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RÉSUMÉ iii

Résumé

Cette thèse a pour objet le développement d’un modèle numérique de simulation des Wuides fondé

sur la méthode Smoothed Particle Hydrodynamics (SPH). SPH est une méthode de simulation nu-

mérique sans maillage présentant un certain nombre d’avantages par rapport aux méthodes Euléri-

ennes. Elle permet notamment de modéliser des écoulements à surface libre ou interfaces fortement

déformées. Ce travail s’adresse principalement à quatre problématiques liées aux fondements de la

méthode SPH : l’imposition des conditions aux limites, la prédiction précise des champs de pres-

sion, l’implémentation d’un modèle thermique et la réduction des temps de calcul. L’objectif est

de modéliser des écoulements industriels complexes par la méthode SPH, en complément de ce qui

peut se faire avec des méthodes à maillage. Typiquement, les problèmes visés sont des écoulements

3-D à surface libre ou conVnés, pouvant interagir avec des structures mobiles et/ou transporter des

scalaires, notamment des scalaires actifs (e.g. température). Dans ce but, on propose ici un modèle

SPH incompressible (ISPH) fondé sur une représentation semi-analytique des conditions aux lim-

ites. La technique des conditions aux limites semi-analytiques permet d’imposer des conditions sur

la pression de manière précise et physique, contrairement à ce qui se fait avec des conditions aux

limites classiques en SPH. Un modèle k − ε a été incorporé à ce nouveau modèle ISPH, à partir

des travaux de Ferrand et al. (2013). Un modèle de Wottabilité a également été ajouté, reposant

sur l’approximation de Boussinesq. Les interactions entre Wottabilité et turbulence sont prises en

compte. EnVn, on établit une formulation pour les frontières ouvertes dans le nouveau modèle.

La validation en 2-D a été réalisée sur un ensemble de cas-tests permettant d’estimer les capacités

de prédiction du nouveau modèle en ce qui concerne les écoulements isothermes et non-isothermes,

laminaires ou turbulents. Des cas conVnés sont présentés, ainsi que des écoulements à surface libre

(l’un d’eux incluant un corps solide mobile dans l’écoulement). La formulation pour les frontières

ouvertes a été testée sur un canal de Poiseuille plan laminaire et sur deux cas de propagation d’une

onde solitaire. Des comparaisons sont présentées avec des méthodes à maillage, ainsi qu’avec un

modèle SPH quasi-incompressible (WCSPH) avec le même type de conditions aux limites. Les

résultats montrent que le modèle permet de représenter des écoulements dans des domaines à

géométrie complexe, tout en améliorant la prédiction des champs de pression par rapport à la méth-

ode WCSPH. L’extension du modèle en trois dimensions a été réalisée dans un code massivement

parallèle fonctionnant sur carte graphique (GPU). Deux cas de validation en 3-D sont proposés,

ainsi que des résultats sur un cas simple d’application en 3-D.

Mots-clé : écoulements incompressibles, simulation numérique, SPH, turbulence, conditions aux

limites, température, Wottabilité.
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ABSTRACT v

Abstract

In this work a numerical model for Wuid Wow simulation was developed, based on the Smoothed

Particle Hydrodynamics (SPH) method. SPH is a meshless Lagrangian Computational Fluid Dy-

namics (CFD) method that oUers some advantages compared to mesh-based Eulerian methods. In

particular, it is able to model Wows presenting highly distorted free-surfaces or interfaces. This

work tackles four issues concerning the SPH method: the imposition of boundary conditions, the

accuracy of the pressure prediction, the modelling of buoyancy eUects and the reduction of com-

putational time. The aim is to model complex industrial Wows with the SPH method, as a com-

plement of what can be done with mesh-based methods. Typically, the targetted problems are 3-D

free-surface or conVned Wows that may interact with moving solids and/or transport scalars, in

particular active scalars (e.g. temperature). To achieve this goal, a new incompressible SPH (ISPH)

model is proposed, based on semi-analytical boundary conditions. This technique for the represen-

tation of boundary conditions in SPH makes it possible to accurately prescribe consistent pressure

boundary conditions, contrary to what is done with classical boundary conditions in SPH. A k− ε
turbulence closure is included in the new ISPH model. A buoyancy model was also added, based on

the Boussinesq approximation. The interactions between buoyancy and turbulence are modelled.

Finally, a formulation for open boundary conditions is proposed in this framework.

