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Introduction

@ SPH is used in problems ranging from fishes to hydraulic
engineering and astrophysics. Huge scale span.

@ Hydrodynamics apply also to very short scales:
Microfluidics and even Nanofluidics.

@ However, at these small scales, thermal fluctuations become
important!

@ They are responsible, for example, for the diffusion of colloidal
particles.
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My objectives in this talk

@ Show how thermal fluctuations can be introduced in SPH in a
thermodynamically consistent way.
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My objectives in this talk

@ Show how thermal fluctuations can be introduced in SPH in a
thermodynamically consistent way.

@ Present a model for colloidal suspensions (i.e. spherical particles
inmersed in a fluctuating fluid).

@ Present some simulation results that validate the model.
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Continuum hydrodynamic equations

Navier-Stokes equations in Eulerian form

op = —Vpv
opv = —Vpvv —VP4+nV2v + gvv-v
Os = —Vsv+2nVv: Vv + xV2T
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Continuum hydrodynamic equations

Navier-Stokes equations in Eulerian form

Op = —Vpv
Bpv = —Vpvv — VPV2v + gvv-v
Os = —Vsv+2nVv: Vv + xV2T

Lagrangian coordinates are the solution of

R (r,t) = v(R(r,1),1) R(r,0) =r
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Continuum hydrodynamic equations

The Jacobian V of R «+ r satisfies

d

%V(R(r,t),t) =V(R(r,t),t)V-v(R(r,1),t)
d : ..
7 = 0+v-V substantial derivative

This is the equation for the rate of change of an infinitesimal volume
that is transported by a flow field v(r, ).
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Continuum hydrodynamic equations

The Jacobian V of R «+ r satisfies

d

SVR(r,1),1) = V(R(x,0),)V-v(R(x, 1),1)
d ) ..
T = 0+v-V substantial derivative

This is the equation for the rate of change of an infinitesimal volume
that is transported by a flow field v(r, ).

Introduce extensive fields: mass M (r,t) = p(r,t)V(r,t), momentum
P(r,t) = pv(r,t)V(r,t), and entropy S(r,t) = s(r,t)V(r,t) fields.
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Continuum hydrodynamic equations

In terms of these extensive fields the NS eqs become

d
—R
dt
d

—M
dt

d
—P
dt

d

T —
dt

S

v
0
VY VP 4V (V) +gv VY-v

2mY Vv:Vv +rV VT

Constant mass. No convective terms. Suggests the idea of fluid particle.
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Continuum hydrodynamic equations

In terms of these extensive fields the NS eqs become

SM = 0
p, = —Vi(VP)¢+?7Vi(V2V)i+gVi(VVV),,;
TZ—SZ = 2?7VZ‘ (W . W)L + HV,(VZT),

Constant mass. No convective terms. Suggests the idea of fluid particle.
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Fluid particle dynamacs

A fluid particle is a small moving thermodynamic subsystem of the
whole system characterised by r;, v;, Vi, Si, E;, T;, P; (m; = ctn.)
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Fluid particle dynamacs

A fluid particle is a small moving thermodynamic subsystem of the

whole system characterised by r;, v;, Vi, Si, E;, T;, P; (m; = ctn.)

_ oF; P _aEZ-
0S5 aV;

Vi :Vi(rl,"' ,I‘N) E(VMSZ)mZ) T’z
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Fluid particle dynamacs

A fluid particle is a small moving thermodynamic subsystem of the
whole system characterised by r;, v;, Vi, Si, E;, T;, P; (m; = ctn.)

_ OE; p OE;

i = Vi(r, -, E(V;, Si,m; T; = —
1% V(I‘l I‘N) (V S m) 832 GVZ

The independent variables are z = {r;, v;, S;}
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Fluid particle dynamacs

A fluid particle is a small moving thermodynamic subsystem of the
whole system characterised by r;, v;, Vi, Si, E;, T;, P; (m; = ctn.)
oF; oF;

. — Vi P E 1y Pgy TTg CZ-’z: PZ:_
1% V(I‘l I‘N) (V S m) 832 o”%

The independent variables are z = {r;, v;, S;}

The total energy and entropy of the system are

N N

Z |:mz ’+E VZ,SZ,mZ)] S(x) = ZSi

i i
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Fluid particle dynamacs

How far can we go by requiring R, = Vi, M;=0
and conservation of total energy E =), %V? + E(M;, S;, Vi) |?
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Fluid particle dynamacs

How far can we go by requiring RZ' =V, MZ' =0
and conservation of total energy E =), %V? + E(M;, S;, Vi) |?

