two values of the artificial viscosity coefficient, 0.03 and 0. The results use the

Shepard filter every 20 time steps to maintain a noise-free pressure field.

 Figure 5.22 shows the results at 98.2/ 0 hgt for the same viscosity coefficient. Very few

differences can be seen in the shape of the flow, with only the rising water flow being slightly

higher and thinner with the viscosity, while in the other case the particles have a larger spread

and its tip is less well defined. Compared to the dry dam break case presented in Section 5.2.2

there is no delay in the movement of the particles close to the wall but the effect of the

boundary particles can be seen in the pressure field.

Bigger differences however, can be seen in the pressure field. The pressure for simulation (c)

where the shifting algorithm is used in both phases is overall increased. The effect is more

apparent on the free surface in Figure 5.22 without the artificial viscosity and indicates a

similar increase in the air pressure. With the viscosity model on the other hand, a smaller

increase in the free surface is observed, although it is still noticeable when compared to

simulations (a) and (b), with a higher increase in the left side of the domain at the starting

point of the flow. Pressure results for the rising water flow at the opposite wall remain

unaffected.

α=0.03 α=0.0

Figure 5.22: Comparison of the pressure field at t√(g/h0)=2.98 for dx/h0=0.001 without a viscosity model for a) present

model without shifting b) present model with shifting only in the air phase c) shifting in both phases. Simulations do

not display the air phase for clarity

(a)

(b)

(c) (c)

(b)

(a)

P/ρgh0

163

Compared to the pressure field for the lower resolution, shown in Figure 5.20 and Figure

5.21, differences exist in both the pressure field and the particle position. Specifically, when

considering the particle position, the height of the rising flow is increased for the higher

resolution. This is due to the lower numerical viscosity for this simulation and it occurs

regardless of the use of the shifting algorithm or the value of the artificial viscosity

coefficient.

The other difference is on the pressure field, where the lower resolution cases show increased

pressure for the water particles, similar to the simulation with shifting in both phases for the

higher resolution. The increased pressure seems then to be linked to three parameters: the

particle resolution and the shifting algorithm, while the artificial viscosity value affects both

its final values and its distribution.

iii) Overturning Wave Free-Surface Comparison

A different set of comparisons examines the SPH simulation in comparison with an

incompressible Boundary-Element Method (BEM) from Faltinsen et al. (2004) regarding the

overturning wave and the effect of the shifting algorithm. The case is investigated at

95.5/ 0 hgt which for the dimensions used in this study equates to 1.9s. The results are

presented for the same configurations of the artificial viscosity and the density filtering

algorithm used in the previous comparison. Simulations (a) to (d) again do not show the air

phase for clarity.

Figure 5.23 shows two instances of the simulation without density filtering for different

values of the artificial viscosity coefficient and use of the shifting algorithm. In the first

instance this value is set to zero, causing the water particles to disperse. The dispersing is

worse for the multi-phase cases, as the air particles cover the empty space. The air however,

also allows the wave to be maintained, while in simulation (e) the toe collapses quickly.

The second column uses a value of α=0.03 for the artificial viscosity coefficient and as seen

in Figure 5.23 it eliminates the dispersing of the particles. A side-effect of using the viscosity

is a lower maximum height for the water flow. Compared with the BEM simulation, the

height of the wave is much smaller especially when using the present multi-phase model.

This leads to the creation of an air bubble sooner than it is expected by the BEM simulation.

Figure 5.24 shows the evolution of the flow for different values of the artificial viscosity

coefficient, but using the density filtering algorithm. The density re-initialisation prevents the

164

particles from dispersing even when no viscosity model is used. The results are also closer to

the BEM results especially for the single-phase test case when no viscosity is used. As in

Figure 5.23, using the artificial viscosity model results in a lower height for the overturning

wave.

From Figure 5.23 and Figure 5.24 it is obvious that there are large differences between the

BEM solution and the multi-phase simulations performed in this study. The multi-phase

simulations by Colagrossi and Landrini (2003) show closer results to the BEM solution,

while the single-phase results depend on the whether or not the artificial viscosity is used. In

all cases, simulations (b)-(d) have a lower wave height and demonstrate a faster plunging

wave trapping the air earlier than predicted by the BEM solution. These discrepancies occur

for several reasons.

A primary difference is the boundary treatment. As seen in Figure 5.23 and Figure 5.24 in

every DualSPHysics simulation there is empty space between the fluid particles and the

boundary. This occurs upon the impact on the wall and it is not covered by air particles even

when the shifting algorithm is used due to the boundary forces. For simulation (a), only the

free surface position is provided and it is not possible to determine whether a similar

occurrence exists. The boundaries were similarly responsible for creating a more prevalent

particle spray as seen in the previous comparisons between the two simulations.

A secondary reason is the difference in the viscosity treatment since the simulations used in

the present study do not use the viscosity reduction term by Balsara et al. (1995), the reason

being the greatly increased computational cost especially in a three-dimensional space. As

seen in Figure 5.23 and Figure 5.24 when including the viscosity model the maximum wave

height is decreased. In addition, the plunging wave is breaking faster as can be clearly seen in

Figure 5.24(e). This is not the case for the Colagrossi and Landrini (2003) simulations, where

the height remains relatively constant with the viscosity having a smaller effect.

Of note is the difference in height between the single-phase and the multi-phase simulations.

Even when the artificial viscosity is used the single-phase simulation maintains a higher flow

height, although the plunging is breaking in the same manner. The difference is in the

inclusion of the air particles and the exerted forces which prevent the unimpeded rise of the

water flow. The air particles are also affected by the artificial viscosity, increasing their

opposition to the water movement.

165

(a)

(b)

(c)

(d)

(e)

Figure 5.23:Comparison of the overturning wave at t√(g/h0)=5.95 for dx/h0=0.002 with a BEM solution (Faltinsen et

al., 2004) without density filtering for a) Colagrossi and Landrini (2003) b) present model without shifting c) present

model with shifting only in the air phase d) shifting in both phases e) single-phase simulation. Simulations (a)-(d) do

not display the air phase for clarity

166

(a)

(b)

(c)

(d)

(e)

Figure 5.24:Comparison of the overturning wave at t√(g/h0)=5.95 for dx/h0=0.002 with a BEM solution (Faltinsen et

al., 2004) with density filtering for a) Colagrossi and Landrini (2003) b) present model without shifting c) present

model with shifting only in the air phase d) shifting in both phases e) single-phase simulation. Simulations (a)-(d) do

not display the air phase for clarity

167

A third reason is the difference in the density filtering, with one simulation using a first-order

MLS filter and the other using a zeroth-order Shepard filter. The MLS filter is not

implemented in the GPU code as it is expensive in terms of memory requirements. The MLS

filter uses a more aggressive density re-initialisation scheme which adds to the numerical

viscosity of the particles. The effect of this issue is lesser than the other reasons mentioned,

but can be noticed when comparing the first instance of Figure 5.23 to the first instance of

Figure 5.24.

It is clear that compared to the BEM results the viscosity of the particles in this study is

larger. There exist several means with which to reduce it. The most direct one would the

decrease of the artificial viscosity term, but as seen in Figure 5.23 even setting it to zero will

not be enough for the multi-phase test case, although the single phase gives a good

reproduction of the results.

Since the BEM solution is incompressible differences with the SPH simulation are expected.

In order to diminish the effect of the air phase, the compressibility of the water particles can

be varied by changing the value of coefficient B in the equation of state via the speed of

sound. The ratio of the speeds of sound for the different phases can also be varied. Another

important aspect that can be changed is the particle resolution, which, if increased, leads to a

lower numerical viscosity for the particles.

A comparison with the BEM simulation (Faltinsen et al., 2004) has been performed with a

simulation with half the resolution increasing the particle number to 160,000. The new

smoothing length is then
2

0 103.1/ hh . Figure 5.25 shows the results for two values of the

viscosity coefficient 95.5/ 0 hgt . The pressure field of the water particles is displayed, but

the position of the air particles is also included to showcase some issues that appear when the

shifting algorithm is not used. The issue appears in simulation (a) with some voids being

created at the tip of the plunging wave. The voids only appear when using the artificial

viscosity model.

Compared to the low resolution, the results for the new simulation are closer to the BEM

simulation especially if the artificial viscosity model is not used. When the viscosity is used,

the shape of the wave changes, becoming shorter and thinner than expected with its toe

moving downwards at a higher speed. If it is not used, the shape of the plunging wave

approaches the BEM solution with only the upper part of the wave being underestimated.

168

The shifting algorithm also affects the shape of the plunging wave. In simulation (c), when it

is used for the water phase, the toe of the wave falls faster regardless of the artificial

viscosity. The effect of the shifting algorithm can also be seen in simulation (b), even though

it is not used in the air phase. Compared to simulation (a) while the position of the plunging

wave is the same from a vertical perspective, its length is slightly shorter. The shifting

algorithm then, increases the forces exerted in the plunging wave by the air particles and

facilitates the downward movement of the water particles in the wave toe, thereby confirming

the behaviour seen in Figure 5.23 and Figure 5.24.

a=0.03 a=0

Figure 5.25:Comparison of the overturning wave at t√(g/h0)=5.95 with a BEM solution (Faltinsen et al., 2004) for a)

present model without shifting b) present model with shifting only in the air phase c) shifting in both phases for

dx/h0=0.001

Regarding the pressure field, the increased pressure observed in Figure 5.22 is also present in

Figure 5.25. Simulation (c) shows an increased pressure field, although only slightly if the

P/ρgh0

169

artificial viscosity model is used. Eliminating the viscosity on the other hand, leads to

increased pressure for simulation (b) as well although at a lesser degree. For the latter case

the increase is more apparent in the area near the free surface.

In general, there are several behaviours which we can deduce from the previous comparison.

The viscosity of the particles is a major factor in predicting the shape of the flow especially

when discussing the reflected wave. Low resolutions have increased numerical viscosity that

greatly affects the overturning wave results. Special reduction terms such as the one by

Belytschko et al. (1998) can be used to limit its effects. Increasing the resolution reduces that

source of error leading to closer results compared to an incompressible BEM solution. Apart

from the compressibility, differences with the BEM method can also be attributed to the

different boundaries each method is using.

The artificial viscosity term, at least with the coefficient value used, increases the viscosity of

both phases significantly, leading to errors in the plunging wave without greatly improving

the pressure field. The latter is achieved by the density renormalisation term. In lower

resolutions, using the artificial viscosity allows for a more clearly defined free surface; its

effect however, is diminished for the higher resolution.

The shifting algorithm is necessary for maintaining a void-free field for the higher

resolutions. Its inclusion however, does alter the shape of the overturning wave. It also affects

the pressure field of the simulation leading to its increase. The effect initially occurs in the air

phase, as evidenced by the affected free surface pressure in Figure 5.22 and Figure 5.25 and

then spreads to the water phase. The increase is diminished if the artificial viscosity model is

used, with both Figure 5.22 and Figure 5.25 showing a similar free surface pressure across all

simulations.

Apart from the comparison with the BEM test case the results can be compared with a Level-

Set algorithm by Colicchio et al. (2005), which follows the evolution of the overturning

wave. The comparison will be done for two instances, at 76.6/ 0 hgt and at

14.7/ 0 hgt displayed in Figure 5.26 for the first instance and Figure 5.27 for the second

one. The simulations used are the same presented in Figure 5.25.

Compared to the Level-Set algorithm there is generally good agreement with the SPH

simulations. The agreement is better for simulation (b), which uses the shifting algorithm

170

only for the air phase. When using the artificial viscosity, the air bubble is very well predicted

but the splash-up is lower than expected by the Level-Set algorithm. The situation is reversed

without the artificial viscosity; the splash-up occurs at the same point but there are some

differences between the Level-Set algorithm and the SPH simulation in the bubble.

Without the shifting algorithm in simulation (a), the results are rather similar to simulation

(b), although the agreement with the Level-Set algorithm is not as good with the height of the

splash-up being underpredicted and the bubble having a smaller volume. The greatest issue

appears when using the artificial viscosity. As seen in Figure 5.25 voids are being created in

this case as a result of the increased velocity of the splash-up. If the shifting algorithm is used

for the water phase as in simulation (c), the agreement with the Level-Set algorithm is better

for the splash-up but worse for the bubble. The volume and especially the position of the

bubble are not as close as in the other two simulations. Using a viscosity model leads to

changes in the upper part of the flow; the water volume over the air bubble decreases

significantly. The splash-up is longer and less dispersed than the other cases, likely due to the

effect of the free-surface term.

Regarding the pressure field, the increased pressure seen in Figure 5.25 can also be observed

in Figure 5.26. The increase is greater for the cases with the shifting algorithm but without

the artificial viscosity, although a minor increase can still be seen for simulation (c). The

increase is greater near the free surface, indicating that the air pressure has increased.

In general, increasing the viscosity of the flow results in a lesser height of the water splash-up

and a slightly shorter plunging wave. The shifting algorithm in the water in conjunction with

the viscosity model leads to issues when predicting a suspended flow. On the other hand,

shifting in the air phase only seems to have an effect in the area around the bubble, leaving

the main water flow unaffected. A common issue among the simulations is under predicting

the height near the right wall.

The conclusions derived from the previous graphs hold true if the evolution of the flow is

examined, as seen in Figure 5.27 which presents the flow at the later time of 14.7/ 0 hgt

for the same values of artificial viscosity. Figure 5.27 shows a good agreement between the

Level-Set algorithm by Colicchio et al. (2005) and the SPH simulations, especially for

simulation (b). The results for simulation (c) are similar but the splash-up is better defined

although the volume in the upper part of the flow is underestimated.

171

From the second column of Figure 5.27 without the viscosity model, the same conclusions

drawn from Figure 5.26 can be reached. The voids present without the shifting algorithm

persist and the splash-up has a smaller height than expected but the bubble is captured very

well. A lower pressure field compared to Figure 5.27 is also present with a slight rise only

observed for simulation (c). The latter shows significant issues when dealing with the water

flow over the air bubble. There is only a very thin layer in that position and the air bubble

will burst soon, which is an unexpected behaviour.

In general, the shifting algorithm in this case has a significant effect in the flow properties. If

used only for the air phase it prevents the formation of voids and improves the simulation

around the bubble area, without obstructing or altering the main water flow. However, if used

for the water phase, the particle positions change leading to errors in the simulation. The

differences are better observed in Figure 5.27 without the effect of the viscosity model and

are mostly situated around the bubble and in the splash-up region.

It should be noted that this behaviour might be improved with a different SPH multi-phase

algorithm but as noted previously, they are more difficult to implement on a GPU and will be

the topic of further work. The shifting algorithm also affects the pressure of the fluids

resulting in an increase. This behaviour occurs for both the water and the air phases and

appears very early in the simulation as seen in Figure 5.22. The behaviour occurs because the

shifting algorithm is affecting the compressibility of the fluids altering the density values in

the process. Different values and ratio are required for the speeds of sound of the different

fluids to reproduce an identical pressure field.

172

a=0.03 a=0

(a)

(b)

(c)

Figure 5.26:Comparison with a level-set algorithm (Colicchio et al., 2005) for a) present model without shifting b)

present model with shifting only in the air phase c) shifting in both phases at t√(g/h0)=6.76 for dx/h0=0.001

a=0.03 a=0

(a)

(b)

(c)

Figure 5.27:Comparison with a level-set algorithm (Colicchio et al., 2005) for a) present model without shifting b)

present model with shifting only in the air phase c) shifting in both phases at t√(g/h0)=7.14 for dx/h0=0.001

173

5.4. Wet Dam Break

5.4.1. Case description

This case is similar to the previous dam break case, but the major difference is the existence

of a shallow layer of water present continuously in the vessel. It was selected as an example

of a more complex flow with mixing both between the two phases and between the two

bodies of water. The case is based on the experiments of Janosi et al. (2004) and is also

characterised by the presence of a lock gate separating the main body of the water from the

thin layer. The lock gate was placed in a fixed position, but experiments with different water

heights were performed. A schematic arrangement is shown in Figure 5.28 where d0 is the

height of the water layer and h0 is the height of the main water body.

Figure 5.28: Definition Sketch for Wet Bed Dam Break Case

The behaviour of the water flow is drastically different in the presence of the thin layer.

Releasing the lock gate leads to the main body forming a propagating bore, similar to the

previous case. However, the thin layer remains quiescent and resists the movement induced

by the height difference between the two bodies of water. The movement is then caused by

the pressure as well as the effect of the gravity. After the initial acceleration, when the

pressure is equalised, the flow is initially maintained due to inertia, but the kinetic energy

quickly dissipates and the water motion stops.

In particular, the wet bed leads to the creation of a ‘mushroom’ formation as the propagating

bore is being formed at the start of the simulation. This formation has also been reported by

h0

9.55m 0.38m

Lock Gate

d d0

174

Stansby et al. (1998). This leads to unstable configurations and surface breaking in both

forward and reverse directions (Stansby et al., 1998).

Due to the resistance the effect of the gate is not immediately eliminated as in the dry bed

case. The speed of the gate is the same as the wave celerity; as a result, the removal of the

gate needs to be simulated. It only affects the simulation for the first 0.1s, but it actively

prevents the free flow of the water in the lock.