The 2-D validation was performed on a set of test-cases that made it possible to assess the predic-

tion capabilities of the new model regarding isothermal and non-isothermal Wows, in laminar or

turbulent regime. ConVned cases are presented, as well as free-surface Wows (one of them including

a moving rigid body in the Wow). The open boundary formulation was tested on a laminar plane

Poiseuille Wow and on two cases of propagation of a solitary wave. Comparisons with mesh-based

methods are provided with, as well as comparisons with a weakly-compressible SPH (WCSPH)

model using the same kind of boundary conditions. The results show that the model is able to rep-

resent Wows in complex boundary geometries, while improving the pressure prediction compared

to the WCSPH method. The extension of the model to 3-D was done in a massively parallel code

running on a Graphic Processing Unit (GPU). Two validation cases in 3-D are presented, as well as

preliminary results on a simple 3-D application case.

Keywords: incompressible Wows, numerical simulation, SPH, turbulence, boundary conditions,

temperature, buoyancy.
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Introduction

Il existe de nombreuses possibilités en ce qui concerne la construction de modèles

numériques en mécanique des Wuides. On peut cependant les classer dans deux caté-

gories : les méthodes eulériennes et les méthodes lagrangiennes. Le choix d’un point

de vue eulérien a donné lieu à une première classe de méthodes où les grandeurs

physiques sont calculées dans un référentiel immobile de l’espace. Cependant, il existe

des situations pour lesquelles cette discrétisation n’est pas la plus adaptée, notamment

si l’écoulement subit de très fortes distorsions. AVn de modéliser de tels écoulements,

les méthodes de type lagrangien peuvent s’avérer eXcaces. Dans ce cas, le calcul

des grandeurs physiques est fait dans des référentiels mobiles liés à des “points de

matière”, se déplaçant avec eux au cours du temps. Ce travail porte sur des développe-

ments eUectués dans un logiciel de simulation par la méthode Smoothed Particle Hy-

drodynamics (SPH), qui est la méthode lagrangienne la plus connue. Cette dernière,

bien que présentant divers avantages par rapport à des méthodes classiques de mod-

élisation eulériennes, n’a pas encore atteint la même maturité. L’objectif de cette thèse

est de présenter des contributions à un modèle de simulation par la méthode SPH en

vue de l’application à des cas industriels. Le Chapitre 1 introduit les choix de modéli-

sation, les équations à résoudre et leur jeu de conditions aux limites (dans un formal-

isme continu pour les Wuides). Un état de l’art de la méthode SPH pour la résolution

des équations de Navier–Stokes est présenté au Chapitre 2. Le Chapitre 3 concerne la

description du modèle proposé. La validation du modèle en 2-D et en 3-D fait l’objet

des Chapitres 4 et 5. Au Chapitre 5 des résultats préliminaires sur un cas d’application

sont également présentés.



2 INTRODUCTION

There are many possibilities regarding the construction of numerical models in computational Wuid

dynamics (CFD). They may belong to two diUerent types of approaches, namely the Eulerian and

Lagrangian approaches. The choice of an Eulerian point of view gave rise to models in which

the physical quantities are calculated in motionless frames of reference1. Space is then discretised

through a mesh and the physical quantities are estimated at the cells over time, based on the Wuxes

values through the faces. The Finite Elements (FE), Finite Volume (FV), Finite DiUerences methods,

among others, belong to that class of numerical methods. Their mathematical foundations are

well understood, with demonstrated convergence properties and the possibility to estimate error

propagation in the models, and they are the most widely used methods in CFD. On the other hand,

in Lagrangian methods the physical quantities are calculated at moving points of space commonly

called particles, that are associated to “small amounts of matter” they carry. The space discretisation

is then composed of these moving particles. The idea is to solve systems of discrete equations in

which the interactions between particles depend on their mutual distances and on the physical

quantities they carry (velocity, density, pressure, etc.). The particles motion is determined by the

discretised equations of motion, which corresponds to the convection of the physical quantities

and to the distribution of interpolation points. Note that the treatment of convection in Lagrangian

methods is thus straightforward, whereas it is a very complex problem in the case of Eulerian

methods. The Finite Point, DiUuse Element, Free Mesh, Dissipative Particle Dynamics, Moving

Particle Semi-implicit methods belong to the class of Lagrangian numerical methods, as well as the

Smoothed Particle Hydrodynamics (SPH) method which is the most known and used of them2.