. o€ . o€
0=F = 8RR+M VV—I—aSZS
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Fluid particle dynamacs

How far can we go by requiring RZ' =V, MZ' =0
and conservation of total energy E =), %V? + E(M;, S;, Vi) |?

. o€ . o€
0=F = aRR—i—M VV—I—aSZS

0 . .
- ZP] VJ Vi+ Vi-M;Vi + T;5;
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Fluid particle dynamacs

How far can we go by requiring R, = Vi, M;=0
and conservation of total energy E =), %V? + E(M;, S;, Vi) |?

. o€ o€
0=F = IR, ‘R; + M;-V,; V; +8SZS

= Z P] 8]/] Vi + V- MV + T;S;
= ZPJ Vi V Vi(VP);-V;
+ ZV (nVi(Vzv)i + gvi(vv.v),,;)

+ 29V(Vv: Vv); + Z xVi(V2T);

%
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Fluid particle dynamics

Therefore, we have

_ OV
VZ(VP)Z - z]: P] 8RZ
zi: VZ2(W : W)Z = —Zi: V;V;- <(V2V)L + %(VVV)Z>

> Vi(VPT); = 0
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Fluid particle dynamacs

Therefore, we have

Vi(VP); = —zj:pj%
ZV,Q(W;W),,; = —Zvv < 3(vvv)>
> Vi(VPT); = 0

Two basic problems of a fluid particle model:
@ How to define the volume V; (that gives correct gradients!).

@ How to define second derivatives (satisfying both E =0 and
S > 0).
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How to define de volume V;?

We have two possibilities:

Voronoi tessellation
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We have two possibilities:

THERMAL NOISE IN SPH

COLLOIDAL SUSPENSION

RESULTS

How to define de volume V;?

Voronoi tessellation

SPH

"‘l‘«%l:""

-’5‘9, e
P

CONCLUSIONS
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The spPH volume

Wi = g (14 7) (-5




THERMAL NOISE IN SPH

The spPH volume

Wi = g (14 7) (-5

1 = / drW (r)

Define the density and the volume by

di => Wi(rij) Vi= <
j 1
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The spPH gradient

In this way, the pressure gradient is

v P, P
Vi(VP)i = =) S2P==) |5+ | Fyry
j ! j oL j
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SPH second derivatives

After Cleary and Monaghan

(Ir" —r v — 1) —r)?
/dr'[A(r’) — A(ry)] W‘IEJ — 1 ) 67 — 5( (r’)—(ri)Z )
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SPH second derivatives

After Cleary and Monaghan

(Ir" —r v — 1) —r)?
/dr'[A(r’) — A(ry)] VV‘IS‘ — 1 ) 67 — 5( (r’)—(ri)Z )

~ VOVAA(r;) + O(V*AR?)
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SPH second derivatives

After Cleary and Monaghan

W' =) [sap (' —1)?(' —1x)”
r’ — i (r' —r;)?

/dr'[A(r’) — A(r;)]

~ VOVAA(r;) + O(V*AR?)

/

Wi T s
Zd[A A]r 3°% — 5efiel

- )
j J J

Q
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SPH second derivatives

2nd derivatives in terms of the values of the function in neighbour points

e - L
dii(VV'V)i = —Zcfg[ §€ij*Vij = Vij]
GV = 2% g

o W,

’I”Z'j
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The spH fluid particle model

The SPH equations are (Espafol and Revenga, PRE)

I"i = V;
, P, P 50~ F,
mvi = Z d_2l + d_; Wijei; 3 Z di:ijj [Vij + eijeij-vij]
PR S i
. o1 E; F,
TS - X 2 ? () ? 2 - T‘Z
1M1 6 - dld] [Vz]—l_(ej VJ) ] K:Zj:dzd] J
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The spH fluid particle model