Janosi et al. (2004) proposed that the effect of the side walls on the flow inside the tank, at

least in the earlier stages of the propagation, is negligible and therefore, the case can be

modelled in a two-dimensional domain. The air phase also has an important effect on the

behaviour of the propagating wave, as the surface breaking results in the entrapment of air

bubbles, changing the speed, pressure and form of the wave. Depending on the depth of the

water layer, the surface breaking can occur multiple times until a smooth bore similar to the

previous case can be formed.

The present simulation will be a recreation of the experiment. The lock gate will be modelled

using fictitious boundary particles and an initial constant velocity. To reduce the size of the

domain, the tank will be completely closed. The height of the tank is three times larger than

the water height, to ensure that the limited domain does not interfere with the wave

propagation. The experiment was initially ran in order to compare it to a flow of mixed water

and polymer additive but only the results for the clean water flow will be used in this study.

Important factors in this case are the initial height of the water volume left of the lock gate, h0

and the ambient fluid depth in the channel, d0. Profiles were presented for h0=15cm but for

different fluid depths 0 (dry bed), 18mm and 38mm. The dry bed flow was reported to have a

Reynolds number about 30,000 to 40,000 meaning that a turbulent boundary layer was

present at the bottom of the vessel. The water height behind the front was used as a

characteristic length for the calculation of the Reynolds number (Janosi et al., 2004).

The case has been simulated with SPH by other researchers (Crespo et al., 2008) (Gomez-

Gesteira et al., 2010). It has not so far been simulated using a multi-phase model. Khayyer

and Gotoh (2010b) compared incompressible and compressible SPH and MPS models with

the experiment profile. They found that the backwards breaking of the free-surface and the

resulting circulation could not be reproduced by weakly compressible SPH models without

modification of the viscosity term. In their study, to reduce the flow decay in areas of high

175

vorticity a modified version of the reduction function by Balsara (1995) was used, presented

in Equation (5.24). It is not used in the current study, due to its high computational demands.

ji

vr

ijf
uuu

u

max

max

2

2

. (5.24)

5.4.2. Differences between the experimental and numerical results

Figure 5.29 shows an instance of the simulation for the low water layer at 0.28s. It can be

observed that the wave being created is at a different point in the tank than the experimental

result. In addition, the water flow is not at the same instant with the experiment at this time.

The overturning wave has already been formed in the simulation, while in the experiment the

crest is only being formed.

Figure 5.29: Discrepancy between experimental and numerical results

This behaviour is present for both the multiphase and a single-phase simulation. The

discrepancy between experimental and numerical results has been observed for most SPH

simulations regarding this case (Lee et al., 2008) and has been measured to be about 43ms

(Violeau and Issa, 2007b). The reason for this difference is related to the gate movement. The

velocity of the gate as it is rising is stated to be 1.5m/s. However, due to inertia effects this

velocity cannot be reached instantaneously, meaning that the time needed for the removal of

the gate is slightly longer (Violeau and Issa, 2007b) creating the discrepancy observed here.

The time given by Violeau and Issa (2007b) for the delay caused by the gate agrees with the

simulations performed for this study. Figure 5.30 shows the same case from Figure 5.29, but

the screenshot has been taken at 0.24s; the results are much closer to the experiment with the

water flow being at the correct position. However, simply changing the comparison time will

still introduce a small error as the gate acceleration is not considered. Approximating this

acceleration is impossible due to the lack of available data; the lock gate is assumed to gain

its terminal velocity immediately.

176

Figure 5.30:Screenshot of the wet dam break instance 43ms earlier

From Figure 5.29, it is noticeable that the wave of the experiment and the simulation are in

different instants. Khayyer and Gotoh (2010b) mention that the wave appears earlier in the

simulation and that the flow must be shifted in space (shifting value depends on the time but

0.02m is an average value) in order to overlap the experimental results. An example can be

seen in Figure 5.31 showing the corresponding wave phase. This is an issue primarily

originating from the incorrect simulation of the gate movement. Apart from the discrepancy

of the gate movement, Khayyer and Gotoh (2010b) and Issa and Violeau (2009) have also

cited the SPH viscosity models and their dissipation of the vorticity field as being a factor in

the inaccuracy of the numerical results.

(a) (b)
Figure 5.31: (a) Phase difference between the multi-phase SPH simulation and the experimental results (b) Results

after shifting the particle position according to Khayyer and Gotoh (2010b) for dx/h0=0.0067

However, Crespo et al. (2008) did not mention an issue with the phase between the

experimental and the numerical results. In their simulation they used a value for the artificial

viscosity coefficient equal to 0.08 and non-dimensionalised the particle spacing dx according

to the initial water column height h0. The resolution was relatively large, set as dx/h0=0.0333.

Their simulation was executed with the single-phase code and showed little difference

between the numerical and experimental results, as seen in Figure 5.32. The need for

delaying the simulation by 0.043s however, remained. However, Figure 5.32 shows that a

multi-phase using the same resolution as the single-phase simulation produces closer

agreement with experimental data.

177

Single-phase

DualSPHysics

New Multi-phase

DualSPHysics

Figure 5.32: Comparison of the single-phase SPH results of Crespo et al. (2008) with the multi-phase SPH. Both

simulations use the same resolution dx/d0=0.0333

The reason for the difference between the two simulations can be traced to the number of

particles being used. The numerical viscosity for the lower number of particles is higher

causing a stalled movement of the flow. In contrast, using a greater number of particles

reduces numerical viscosity that may be present causing quicker breaking of the plunging

wave. Hence, it can be concluded that choosing the correct time shift to match numerical and

experimental results and include the effect of the moving gate is not straightforward.

5.4.3. Low water layer: d0=0.018m

Figure 5.33 to Figure 5.37 (pp.179-181) present the results for the lower water layer at the

tank, where the water layer height is 0.018m and the ratio of the water tank height over the

thin water layer 0.012. This case is one of the SPHERIC benchmarks (Crespo et al., 2008)

and screenshots from the experiment of Janosi et al. (2004) have been digitised by Crespo et

al. (2008). The results of the simulation will be compared to the digitised points as well as the

previous SPH simulations.

A slight issue arising from the digitised points is the inconsistency on the depiction of the

water level at the right side of the tank. The water there is undisturbed and its height should

remain constant before the arrival of the wave, however, the digitised points show a

difference in height that can be up to 4mm. For the comparison, the still water level of the

simulation will then be set to be at the average of the different levels; however this may

introduce some errors when comparing the wave height. For reference, the original

screenshots of the experiment by Janosi et al. (2004) will also be provided.

The computation has been run with different resolutions. The first instance uses particle

spacing dx/h0=0.0133 which is the same as Khayyer and Gotoh (2010b). The artificial

viscosity coefficient used is also the same as that study, however, no information regarding

178

the speed of sound used is given. Crespo et al. (2008) propose the speed of sound to be based

on Equation (5.4), giving a value of 15m/s. Violeau and Issa (2007b) measured the maximum

speed in their simulation and found that the appropriate value should be 25m/s. In this study,

it was found that the latter value gives results closer to the experimental data for the

resolutions used and will be used in the following figures. As discussed in the previous

section, the movement of the gate is delayed for 0.043s while the artificial viscosity

coefficient is set at 0.01s.

Figure 5.33 and Figure 5.34 show the evolution of the water flow for the first half of the wet

dam break experiment. The low speed with which the gate is raised causes the creation of a

wave breaking backwards, trapping a small amount of air inside the water flow. The forward

motion is then creating a plunging breaker.

As expected, for the first instances there are only small differences between the single and the

multi-phase simulation. Both simulations are able to predict the back-breaking wave without

the use of Equation (5.24), the vorticity reduction function by Khayyer and Gotoh (Khayyer

and Gotoh, 2010b). It is more accurately predicted by the multi-phase simulation, which

shows the mixing between the two phases. For the plunging breaker the multi-phase model

correctly predicts the shape of the wave but the toe position is slightly lower than expected.

Figure 5.35 to Figure 5.37 show the latter half of the simulation where the differences

between the different simulations become more pronounced. The plunging breaker traps a

significant volume of air and subsequently creates a splash-up evolving in another plunging

wave. The simulation and the available experimental data finish before the breaking of this

wave. Both simulations have satisfactory agreement with the experimental results.

The biggest difference is in the splash-up and the breaking wave that is being created. As we

can see in Figure 5.35 the height of the splash-up wave is higher than expected, a trend that

continues in Figure 5.36 and Figure 5.37. There is however, clear improvement for the multi-

phase model when predicting the splash-up wave although the water spray and the phase

mixing is not as prevalent as the experimental results.

Regarding the entrained air in the water flow, Figure 5.35 shows that both simulations can

predict its behaviour correctly right after its creation. However, the single-phase simulation

cannot predict the shape and volume of the air bubble as the simulation progresses and

eventually the void inside the water flow is entirely eliminated as shown in Figure 5.37. This

179

is not the case for the multi-phase simulation, where the addition of the air particles allows

the air phase to retain its volume inside the water flow and the simulation to predict the

position and volume of the bubble.

The advantage of modelling the air particles can also be seen at the back of the plunging

breaker, where the two phases are mixed. While the single-phase test case is able to initially

predict the air bubbles that appear as seen in Figure 5.34, they quickly vanish with the water

particles covering the voids. In the multi-phase code on the other hand, the two phases remain

mixed until the end of the computation as seen in Figure 5.37. Moreover in Figure 5.37 the

advantage of using the multi-phase simulation is demonstrated with closer agreement for the

splash-up predicted.

(a)

(b)

(c)

 t=0.156s t=0.219s

Figure 5.33: Comparison of the experimental results to a single and a multi-phase simulation for t=0.156s and

t=0.219s for resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-phase SPH on GPU (c) single-phase SPH

on GPU. • represent experimental data

180

(a)

(b)

(c)

 0.281s 0.343s

Figure 5.34: Comparison of the experimental results to a single and a multi-phase simulation for t=0.281s and

t=0.343s for resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-phase SPH on GPU (c) single-phase SPH

on GPU. • represent experimental data

(a)

(b)

(c)

0.406s

Figure 5.35: Comparison of the experimental results to a single and a multi-phase simulation for t=0.406s for

resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-phase SPH on GPU (c) single-phase SPH on GPU. •

represent experimental data

181

(a)

(b)

(c)

0.468s

Figure 5.36: Comparison of the experimental results to a single and a multi-phase simulation for t=0.468s for

resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-phase SPH on GPU (c) single-phase SPH on GPU. •

represent experimental data

(a)

(b)

(c)

0.531s

Figure 5.37: Comparison of the experimental results to a single and a multi-phase simulation for t=0.531s for

resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-phase SPH on GPU (c) single-phase SPH on GPU. •

represent experimental data

The case has also been executed for a finer resolution, with particle spacing dx/h0=0.0067,

doubling the resolution of the previous simulation. The speed of sound and the artificial

viscosity are the same as the previous simulation. The results are presented in the same

182

manner, comparing the experimental results to a multi-phase and a single-phase simulation.

The instance from the simulation occurs 0.043s earlier following the phase difference

between the experimental and numerical results discussed earlier as outlined by Violeau and

Issa (2007b). The results are displayed in Figure 5.38 to Figure 5.42 (pp. 183-185).

The higher resolution shows more differences between the single and the multi-phase

simulation. Figure 5.43 shows that the single-phase model is closer to the digitised points but

comparing the experiment screenshot to the simulations, we can see that the back-breaking is

captured better in the multi-phase simulation, due to the physical presence of the air particles,

which allows for mixing between the phases.

Figure 5.44 shows the evolution of the water flow at 0.281s and 0.343s. The behaviour seen

in Figure 5.38 is repeated here: the multi-phase simulation is slightly underestimating the

height of the flow but the air-water mixing is better represented. Both simulations progress

faster than the experiment. The issue has been also observed by Violeau and Issa (2007b) and

Khayyer and Gotoh (2010b) who identify the numerical modelling of the viscosity and the

vorticity to be the cause of the issue.

Between the two simulations, the multi-phase model also seems to be progressing faster than

the single-phase simulation as seen in the tip of the plunging wave. The reason for the

difference is the additional force exerted on the wave by the air particles, which increases its

falling velocity.

The faster progress of the simulations can also be seen in Figure 5.40, where the splash-up

created by the breaking wave is more advanced. Apart from that issue, the experiment is well

captured by the simulations including the entrained air bubble created by the plunging wave.

The multi-phase model is also capturing the air-water mixing observed at the back of the flow

as the air particles trapped during the back-breaking maintain their position inside the flow.

In contrast, the voids present in Figure 5.39 in the single-phase simulation have all but

vanished.

The results presented in Figure 5.41 and Figure 5.42 follow closely the results presented for

the lower resolution. The modelling of air particles allows for the prediction of the evolution

of the air bubble; the void in the single-phase is eventually diminished as seen in Figure 5.42.

The presence of air also assists in modelling the splash-up; while the spray is not reproduced

the forces exerted from the air particles produce a splash-up closer to the experimental data.

183

In contrast the single-phase splash-up continues its motion unobstructed producing a

plunging wave of much greater height.

Compared to the low resolution case, these simulations give very similar results. Differences

are mostly seen in the backward breaking area, which is better resolved with a larger number

of particles. Of particular note is the behaviour of the simulations at the plunging wave; the

results for the lower resolution for its toe are closer to the experimental ones. This occurs due

to the numerical viscosity associated with the lower number of particles as seen by the

simulations of Crespo et al. (2008).

(a)

(b)

(c)

 0.156s 0.219s

Figure 5.38: Comparison of the experimental results to a single and a multi-phase simulation for t=0.156s and

t=0.281s for resolution dx/h0=0.0067. (a) Photos form experiment (b) multi-phase SPH on GPU (c) single-phase SPH

on GPU. • represent experimental data

184

(a)

(b)

(c)

 0.281s 0.343s

Figure 5.39: Comparison of the experimental results to a single and a multi-phase simulation for t=0.281s and

t=0.343s for resolution dx/h0=0.0067. (a) Photos form experiment (b) multi-phase SPH on GPU (c) single-phase SPH

on GPU. • represent experimental data

(a)

(b)

(c)

0.406s

Figure 5.40: Comparison of the experimental results to a single and a multi-phase simulation for t=0.406s for

resolution dx/h0=0.0067. (a) Photos form experiment (b) multi-phase SPH on GPU (c) single-phase SPH on GPU. •

represent experimental data

185

(a)

(b)

(c)

0.468s

Figure 5.41: Comparison of the experimental results to a single and a multi-phase simulation for t=0.468s for

resolution dx/h0=0.0067. (a) Photos form experiment (b) multi-phase SPH on GPU (c) single-phase SPH on GPU. •

represent experimental data

(a)

(b)

(c)

0.531s

Figure 5.42: Comparison of the experimental results to a single and a multi-phase simulation for t=0.531s for

resolution dx/h0=0.0067. (a) Photos form experiment (b) multi-phase SPH on GPU (c) single-phase SPH on GPU. •

represent experimental data

186

5.4.4. High Water Layer: d0=0.038m

This case is the second part of the experiments of Janosi et al. (2004) where the water layer

height is 0.038m and the height ratio of the two water volumes is 0.2533. The speeds of

sound for the different cases, as well as the artificial viscosity coefficient are the same as in

the low water layer case. The particle spacing used for the first simulation is dx/h0=0.1333.

This case has been simulated by Crespo et al. (2008) who have digitised the screenshots

provided by Janosi et al. (2004). The gate movement has been delayed as proposed by

Violeau and Issa (2007b).

As we can see in Figure 5.43 and Figure 5.44 the experimental results are reproduced by the

SPH simulations. The differences between the two simulations are very small when tracking

the free surface. The backward is similarly reproduced with minor differences. An

identifiable difference only occurs for 0.219s with the multi-phase model identifying the

mixing between the two fluids.

Figure 5.45 and Figure 5.46 show again the phase issue observed for the low water layer case

in section 5.5.3. The wave created by the forward flow breaks faster than the experimental

results would indicate, especially for the multi-phase test case. Figure 5.45 also shows that

the single-phase simulation predicts the breaking at the back of the wave at the correct

moment. However, Figure 5.46 shows that the phenomenon is quickly eliminated without the

presence of the air particles. Their presence also allows the multi-phase simulation to

maintain the mixing between the two fluids inside the water flow, although in the experiment

the air volume is much larger.

The latter stages of the high water layer (d0=0.038mm) case focus on two areas: the splash up

and the air bubble at the front and the mixing of air and water at the middle of the flow. The

splash-up is not correctly represented in either simulation with the multi-phase splash-up

adopting a mushroom shape instead of a plunging wave and the single-phase one being

dispersed. The mixing between the phases is predicted by the multi-phase but like in Figure

5.46 its effect is underestimated. It cannot however be predicted by the single-phase model.

The entrained air bubble is modelled by the multi-phase simulation but its volume is

underestimated. The single-phase simulation, on the other hand overpredicts the volume of

the bubble as well as placing it closer to the free surface.