While Eulerian methods are very well suited to the study of conVned Wows and free-surface Wows

with low rates of distorsion, their application to highly distorted free-surface Wows, or to Wows

around complex moving objects, is more problematic. The Lagrangian framework seems more

adapted to such Wows, meaning that if Lagrangian methods were as accurate as Eulerian meth-

ods, with the possibility to estimate error propagation and nice convergence properties, it would

seem more advantageous to use Lagrangian instead of Eulerian methods on such Wows. However

this is not the case, so that developments for this kind of simulations are being done in Eulerian

methods, with the Volume of Fluid (VoF) or level-set methods for instance, and in hybrid methods

called Arbitrary Lagrangian-Eulerian (ALE) mesh-based methods. On the other hand, Lagrangian

approaches are getting increasing importance, in particular the SPH method.

To this day, the latter has been used in the industry to simulate complex free-surface Wows, most

of time involving moving objects, that Eulerian methods can hardly handle [84]. Though, this was

quite punctual since the method suUers from a number of issues that prevent its wider use. On the

one hand, there remains many unanswered questions regarding the convergence properties of the

method, its numerical stability, etc., which makes the method less reliable than FE or FV. On the

other hand, modelling incompressible Wows with SPH has classically been done through weakly

1Note that the mesh may move at an imposed velocity in the case of Arbitrary Lagrangian-Eulerian (ALE) ap-
proaches.

2Some mesh-free methods strictly speaking have a mesh, and there exists considerable work on hybrid methods, e.g.
the Particle Finite Elements Methods.
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compressible SPH (WCSPH) models, as is thoroughly described in [103]. The pressure is then cal-

culated through an equation of state, which causes the pressure prediction to be noisy and, in many

cases, inaccurate. This is very problematic when it comes to estimating the forces applied on solids

in the Wow. Thus, incompressible SPH (ISPH) models have been developed to improve the accuracy

of the pressure prediction, the latter then being computed through the resolution of a Poisson equa-

tion. Another issue is the representation of boundaries in SPH, which requires special treatments

in order to prevent the particles from crossing walls or to impose inWow/outWow conditions (some

SPH models also require a free-surface treatment, but not all of them). The boundary conditions

associated with engineering turbulence modelling approaches are quite increasing the demands

for an accurate boundary condition management which also oUers the Wexibility for all kinds of

Dirichlet, Neumann and Robin conditions. The modelling of turbulence remains problematic in

SPH, as well as other crucial phenomena in Wuid mechanics such as active scalars eUects, sediment

transport, air entrainment, etc., which could turn SPH into a very advantageous modelling tool.

Although an important amount of work among the SPH community has already been provided to

address these issues, much work remains to be done. Note that the high computational times of

the method used to be a problem too, but it has recently been tackled through the use of Graphics

Cards Units (GPU) [45], which are powerful massively parallel processors originally aimed at video

game rendering.

The aim of this thesis is to build an SPH model for industrial applications, able to:

• represent 3-D free-surface or conVned Wows in laminar or turbulent regime;

• accurately predict the pressure forces applied on rigid bodies in the Wow;

• represent active scalars eUects (e.g. temperature) and their interaction with turbulence;

• include the presence of open boundaries.

Note that in this thesis the framework of temperature was chosen for the sake of simplicity in the

notations3, but the model applies to other active scalars. An SPH model was thus built, based on

the most recent breakthroughs in SPH regarding the quality of pressure predictions, the boundary

conditions treatment, inWow/outWow boundaries, turbulence and buoyancy modelling. The main

achievements of this work are:

• the development of an ISPH model consistent with the uniVed semi-analytical boundary

conditions technique;

• the improvement of an existing SPH k − ε turbulence closure and its introduction into the

ISPH model;

• the introduction of a buoyancy model based on the Boussinesq approximation into ISPH that

accounts for buoyancy/turbulence interactions;
3The vocabulary diUers much between temperature eUects and scalar concentration eUects, although the mathemat-

ics behind it is similar.
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• the development of an open boundary formulation for ISPH with the uniVed semi-analytical

boundary conditions;

• the extension of the model to 3-D and its implementation in a GPU framework.

At Vrst, the model was implemented in a 2-D sequential SPH code called SPARTACUS, but later

on it was implemented in a 2-D/3-D massively parallel SPH code called Sphynx, able to run on

one GPU card. This was mandatory to keep the computational times compatible with industrial

requirements. The GPU code was derived from the open-source code called GPUSPH, and was

written in the Cuda programming language.

The structure of this thesis is articulated in Vve Chapters:

• In Chapter 1, the Navier–Stokes equations for incompressible Wows are introduced, along

with the set of boundary conditions considered in this work. Then, a quick review of the

projection methods for their resolution is given, followed by a review of the techniques for

turbulence and buoyancy treatments in the framework of continuous Wuids. The outcome

of this Chapter is the complete system of equations to be solved in a continuous framework

and the associated set of boundary conditions.