The SPH equations are (Espafiol and Revenga, PRE)

f‘i = V;
. P, P, oM F;
mvi = Z d_2l + d_; VVZ/J ANy Z digj [Vij + eijeij vij]
J ¢ J J
. 5n F;; F;:
TS, = — & iivii )] — 2 T
11 6 dldj [Vz]+(eJ VJ) ] szzd] J

The discrete equations conserve exactly, mass, momentum, energy and
have positive entropy production.
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The GENERIC framework

General Equation for Non-Equilibrium Reversible-Irreversible Coupling

All dynamic equations that comply with the First and Second Laws
have a universal structure 6ttinger, Grmela Phys. Rev. E 56, 6633 (1997)
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The GENERIC framework

General Equation for Non-Equilibrium Reversible-Irreversible Coupling

All dynamic equations that comply with the First and Second Laws
have a universal structure 6ttinger, Grmela Phys. Rev. E 56, 6633 (1997)

dx ok oS
7 L- o + M- o
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The GENERIC framework

General Equation for Non-Equilibrium Reversible-Irreversible Coupling

All dynamic equations that comply with the First and Second Laws
have a universal structure 6ttinger, Grmela Phys. Rev. E 56, 6633 (1997)

dx OFE 08
- = IL.== M-—=
dt ox + or
L(z) = —L"(x) M(z) = MT(x) >0
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The GENERIC framework

General Equation for Non-Equilibrium Reversible-Irreversible Coupling

All dynamic equations that comply with the First and Second Laws
have a universal structure 6ttinger, Grmela Phys. Rev. E 56, 6633 (1997)

dx OF 08
= = .= M-Z2
dt oz + ox
L(z) = —L"(x) M(z)=M"(x)>0
L(w‘)‘?ﬁ =0 ]\/f(tL)%f =0
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Can we cast the SPH equations in GENERIC format?

dx I oF n M oS

dt or oz
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Can we cast the SPH equations in GENERIC format?

dx oF oS
> .2z M2
at o e
i 25 %—\gl’j
4 T,
0
+ 0
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Can we cast the SPH equations in GENERIC format?

dx oF a8
— = L.— + M. —
dt ox ox
P 0 16,5 0 > %—\:fpj
1
v = Z - —16,; (4] 0 mv;
S; ! 0 o] 0 T,
0
+ 0
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Can we cast the SPH equations in GENERIC format?

dz oF oS
— = L.— + M. —
dt ox ox
: oV
i 0 18;5 0 >, 8_\53 P;
1
Vi = > —| - 15, (] 0 mv;
) i
3, 0 0 0 T
0
0 o” 0
+ 3 0 MEY MpS 0
J
0 Myps M
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Can we cast the SPH equations in GENERIC format?

dx oF a8
— = L— 4+ M=
dt ox or
. oV,
P 8} 16,5 0 ¥ wiP;
1
v = > — 15, (4] 0 mv;
m /
S; 8} 0 0 7
0
0 o7 0
+ 3 0 MY My 0
J
0 mps Mgs )
v Fi
ij = L_] €ikCik e €ijeij
M} Z + )+ 2 3 4d; (1+ )
5n F; 5n F;
M = ?‘”]‘Zﬁ (vin +vin) + 3 gy (via +vs)
k £
ss _ om Fip Hz 5n Fyj 2 12
M~ = % Zk: dydy (Vi + i) + 3 d.d; (vl + i)
F,

Fik ij
+ 8> s =2t
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The GENERIC framework

Why we need to use the GENERIC framework at all...?
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The GENERIC framework

Why we need to use the GENERIC framework at all...?

. because thermal fluctuations are easily and elegantly introduced.

OF oS 0
di = |L-om 4 Moo= kB{),

‘M| dt+dz, (Ito SDE)
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The GENERIC framework

Why we need to use the GENERIC framework at all...?