187

(a)

(b)

(c)

 0.156s 0.219s

Figure 5.43: Comparison of the experimental results to a single and a multi-phase simulation for t=0.156s and

t=0.219s for resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-phase SPH on GPU (c) single-phase SPH

on GPU. • represent experimental data

188

(a)

(b)

(c)

 0.281s 0.343s

Figure 5.44: Comparison of the experimental results to a single and a multi-phase simulation for t=0.281s and

t=0.343s for resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-phase SPH on GPU (c) single-phase SPH

on GPU. • represent experimental data

(a)

(b)

(c)

0.406s

Figure 5.45: Comparison of the experimental results to a single and a multi-phase simulation for t=0.406s for

resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-phase SPH on GPU (c) single-phase SPH on GPU. •

represent experimental data

189

(a)

(b)

(c)

0.468s

Figure 5.46: Comparison of the experimental results to a single and a multi-phase simulation for t=0.468s for

resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-phase SPH on GPU (c) single-phase SPH on GPU. •

represent experimental data

(a)

(b)

(c)

0.531s

Figure 5.47: Comparison of the experimental results to a single and a multi-phase simulation for t=0.531s for

resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-phase SPH on GPU (c) single-phase SPH on GPU. •

represent experimental data

190

(a)

(b)

(c)

0.593s

Figure 5.48: Comparison of the experimental results to a single and a multi-phase simulation for t=0.593s for

resolution dx/h0=0.0133. (a) Photos form experiment (b) multi-phase SPH on GPU (c) single-phase SPH on GPU. •

represent experimental data

The case has also been executed for a larger resolution, with particle spacing dx/h0=0.067,

doubling the resolution of the previous simulation with the same parameters for the speeds of

sound and the artificial viscosity being used. This is the same spacing used for the previous

wet dam break case. The instance from the simulation occurs 0.043s earlier following the

phase difference between the experimental and numerical results as outlined by Violeau and

Issa (2007b).

The differences between the two models in Figure 5.49 are small, except for the volume of

the backwards breaking wave, which is slightly larger for the single-phase simulation.

However, the differences are more pronounced in Figure 5.50 where the evolution of the

breaking wave is different for each simulation. The larger wave of the single-phase model is

breaking earlier, creating a smaller space within the flow. This then evolves into a small

forward collapsing wave which is not observable in the experiment.

The multi-phase simulation creates a larger air bubble that then bursts in a matter similar to

the experimental results. However, the volume of the bubble is greater than the experiment

and the additional entrained bubble inside the flow is not captured. An issue with both

simulations is that the height on the back of the emerging wave is underestimated.

191

The evolution of the plunging wave can be seen in Figure 5.51 and Figure 5.52, showing the

creation and the breaking of the plunging wave. Small differences between simulations can

be seen at the tip, with the wave of the multi-phase simulation being forced to a quicker

breaking. Of interest is the evolution of the smaller wave breaking that occurs at the back of

the flow; the single-phase simulation creates an upwards splash-up that does not occur in the

experiment, while the multi-phase model shows a more realistic breaking.

The final two images, Figure 5.53 and Figure 5.54, show the resulting splash-up from the

plunging wave. Similar to the low water layer presented in Section 5.5.3 the height of the

splash-up is overestimated and the volume of the entrained air is better simulated with the air

particles. Air-water mixing within the flow can be seen at the multi-phase simulation but the

voids inside the single-phase model have vanished. The voids’ presence within the single-

phase flow was only recorded because the time difference between the figures is very small;

without the presence of another phase, they cannot be maintained.

(a)

(b)

(c)

 0.156s 0.219s

Figure 5.49: Comparison of the experimental results to a single and a multi-phase simulation at the start of the

computation for dx/h0=0.0067

192

(a)

(b)

(c)

 0.281s 0.343s

Figure 5.50: Comparison of the experimental results to a single and a multi-phase simulation at 0.281s and 0.343s for

dx/h0=0.0067

(a)

(b)

(c)

0.406s

Figure 5.51: Comparison of the experimental results to a single and a multi-phase simulation at 0.406s for

dx/h0=0.0067

193

(a)

(b)

(c)

0.468s

Figure 5.52: Comparison of the experimental results to a single and a multi-phase simulation at 0.468s for

dx/h0=0.0067

(a)

(b)

(c)

0.531s

Figure 5.53: Comparison of the experimental results to a single and a multi-phase simulation at 0.531s for

dx/h0=0.0067

194

(a)

(b)

(c)

0.593s

Figure 5.54: Comparison of the experimental results to a single and a multi-phase simulation at 0.593s for

dx/h0=0.0067

Compared to the low water layer (d0=0.018m) presented in Section 5.4.3, differences between

the high and low resolutions are more pronounced in this case, especially for the single-phase

test case. The front of the flow does not differ with the resolution but the backwards breaking

and its evolution exhibit different behaviour. For the single-phase the results seem to be

better for the lower resolution, indicating that there are issues with the viscosity model in the

higher resolutions.

Although not reported here, numerical comparison of multi-phase and single-phase SPH

schemes with shifting for the initial stages of a wet-bed dam break flow show good

agreement with a semi-analytical solution (Stansby et al., 1998), indicating that treatment of

the gate removal affects the results as confirmed by Violeau and Issa (2007b).

195

5.5. Rolling Tank

5.5.1. Case Description

SPHERIC Benchmark Case 10 (Botia-Vera et al., 2010, Souto-Iglesias et al., 2011a) was

selected to experimentally validate the multi-phase SPH code used in this study. The

experiment studies the movement and the wall forces at a sloshing tank case. The case was

selected in order to measure the accuracy of the pressure field of the simulation to the

experimental results, as well as demonstrate the effectiveness of the multi-phase model for a

case with a very sensitive interface.

The importance of this case lies in measuring the forces exerted on the walls of the tank.

Depending on the case and the volume of the tank and the liquid the pressure rise inside the

vessel can be quite high and the subsequent forces can severely damage the walls or the

support structure. The forces are particularly high when there is resonance between the liquid

movement and the craft motion. The changes in the weight distribution can also have a

negative impact on the support structure of the tank.

For a rectangular tank, the sloshing phenomena can be approximated using a two-

dimensional simulation. If forces on the fluid caused by the vessel movement change

directions frequently, the flow near the corners becomes three-dimensional. For spherical or

cylindrical tanks, on the other hand the three-dimensional effects have to be taken in

consideration, especially in regards to the support structure (Pauling, 2008).

Liquid sloshing in rectangular tanks can be divided in two categories: low and high-filling

tanks. In the first case, the sloshing effect is characterised by travelling waves and hydraulic

jumps. Near the resonance frequency this can lead to high pressure impacts on the walls. A

typical pressure distribution on the tank wall for a low-filling case can be seen in Figure 5.55.

The high-filling cases on the other hand are characterised by large standing waves and the

main pressure impacts are on the roof of the vessel instead of the walls.

The most disastrous effect caused by the liquid sloshing is the capsizing of the craft

containing the tank. The movement of the liquid can change the centre of mass for the vessel

resulting in it becoming unstable and rolling over. This is a grave problem in craft with large

fluid cargo, especially if it is spanning the full breadth of the craft. In a ship, accidental

196

flooding of its compartments can potentially have the same effect. The effect is greater with a

partially-filled tank, due to the larger distances the liquid can move.

Figure 5.55:Pressure time history for a) resonant sloshing with large amplitude hydraulic jumps and b) non-

resonant low amplitude standing wave sloshing (Bass et al., 1976)

The sloshing effects usually result in a violent flow with rapid changes of the free surface.

The tanks are only partially filled so the liquid flow is mixing with the air or other gases that

are inside the tank. The waves created inside the tank have also a high possibility of trapping

gas volumes within the liquid flow. This occurs regardless of the water depth in the tank. The

forces on the walls are, as a result, affected.

In this test case the lateral impact in a rectangular tank is considered. The liquid height used

corresponds to 18% filling tank level. The level was selected in order to maximise the wall

impact. Experimental data are available for the first four impacts with the pressure at certain

points on the walls being recorded as well as the roll angle of the tank. Data were recorded

for two fluids, water and sunflower oil, but only the water results are considered.

Figure 5.56: Definition sketch for the lateral impact of SPHERIC Benchmark Case 10

 Air

 Water

508

93

900

197

The movement of the liquid inside depends on the tank movement. In this case the tank is

rotated along over a steady point at the middle of its base. The maximum rotation angle is 4

degrees. The pressure on the walls is measured in the positions shown in Figure 5.57. Of

primary interest for this case are the positions on the tank walls near Sensor 1.

Figure 5.57: Tank Geometry and pressure sensor position of the sloshing flow tank (Souto-Iglesias et al., 2011b)

In the simulation the boundary particles simulating the tank walls remain stationary for the

duration of the simulation. The movement of the tank is instead simulated by changing the

gravity vector in accordance with the roll angles of the experiment. The angular acceleration

is also being computed. The gravity force that is being applied in the horizontal axis is shown

in Figure 5.58.

Figure 5.58: Gravity Force applied on the horizontal axis

198

The pressure profiles for these cases have been measured for sensors 1 for the lateral impact

case and 3 for the roof impact case and can be seen in Figure 5.59.

Figure 5.59: Expected Pressure for sensor 1

5.5.2. Lateral impact test case

The lateral impact case has been simulated with SPH by Leonardi et al. (2011) who used the

artificial viscosity scheme, running a sensitivity analysis on the viscosity parameter a. For the

velocity and the pressure they used an adopted XSPH correction scheme. The eddy viscosity

is also calculated, either with a k-ε model or with a mixing length model (De Padova et al.,

2010).

Leonardi et al. (2011) found that the lateral impact case was very sensitive to the viscosity of

the flow. The pressure peaks in particular, would vary significantly depending on the

viscosity model used and the value of its coefficients. The profile of the water flow also

depends on these models, with some configurations creating breaking waves and others

maintaining a smooth interface for the whole duration of the simulation.

In this case, this study uses neither a turbulence model, nor the XSPH scheme. Instead, the

shifting algorithm for both phases is being used, with the water phase being treated with the

free surface term as well as a Shepard renormalisation scheme. The equation of state used is

also different. Regarding these differences, the effective viscosity field of the two simulations

is sufficiently different to make a direct comparison impossible. This study will instead focus

on the differences seen in the pressure field, as recorded in the area of sensor 1 for different

parameters in this study.

199

An interesting aspect of the case is how the different phases impact the pressure. Due to its

oscillatory nature and the position of the sensor, the influence of the two phases alternates. It

is easy then to find at which times the pressure are dictated by each phase. The profile can

then be seen in Figure 5.60 and it is observed that particles from both phases contribute to the

pressure peak.

Figure 5.60: Mapping of impact on pressure by the different phases

The pressure is calculated using the MeasureTool executable provided with DualSPHysics

code which can perform an interpolation at any given point in the domain given the results by

DualSPHysics. The measurement probe was initially situated at the exact point that sensor 1

was situated, among the boundary particles on the wall. However, preliminary measurements

showed that pressure in the boundary particle would vary rapidly depending the phase of its

neighbours, resulting in an elevated, unnatural pressure that did not reflect the state of the

domain.

In that regard, the probe was placed at a horizontal distance 2h from the boundaries, inside

the fluid domain, the lowest possible distance close to the boundary while not taking into

account the boundary particles and maintaining a full kernel. The distance from the wall is

small enough that the pressure peak can be captured without the smaller pressure values

inside the flow impacting the end result.

Air Air Air

Water Water

200

Due to the presence of two fluids, direct recording of the pressure using MeasureTool was

impossible. Instead, two cases were recognised; whether the neighbouring particles of the

probe were of a single or of both phases. If only particles of a single phase were present a

density interpolation was performed using MeasureTool and the pressure was calculated

using the equation of state. If both air and water particles were present, the particle values

were extracted using Paraview and an interpolation was performed manually.

Several multi-phase simulations have been conducted. Figure 5.61 to Figure 5.65 show

instances for two resolutions with a particle spacing of dx/h0=0.0215 and dx/h0=0.0161,

respectively, where h0 is the initial height of the water in the tank has been executed and dx is

the particle spacing. Regarding the speeds of sound, cs,a is the speed of sound for the air

phase, while cs,w is the equivalent value for the water phase. They are compared to the

experimental results of Botia-Vera et al. (2010). The instances selected were at 1s, where the

pressure is first increased, at 2s, at 2.37s and 2.45s, right before and while the first impact

occurs and at 3s.

Agreement with the experimental screenshots is generally good, but there are some

differences to be found in the later stages of the simulation. Specifically, in Figure 5.63, the

simulation depicts a plunging wave, while in the experimental screenshot the wave has

already collapsed and has initiated the impact with the wall. This occurs for both resolutions,

with the lower one being slightly delayed.

A similar situation can be found in Figure 5.65 where a breaking wave starts occurring for the

lower resolution while the experiment and the higher resolution simulation retain a smooth

free-surface. The higher resolution has a slightly better agreement with the experimental

values (Figure 5.62 and Figure 5.65), but has also some boundary issues, similar to the dry

dam break case in Section 5.2, more apparent in the right side of Figure 5.62.

201

Experiment Photo

Multi-phase SPH simulation with

dx/h0=0.0215

Multi-phase SPH simulation with

dx/h0=0.0161

Figure 5.61: Comparison between an experiment screenshot and multi-phase simulation with cs,w=20m/s,

cs,a/cs,w=7.5, α=0.01 instances at 1s

Experiment Photo

Multi-phase SPH simulation with

dx/h0=0.0215

Multi-phase SPH simulation with

dx/h0=0.0161

Figure 5.62: Comparison between an experiment screenshot and multi-phase simulation with cs,w=20m/s,

cs,a/cs,w=7.5, α=0.01 instances at 2s

Experiment Photo

Multi-phase SPH simulation with

dx/h0=0.0215

Multi-phase SPH simulation with

dx/h0=0.0161

Figure 5.63: Comparison between an experiment screenshot and multi-phase simulations with cs,w=20m/s,

cs,a/cs,w=7.5, α=0.01 instances at 2.37s

202

Experiment Photo

Multi-phase SPH simulation with

dx/h0=0.0215

Multi-phase SPH simulation with

dx/h0=0.0161

Figure 5.64: Comparison between an experiment screenshot and multi-phase simulations with cs,w=20m/s,

cs,a/cs,w=7.5, α=0.01 instances at 2.45s. The air phase has been omitted for clarity

Experiment Photo

Multi-phase SPH simulation with

dx/h0=0.0215

Multi-phase SPH simulation with

dx/h0=0.0161

Figure 5.65: Comparison between an experiment screenshot and multi-phase simulations with cs,w=20m/s,

cs,a/cs,w=7.5, α=0.01 instances at 3s

203

The simulation performed with dx/d0=0.0215 was executed with different parameters. The

value proposed by Leonardi et al. (2011) for the speed of sound of the water was 17m/s and it

was found with preliminary simulations that choosing the speed of sound for the water to be

in the area around 20m/s gave the best fit with the experimental results. The first results are

presented in Figure 5.66.

The speed of sound for the air was selected in accordance with the method proposed by

Colagrossi and Landrini (2003) for ensuring that the pressure at the interface would be

identical for both phases if they had their initial density. The ratio for an air and water flow is

29 and it is the value used in this case. The value for the artificial viscosity coefficient is 0.01,

the value proposed by Leonardi et al. (2011).

Figure 5.66: Comparison between experimental and simulation results for cs,w=17m/s and cs,a/cs,w=29 for dx/h0=0.0215

As can be seen from Figure 5.66 the agreement with the experimental results is not very

good. The impact occurs earlier than expected and the pressure field is much lower than the

experimental results, particularly in the areas where the water has an important role. This

issue is cause by the very high compressibility of the air phase, which reduces the range of

values of the density resulting in the pressure peak being underestimated.

To counter this issue the speed of sound for the air was reduced. Two simulations were

performed with speed of sound ratio 10.6 and 8.8. The results are displayed in Figure 5.67.

Reducing the speed of sound for the air phase offers a significant improvement on the results,

especially if the speed of sound ratio is around 10. Further reduction however results in an

overall pressure drop for the air phase as evidenced by the pressure values before 0.5s and

between 1.5s and the pressure impact. The pressure drop in the air has a profound effect on

the pressure peak resulting in a value about half of the experimental.

204

To confirm these results the speed of sound value for the water phase was increased by 15%

and executed for 3 different speed of sound ratios: 15, 10 and 7.5. The results are presented in

Figure 5.68 and they are similar to the ones shown in Figure 5.67; a speed of sound ratio

around 10 achieves the closest results to the experiment. Results for the higher ratio,

simulation (a), after the pressure peak are very oscillatory and do not closely follow the

experimental results while the results for ratio 7.5, simulation (c), underestimate the pressure

peak, but are close to the experiment.

An interesting comparison can be performed between simulation (b) in Figure 5.67 and

simulation (c) in Figure 5.68. The only difference between these simulations is the speed of

sound of the water and the results produced are, as expected, slightly different for the areas

that the water is the primary influence on the pressure. However, the results produced for the

pressure peak are nearly identical, showing that the trapped air and its compressibility is the

primary factor for the pressure peak value.

Regarding the effect of the artificial viscosity, Figure 5.69 shows a comparison between

simulations with identical speeds of sound but with the artificial viscosity coefficient varying.