• Chapter 2 is a literature review concerning the SPH method, that focuses on its application

to the set of equations and boundary conditions outlined in Chapter 1. The existing possibil-

ities regarding the space-time discretisation of the equations are described. Then, the most

recent techniques for wall, free-surface and open boundary treatments are described. This

is followed by a review of the existing turbulence and buoyancy SPH models, and Vnally by

a review of what has been achieved in SPH regarding the reduction of computational times

through parallel programming (including GPU).

• The description of the present SPH model is the subject of Chapter 3. First, the space-time

discretisation of the system of equations outlined in Chapter 1 is described. Turbulence and

buoyancy treatments are included in this description, their interactions being taken into ac-

count. Then, the treatments for wall boundary conditions, free-surface boundary conditions

and inlet/outlet boundary conditions are explained. After that, the resolution of the pres-

sure Poisson equation is dealt with. Finally, a technique for the analytical computation of

boundary integrals, necessary with the boundary conditions used herein, is described.

• Chapter 4 deals with the validation of the model on 2-D cases. First, 2-D isothermal laminar

and turbulent Wows are considered. Various free-surface and conVned Wows are presented,

some of them involving open-boundaries, one of them involving a moving rigid body driving

the Wow. Then, 2-D non-isothermal laminar and turbulent Wows are considered, all of them

conVned.

• In Chapter 5, the validation on 3-D Wows and preliminary results on an industrial application

are presented.



Chapter 1

Governing equations and modelling

choices

L’objectif de ce Chapitre est double : d’une part, poser les bases du modèle développé

au cours de cette thèse, qui sera présenté au Chapitre 3. D’autre part, introduire les

notations utilisées dans la suite du document. Dans un premier temps, les équations de

Navier–Stokes sont présentées, ainsi que le jeu de conditions aux limites utilisé dans ce

travail. Un grand nombre de méthodes ont été développées pour la résolution des équa-

tions de Navier–Stokes incompressibles. Une synthèse rapide des diverses méthodes de

projection est faite. Ensuite, la modélisation de la turbulence est abordée, principale-

ment concentrée sur les modèles fondés sur la moyenne de Reynolds. EnVn, on aborde

la modélisation de l’inWuence de scalaires actifs sur les écoulements et leurs interac-

tions avec la turbulence. Ces thèmes peuvent être étudiés bien plus en profondeur,

dans les ouvrages [77], [147], [114] et [120] par exemple. On a pris soin de bien indi-

quer quelles hypothèses et approximations ont été faites lors des choix de modélisation.

Des pistes d’améliorations du modèle présenté au Chapitre 3 apparaissent à ce niveau.

Ce Chapitre aboutit au système d’équations que l’on souhaite résoudre ainsi qu’aux

conditions aux limites envisagées.
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This Chapter aims at introducing the notations used in this work, as well as deVning the scope of

the model that was developed, and that will be presented in Chapter 3. It does not claim to be

an exhaustive review of the existing literature about the Navier–Stokes equations, turbulence and

buoyancy modelling. Such reviews can be found in the literature, e.g. in [77], [147], [114] or [120].

Care was given to laying the stress on the approximations that were made in the modelling choices.

Some insights are given about possible improvements of the model presented in Chapter 3.

1.1 Navier–Stokes equations for incompressible Wows

1.1.1 Formulation

The Navier–Stokes equations for incompressible Wows consist of two equations: the continuity

and the momentum equations. We Vrst consider a possibly compressible Wow in a domain Ω

of dimension d (in practice 2 or 3). The compressible continuity equation represents the mass

conservation in a continuous medium and reads:

∂ρ

∂t
+∇ · (ρv) = 0 (1.1)

where ρ is the density, v the velocity, and t is the time (the continuous divergence operator is

denoted by∇·). The Navier–Stokes momentum equation is obtained from the Cauchy momentum

equation for a continuous medium where a behaviour law is introduced to model the stress tensor.

We recall the Cauchy equation:

∂v

∂t
+ (v ·∇)v =

1

ρ
∇ · σ + g (1.2)

In this equation, σ is the Cauchy stress tensor and g is the acceleration due to gravity (the con-

tinuous gradient operator is denoted by ∇). Note that equation (1.2) was written in an Eulerian

framework, where the position Veld r is given by the initial condition r(t0) = r0 with t0 the initial

time.