... because thermal fluctuations are easily and elegantly introduced.

oF oS 0
de =|L-— 4+ M-— +kp—- M| dt+dz, (Ito SDE)
Ox ox ox
The noises satisfy:
E
g—-d.i? =0 Energy conserving
x

didz" = 2k Mdt, Fluctuation-Dissipation
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The noise reflects each elementary transport process!!
G dY;

—

CONCLUSIONS
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Physics of noise

The noise reflects each elementary transport process!!
G dY

—CJi dyv

i o

We postulate (satisfying 3>, mdv;-v; + T;dS; = 0)

dr; = 0
md{’l = ZAideZ'j-eij
J
T;dS; =

1
; CU(JV,J — 5 ;Amdwm L€ Vij



INTRO THERMAL NOISE IN SPH COLLOIDAL SUSPENSION RESULTS
Physics of noise
The noise reflects each elementary transport process!!
G dY;

—CJi dyv

i o

If we choose the following amplitudes ...

4, = (BT Fy s \Y?
w7 T; +T; did; 3

1/2
cy = (2kpmir, T /
g B g d;

... then the dxdx = 2k M dt.

CONCLUSIONS
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Summary of SPH+thermal fluctuations

For the dissipative forces proposed, simply add the following stochastic
forces to the SPH equations

_ SkpTiT: i 5 \ Y% dW;;
Fz’ _ ity g 9 i o
Z<T+T] didj:a”) at Y

. Fy \Y2dvy
Tuli ;( 9dd> dt

1 8kpTyTj Fiy 5 \'* dW,;
22]:<I;+Tj did; 3" AL
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SPH model for colloidal suspensions

Two types of particles: colloids and fluid particles.

Three types of forces:
° Ff;F which we take from SPH.
) FZC]C assumed to come from a repulsive potential.

) Ff;o which arise from boundary conditions.

CONCLUSIONS
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CONCLUSIONS

Boundary conditions

We treat immersed solid objects and walls as being made of “wall fluid
particles” that interact in prescribed ways with the real fluid particles.

At the end, a continuum limit is taken, and only “effective” interactions
remain.
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Boundary conditions

We treat immersed solid objects and walls as being made of “wall fluid
particles” that interact in prescribed ways with the real fluid particles.

At the end, a continuum limit is taken, and only “effective” interactions
remain.

The issues to consider are:

@ Density deficit.
@ Impenetrability.

@ Stick boundary conditions.

)NCLUSIONS
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Boundary conditions: Density deficit

Wall Fluid domair
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CONCLUSIONS

Boundary conditions: Density deficit

Ar/rey)

0.6
0.5
0.4
0.3
0.2
0.1

= > Wiy + Y, W(ry)

j€fluid jewall
= Z W (rij) + doA(h;)
j€efluid

= [ W —x)

02 04 06 08 1
reut
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Boundary conditions: Density deficit

The new pressure gradient is now

oV, R- P
i v j i j i
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Boundary conditions: Density deficit

The new pressure gradient is now

P P

Vi(VP :Z]PZ

Fijri; + doA (hi)n
a

7

J

The last term is the pressure that a “continuum” of fluid particles inside
the wall would exerted on 7.
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Boundary conditions: Impenetrable walls

The bounce back transformation

) vi—-V = —(vi-V)
: . . mv;+ MV = mv,+ MV’
: ’ m M m M
t t+At Ev? + 7V2 = EV? + 7\/”2
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Boundary conditions: Stick
wall fluid

—e/lv‘ hj + h;

VJ
/D h, Vj =V; + T(Vwall — Vi)




['HERMAI

wall

MV wall

vj/a Te/lv hj + h;

NOISE IN SPH COLLOIDAL SUSPENSION RESULTS

Boundary conditions: Stick

fluid

V; =V, + (Vwall - Vi)

h;

577 Ej |:(V2 - Vwall)
> =Ty 7

2
|
| ot
3
=
&
N
[
+
&
&
=
|



NTRO [HERMAL NOISE IN SPH COLLOIDAL SUSPENSION RESULTS CoNCL

Boundary conditions: Stick

wall fluid
i —e/lv‘ h; + h;
V/a h Vi =vi+ ]h- (Vwan — Vi)
5n (vi—V)
FIC = —ZL(p(h)1+¥(hy)) ———2
: ()L (1)

rr—r r; —r

W(h;) = /SdrF(|r—rZ'|)| (r; —r)n

r; —r||r; —r

It has the same structure as the FZF force, only the coefficients change.