The results show that the coefficient value has a great effect on the pressure peak. The

optimal value is 0.01 as suggested by Leonardi et al. (2011) and the pressure peak value is

dropping if the viscosity value is lowered. In the rest of the computation, the only effect of

the viscosity is the slight raise of the pressure values as the simulation progresses; this is

visible after 1.5s.

The simulations investigated so far have been performed for a single resolution, however, the

wet dam break case investigated in Section 5.5 shows that the numerical viscosity depends on

the resolution of the case and it is inversely proportional. Figure 5.70 shows the results for

simulations with different resolutions but using the same speeds of sound and the same

artificial viscosity coefficient.

The results show that increasing the resolution leads initially to a decrease in the pressure

field, especially in the areas that are heavily influenced by the water as seen in simulation (b)

in Figure 5.70. If the resolution is further increased, the low speed of sound of the water leads

to a spurious pressure field especially after the impact and in the underestimation of the

pressure peak. The analysis performed so far however, does apply to other resolutions, with

Figure 5.71 showing the best fit for the experimental results with dx/h0=0.0161. For the

higher resolution, the pressure drop at 2.35s is also captured.

205

This case shows that the multi-phase model used in this study is able to correctly predict the

pressure field, but it also showcases its limitations. Namely, it is entirely too dependent on

numerical parameters and for sensitive cases like this, achieving close results to experimental

studies requires rigorous sensitivity analysis, the results of which are also dependent on the

particle resolution. Regardless, it is still possible to achieve a result close to the experimental

values.

a) cs,w=17m/s

cs,a/cs,w=10.6

α=0.01

b) cs,w=17m/s

cs,a/cs,w=8.8

α=0.01

Figure 5.67: Comparison between experimental and simulation results for cs,w=17m/s and for dx/h0=0.0215.

Investigation of the effect of the speed of sound for the air phase

206

a) cs,w=20m/s

cs,a/cs,w=15

α=0.01

b) cs,w=20m/s

cs,a/cs,w=10

α=0.01

c) cs,w=20m/s

cs,a/cs,w=7.5

α=0.01

Figure 5.68: Comparison between experimental and simulation results for cs,w=20m/s and for dx/h0=0.0215.

Investigation of the effect of the speed of sound ratio for an increased value for the water phase

207

a) cs,w=20m/s

cs,a/cs,w=5

α=0.01

b) cs,w=20m/s

cs,a/cs,w=5

α=0.005

c) cs,w=20m/s

cs,a/cs,w=5

α=0.001

d) cs,w=20m/s

cs,a/cs,w=5

α=0.0005

Figure 5.69: Comparison between experimental and simulation results for cs,w=17m/s and for dx/h0=0.0215.

Investigation of the effect of the artificial viscosity

208

a) dx/h0=0.0215

b) dx/h0=0.0161

c) dx/h0=0.0129

Figure 5.70: Comparison between experimental and simulation results for cs,w=20m/s cs,a/cs,w=7.5 α=0.01.

Investigation for different resolutions.

209

cs,w=20m/s

cs,a/cs,w=5

α=0.0005

Figure 5.71: Comparison between experimental and simulation results for dx/h0=0.0161

5.6. Concluding Remarks

The GPU-accelerated multi-phase SPH scheme has been tested against a range of demanding

2-D validation cases. A new particle shifting algorithm has been proposed that prevents the

formation of unphysical voids in the air phase at high resolutions. For the simple formulation

used for the GPU implementation, the scheme compares well with reference solutions for

dry-bed dam break. For the wet bed dam break, similar to other published results, the gate

movement needs to be delayed to replicate the flow. The agreement is close and further

demonstrates the need for a multi-phase simulation for such a complex violent flow. A rolling

tank case shows that the multi-phase SPH scheme can capture the high pressure peaks but

similarly to other researchers, the results are sensitive to model parameters.

210

6. Validation: Three Dimensional Cases

6.1. Introduction

This chapter presents the validation of the multi-phase model extended to the third dimension

with a complex 3-D flow. The extension was performed using the existing DualSPHysics

functionality. The multi-phase model did not need to be adapted mathematically, but the

optimisation detailed in Section 4.4 was created based on the performance of the code for

both 2-D and 3-D simulations. The same code can then be used for both instances with the

only difference being the extension of the surface term for the shifting algorithm. The code is

validated comparing the results both to experimental data and existing single-phase

simulations. Variables compared include the height of the water column at different points of

the domain and the pressure.

6.2. Obstacle Impact

6.2.1. Case Description

This case was selected to investigate the ability of the code to model complex 3-D cases as

well as provide experimental validation for the SPH scheme used. It is based on the

experiments of Kleefsman et al. (2005) performed at the Maritime Research Institute of

Netherlands and simulated a dam break case where the flowing water collides with a box.

Due to this collision, the flow is inherently 3-D.

Waves hitting a stationary obstacle are a common issue in coastal or offshore engineering.

Structures placed in areas near or in the sea must be designed in order to withstand any

potential wave impact. Ships face the exact same issue and a material failure can result in the

endangerment of the crew. One reported case occurred in November 1998 where the

Schiehallion FPSO (Floating Production Storage and Offloading vessel) was damaged by a

wave impact, forcing all personnel to abandon the ship (Gorf et al., 2000).

Another issue occurring is the possibility of water entering the deck of the ship if the wave

height is large. The volume of the water remaining on deck can be quite significant and

follows the ship motion damaging the equipment and cargo stored in this area. The term

green water is used to refer to this phenomenon and it can also impact offshore floating

211

platforms (Kleefsman et al., 2005). Green water loads are particularly important for

designing the local support structure (Pauling, 2008).

The experiment is a simple model of a green water flow with the obstacle simulating a

container on the deck of a ship. It is a similar case to the dry dam break problem described in

Section 4.8 and 5.2. It has been simulated by several researchers using a single-phase SPH

model since 2010 (Lee et al., 2010), including simulations using GPU acceleration by Crespo

et al. (2011a) and Rooney et al. (2011). It has not yet been simulated using a multi-phase

approach.

The experimental setup uses a lock gate to hold the volume of water motionless at the

beginning of the case. The gate is raised using a weight system. The raise is almost

instantaneous with the water flow not being affected by the gate, so its motion will not be

included in the simulation. The water will then flow towards the obstacle which is firmly set

in place.

The main point of interest is the water movement and especially its interaction with the box.

During the experiment measurements were performed at the height of the water flow as well

as the pressure and forces on the box. Four height probes were used with the first being in the

reservoir, while the box was covered by eight pressure sensors. The position of the height

probes and the pressure sensors are shown in Figure 6.1.

Figure 6.1: Measurement positions for water heights and pressures in the experiment (Kleefsman et al., 2005)

When simulating the experiment using DualSPHysics with a single-phase model, Crespo et

al. (2011a) compared their results with the experimental ones for the first three height probes

as well as two of the points measuring the pressure on the side of the box. The measure points

are shown in Figure 6.2 along with the detailed geometry of the tank:

212

Figure 6.2: Defining sketch of the domain and the experimental measuring positions (Crespo et al., 2011a)

In general, a 3-D case is a much more demanding simulation especially for an air-water flow.

The air particles vastly outnumber the water phase, so if the collision with the box is to be

modelled accurately, a significantly larger particle number is needed. The tank will be

modelled using the exact dimensions of the experiment; the rapid advancement of the water

flow towards the obstacle and the small size of the tank mean that the domain cannot be

shrank while retaining identical Reynolds and Weber flow numbers. The initial profile of the

water flow can be seen in Figure 6.3.

213

Figure 6.3: Initial domain of benchmark case 2

6.2.2. Validation

Figure 6.4 to Figure 6.6 present the evolution of the flow for a simulation ran with one

million particles which leads to particle spacing dx/h0=0.0273, where h0 is the initial height

of the water in the tank has been executed and dx the initial particle distance. The shifting

algorithm is used for both phases with the water being treated by the free-surface correction.

The artificial viscosity coefficient is 0.01 and the speed of sound ratio is 10.

After the start of the simulation the water column collapses under the effect of the gravity and

moves towards the negative x-direction of the domain, where, about 0.5s after the beginning

of the simulation, the flow collides with the obstacle reducing the velocity of the toe particles

in the middle of the flow to 0. The remaining particles continue their movement until they

reach the opposite wall. Figure 6.4a shows the beginning of the collapse of the water column

while Figure 6.4b shows an instance of the simulation shortly after the water flow reaches the

obstacle.

When the particles at the sides of the box that did not collide with the obstacle reach the

opposite wall they move upwards as a result of the forces exerted by the still moving part of

the flow. At the same time the central part overflows the obstacle creating a plunging wave as

seen in Figure 6.5a. The plunging wave breaks on the back wall covering the area behind the

obstacle while the rest of the flow continues its forward motion.

The forward motion is eventually halted by the back wall with the majority of the water

particles being gathered in this area, creating a second shorter column. This column also

collapses creating a wave travelling in the opposite direction, a reflected wave. The wave

214

evolution movement is shown in Figure 6.6 for three different instances. A slight bump of the

water flow over the obstacle is visible in all three screenshots.

(a)

(b)

Figure 6.4: Velocity magnitude contours of a 3-D obstacle impact flow for one million particles with spacing

dx/d0=0.0273 at a) 0.3s and b)0.6s

Velocity

Magnitude

 (m/s)

Velocity

Magnitude

 (m/s)

215

(a)

(b)

Figure 6.5: Velocity magnitude contours of a 3D obstacle impact flow for one million particles with spacing

dx/d0=0.0273 at a) 0.9s and b)1.2s

Velocity

Magnitude

 (m/s)

Velocity

Magnitude

 (m/s)

216

(a)

(b)

(c)

Figure 6.6: Velocity magnitude contours of a 3D obstacle impact flow for one million particles with spacing

dx/d0=0.0273 at a) 1.5s b)2s and c) 3s

Velocity

Magnitude

 (m/s)

Velocity

Magnitude

 (m/s)

Velocity

Magnitude

 (m/s)

217

Kleefsman et al. (2005) have provided an animation of the experiment from which instances

at different points can be extracted. The difficulty in distinguishing the water from its

background and the creation of foam make a direct comparison between the simulation and

the experiment very difficult. Nevertheless, Figure 6.7 shows a comparison between the

multi-phase SPH simulation and two snapshots from the experiment.

Figure 6.7: Comparison of the multi-phase simulation and the experiment at 0.4s and 0.56s

Apart from the animation, detailed data regarding the pressure and height measurements of

the experiment are available. Figure 6.8 to Figure 6.11 show the results for the height of the

water. The measurement positions follow the height probes by Kleefsman et al. (2005). The

case has been executed with two multi-phase simulations; one using the shifting algorithm

and one without it. A single-phase simulation using version 2.0 of DualSPHysics has also

been conducted.

218

The shifting algorithm has been applied to both phases; however, the surface term given by

Equation (5.23) and therefore taking into account the third dimension is only applied to the

water phase. The speeds of sound used for the phases are calculated using the same approach

as the dry dam break case, being calculated as 012 gh . A ratio of 10 was selected between

the air and the water speed of sound with the water value set at 30m/s. The artificial viscosity

coefficient is calculated using the approach described by Monaghan and Kajtar (2009b).

Specifically, the artificial viscosity parameter can be linked to the kinematic viscosity via the

following Equation:

ijscahν ,
8

1
 , (6.1)

where ν is the kinematic viscosity and ijsc , is the average speed of sound between particles i

and j. The kinematic viscosity and Equation (6.1) can then be linked to the Reynolds number,

which is computed using the initial height h0 of the water column as characteristic length and

0gh as its characteristic velocity. The smoothing length used in this case is the same as

Crespo et al. (2011a) used for their single-phase 100,000 particle simulation equal to

3.075×10
-2

m. That corresponds to a particle distance dx/h0=0.0364.

Figure 6.8 shows the results for height probe H4. Its position is in the middle of the initial

water column, so the initial value is the starting height of the water. The height is gradually

reduced until close to the end of the simulation, where the reflected wave appears. All the

simulations follow the experimental results closely, but they do not predict the reflected wave

correctly; its arrival is delayed. The closest results to the experiment are given by the multi-

phase simulation without the shifting algorithm, while the other simulations give almost

identical results.

Untreated flow Particle Shifting

Figure 6.8: Comparison of different simulations and experimental results for height probe H4 for dx/h0=0.0364

219

The second probe, H3, is located at the space between the initial water column and the

obstacle. The height of the flow at this point remains constant until the reflected wave

appears. From Figure 6.9 we can see that there is a discrepancy between the simulation

results and the experimental results even before the arrival of the returning wave. This is a

boundary issue that has already been mentioned in the dry dam break case: the fluid particles

are pushed upwards by the boundary particles as they begin their movement. This occurs due

to the small number of water particles present at this point which leads to an incomplete

kernel. The height difference between the single-phase and the experiment is ~2h, while the

difference for the multi-phase models is about ~h.

Untreated flow Particle Shifting

Figure 6.9: Comparison of different simulations and experimental results for height probe H3 for dx/h0=0.0364

It is less pronounced for the multi-phase simulations due to the opposite force exerted by the

air particles which reduce the upwards movement caused by the boundaries and which also

complete the kernel for the water phase leading to a smaller error. Apart from this issue the

discrepancy for the reflected wave can also be observed by this probe; there is a delay in the

height increase expected. The expected height is however, better captured by the multi-phase

simulations.

Height probe H2 is placed right before the obstacle, so the water flow reaches this point just

before the impact. This probe shows the gradual build-up of water at the end of the vessel,

which is then followed by the reflected wave. Results are shown in Figure 6.10 and the multi-

phase simulations follow the result closely, while the single-phase model shows the same

issues as in probe height H3, an increase in height due to the effect of the boundaries.

220

The height increase by the reflected wave is not predicted by either of the simulations which

only show a constant increase. The subsequent plateau is followed by the simulations but the

small height increase at around 2.5s is overestimated. The closest results are obtained again

by the multi-phase simulation without the shifting algorithm, with the other two simulations

constantly overestimating the height.

Untreated flow Particle Shifting

Figure 6.10: Comparison of different simulations and experimental results for height probe H2 for dx/h0=0.0364

For the last height probe, H1, which is situated at the back of the obstacle, agreement with the

experimental results is less accurate, as shown in Figure 6.11. A reason for that is the phase

delay for the reflected wave observed in the previous height probes. This is the area where

the wave originates, so the delay is more prevalent here affecting every aspect of the

computation in the area. The results here are closest to the experimental ones for the single-

phase model although the height at the end of the computation is overestimated.

A secondary reason is the recirculation of the particles towards the centre of the domain after

the particles hit the opposite wall. This behaviour, which causes the gradual height increase

around 1s, is delayed for the multi-phase simulation. The delay is partially due to the

boundaries as it also affects the single-phase simulation but is amplified by the resistance the

air particles pose to the water movement.

221

Untreated flow Particle Shifting

Figure 6.11: Comparison of different simulations and experimental results for height probe H1 for dx/h0=0.0364

Between the multi-phase simulations with and without the shifting algorithm, a difference in

the predicted height can be seen. In general, without the shifting algorithm the simulation

predicts a lower height, closer to the experimental results, while the results of the other model

are closer to the single-phase simulation. The shifting algorithm prevents increases in particle

concentration and maintains a more even particle spacing. When subjected to the boundary

forces, this moves the entire flow slightly upwards as seen in Figure 6.9 as due to the effects

of the free surface term, the effect of the force exerted by the air particles is diminished. This

height increase is then transferred throughout the phase so that particles can maintain their

spacing and leads to the interface being shifted slightly upwards.

At this resolution, no voids in the domain were seen for the untreated flow. A smaller

difference between the two is the pressure on the water spray after the impact; lone water

particles in the untreated flow are characterised by oscillatory pressure with very high

amplitude. This is not the case if the shifting algorithm is used, with lower pressure values.

The height results presented here will also be compared with the results of Crespo et al.

(2011a). They simulated this case using three different resolutions, the middle of which

corresponds to multi-phase computations performed in this study and discussed earlier.

Compared to this study, Crespo et al. (2011a) use the Verlet time-stepping algorithm instead

of the predictor-corrector model and the XSPH velocity correction, which is not used in this

study. The results are presented in Figure 6.12 for height probes H4, H3 and H2 (they are

referred in their paper as H3, H2 and H1 respectively). Results for height probe H1 are not

shown. The results will be compared with the multi-phase simulation without the shifting

algorithm.

222

H4

H3

H2

Figure 6.12: Comparison of a multi-phase simulation and the results of Crespo et al. (2011a) with the experimental

results for dx/h0=0.0364

223

As can be seen in Figure 6.12, the results by Crespo et al. (2011a) show a better agreement

regarding the timing of the reflected wave. However, the height of the water flow is always

overestimated, even compared to the single-phase results from Figure 6.8 to Figure 6.11, with

the multi-phase model having a better agreement. The results of Crespo et al. (2011a) were

obtained using an older version of DualSPHysics, so these improvements show the evolution

of the code in the meantime.

The obstacle impact case has also been executed with a higher resolution, using smoothing

length 2.25×10
-2

m or resulting in particle distance dx/h0=0.0272 which for these dimensions

translates to dx=0.015m. The results are presented in for a single and a multi-phase case with

this resolution which corresponds to about 250,000 water particles, 750,000 air particles and

over 1 million particles in total.