On the other hand, the behaviour law used for a Newtonian Wuid reads 1:

σ = −pId + τ

τ = λ ∇ · v Id + 2µs
(1.3)

where Id is the identity tensor in dimension d, τ is the shear-stress tensor, s is the strain-rate

tensor, p is the pressure, µ is the dynamic molecular viscosity and λ is equal to ζ − 2
3µ where ζ is

1In this work, non-Newtonian Wuids are not considered since at this stage the scope of applications of the developed
model concerns water or air Wows. Though, it is possible to introduce non-Newtonian models in SPH as was done in [48]
for example.
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the bulk viscosity. The tensor s is deVned as:

s =
1

2

[
∇v + (∇v)T

]
(1.4)

where T denotes the transpose of a vector or tensor. The behaviour law (1.3) was obtained by

introducing a model for viscosity in Wuids based on an analogy with a model for particle friction.

It is possible to write system (1.2) in a Lagrangian form by changing the deVnition of the position

Veld r, and deVne it as the position Veld at time t considering the initial condition r0. Then, the

time derivative of the position is the velocity Veld. With this change of variable in (1.2) and the

behaviour law (1.3), the Navier–Stokes equations in their Lagrangian form for a compressible Wow

are obtained: 

dρ

dt
= −ρ∇ · v

dv

dt
= −1

ρ
∇p+

1

ρ
∇ ·

(
µ
[
∇v + (∇v)T

])
+

1

ρ
∇(λ∇ · v) + g

dr

dt
= v

(1.5)

The third line of this system is an equation of advection which accounts for the fact that in the

Lagrangian framework the equations are solved at moving points of space. This system is not

closed and it is necessary to introduce an equation of state linking the density to the pressure in

order to numerically solve it. For Wuids like water, this equation is that introduced by Tait [135]:

p =
ρ0c

2
0

ξ

((
ρ

ρ0

)ξ
− 1

)
(1.6)

where ξ is a constant, usually taken equal to 7 for water, ρ0 is a reference density (1000kg.m−3

for water) and c0 is a speed of sound. In SPH, a weakly-compressible form of system (1.5) has

classically been solved (see Chapter 2, Section 2.3.1). In this case, only slight variations of the

density are possible (typically a Mach number lower than 0.1), which is achieved by setting a large

enough value for c0.

In this work, an SPHmodel is built for the resolution of the incompressible Navier–Stokes equations

(see Chapter 3), i.e. with ∇ · v = 0. Besides we only consider homogeneous Wows so that ρ =

constant. Since ∇ · v = 0, the terms involving λ in (1.3) vanish. The Navier–Stokes equations in

their Lagrangian form for an incompressible Wow then read:
∇ · v = 0

dv

dt
= −1

ρ
∇p+

1

ρ
∇ ·

(
µ
[
∇v + (∇v)T

])
+ g

dr

dt
= v

(1.7)
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Note that if the viscosity is constant in space, for an incompressible Wow the term involving (∇v)T

vanishes while the other viscous term reads ν∇2v where ν is the kinematic molecular viscosity

(ν = µ
ρ ). Here we chose to consider possible variations of the viscosity due to our use of an eddy

viscosity model to represent turbulence eUects (see Section 1.2). The viscosity can also vary due to

temperature variations or in case of multiWuid Wows, though this was not considered in this work.

The closure of system (1.7) involves the imposition of initial conditions on the position and the

velocity, and of boundary conditions on the velocity2. The pressure is the Lagrangian multiplier

that stems from the minimisation of the momentum equation under the constraint ∇ · v = 0 [9].

Methods to compute it are described in section 1.1.2. While the initial conditions are usually quite

easily set, the boundary conditions can prove problematic to prescribe in numerical models (in

particular in SPH as we will see in Chapters 2 and 3). The boundary condition may set the value of

the Veld itself, in which case it is called a Dirichlet condition. It may also set components of the Veld

gradient and is then called a Neumann condition. Robin conditions correspond to a combination

of the two previous types. Let ∂Ω be the boundary of the computational domain Ω, decomposed

into ∂Ωw the solid walls, ∂Ωη the free-surface, ∂Ωi the inWow boundaries and ∂Ωo the outWow

boundaries. The boundary condition imposed on the velocity at solid walls, considering a viscous

Wuid, is a Dirichlet condition:

v|∂Ωw
= vw (1.8)

This condition is called a no-slip condition, vw being the velocity of the wall. On the other hand,

considering that the vertical coordinate z of the free-surface is known (z pointing upwards), the

boundary condition at the free-surface reads:
(
∂z

∂t
+ v · n

)
∂Ωη

= 0

τ · n|∂Ωη = 0

(1.9)

where n is the unit outward normal to the boundary. The Vrst line is the kinematic condition while

the second line is the dynamic condition at the free-surface that corresponds to the continuity of

stresses across an interface. Finally, the boundary conditions imposed at open boundaries depend

on the type of boundary considered, whether an inlet or an outlet. Usually, at an inlet a Dirichlet

condition is imposed:

v|∂Ωi = vi (1.10)

whereas at an outlet a homogeneous Neumann condition is imposed:

∂v

∂n

∣∣∣∣
∂Ωo

= 0 (1.11)

2Note that in fact, with these initial and boundary conditions the existence and uniqueness of a global solution to the
3-D Navier–Stokes equations (with any source term and on any time interval) was not proved, although it was proved
on various particular cases [77].
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1.1.2 Projection methods

In this section a review of the projection methods for the resolution of (1.7) is given, beginning

with general considerations regarding this kind of methods. A very quick review is then given of

the numerous variants of the projection method, based on the 2006 paper by Guermond et al. [40].

In this section the viscosity is considered as constant for the sake of simplicity in the notations.

1.1.2.1 General considerations on the projection methods

While the numerical resolution of (1.5) (using (1.6)) can be done through classical fractional step

methods, the resolution of (1.7) is made complex by the pressure-velocity coupling in the equa-

tions, that prevents the use of such schemes. Indeed, as said earlier the pressure is the Lagrangian

constraint that enforces the divergence-free constraint [9]. In 1968, Chorin [15] and Temam [138]

introduced a projection-method for the approximate resolution of (1.7), which made it possible to

solve a sequence of decoupled equations on the velocity and on the pressure at each time-step.

Such an algorithm is very interesting in terms of computational cost. Its theory is based on the

Helmholtz-Hodge decomposition, which states that any vector v can be decomposed into the sum

of a curl-free vector and a divergence-free vector. Indeed, let us consider two Euclidean vectorial

spaces E and F :
E =

{
v ∈ C1(Ω,R3), v · n|∂Ωw = 0

}
F =

{
p ∈ C1(Ω,R), p|∂Ωη = 0

} (1.12)

with the following scalar products on E and F :

〈u,v〉 =

∫
Ω
u · vdΩ

(p, q) =

∫
Ω
pqdΩ

(1.13)

Considering that
∫

Ω∇ · (pv)dΩ = (p,∇ · v) + 〈∇p,v〉, the following relation is found:

(p,∇ · v) + 〈∇p,v〉 =

∮
∂Ω
pv · ndΓ = 0 (1.14)

which shows that the gradient and divergence operators are skew-adjoint in these spaces. An

important consequence is that the kernel of (∇·), denoted by K , is orthogonal to the image of

(−∇). Thus, the following property holds:

∀v ∈ E,∃! (ṽ, p) ∈ K × F, v = ṽ + ∇p (1.15)
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Applying the divergence operator to this equation gives:

∇ · v = ∇2p (1.16)

where ∇2 is the Laplacian operator. This then yields:

ṽ = v −∇
[(
∇2
)−1∇ · v

]
(1.17)

This shows that the projection operator deVned by:

P =
(
Id −∇

[(
∇2
)−1∇·

])
(1.18)

projects any vector of E onto the space of divergence-free vector Velds, provided that the diver-

gence and gradient operators are skew-adjoint.

The idea of projection methods is to split the resolution of the momentum equation into two sub-

steps. In the Vrst one, an estimation of the velocity is computed, which does not satisfy the incom-

pressibility constraint. Then, the projection operator P is used to project this velocity Veld onto

the space of divergence-free vector Velds.

1.1.2.2 Pressure-correction schemes

In all the variants of pressure-correction schemes, the estimated velocity is computed based on the

viscous and external forces. Some variants also take the pressure gradient of the former time-step

into account at this stage. In the second sub-step, the estimated velocity is corrected through its

projection onto the vectorial space K of divergence-free vectors. In what follows the main two

kinds of pressure-correction schemes are brieWy presented.

i) Non-incremental pressure-correction scheme:

This scheme is the original one proposed by Chorin and Temam in 1968 [15, 139]. In the Vrst

sub-step, the velocity estimation is based on the viscous and external forces only:

ṽn+1 − vn

δt
= ν∇2ṽn+1 + g (1.19)

ṽn+1 is the estimated velocity Veld, δt is the time-step size and the superscripts n correspond to

the time iteration number. The pressure gradient then intervenes in the second sub-step:

vn+1 − ṽn+1

δt
= −1

ρ
∇pn+1 (1.20)

which corresponds to the projection of ṽn+1 onto the divergence-free vectorial space. Indeed, the
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pressure pn+1 involved in (1.20) was previously computed through a pressure Poisson equation:

∇2pn+1 =
ρ

δt
∇ · ṽn+1 (1.21)

which corresponds to the enforcement of the incompressibility constraint ∇ · vn+1 = 0 on (1.20).