NTRO [HERMAL NOISE IN SPH COLLOIDAL SUSPENSION RESULTS

SPH model for colloidal suspensions

Energy and entropy

E(z) = Z[Tgv + E(si, Z]+Z[ V2+50(S)]

+ o SR - Ry
]
S(a:) = ZSZ'—FZSZ'

We follow the GENERIC route to construct a thermodynamically
consistent model for colloids
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SPH model for colloidal suspensions

The final equations are

r; = v
N No
. FF FF ~FF FC FC =FC
mvi = > (P HFT A E) 4> (R P+ FL)
i=Nc+1 j=1
R, = V,
Np N¢
v CF CF =CF CccC
MV = > (P HFG R + 3 F
J=Ngo+1 i=1

CONCLUSIONS
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SPH model for colloidal suspensions

The final equations are

r; = v,
N . No
mv; = ) NZ+1 (FFJF +FI 4 Ff_f) + JZ1 (Fff +FIC+ Ff_z()
c j=
N N,
1 T - 1 & _
Tisg = —- 3 ( J,»FFF)-(viva-)ffZ( +F*<) (vi—V;)
2 j=Ng+1 23
N Ng
+ > (e +oif) + > (efif+off)
j=Ng+1 j=1
R, = V,
Nt
MV, _ Z (FSF + FSB ( 1") + Z FCC
J=Ng+1 j

. NT _ 1 NT .
Tl = > (e +o5") - 5 X (P +FT) (Vi = vp)
J=Ng+1 J=Ng+1
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Unaits and scales

The basic units we chose are

pr=1 Tr=1 Rc=1 Voe=\——=1
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Unaits and scales

The basic units we chose are

pr=1 Tp=1 Re=1 V¢

In these units, the crucial parameters are

x C()_ 1
C = V_C_M_a
* n 1
" prVoRc  Re

RESULTS




Units and scales

For water, ¢ = 1500m/s and v = 10~%m?/s.

Rc Vr |t
107%m | 107=3m/s | 10° | 103
10®m | 1m/s | 103 | 1
10°m | 3Im/s | 31 |0.03

| will be presenting results at ¢* = 60, n* =1

REsuLTs
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Brownian motion?

Brownian motion of single colloidal particle in a periodic box.
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Brownian motion?

Brownian motion of single colloidal particle in a periodic box.

2
I
of |
K |\
L i
“ I I I |
o 10 26 30 40 50 G0
o5 :
oal N
osf ]
o2 ]
o1l ]
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Brownian motion?

Brownian motion of single colloidal particle in a periodic box.

Vacf

c(t) = (VV (1))

CONCLUSIONS
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Brownian motion?

Brownian motion of single colloidal particle in a periodic box.

Vacf

c(t) = (VV (1))

Sonic time

CONCLUSIONS
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Brownian motion?

Brownian motion of single colloidal particle in a periodic box.

Vacf

c(t) = (VV (1))

Sonic time

Wouldn't we expect exponential decay??

CONCLUSIONS
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Brownian motion?

Impulsive motion of single colloidal particle in a periodic box.
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Brownian motion?
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of single colloidal particle in a periodic box.
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of single colloidal particle in a periodic box.
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Sonic time

Sound box traversal time
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Brownian motion?

Impulsive motion of single colloidal particle in a periodic box.

Velocity and vacf

Sonic time

Sound box traversal time

o 0.2 0.4 0.6 0.8 1

(VV(©) V(t)

v V()

Onsager regression of fluctuations hypothesis is fullfilled.

CONCLUSIONS
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Brownian motion?

The previous results are for neutrally buoyant colloidal particles. For
denser colloidal particles

Effect of density
1 T T T T T

@ The dashed line is Vy exp{—t/75}
with
M,
B = 67”7}6%0

@ As M — oo the decay is
exponential, agreeing with
Langevin.
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CONCLUSIONS

Conclustions

@ We have shown how thermal noise can be introduced in SPH in a
thermodynamically consistent way.

@ We have constructed a model of colloidal particles.

@ Preliminary basic test show that the simulation model works.
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CONCLUSIONS

For the future

@ Correlations between colloidal particles in optical traps.

@ Hydrodynamic interactions at nanoscales, effect of compressibility.

@ Non-isothermal effects in Brownian motion.
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