Figure 6.13 show the height for probes H4, H3 and H2 and there is no significant difference

for the untreated flow with the lower resolution. The shifting algorithm approach is slightly

improved for probe H3 and H2 producing similar results to the untreated flow although it is

still not as close to the experimental results in the latter parts of the flow. For probe H1 the

delay is still noticeable, but the behaviour of the flow after is significantly better than the one

demonstrated in Figure 6.11 for the lower resolution and closer to the experimental results.

The obstacle impact case was also simulated halving the particle distance used in the

simulations presented in Figure 6.12 resulting in particle distance dx/h0=0.0182 or for these

dimensions dx=0.01m. Since this is a 3-D simulation the number of particles has been

increased by 8 times, reaching about 4 million particles. The results will be compared to the

multi-phase simulation presented in Figure 6.12 as well as the experimental results. The

simulation has been executed for 2s and the results are presented in Figure 6.14.

224

Figure 6.13: Comparison of multi-phase simulations with (right) and without (left) the shifting algorithm and a

single-phase simulation with the experimental results for dx/h0=0.0273

225

H1

H2

H3

H4

Figure 6.14: Comparison of height results for 5×105 and 4×106 particles with experimental results

226

Results from probe H1 show no difference between the two simulations, with them having a

very good agreement with the experimental results. Differences start occurring at probe H2

with the effect of the boundary particles being lessened. The reason for that is the smaller

smoothing length and particle distance in the larger simulation. Neither of the simulations

however, predicts the returning wave at the correct moment, showing a delay witnessed in all

the numerical simulations performed in this study.

Height probe H3 shows the greatest improvement between the two simulations. The rapid

height increase observed after 1.5s due to the reflected wave is simulated by the high

resolution computation, albeit with a slight delay. The height at the end of the simulation is

however over predicted. Probe H4 however, shows large differences between the simulations

and the experiment. A large part of the difference is due to using the mass for the

measurement of the height; instead of the free surface the spray created by the impact is being

tracked. This can be determined by the instant height increase at 1s and the constant decrease

thereafter.

Apart from the heights in the domain, experimental data for the pressure in the designated

probes is available. The experimental results will be compared with the numerical ones

obtained at the previously detailed resolutions. The results are presented in Figure 6.15 for

the four probes in the face of the obstacle. Two sets of results are presented, with and without

particle shifting. The multi-phase simulation considered are the same as Figure 6.12 with

particle distance dx/h0=0.0364 leading to a particle number close to 500,000.

The results presented show that the pressure peak at the beginning is underestimated while

being overestimated for the latter half of the simulation. A delay between the initial pressure

peak in the simulation compared to the experiment can also be seen. The simulation pressure

follows however the experimental results with the exception of the fourth probe, where the

pressure peak is not recorded.

An interesting aspect of the simulation is the amplitude of the oscillations, which is smaller

when using the shifting algorithm. This is due to the reorganising of the particle position in

order to maintain a zero concentration gradient, leading to a more uniform domain. This is

presumably the reason for the lower pressure peaks shown for the shifting simulation.

227

Untreated flow Particle Shifting

Figure 6.15: Comparison between experimental and simulation results for the 4 pressure probes in the side of the

obstacle for two simulations with dx/h0=0.0364

To investigate the effect of the speed of sound for the pressure, two additional simulations

were run. In both simulations, the speed of sound for the water phase was lowered by about

30% and set to 20m/s. The speed of sound for the air either remained the same value as

P1 P1

P2 P2

228

before, resulting in a ratio of 15, or also lowered by 30% resulting in a ratio of 10. The results

are presented in Figure 6.16.

cs,a/cs,w=15 cs,a/cs,w=10

Figure 6.16: Comparison between experimental and multi-phase simulation with the shifting algorithm results for the

4 pressure probes in the side of the obstacle for two different speed of sound ratios

P1 P1

P2 P2

P3 P3

P4 P4

229

The results of Figure 6.16 show that the speed of sound for the air phase has a much greater

effect on the pressure peak than the speed of sound of the water or the ratio between them.

When the value remains unchanged, the pressure peak values are much closer to the results

displayed in Figure 6.15, despite the decrease in the water value. In comparison, when the air

value is decreased the pressure peak results are also decreased.

The latter half of the simulation also depends greatly in the speed of sound for the air phase

with the pressure settling for a much lower value. The speed of sound ratio however, has a

greater effect on that part. Compared to Figure 6.15, the final pressure value as well as the

rate of change is greater with the higher ratio. The pressure values have not stabilised either;

there is a significant increase even at the end of the computation.

Neither of the simulations however, is able to predict the peak pressure closely, as well as

model it for probe P4. For that reason the pressures have also been computed with two higher

resolutions, one doubling the number of particles with dx/h0=0.0273 and the other halving the

particle distance with dx/h0=0.0182. Simulations using the first resolution have been

executed both with and without applying the shifting algorithm, while the higher resolution is

only referenced without it. The simulations have been investigated when comparing the

particle heights in Figure 6.13 and Figure 6.14 respectively.

For dx/h0=0.0273 in Figure 6.17, the untreated flow shows greater pressure oscillations,

especially when looking at the results of probe P3 and P4. Compared to the low resolution

results however, shown in Figure 6.15 the oscillation amplitude is much smaller. The results

for the pressure peaks for the two simulations are also closer to the experimental ones,

especially for the shifting simulation, which now produces results similar to the untreated

flow.

For the higher resolution of dx/h0=0.0182 in Figure 6.13 and Figure 6.18, the results for the

pressure peaks and generally the first half of the simulation are very close to the experimental

results showing a definite improvement over the smaller resolutions. However, the pressure

decline and its residual value are not captured correctly with the simulation overestimating

the experimental values. As observed in Figure 6.16 the speed of sound and the ratio have a

significant impact on the final pressure values and it is possible for these discrepancies to be

corrected if the numerical parameters are better defined.

230

Untreated flow Shifting Algorithm

Figure 6.17: Comparison between experimental and multi-phase simulation with the shifting algorithm results for the

4 pressure probes in the side of the obstacle for dx/h0=0.0273

P1 P1

P2 P2

P3 P3

P4 P4

231

P1

P2

P3

P4

Figure 6.18: Comparison between experimental and a multi-phase simulation with 3.5 million particles without the

shifting algorithm for dx/h0=0.0182

232

An additional issue is that the pressure peak for probe P4 is not captured regardless of the

resolution. Regarding the improvement seen for probe P3 for the high resolution in Figure

6.18 it is possible that the resolution is insufficient to correctly capture the impact at this

point. Regarding the pressure probes P5-P8 it was found that they are negatively impacted by

the boundaries with the pressure field being oscillatory and constantly increasing. Additional

research regarding these two points is required.

6.3. Concluding Remarks

The multi-phase model developed in this study has been extended in the three-dimensional

space and validated with experimental and numerical results for the height of the water

column and the pressure on the obstacle using 4 million particles. An improvement was

shown over corresponding single-phase results. Reasonably good agreement with the

experimental results was achieved, with the exception of pressure probe P4, where the

pressure peak was not captured. Additional research is also needed regarding the issue of

remaining pressure in the domain after the impact.

233

7. Conclusion

7.1. General Conclusions

This thesis has presented a smoothed particle hydrodynamics (SPH) model using graphics

processing units (GPUs) to accelerate the simulation of violent air-water flows in two and

three dimensions. The major advantage of using SPH for multi-phase flows is that compared

to mesh-based computational methods the highly nonlinear behaviour of the motion of the

interface can be implicitly captured with a sharp interface. The robustness and simplicity of

the method without the requirement to generate a mesh are other advantages of using SPH for

simulating such complex flows.

One major drawback of the SPH method is the large computational resources and time

required for complex simulations. This is associated with the number of neighbours per

particle and the number of particles, which must be increased in order for the method to be

applied for more real applications and complex flows, especially for three-dimensional

domains. In this study, GPUs, which have massively parallel capabilities, were selected to

provide the necessary acceleration for simulating large particle numbers.

The open source code DualSPHysics, a hybrid CPU-GPU code was heavily modified in order

to be able to handle flows with multiple fluids by implementing a multi-phase model that is

simple to implement on GPUs (Colagrossi and Landrini, 2003). This choice of formulation

enabled different algorithms focusing on identifying an optimised multi-phase SPH algorithm

to be investigated for the first time. The use of GPUs enables much greater particle numbers

to be used and hence higher resolutions in simulations thereby leading to speedups close to

two orders of magnitude over a conventional CPU code. Simulations with millions of

particles can now be run in hours meaning that the scheme can be used for design simulation.

The increased resolution enabled by the GPU revealed a problem in the simulations when

voids appeared in the gas or air phase. To circumvent this issue a new and improved shifting

algorithm was presented for multi-phase SPH schemes. The code was validated by

comparison with cases including dry-bed and wet-bed dam break flows in 2-D, a sloshing

tank in 2-D and a dry-bed dam break impacting an obstacle in 3-D.

234

The model should be useful for engineers to investigate multi-phase flows involving violent

hydrodynamics such as breaking waves, sloshing and impact. Table 5 shows some general

guidelines for using the multi-phase model.

Cohesion Coefficient Best results are obtained by using a characteristic length with a

similar value to the particle spacing.

Background pressure A small value can smooth the velocity gradient at the interface at

the start of the simulation but it is not essential.

Speed of sound The lighter phase must have a larger value to obtain similar

pressure between the two phases in the interface. The value for the

heavier phase can be found by the maximum velocity of the

simulation. Their ratio depends on the case.

Artificial viscosity Its importance for stability lessens as the resolution increases. A

small value was used in most cases.

Density filter Needed to remove pressure noise and should be used for each

phase separately.

Shifting Algorithm Needed to enforce Fickian motion in the lighter phase especially in

higher resolutions. Improves stability allowing for a decrease in the

speed of sound for the lighter phase.

Free-surface correction Essential in the heavier phase if the shifting algorithm is used

Table 5: General guidelines for using a multi-phase model with SPH

7.2. Detailed Conclusions

7.2.1. Multi-phase algorithms for GPUs

Four different algorithms for optimising the simulation of multi-phase SPH on a GPU were

investigated in order to optimise the code. The four algorithms investigated using conditional

if-statements, conditional binary multipliers to operate on identical equations within the code,

separate particle lists for each phase and an intermediate CPU-GPU function to minimise

interaction between the CPU and the GPU. The results from the different algorithms showed

that computing the inter-particle forces is the most computationally intensive aspect.

Algorithms utilising different particle and neighbour lists for each phase reduced the cost of

computing these forces improving the runtime of the simulation.

235

The improvement was increased as the complexity and the number of particles was increased

resulting in over 10% improvement over a conditional if-statement algorithm for a three-

dimensional domain. A large acceleration of the simulation compared to a conventional CPU-

only approach was achieved so that now multi-phase SPH simulations with millions of

particles can be performed in a matter of hours on a desktop machine rather than days or

months on a supercomputer.

7.2.2. A new particle shifting algorithm for multi-phase SPH schemes

The use of the GPU architecture enabled the modelling of cases with millions of fluid

particles. This resulted in some previously unreported problems regarding the simulation of

the air phase. Specifically, in high resolutions, voids would appear in the air phase for certain

cases, especially if the flow velocity was high or large forces were exerted from the water

phase.

The reason for these issues was that the air was being simulated as a highly compressible

liquid, lacking the ability to rapidly expand as a gas. To rectify that problem, this thesis has

proposed a new particle shifting algorithm for multi-phase flows extending the work of Xu et

al. (2009) and modified by Lind et al.(2012b) and Skillen et al. (2013). This algorithm shifts

particles towards areas of lower concentration and was able to allow air expansion in a

uniform manner, removing the voids.

The effect of the shifting algorithm on the flow and the differences of the particle positions

with the simple multi-phase code were investigated. In particular, particle shifting was tested

both when only applied to the air phase and when applied to both phases. The free-surface

term by Lind et al.(2012b) was found to have a significant effect on the evolution of the flow,

restricting the expansion of the water phase on the free-surface. It was concluded that the

shifting algorithm should be used in the air phase without the free-surface term, while for the

water phase either the free-surface term should be used or the shifting algorithm should be

removed entirely. Using the shifting algorithm completely prevents the formation of

unphysical voids and improves pressure fields.

7.2.3. Validation of the multi-phase scheme

To validate the proposed scheme, a simulation of a dam break experiment with a dry bed was

performed. The results for the height of the water column and the toe of the water flow were

compared to the experimental results of Koshizuka and Oka (1996) and a corresponding

236

single-phase simulation. Results for the two SPH simulations were similar and in good

agreement with the experimental results. Using the shifting algorithm also provided similar

results, showing that the initial stages of the dam break are insensitive to the parameters used.

A different dry dam break case by Colagrossi and Landrini (2003) was also compared with

the SPH simulation. The effect of the shifting algorithm, the density re-normalisation term

and the viscosity model in the evolution of the flow and the pressure field was investigated.

The results were compared to the SPH simulation of Colagrossi and Landrini (2003), a

Boundary Element Method model by Faltinsen et al. (2004) and a Level-Set algorithm by

Colicchio et al. (2005) for different instances of the flow. Results obtained showed a large

numerical viscosity for the lower resolution resulting in a lower plunging wave but they were

in good agreement for a higher resolution when the shifting algorithm was used.

The shifting algorithm was found to impact the evolution of the flow altering the shape of the

reflected plunging wave and the splash-up. The effect was amplified when the artificial

viscosity model was introduced. The shifting algorithm also had an impact on the

compressibility of the flow leading to an increased pressure field.

The results of a multi-phase simulation were compared to the wet-bed dam break experiment

by Janosi et al. (2004) as well as a single-phase simulation. The flow studied also included

the movement of the gate. The comparison was performed for two different resolutions and

an improved agreement with the experimental results was produced for the multi-phase

simulation while an improvement was also shown for the higher resolution.

Sloshing inside a rolling tank was also examined. The case was found to be very sensitive in

changes to the viscosity model and the speed of sound of the phases which changes their

compressibility. A sensitivity analysis was performed for a range of different values

comparing the results to the experiment of Botia-Vera et al. (2010). For the lateral impact

case, the results obtained show that a good agreement with the experimental results is

dependent on the parameters as expected for the formulation of Colagrossi and Landrini

(2003).

Finally, a 3-D dry dam break case where the water flow is impacting an obstacle was also

studied. The results obtained were compared to the experimental results of Kleefsman et

al.(2005) and a single-phase SPH simulation by Crespo et al. (2011a) for the height of the

237

water flow at different points in the domain. The results obtained were generally in good

agreement with the experiment and an improvement on the single-phase model.

Comparison with the experimental results was also performed for the pressure in the side of

the obstacle. A very high resolution was found to be needed in order to sufficiently resolve

this problem, lower resolutions greatly underestimating the pressure peak. For the higher

resolution, the pressure peak was in good agreement for the majority of the pressure probes,

however the subsequent pressure decrease was not modelled sufficiently (a problem present

in lower resolutions as well).

7.3. Future Work

7.3.1. Alternative boundary conditions

Boundary conditions in SPH have been a well-known issue for some time and have not been

the focus of this thesis. However, as seen for the lateral impact case in the sloshing tank in

Section 5.5.2 and as mentioned in the dry dam break case in Section 5.2.1, the boundaries are

the cause of some significant issues with the SPH simulations. They also have a significant

effect on the pressure values which were the focus of this study both for the rolling tank case

(Section 5.5) and for the obstacle impact case (Section 6.2). The fictitious boundaries used in

this case have two major disadvantages for a violent multi-phase flow: a) they are greatly

dependent on fluid particle properties and b) they exert large forces in the fluid particles

while not taking into account the flow conditions.

The first issue occurs because of the different properties of the fluids in this study. In order to

maintain a stable field, the properties of the boundaries were approximated as the heavier

fluid. The forces exerted on the lighter fluid are then increased leading to a separation

between the boundary and the fluid and pressure and density oscillation for the air particles as

seen in Section 5.5.3. The second issue appears in the obstacle impact but can be observed

more clearly for the dry dam break case in Section 5.2.1. In this case the force exerted from

the boundaries causes a delay in the movement of the water particles resulting in

discrepancies with the experimental results. The boundaries also affect the reflected wave as

seen in Section 5.3.5.

To resolve this issue an alternative approach should be selected. A suitable model should

either not be dependent on particle properties or change depending on the fluid particle it is

238

simulating. Possible approaches include a semi-analytical boundary approach (Ferrand et al.,

2010) or a zero and first-order consistent boundary condition (Fourtakas et al., 2013b). At

this point, both require significant investment to be applied in a multi-phase GPU code, the

first requiring resolving issues in the interface and the second requiring an extension to 3-D

space.

7.3.2. Alternative Multi-phase Model

The multi-phase model of Colagrossi and Landrini (2003) is a very simple algorithm which

makes it ideal for applying it to a GPU-based code. Its simplicity however, is derived from its

dependence on a number of numerical coefficients defined by the user to determine the

interaction between the fluids and this arbitrary choice is a deterrent for more widespread

engineering applications of SPH. For example, as seen in the rolling tank case in Section 5.5

the pressure peak was greatly dependent on the numerical parameters of the model.