In this scheme the wall boundary conditions applied to the velocity Veld read:{
ṽn+1|∂Ωw = 0

vn+1 · n|∂Ωw = 0
(1.22)

Note that the condition ṽn+1 = 0 is necessary because the viscous term is treated implicitly. On

the other hand, pressure boundary conditions are now necessary for the resolution of (1.21), which

involves second derivatives of the pressure. The pressure wall boundary condition is obtained by

projecting equation (1.20) onto the normal to the wall, which yields:

∇pn+1 · n|∂Ωw = − ρ
δt

(
vn+1 − ṽn+1

)
· n|∂Ωw = 0 (1.23)

due to the conditions (1.22). This homogeneous Neumann condition is artiVcial and was shown to

induce a numerical boundary layer which deteriorates the scheme convergence [119]. Note that

the correct pressure wall boundary condition is obtained by projecting the momentum equation

(2nd line of (1.7)) onto the normal to the wall, which yields:

∂

∂n

(
v2

2
+
p∗

ρ

)∣∣∣∣
∂Ωw

=
(
ν∇2v

)
· n
∣∣
∂Ωw

(1.24)

where the dynamic pressure p∗ was deVned as:

p∗ = p+ ρgz (1.25)

Recall that z is the vertical coordinate, oriented upwards. Treating the viscous term explicitly, in

the Lagrangian framework there is no need to impose boundary conditions on ṽn+1 and the wall

boundary condition on vn+1 is imposed through (1.8). Equation (1.19) is then replaced by:

ṽn+1 − vn

δt
= ν∇2vn + g (1.26)

The pressure wall boundary condition, obtained by projecting (1.20) onto the normal to the wall, is

now non-homogeneous since the velocity boundary condition has changed, and reads:

∂pn+1

∂n

∣∣∣∣
∂Ωw

=
ρ

δt
ṽn+1 · n|∂Ωw =

(
ρg + µ∇2vn

)
· n|∂Ωw (1.27)

which is in agreement with (1.24). This boundary condition was shown to yield more accurate

results than a homogeneous Neumann condition [40].
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At the free-surface and open boundaries the pressure boundary conditions are imposed through:
p|∂Ωη = patm

∂p

∂n

∣∣∣∣
∂Ωi

= 0

p|∂Ωo = po

(1.28)

where patm is the atmospheric pressure, considered as constant in this work so that it is taken equal

to zero. po is the pressure at the outWow boundary, which can be imposed as constant for example.

Note that in order to model an outlet through which the Wuid is free to Wow, it is recommended to

use a radiative condition such as the one proposed by Orlanski [111]:(
∂p

∂t
+ C

∂p

∂n

)
∂Ωo

= 0 (1.29)

with C a celerity usually taken as
√
gH , H being the elevation of the free-surface above the bed

at the outlet.

ii) Incremental pressure-correction schemes:

It is also possible to explicitly include the pressure gradient in the Vrst sub-step of the algorithm in

order to increase its accuracy. This corresponds to a second kind of pressure-correction schemes.

The main two of them are the standard and the rotational incremental pressure-correction schemes.

The standard one is built as:

1

2δt

(
3ṽn+1 − 4vn + vn−1

)
− ν∇2ṽn+1 = g − 1

ρ
∇pn

3

2δt

(
vn+1 − ṽn+1

)
+

1

ρ

(
∇pn+1 −∇pn

)
= 0

∇ · vn+1 = 0

(1.30)

with the velocity wall boundary conditions given by (1.22). Once again the pressure wall boundary

condition is a homogeneous Neumann, which induces the same problems as in the previous scheme

with an implicit viscous term.

The rotational incremental pressure-correction scheme is built as:

1

2δt

(
3ṽn+1 − 4vn + vn−1

)
− ν∇2ṽn+1 = g − 1

ρ
∇pn

3

2δt

(
vn+1 − ṽn+1

)
+

1

ρ
∇φn+1 = 0

∇ · vn+1 = 0

(1.31)
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where φn+1 is a modiVed pressure deVned as:

φn+1 = pn+1 − pn + µ∇ · ṽn+1 (1.32)

The pressure Poisson equation to be solved then reads:

∇2φn+1 =
3ρ

2δt
∇ · ṽn+1 (1.33)

The wall boundary conditions are still given by (1.22), but this time this yields the non-homogeneous

wall boundary condition on the pressure given by (1.27).