More importantly, the model revealed issues with the air modelling in high resolutions with

the shifting algorithm being used to eliminate them and the air phase is not being modelled as

a gas but as a highly compressible liquid. A different issue with the model is the increased

computational time it requires. The speed of sound for the air needs to be sufficiently larger

than the water causing a decrease on the time step which depends on the maximum speed of

sound of the flow.

As mentioned in Section 2.4 a number of alternative models have been developed for multi-

phase flows. Of particular interest is the model of Leduc et al. (2009) who used a Riemann

solver to model the interface between the two phases and the model of Grenier et al.(2009)

who combine the Colagrossi and Landrini (2003) model with a specific volume approach and

a new density renormalisation term. The first case eliminates the need for numerical

coefficients to maintain the cohesion of the flow while the second allows for a smaller value

of the speed of sound to be used for the air phase, therefore decreasing the computational

runtime.

A feature lacking from the current model is the ability to model the surface tension forces.

For the cases investigated herein, the surface tension forces did not affect the results;

however, in any case involving bubble flow, the surface tension forces are pivotal in

accurately simulating the creation, separation and behaviour of the bubbles. Introducing a

239

surface tension model, such as the continuum surface force (Brackbill et al., 1992) will

enable the scheme to be applied to a range of new cases.

7.3.3. Further Application of the model

The scheme created in this study is sufficiently robust to be used for the investigation of a

variety of multi-phase flows. Of particular interest is the study of breaking waves and

especially plunging breakers, which are a highly transient flow with constantly changing free-

surface. A preliminary investigation is being performed on the behaviour of solitary waves

breaking on a slope.

A case where the behaviour of the air has a large impact in the eventual force distribution is

slam modelling. As shown recently by Lind et al. (2013) when modelling the impact of a flat

plate on a water surface, trapped air has a cushioning effect, reducing the local pressures and

impact forces generated. The instantaneous nature of the impact and the small volume of the

trapped air greatly increase the computational cost of this case necessitating the use of a large

number of particles, issues which could be addressed by the hardware acceleration employed

in this scheme

In conjunction with the surface tension model mentioned in the previous section, bubble flow

and separation as well as the effect of aeration could also be modelled using this scheme. The

incorporation of periodic boundaries in the latest version of DualSPHysics will also allow the

modelling of partially-filled pipe flows.

7.3.4. Creation of a multi-GPU code

The use of GPUs as a means to accelerate an SPH code can significantly decrease the

computational runtime, as shown in this study. However, GPUs are still limited in two ways:

(a) the simulations performed here are only executed with single precision; (b) the amount of

memory in a single GPU is limited. The severity of both issues is dependent on the hardware

used, but regardless they limit the resolution and the number of particles that can be

processed.

To circumvent these limits a solution is the connection of several GPUs using the MPI

protocol with each GPU solving the flow for only a portion of these particles. A recently

released version of the DualSPHysics code has already included the MPI protocol and has

already been used to perform a simulation with 1 billion particles (Dominguez et al., 2013a).

Transferring the multi-phase model to this version is an entirely viable possibility.

240

References

AMADA, T., IMURA, M., YASUMURO, M., MANABE, Y. & CHIHARA, K. 2004. Particle-based fluid
simulation on the GPU. ACM Workshop on General-purpose Computing on Graphics
Processors. Los Angeles.

AMDAHL, G. 1967. The validity of the single processor approach to achieving large-scale computing
capabilities. AFIPS Spring Joint Computer Conference. Atlantic City,New Jersey.

ATLURI, S. N. & SHEN, S. P. 2002. The meshless local Petrov-Galerkin (MLPG) method: A simple &
less-costly alternative to the finite element and boundary element methods. Cmes-Computer
Modeling in Engineering & Sciences, 3, 11-51.

ATLURI, S. N. & ZHU, T. 1998. A new meshless local Petrov-Galerkin (MLPG) approach in
computational mechanics. Computational Mechanics, 22, 117-127.

ATLURI, S. N. & ZHU, T. L. 2000. The meshless local Petrov-Galerkin (MLPG) approach for solving
problems in elasto-statics. Computational Mechanics, 25, 169-179.

BALSARA, D. S. 1995. VON-NEUMANN STABILITY ANALYSIS OF SMOOTHED PARTICLE
HYDRODYNAMICS - SUGGESTIONS FOR OPTIMAL-ALGORITHMS. Journal of Computational
Physics, 121, 357-372.

BARBA, L. A., LEONARD, A. & ALLEN, C. B. 2005. Advances in viscous vortex methods - meshless
spatial adaption based on radial basis function interpolation. International Journal for
Numerical Methods in Fluids, 47, 387-421.

BARREIRO, A., CRESPO, A. J. C., DOMINGUEZ, J. M. & GOMEZ-GESTEIRA, M. 2013. Smoothed Particle
Hydrodynamics for coastal engineering problems. Computers & Structures, 120, 96-106.

BASS, R. L., HOKANSON, J. C. & COX, P. A. 1976. Verification of LNG tank loading criteria. Ship
Structure Committee Report. Ship Structure Committee.

BATCHELOR, G. K. 1967. An introduction to fluid dynamics, Cambridge, UK, Cambridge University
Press.

BELYTSCHKO, T., KRONGAUZ, Y., DOLBOW, J. & GERLACH, C. 1998. On the completeness of meshfree
particle methods. International Journal for Numerical Methods in Engineering, 43, 785-+.

BELYTSCHKO, T., KRONGAUZ, Y., ORGAN, D., FLEMING, M. & KRYSL, P. 1996. Meshless methods: An
overview and recent developments. Computer Methods in Applied Mechanics and
Engineering, 139, 3-47.

BELYTSCHKO, T., LU, Y. Y. & GU, L. 1994. ELEMENT-FREE GALERKIN METHODS. International Journal
for Numerical Methods in Engineering, 37, 229-256.

BELYTSCHKO, T., LU, Y. Y. & GU, L. 1995. CRACK-PROPAGATION BY ELEMENT-FREE GALERKIN
METHODS. Engineering Fracture Mechanics, 51, 295-315.

BENZ, W. & ASPHAUG, E. 1994. IMPACT SIMULATIONS WITH FRACTURE .1. METHOD AND TESTS.
Icarus, 107, 98-116.

BENZ, W. & ASPHAUG, E. 1995. SIMULATIONS OF BRITTLE SOLIDS USING SMOOTH PARTICLE
HYDRODYNAMICS. Computer Physics Communications, 87, 253-265.

BIN, A. K. 1993. GAS ENTRAINMENT BY PLUNGING LIQUID JETS. Chemical Engineering Science, 48,
3585-3630.

BOEK, E. S., COVENEY, P. V., LEKKERKERKER, H. N. W. & VANDERSCHOOT, P. 1997. Simulating the
rheology of dense colloidal suspensions using dissipative particle dynamics. Physical Review
E, 55, 3124-3133.

BONET, J. & KULASEGARAM, S. 2000. Correction and stabilization of smooth particle hydrodynamics
methods with applications in metal forming simulations. International Journal for Numerical
Methods in Engineering, 47, 1189-1214.

BONET, J. & LOK, T. S. L. 1999. Variational and momentum preservation aspects of Smooth Particle
Hydrodynamic formulations. Computer Methods in Applied Mechanics and Engineering, 180,
97-115.

241

BORVE, S. 2011. Generalised ghost particle method for handling reflecting boundaries. 6th
International SPHERIC Workshop. Hamburg, Germany.

BOTIA-VERA, E., SOUTO-IGLESIAS, A., BULIAN, G. & LOBOVSKY, L. 2010. Three SPH novel benchmark
test cases for free surface flows. 5th ERCOFTAC SPHERIC Workshop. Manchester, UK.

BRACKBILL, J. U., KOTHE, D. B. & ZEMACH, C. 1992. A CONTINUUM METHOD FOR MODELING
SURFACE-TENSION. Journal of Computational Physics, 100, 335-354.

BREDMOSE, H., HUNT-RABY, A., JAYARATNE, R. & BULLOCK, G. N. 2010. The ideal flip-through
impact: experimental and numerical investigation. Journal of Engineering Mathematics, 67,
115-136.

BROOKSHAW, L. 1985. A METHOD OF CALCULATING RADIATIVE HEAT DIFFUSION IN PARTICLE
SIMULATIONS. Proceedings Astronomical Society of Australia, 6, 207-210.

BUCHNER, B. 1996. The impact of green water on FPSO design. Offshore Technology Conference.
BULLOCK, G., OBHRAI, C., MULLER, G., WOLTERS, G., PEREGRINE, D. H. & BREDMOSE, H. 2004.

Characteristics and design implications of breaking wave impacts. In: MCKEE-SMITH, J. (ed.)
29th Interanational Conference of Coastal Engineering. ASCE.

BUTCHER, J. C. 1964. IMPLICIT RUNGE-KUTTA PROCESSES. Mathematics of Computation, 18, 50-&.
BUTCHER, J. C. 2003. Numerical Methods for Ordinary Differential Equations, New York, John Wiley

& Sons.
CHA, S. H. & WHITWORTH, A. P. 2003. Implementations and tests of Godunov-type particle

hydrodynamics. Monthly Notices of the Royal Astronomical Society, 340, 73-90.
CHEN, J. S., PAN, C., ROQUE, C. & WANG, H. P. 1998. A Lagrangian reproducing kernel particle

method for metal forming analysis. Computational Mechanics, 22, 289-307.
CHEN, J. S., PAN, C. & WU, C. T. 1997. Large deformation analysis of rubber based on a reproducing

kernel particle method. Computational Mechanics, 19, 211-227.
CHEN, J. S., WU, C. T., YOON, S. & YOU, Y. 2001. A stabilized conforming nodal integration for

Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering,
50, 435-466.

CHORIN, A. J. 1968. NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS. Mathematics of
Computation, 22, 745-&.

CHORIN, A. J. 1973. Numerical study of slightly viscous flow. Journal of Fluid Mechanics, 57, 785-796.
CHORIN, A. J. 1978. VORTEX SHEET APPROXIMATION OF BOUNDARY-LAYERS. Journal of

Computational Physics, 27, 428-442.
CLARK, D. 1998. OpenMP: a parallel standard for the masses. Ieee Concurrency, 6, 10-12.
COLAGROSSI, A., ANTUONO, M. & MARRONE, S. 2009. A 2D+t SPH model with enhanced solid

boundary treatment. 4th ERCOFTAC SPHERIC Workshop. Nantes, France.
COLAGROSSI, A. & LANDRINI, M. 2003. Numerical simulation of interfacial flows by smoothed

particle hydrodynamics. Journal of Computational Physics, 191, 448-475.
COLICCHIO, G., LANDRINI, M. & CHAPLIN, J. R. 2005. Level-set computations of free surface

rotational flows. Journal of Fluids Engineering-Transactions of the Asme, 127, 1111-1121.
COTTET, G. H., KOUMOUTSAKOS, P. & SALIHI, M. L. O. 2000. Vortex methods with spatially varying

cores. Journal of Computational Physics, 162, 164-185.
CRESPO, A. C., DOMINGUEZ, J. M., BARREIRO, A., GOMEZ-GESTEIRA, M. & ROGERS, B. D. 2011a.

GPUs, a New Tool of Acceleration in CFD: Efficiency and Reliability on Smoothed Particle
Hydrodynamics Methods. Plos One, 6.

CRESPO, A. J. C., DOMINGUEZ, J. M., BARREIRO, A. & GOMEZ-GESTEIRA, M. 2010. Development of a
dual CPU-GPU SPH model. 5th International SPHERIC Workshop. Manchester.

CRESPO, A. J. C., DOMINGUEZ, J. M., BARREIRO, A., GOMEZ-GESTEIRA, M. & ROGERS, B. D. 2011b.
DualSPHysics, new GPU computing on SPH models. 6th ERCOFTAC SPHERIC Workshop.
Hamburg, Germany.

CRESPO, A. J. C., GOMEZ-GESTEIRA, M. & DALRYMPLE, R. A. 2007. Boundary conditions generated by
dynamic particles in SPH methods. Cmc-Computers Materials & Continua, 5, 173-184.

242

CRESPO, A. J. C., GOMEZ-GESTEIRA, M. & DALRYMPLE, R. A. 2008. Modeling Dam Break Behavior
over a Wet Bed by a SPH Technique. Journal of Waterway Port Coastal and Ocean
Engineering-Asce, 134, 313-320.

CRESPO, A. J. C., MARONGIU, J. C., PARKINSON, E., GOMEZ-GESTEIRA, M. & DOMINGUEZ, J. M. 2009.
High performance of SPH codes: Best approaches for efficient parallelisation on GPU
computing. 4th ERCOFTAC SPHERIC Workshop. Nantes, France.

CUMMINS, S. J. & RUDMAN, M. 1999. An SPH projection method. Journal of Computational Physics,
152, 584-607.

DAGUM, L. & MENON, R. 1998. OpenMP: An industry standard API for shared-memory
programming. Ieee Computational Science & Engineering, 5, 46-55.

DALRYMPLE, R. A. & ROGERS, B. D. 2006. Numerical modeling of water waves with the SPH method.
Coastal Engineering, 53, 141-147.

DE LEFFE, M., LE TOUZE, D. & ALESSANDRINI, B. 2009. Normal flux at the boundary for SPH. 4th
ERCOFTAC SPHERIC Workshop. Nantes, France.

DE PADOVA, D., MOSSA, M., SIBILLA, S. & TORTI, E. 2010. Hydraulic jump simulation by SPH. 5th
International SPHERIC Workshop. Manchester, UK.

DI MONACO, A., MANENTI, S., GALLATI, M., SIBILLA, S., AGATE, G., GUANDALINI, R. & MAFFIO, A.
2009. A semi-analytic approach for SPH modelling of solid boundaries. 4th International
SPHERIC Workshop. Nantes, France.

DOMINGUEZ, J. M., CRESPO, A. J. C., GOMEZ-GESTEIRA, M. & MARONGIU, J. C. 2010. Neighbour Lists
in Smoothed Particle Hydrodynamics. International Journal for Numerical Methods in Fluids.

DOMINGUEZ, J. M., CRESPO, A. J. C., GOMEZ-GESTEIRA, M. & MARONGIU, J. C. 2011. Neighbour lists
in smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids,
67, 2026-2042.

DOMINGUEZ, J. M., CRESPO, A. J. C., GOMEZ-GESTEIRA, M. & ROGERS, B. D. 2013a. Simulating more
than 1 billion SPH particles using GPU hardware acceleration. 8th International SPHERIC
Workshop. Trondheim, Norway.

DOMINGUEZ, J. M., CRESPO, A. J. C., VALDEZ-BALDERAS, D., ROGERS, B. D. & GOMEZ-GESTEIRA, M.
2013b. New multi-GPU implementation for smoothed particle hydrodynamics on
heterogeneous clusters. Computer Physics Communications, 184, 1848-1860.

DULLWEBER, A., LEIMKUHLER, B. & MCLACHLAN, R. 1997. Symplectic splitting methods for rigid
body molecular dynamics. Journal of Chemical Physics, 107, 5840-5851.

DYKA, C. T. & INGEL, R. P. 1995. AN APPROACH FOR TENSION INSTABILITY IN SMOOTHED PARTICLE
HYDRODYNAMICS (SPH). Computers & Structures, 57, 573-580.

ELLERO, M., SERRANO, M. & ESPANOL, P. 2007. Incompressible smoothed particle hydrodynamics.
Journal of Computational Physics, 226, 1731-1752.

ESPANOL, P. 1995. HYDRODYNAMICS FROM DISSIPATIVE PARTICLE DYNAMICS. Physical Review E, 52,
1734-1742.

ESPANOL, P. & WARREN, P. 1995. STATISTICAL-MECHANICS OF DISSIPATIVE PARTICLE DYNAMICS.
Europhysics Letters, 30, 191-196.

FALTINSEN, O. M., LANDRINI, M. & GRECO, M. 2004. Slamming in marine applications. Journal of
Engineering Mathematics, 48, 187-217.

FALTINSEN, O. M., ROGNEBAKKE, O. F., LUKOVSKY, I. A. & TIMOKHA, A. N. 2000. Multidimensional
modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. Journal of
Fluid Mechanics, 407, 201-234.

FELDMAN, J. & BONET, J. 2007. Dynamic refinement and boundary contact forces in SPH with
applications in fluid flow problems. International Journal for Numerical Methods in
Engineering, 72, 295-324.

FERRAND, M., LAURENCE, D., ROGERS, B. D. & VIOLEAU, D. 2010. Improved time-scheme integration
approach for dealing with semi-analytical boundary conditions in SPARTACUS2D. 5th
SPHERIC International Workshop. Manchester, UK.

243

FERRAND, M., LAURENCE, D. R., ROGERS, B. D., VIOLEAU, D. & KASSIOTIS, C. 2013. Unified semi-
analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless
SPH method. International Journal for Numerical Methods in Fluids, 71, 446-472.

FERRARI, A., DUMBSER, M., TORO, E. F. & ARMANINI, A. 2009. A new 3D parallel SPH scheme for
free surface flows. Computers & Fluids, 38, 1203-1217.

FLEKKOY, E. G., COVENEY, P. V. & DE FABRITIIS, G. 2000. Foundations of dissipative particle
dynamics. Physical Review E, 62, 2140-2157.

FLEMING, M., CHU, Y. A., MORAN, B. & BELYTSCHKO, T. 1997. Enriched element-free Galerkin
methods for crack tip fields. International Journal for Numerical Methods in Engineering, 40,
1483-1504.

FOURTAKAS, G., ROGERS, B. D. & LAURENCE, D. R. 2013a. Modelling sediment resuspension in
industrial tanks using SPH. Houille Blanche-Revue Internationale De L Eau, 39-45.

FOURTAKAS, G., VACONDIO, R. & ROGERS, B. D. 2013b. SPH approximate zeroth and first-order
consistent boundary conditions for irregular boundaries. 8th International SPHERIC
Workshop. Trondheim, Norway.

GINGOLD, R. A. & MONAGHAN, J. J. 1977. SMOOTHED PARTICLE HYDRODYNAMICS - THEORY AND
APPLICATION TO NON-SPHERICAL STARS. Monthly Notices of the Royal Astronomical Society,
181, 375-389.

GINGOLD, R. A. & MONAGHAN, J. J. 1982. KERNEL ESTIMATES AS A BASIS FOR GENERAL PARTICLE
METHODS IN HYDRODYNAMICS. Journal of Computational Physics, 46, 429-453.

GOMEZ-GESTEIRA, M. & DALRYMPLE, R. A. 2004. Using a three-dimensional smoothed particle
hydrodynamics method for wave impact on a tall structure. Journal of Waterway Port
Coastal and Ocean Engineering-Asce, 130, 63-69.

GOMEZ-GESTEIRA, M., ROGERS, B. D., CRESPO, A. J. C., DALRYMPLE, R. A., NARAYANASWAMY, M. &
DOMINGUEZ, J. M. 2012. SPHysics - development of a free-surface fluid solver - Part 1:
Theory and formulations. Computers & Geosciences, 48, 289-299.

GOMEZ-GESTEIRA, M., ROGERS, B. D., DALRYMPLE, R. A. & CRESPO, A. J. C. 2010. State-of-the-art of
classical SPH for free-surface flows. Journal of Hydraulic Research, 48, 6-27.

GORF, P., BARLTROP, N., OKAN, B., HODSON, T. & RAINEY, R. FPSO bow damage in steep waves.
Rogue Waves, 2000 Brest.

GRAY, J. P., MONAGHAN, J. J. & SWIFT, R. P. 2001. SPH elastic dynamics. Computer Methods in
Applied Mechanics and Engineering, 190, 6641-6662.

GREENGARD, L. & ROKHLIN, V. 1987. A FAST ALGORITHM FOR PARTICLE SIMULATIONS. Journal of
Computational Physics, 73, 325-348.

GRENIER, N., ANTUONO, M., COLAGROSSI, A., LE TOUZE, D. & ALESSANDRINI, B. 2009. An
Hamiltonian interface SPH formulation for multi-fluid and free surface flows. Journal of
Computational Physics, 228, 8380-8393.

GROPP, W., LUSK, E. & SKJELLUM, A. 1994. Using MPI: Portable parallel programming with the
message-parsing interface, Cambridge, Massachusetts, USA, MIT Press.

GUIFFAUT, C. & MAHDJOUBI, K. 2001. A parallel FDTD algorithm using the MPI library. Ieee Antennas
and Propagation Magazine, 43, 94-103.

GUO, X., LIND, S., ROGERS, B. D., STANSBY, P. K. & ASHWORTH, M. 2013. Efficient massive
parallelisation for incompressible Smoothed Particle Hydrodynamics with 10^8 particles. 6th
International SPHERIC Workshop. Trondheim, Norway.

HARADA, T., KOSHIZUKA, S. & KAWAGUCHI, Y. 2007a. Sliced Data Structure for Particle-Based
Simulations on GPUs. Graphite 2007: 5th International Conference on Computer Graphics
and Interactive Techniques in Australasia and Southern Asia, Proceedings, 55-62.

HARADA, T., KOSHIZUKA, S. & KAWAGUCHI, Y. 2007b. Smoothed Particle Hydrodynamics on GPUs.
Proc. of Computer Graphics International (2007), pp. 63-70.

HERAULT, A., BILOTTA, G. & DALRYMPLE, R. A. 2010. SPH on GPU with CUDA. Journal of Hydraulic
Research, 48, 74-79.

244

HEWITT, G. F. 1982. In: HETSRONI, G. (ed.) Handbook of multi-phase systems. New York, USA:
Hemisphere Publishing Corporation.

HOLTHUIJSEN, L. H. 2007. Waves in oceanic and coastal waters, New York, USA, Cambridge
University Press.

HOOGERBRUGGE, P. J. & KOELMAN, J. 1992. SIMULATING MICROSCOPIC HYDRODYNAMIC
PHENOMENA WITH DISSIPATIVE PARTICLE DYNAMICS. Europhysics Letters, 19, 155-160.

HOOVER, W. G. 1998. Isomorphism linking smooth particles and embedded atoms. Physica A, 260,
244-254.

HU, K., MINGHAM, C. G. & CAUSON, D. M. 2000. Numerical simulation of wave overtopping of
coastal structures using the non-linear shallow water equations. Coastal Engineering, 41,
433-465.

HU, X. Y. & ADAMS, N. A. 2006. A multi-phase SPH method for macroscopic and mesoscopic flows.
Journal of Computational Physics, 213, 844-861.

HU, X. Y. & ADAMS, N. A. 2007. An incompressible multi-phase SPH method. Journal of
Computational Physics, 227, 264-278.

HU, X. Y. & ADAMS, N. A. 2009. A constant-density approach for incompressible multi-phase SPH.
Journal of Computational Physics, 228, 2082-2091.

HUBBARD, M. E. & DODD, N. 2002. A 2D numerical model of wave run-up and overtopping. Coastal
Engineering, 47, 1-26.

ISSA, R. 2005. Numerical assessment of the Smoothed Particle Hydrodynamics gridless method for
incompressible flows and its extension to turbulent flows. PhD, UMIST.

ISSA, R. & VIOLEAU, D. 2009. Modelling breaking solitary waves with eddy-viscosity turbulent SPH
models. Comput. Mater. Continua, 8, 151-164.

ISSA, R., VIOLEAU, D., LEE, E. S. & FLAMENT, H. 2009. Modelling nonlinear water waves with RANS
and LES SPH models. In: MA, Q. W. (ed.) Advances in Numerical Simulation of Nonlinear
Water Waves. London: World Scientific Publishing Co.

JANOSI, I. M., JAN, D., SZABO, K. G. & TEL, T. 2004. Turbulent drag reduction in dam-break flows.
Experiments in Fluids, 37, 219-229.

JUN, S., LIU, W. K. & BELYTSCHKO, T. 1998. Explicit reproducing kernel particle methods for large
deformation problems. International Journal for Numerical Methods in Engineering, 41, 137-
166.

KAHAN, W. 1965. FURTHER REMARKS ON REDUCING TRUNCATION ERRORS. Communications of the
Acm, 8, 40-&.

KATZ, N. 1992. DISSIPATIONAL GALAXY FORMATION .2. EFFECTS OF STAR FORMATION. Astrophysical
Journal, 391, 502-517.

KHAYYER, A. & GOTOH, H. 2008. DEVELOPMENT OF CMPS METHOD FOR ACCURATE WATER-
SURFACE TRACKING IN BREAKING WAVES. Coastal Engineering Journal, 50, 179-207.

KHAYYER, A. & GOTOH, H. 2010a. A higher order Laplacian model for enhancement and stabilization
of pressure calculation by the MPS method. Applied Ocean Research, 32, 124-131.

KHAYYER, A. & GOTOH, H. 2010b. On particle-based simulation of a dam break over a wet bed.
Journal of Hydraulic Research, 48, 238-249.

KHAYYER, A., GOTOH, H. & SHAO, S. D. 2008. Corrected Incompressible SPH method for accurate
water-surface tracking in breaking waves. Coastal Engineering, 55, 236-250.

KLEEFSMAN, K. M. T., FEKKEN, G., VELDMAN, A. E. P., IWANOWSKI, B. & BUCHNER, B. 2005. A
Volume-of-Fluid based simulation method for wave impact problems. Journal of
Computational Physics, 206, 363-393.

KOBAYASHI, N. 1997. Wave runup and overtopping on beaches and coastal structures. Center of
Applied Ocean Research.

KOLB, A. & CUNTZ, N. 2005. Dynamic particle coupling for GPU-based fluid simulation. 18th
Symposium on Simulation Technique. Erlangen, Germany.

245

KOSHIZUKA, S., NOBE, A. & OKA, Y. 1998. Numerical analysis of breaking waves using the moving
particle semi-implicit method. International Journal for Numerical Methods in Fluids, 26,
751-769.

KOSHIZUKA, S. & OKA, Y. 1996. Moving-particle semi-implicit method for fragmentation of
incompressible fluid. Nuclear Science and Engineering, 123, 421-434.

KOUMOUTSAKOS, P. 2005. Multiscale flow simulations using particles. Annual Review of Fluid
Mechanics, 37, 457-487.

KOUMOUTSAKOS, P. & LEONARD, A. 1995. HIGH-RESOLUTION SIMULATIONS OF THE FLOW AROUND
AN IMPULSIVELY STARTED CYLINDER USING VORTEX METHODS. Journal of Fluid Mechanics,
296, 1-38.

KRYSL, P. & BELYTSCHKO, T. 1995. Analysis of thin plates by the element-free Galerkin method.
Computational Mechanics, 17, 26-35.

KULASEGARAM, S., BONET, J., LEWIS, R. W. & PROFIT, M. 2004. A variational formulation based
contact algorithm for rigid boundaries in two-dimensional SPH applications. Computational
Mechanics, 33, 316-325.

LANCASTER, P. & SALKAUSKAS, K. 1981. SURFACES GENERATED BY MOVING LEAST-SQUARES
METHODS. Mathematics of Computation, 37, 141-158.

LE TOUZÉ, D., COLAGROSSI, A. & COLICCHIO, G. 2006. Ghost technique for squared angles applied to
the solution of benchmarks 1 and 2. 1st International SPHERIC Workshop. Rome, Italy.

LEDUC, J., LEBOEUF, F., LANCE, M., PARKINSON, E. & MARONGIU, J. C. 2010. Improvement of
multiphase model using preconditioned Riemann solvers. 5th International SPHERIC
Workshop. Manchester, UK.

LEDUC, J., MARONGIU, J. C., LEBOEUF, F., LANCE, M. & PARKINSON, E. 2009. Mutliphase SPH: A new
model based on acoustic Riemann solver. 4th ERCOFTAC SPHERIC Workshop. Nantes, France.

LEE, E.-S., VIOLEAU, D., ISSA, R. & PLOIX, S. 2010. Application of weakly compressible and truly
incompressible SPH to 3-D water collapse in waterworks. Journal of Hydraulic Research, 48,
50-60.

LEE, E. S., MOULINEC, C., XU, R., VIOLEAU, D., LAURENCE, D. & STANSBY, P. 2008. Comparisons of
weakly compressible and truly incompressible algorithms for the SPH mesh free particle
method. Journal of Computational Physics, 227, 8417-8436.

LEONARDI, M., MANENTI, S. & SIBILA, S. 2011. 2D and 3D sloshing with SPH. 7th International
SPHERIC Workshop. Prato, Italy.

LI, Y. & RAICHLEN, F. 2002. Non-breaking and breaking solitary wave run-up. Journal of Fluid
Mechanics, 456, 295-318.

LIBERSKY, L. D., PETSCHEK, A. G., CARNEY, T. C., HIPP, J. R. & ALLAHDADI, F. A. 1993. HIGH-STRAIN
LAGRANGIAN HYDRODYNAMICS - A 3-DIMENSIONAL SPH CODE FOR DYNAMIC MATERIAL
RESPONSE. Journal of Computational Physics, 109, 67-75.

LIN, H. & ATLURI, S. N. 2000. Meshless local Petrov-Galerkin (MLPG) method for convection-diffusion
problems. Cmes-Computer Modeling in Engineering & Sciences, 1, 45-60.

LIN, H. & ATLURI, S. N. 2001. The Meshless Local Petrov-Galerkin (MLPG) method for solving
incompressible Navier-Stokes equations. Cmes-Computer Modeling in Engineering &
Sciences, 2, 117-142.

LIN, P. Z., CHANG, K. A. & LIU, P. L. F. 1999. Runup and rundown of solitary waves on sloping
beaches. Journal of Waterway Port Coastal and Ocean Engineering-Asce, 125, 247-255.

LIND, S., STANSBY, P. K. & ROGERS, B. D. 2012a. A multiphase compressible-incompressible
smmotthe particle hydrodynamics method. 7th International SPHERIC Workshop. Hamburg,
Germany.

LIND, S. J., STANSBY, P. K. & ROGERS, B. D. 2013. Slam modelling with SPH: the importance of air. 8th
International SPHERIC Workshop. Trondheim, Norway.

LIND, S. J., XU, R., STANSBY, P. K. & ROGERS, B. D. 2012b. Incompressible smoothed particle
hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability

246

and validations for impulsive flows and propagating waves. Journal of Computational
Physics, 231, 1499-1523.

LIU, G. R. & LIU, M. B. 2003. Smooth Particle Hydrodynamics - A meshfree particle method, World
Scientific Publishing Co. Pte. Ltd.

LIU, W. K. & CHEN, Y. J. 1995. WAVELET AND MULTIPLE SCALE REPRODUCING KERNEL METHODS.
International Journal for Numerical Methods in Fluids, 21, 901-931.

LIU, W. K., JUN, S., LI, S. F., ADEE, J. & BELYTSCHKO, T. 1995a. REPRODUCING KERNEL PARTICLE
METHODS FOR STRUCTURAL DYNAMICS. International Journal for Numerical Methods in
Engineering, 38, 1655-1679.

LIU, W. K., JUN, S. & ZHANG, Y. F. 1995b. REPRODUCING KERNEL PARTICLE METHODS. International
Journal for Numerical Methods in Fluids, 20, 1081-1106.

LIU, W. K., LI, S. F. & BELYTSCHKO, T. 1997. Moving least-square reproducing kernel methods .1.
Methodology and convergence. Computer Methods in Applied Mechanics and Engineering,
143, 113-154.

LONGSHAW, S. 2013. RE: Implementation of the Kahan Summation Algorithm. Type to MOKOS, A.
LU, Y. Y., BELYTSCHKO, T. & GU, L. 1994. A NEW IMPLEMENTATION OF THE ELEMENT FREE GALERKIN

METHOD. Computer Methods in Applied Mechanics and Engineering, 113, 397-414.
LUCY, L. B. 1977. NUMERICAL APPROACH TO TESTING OF FISSION HYPOTHESIS. Astronomical

Journal, 82, 1013-1024.
LUGNI, C., BROCCHINI, M. & FALTINSEN, O. M. 2006. Wave impact loads: The role of the flip-

through. Physics of Fluids, 18.
MARONGIU, J.-C., LEBOEUF, F., CARO, J. & PARKINSON, E. 2010. Free surface flows simulations in

Pelton turbines using an hybrid SPH-ALE method. Journal of Hydraulic Research, 48, 40-49.
MARONGIU, J. C., LEBOEUF, F. & PARKINSON, E. 2007. Numerical simulation of the flow in a Pelton

turbine using the meshless method smoothed particle hydrodynamics: a new simple solid
boundary treatment. Proceedings of the Institution of Mechanical Engineers Part a-Journal of
Power and Energy, 221, 849-856.

MARSHALL, J. S. & GRANT, J. R. 1996. Penetration of a blade into a vortex core: Vorticity response
and unsteady blade forces. Journal of Fluid Mechanics, 306, 83-109.

MARTIN, J. C. & MOYCE, W. J. 1952. AN EXPERIMENTAL STUDY OF THE COLLAPSE OF LIQUID
COLUMNS ON A RIGID HORIZONTAL PLANE .4. Philosophical Transactions of the Royal
Society of London Series a-Mathematical and Physical Sciences, 244, 312-324.

MASSELINK, G. & PULEO, J. A. 2006. Swash-zone morphodynamics. Continental Shelf Research, 26,
661-680.

MCINTOSH-SMITH, S., WILSON, T., IBARRA, A. A., CRISP, J. & SESSIONS, R. B. 2012. Benchmarking
Energy Efficiency, Power Costs and Carbon Emissions on Heterogeneous Systems. Computer
Journal, 55, 192-205.

MONAGHAN, J. J. 1989. ON THE PROBLEM OF PENETRATION IN PARTICLE METHODS. Journal of
Computational Physics, 82, 1-15.

MONAGHAN, J. J. 1992. SMOOTHED PARTICLE HYDRODYNAMICS. Annual Review of Astronomy and
Astrophysics, 30, 543-574.

MONAGHAN, J. J. 1994. SIMULATING FREE-SURFACE FLOWS WITH SPH. Journal of Computational
Physics, 110, 399-406.

MONAGHAN, J. J. 1997. SPH and Riemann solvers. Journal of Computational Physics, 136, 298-307.
MONAGHAN, J. J. 2000. SPH without a tensile instability. Journal of Computational Physics, 159, 290-

311.
MONAGHAN, J. J. 2005. Smoothed particle hydrodynamics. Reports on Progress in Physics, 68, 1703-

1759.
MONAGHAN, J. J. 2011. A simple and efficient algorithm for multi-fluids. 6th International SPHERIC

Workshop. Hamburg, Germany.

247

MONAGHAN, J. J., CAS, R. A. F., KOS, A. M. & HALLWORTH, M. 1999. Gravity currents descending a
ramp in a stratified tank. Journal of Fluid Mechanics, 379, 39-70.

MONAGHAN, J. J. & GINGOLD, R. A. 1983. SHOCK SIMULATION BY THE PARTICLE METHOD SPH.
Journal of Computational Physics, 52, 374-389.

MONAGHAN, J. J. & KAJTAR, J. B. 2009a. SPH boundary forces. 4th International SPHERIC Workshop.
Nantes, France.

MONAGHAN, J. J. & KAJTAR, J. B. 2009b. SPH particle boundary forces for arbitrary boundaries.
Computer Physics Communications, 180, 1811-1820.

MONAGHAN, J. J. & KOCHARYAN, A. 1995. SPH SIMULATION OF MULTIPHASE FLOW. Computer
Physics Communications, 87, 225-235.

MONAGHAN, J. J. & KOS, A. 1999. Solitary waves on a Cretan beach. Journal of Waterway Port
Coastal and Ocean Engineering-Asce, 125, 145-154.

MONAGHAN, J. J. & PONGRACIC, H. 1985. ARTIFICIAL VISCOSITY FOR PARTICLE METHODS. Applied
Numerical Mathematics, 1, 187-194.

MONAGHAN, J. J. & RAFIEE, A. 2013. A simple SPH algorithm for multi-fluid flow with high density
ratios. International Journal for Numerical Methods in Fluids, 71, 537-561.

MORRIS, J. P. 1996. A study of the stability properties of smooth particle hydrodynamics.
Publications Astronomical Society of Australia, 13, 97-102.

MORRIS, J. P. 2000. Simulating surface tension with smoothed particle hydrodynamics. International
Journal for Numerical Methods in Fluids, 33, 333-353.

MORRIS, J. P., FOX, P. J. & ZHU, Y. 1997. Modeling low Reynolds number incompressible flows using
SPH. Journal of Computational Physics, 136, 214-226.

MUHAMMAD, N., ROGERS, B. D. & LI, L. 2013. Understanding the behaviour of pulsed laser dry and
wet micromachining processes by multi-phase smoothed particle hydrodynamics (SPH)
modelling. Journal of Physics D-Applied Physics, 46.

NAYROLES, B., TOUZOT, G. & VILLON, P. 1991. THE DIFFUSE ELEMENTS METHOD. Comptes Rendus
De L Academie Des Sciences Serie Ii, 313, 133-138.

NGUYEN, V. P., RABCZUK, T., BORDAS, S. & DUFLOT, M. 2008. Meshless methods: A review and
computer implementation aspects. Mathematics and Computers in Simulation, 79, 763-813.

NICKLIN, D. J. 1962. 2-PHASE BUBBLE FLOW. Chemical Engineering Science, 17, 693-702.
NUGENT, S. & POSCH, H. A. 2000. Liquid drops and surface tension with smoothed particle applied

mechanics. Physical Review E, 62, 4968-4975.
NVIDIA 2012. CUDA C Programming Guide.
OGER, G., DORING, M., ALESSANDRINI, B. & FERRANT, P. 2007. An improved SPH method: Towards

higher order convergence. Journal of Computational Physics, 225, 1472-1492.
OGER, G., JACQUIN, E., DORING, M., GUILCHER, P. M., DOLBEAU, R., CABELGUEN, P. L., BERTAUX, L.,

LE TOUZE, D. & ALESSANDRINI, B. 2010. Parallel hybrid CPU/GPU acceleration of the 3-D
parallel code SPH-flow. 5th international SPHERIC Workshop. Manchester, UK.

OMIDVAR, P. 2010. Wave loading on bodies in the free surface using smoothed particle
hydrodynamics. Doctor of Philosophy, University of Manchester.

ONATE, E., IDELSOHN, S., ZIENKIEWICZ, O. C. & TAYLOR, R. L. 1996a. A finite point method in
computational mechanics. Applications to convective transport and fluid flow. International
Journal for Numerical Methods in Engineering, 39, 3839-3866.

ONATE, E., IDELSOHN, S., ZIENKIEWICZ, O. C., TAYLOR, R. L. & SACCO, C. 1996b. A stabilized finite
point method for analysis of fluid mechanics problems. Computer Methods in Applied
Mechanics and Engineering, 139, 315-346.

PAULING, J. 2008. Strength of ships and ocean structures, Jersey City, US, New Jersey Society of
Naval Architects and Marine Engineers.

PEREGRINE, D. H. 1967. LONG WAVES ON A BEACH. Journal of Fluid Mechanics, 27, 815-&.
PEREGRINE, D. H. 2003. Water-wave impact on walls. Annual Review of Fluid Mechanics, 35, 23-43.

248

PEREGRINE, D. H. & COOKER, M. J. 1990. Violent Water Motion at Breaking-Wave Impact. 22nd
International Conference on coastal engineering.

PEREGRINE, D. H. & THAIS, L. 1996. The effect of entrained air in violent water wave impacts. Journal
of Fluid Mechanics, 325, 377-397.

PERLMAN, M. 1985. ON THE ACCURACY OF VORTEX METHODS. Journal of Computational Physics, 59,
200-223.

PLOUMHANS, P. & WINCKELMANS, G. S. 2000. Vortex methods for high-resolution simulations of
viscous flow past bluff bodies of general geometry. Journal of Computational Physics, 165,
354-406.

PRICE, D. J. & MONAGHAN, J. J. 2004. Smoothed particle magnetohydrodynamics - II. Variational
principles and variable smoothing-length terms. Monthly Notices of the Royal Astronomical
Society, 348, 139-152.

QIAN, L. F., BATRA, R. C. & CHEN, L. M. 2004. Static and dynamic deformations of thick functionally
graded elastic plates by using higher-order shear and normal deformable plate theory and
meshless local Petrov-Galerkin method. Composites Part B-Engineering, 35, 685-697.

RABCZUK, T. & EIBL, J. 2003. Simulation of high velocity concrete fragmentation using SPH/MLSPH.
International Journal for Numerical Methods in Engineering, 56, 1421-1444.

RANDLES, P. W. & LIBERSKY, L. D. 1996. Smoothed particle hydrodynamics: Some recent
improvements and applications. Computer Methods in Applied Mechanics and Engineering,
139, 375-408.

RANDLES, P. W. & LIBERSKY, L. D. 2000. Normalized SPH with stress points. International Journal for
Numerical Methods in Engineering, 48, 1445-+.

RASIO, F. A. & SHAPIRO, S. L. 1991. COLLISIONS OF GIANT STARS WITH COMPACT OBJECTS -
HYDRODYNAMICAL CALCULATIONS. Astrophysical Journal, 377, 559-580.

REYHANOGLU, M. 2003. Maneuvering control problems for a spacecraft with unactuated fuel slosh
dynamics. Cca 2003: Proceedings of 2003 Ieee Conference on Control Applications, Vols 1 and
2, 695-699.

RITTER, A. 1892. Die fortpflanzung der wasserwellen. Zeitschrift des Vereins Deutscher Ingenieure,
36, 947-954.

ROGERS, B. D., LEDUC, J., MARONGIU, J. C. & LEBOEUF, F. 2009. Comparison and evaluation of multi-
phase and surface tension models. 4th SPHERIC Workshop. Nantes, France.

ROONEY, E. A., WEI, W. Y., IRISH, J. L., WEISS, R., DALRYMPLE, R. A., HERAULT, A. & BILOTTA, G. 2011.
Testing accuracy and convergence of GPUSPH for free-surface flows.

ROSENHEAD, L. 1931. The formation of vortices from a surface of discontinuity. Proceedings of the
Royal Society of London Series a-Containing Papers of a Mathematical and Physical
Character, 134, 170-192.

ROSSINELLI, D., BERGDORF, M., COTTET, G.-H. & KOUMOUTSAKOS, P. 2010. GPU accelerated
simulations of bluff body flows using vortex particle methods. Journal of Computational
Physics, 229, 3316-3333.

SCHOENBERG, I. J. 1946. CONTRIBUTIONS TO THE PROBLEM OF APPROXIMATION OF EQUIDISTANT
DATA BY ANALYTIC FUNCTIONS .A. ON THE PROBLEM OF SMOOTHING OR GRADUATION - A
1ST CLASS OF ANALYTIC APPROXIMATION FORMULAE. Quarterly of Applied Mathematics, 4,
45-99.

SHADLOO, M. S., ZAINALI, A., SADEK, S. H. & YILDIZ, M. 2011. Improved Incompressible Smoothed
Particle Hydrodynamics method for simulating flow around bluff bodies. Computer Methods
in Applied Mechanics and Engineering, 200, 1008-1020.

SHADLOO, M. S., ZAINALI, A., YILDIZ, M. & SULEMAN, A. 2012. A robust weakly compressible SPH
method and its comparison with an incompressible SPH. International Journal for Numerical
Methods in Engineering, 89, 939-956.

SHAO, S. 2012. Incompressible smoothed particle hydrodynamics simulation of multifluid flows.
International Journal for Numerical Methods in Fluids, 69, 1715-1735.

249

SHAO, S. D. & LO, E. Y. M. 2003. Incompressible SPH method for simulating Newtonian and non-
Newtonian flows with a free surface. Advances in Water Resources, 26, 787-800.

SHEPARD, D. A two dimensional interpolation function for irregularly spaced data. 23rd Nat. Conf.
ACM, 1968. 517-523.

SIMS, J. S. & MARTYS, N. 2004. Simulation of sheared suspensions with a parallel implementation of
QDPD. Journal of Research of the National Institute of Standards and Technology, 109, 267-
277.

SKILLEN, A., LIND, S., STANSBY, P. K. & ROGERS, B. D. 2013. incompressible smoothed particle
hydrodynamics (SPH) with reduced temporal noise and generalised Fickian
smoothingapplied to body-water slam and efficient wave-body interaction. Computer
methods in applied mehanics and engineering.

SMITH, P. A. & STANSBY, P. K. 1988. IMPULSIVELY STARTED FLOW AROUND A CIRCULAR-CYLINDER
BY THE VORTEX METHOD. Journal of Fluid Mechanics, 194, 45-77.

SOUTO-IGLESIAS, A., BOTIA-VERA, E. & BULIAN, G. 2011a. Repeatability and two dimensionality of
model scale sloshing impacts. International offshore and polar engineering conference. The
international society of offshore and polar engineers.

SOUTO-IGLESIAS, A., BOTIA-VERA, E., MARTIN, A. & PEREZ-ARRIBAS, F. 2011b. A set of canonical
problems in sloshing. Part 0: Experimental setup and data processing. Ocean Engineering,
38, 1823-1830.

SOUTO-IGLESIAS, A., MACIA, F., GONZALEZ, L. M. & CERCOS-PITA, J. L. 2013. On the consistency of
MPS. Computer Physics Communications, 184, 732-745.

SPEZIALE, C. G. 1987. ON THE ADVANTAGES OF THE VORTICITY VELOCITY FORMULATION OF THE
EQUATIONS OF FLUID-DYNAMICS. Journal of Computational Physics, 73, 476-480.

SPRINGEL, V. 2005. The cosmological simulation code GADGET-2. Monthly Notices of the Royal
Astronomical Society, 364, 1105-1134.

STANSBY, P. K., CHEGINI, A. & BARNES, T. C. D. 1998. The initial stages of dam-break flow. Journal of
Fluid Mechanics, 374, 407-424.

SUESS, M. & LEOPOLD, C. 2008. Common mistakes in OpenMP and how to avoid them. Openmp
Shared Memory Parallel Programming, Proceedings, 4315, 312-323.

SUSSMAN, M., SMEREKA, P. & OSHER, S. 1994. A LEVEL SET APPROACH FOR COMPUTING
SOLUTIONS TO INCOMPRESSIBLE 2-PHASE FLOW. Journal of Computational Physics, 114,
146-159.

SWEGLE, J. W., HICKS, D. L. & ATTAWAY, S. W. 1995. SMOOTHED PARTICLE HYDRODYNAMICS
STABILITY ANALYSIS. Journal of Computational Physics, 116, 123-134.

TAKEDA, H., MIYAMA, S. M. & SEKIYA, M. 1994. NUMERICAL-SIMULATION OF VISCOUS-FLOW BY
SMOOTHED PARTICLE HYDRODYNAMICS. Progress of Theoretical Physics, 92, 939-960.

TARTAKOVSKY, A. M., FERRIS, K. F. & MEAKIN, P. 2009. Lagrangian particle model for multiphase
flows. Computer Physics Communications, 180, 1874-1881.

TITOV, V. V. & SYNOLAKIS, C. E. 1998. Numerical modeling of tidal wave runup. Journal of Waterway
Port Coastal and Ocean Engineering-Asce, 124, 157-171.

TIWARI, S. & KUHNERT, J. 2007. Modeling of two-phase flows with surface tension by finite pointset
method (FPM). Journal of Computational and Applied Mathematics, 203, 376-386.

VACONDIO, R. & MIGNOSA, P. 2009. Finite pointset method for free surface flow. 4th International
SPHERIC Workshop. Nantes, France.

VACONDIO, R., ROGERS, B. D. & STANSBY, P. K. 2012. Smoothed Particle Hydrodynamics:
Approximate zero-consistent 2-D boundary conditions and still shallow-water tests.
International Journal for Numerical Methods in Fluids, 69, 226-253.

VACONDIO, R., ROGERS, B. D., STANSBY, P. K., MIGNOSA, P. & FELDMAN, J. 2013. Variable resolution
for SPH: A dynamic particle coalescing and splitting scheme. Computer Methods in Applied
Mechanics and Engineering, 256, 132-148.

VAJDA, A. 2011. Programming many-core chips, Dordrecht, Springer.

250

VALDEZ-BALDERAS, D., DOMINGUEZ, J. M., CRESPO, A. J. C. & ROGERS, B. D. 2011. Developing
massively parallel SPH simulations on multi-GPU clusters. 6th ERCOFTAC SPHERIC Workshop.
Hamburg, Germany.

VERLET, L. 1967. COMPUTER EXPERIMENTS ON CLASSICAL FLUIDS .I. THERMODYNAMICAL
PROPERTIES OF LENNARD-JONES MOLECULES. Physical Review, 159, 98-&.

VICCIONE, G., BOVOLIN, V. & CARRATELLI, E. P. 2008. Defining and optimizing algorithms for
neighbouring particle identification in SPH fluid simulations. International Journal for
Numerical Methods in Fluids, 58, 625-638.

VILA, J. P. 1999. On particle weighted methods and smooth particle hydrodynamics. Mathematical
Models & Methods in Applied Sciences, 9, 161-209.

VIOLEAU, D. & ISSA, R. 2007a. Numerical modelling of complex turbulent free-surface flows with the
SPH method: an overview. International Journal for Numerical Methods in Fluids, 53, 277-
304.

VIOLEAU, D. & ISSA, R. 2007b. SPHERIC benchmark test case number 5: sensistivity analysis to
numerical and physical parameters. 2nd Interational SPHERIC Workshop. Madrid, Spain.

VON NEUMANN, J. & RICHTMYER, R. D. 1950. A METHOD FOR THE NUMERICAL CALCULATION OF
HYDRODYNAMIC SHOCKS. Journal of Applied Physics, 21, 232-243.

WEMMENHOVE, R. 2008. Numerical prediction of two-phase flow in offshore environments.
Rijksuniversiteit Groningen.

WENDLAND, H. 1995. Piecewise polynomial, positive definite and compactly supported radial
functions of minimal degree. Advances in Computational Mathematics, 4, 389-396.

WIEGEL, R. L. 1992. Oceanographical Engineering, Dover Publications.
WIRSCHING, P. H. 1984. FATIGUE RELIABILITY FOR OFFSHORE STRUCTURES. Journal of Structural

Engineering-Asce, 110, 2340-2356.
WOOD, D. J., PEREGRINE, D. H. & BRUCE, T. 2000. Wave impact on a wall using pressure-impulse

theory. I: Trapped air. Journal of Waterway Port Coastal and Ocean Engineering-Asce, 126,
182-190.

XU, R., STANSBY, P. & LAURENCE, D. 2009. Accuracy and stability in incompressible SPH (ISPH) based
on the projection method and a new approach. Journal of Computational Physics, 228, 6703-
6725.

ZHANG, S., MORITA, K., FUKUDA, K. & SHIRAKAWA, N. 2006. An improved MPS method for
numerical simulations of convective heat transfer problems. International Journal for
Numerical Methods in Fluids, 51, 31-47.