In fact, it is possible to deVne a general framework to describe any pressure correction scheme,

which reads: 

1

δt

βqvn+1 −
q−1∑
j=0

βjv
n−j

− ν∇2ṽn+1 = g − 1

ρ
∇p?,n+1


βq
δt

(
vn+1 − ṽn+1

)
+

1

ρ
∇φn+1 = 0

∇ · vn+1 = 0

φn+1 = pn+1 − p?,n+1 + χµ∇ · ṽn+1

(1.34)

In the prediction step, a qth order backward diUerence formula (see [11]) is used to approximate

the time-derivative of the velocity, assuming the latter is continuous:

dvn+1

dt
+

1

δt

βqvn+1 −
q−1∑
j=0

βjv
n−j

 (1.35)

where the βq and βj are the formula coeXcients. Besides, a rth order extrapolation of the pressure,

p?,n+1, is used in the prediction step:

p?,n+1 =
r−1∑
j=0

γjp
n−j (1.36)

On the other hand, χ is either equal to 0 or 1, depending on the kind of scheme considered: χ = 0

yields standard schemes while χ = 1 yields rotational schemes. The case (q = 1, r = 0, χ = 0)

corresponds to the Chorin projection scheme. The case (q = 2, r = 1, χ = 0) corresponds to

the standard incremental scheme. The case (q = 2, r = 1, χ = 1) corresponds to the rotational

incremental scheme. It was shown that when choosing r = q− 1, the consistency error is of order

q on the velocity in H1 norm, while it is of order r = q − 1 on the pressure in L2 norm. When

choosing r = q, the consistency error is of order q on the velocity and the pressure (in H1 and L2

norm respectively). However, it was observed that with a homogeneous Neumann wall boundary

condition on the pressure (1.23), the schemes do not reach these orders of convergence. They only
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reach them with the non-homogeneous Neumann condition given by (1.27) (these convergence

studies were done in a Finite Elements formalism, see [40]).

1.1.2.3 Velocity-correction schemes

This kind of schemes is the counterpart of the pressure-correction schemes in that the role of the

pressure and viscous terms are inverted: in the Vrst sub-step, the pressure gradient is involved

while the viscous term is either ignored or treated explicitly. As in the previous case this kind of

schemes declines into non-incremental and incremental schemes. Here only the non-incremental

scheme is shown, which is built as:
vn+1 − ṽn

δt
= g − 1

ρ
∇pn+1

∇ · vn+1 = 0

ṽn+1 − vn+1

δt
= ν∇2ṽn+1

(1.37)

with the same boundary conditions as before (1.22). Besides, as with pressure-correction schemes

the pressure at time n+ 1 is computed through a Poisson equation (1.21). The same kind of incre-

mental schemes as with the pressure-correction technique can be built, in a standard or rotational

form. As before, only the rotational scheme leads to a consistent Neumann wall boundary condition

on the pressure. As for the pressure-correction schemes, it is possible to increase the accuracy of the

scheme by using a higher order backward diUerence formula to approximate the time-derivative

of the velocity in the prediction step, together with a higher order extrapolation of the pressure. As

before, the expected orders of convergence are only achieved with the non-homogeneous Neumann

boundary condition given by (1.27). A more complete review of the velocity-correction schemes

can be found in [40].

1.1.2.4 Consistent splitting schemes

Another kind of method, called splitting schemes, consists in computing the velocity in a Vrst sub-

step, treating the pressure explicitly, and then solve a weak form of the pressure Poisson equation.

An example of such scheme reads:
vn+1 − ṽn

δt
= g − 1

ρ
∇pn − ν∇2ṽn+1(

∇pn+1,∇q
)

=
(
g + ν∇2ṽn+1,∇q

)
,∀q ∈ H1(Ω)

(1.38)

Once again it is possible to use a qth order backward diUerence formula to approximate the time

derivative of the velocity (1.35) in the Vrst line of (1.38), together with a rth order extrapolation of

the pressure instead of pn (1.36). However, the scheme (1.38) leads to the homogeneous Neumann
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condition on the pressure, which is artiVcial. Another possibility is to apply a similar technique as

for the construction of a rotational pressure or velocity correction scheme. This yields consistent-

splitting schemes as the one below:

vn+1 − ṽn

δt
= g − 1

ρ
∇pn − ν∇2ṽn+1

(
∇ψn+1,∇q

)
=

(
g + ν∇2ṽn+1 − 1

ρ
∇pn,∇q

)
,∀q ∈ H1(Ω)

pn+1 = ψn+1 + pn − ν∇ · vn+1

(1.39)

With this kind of scheme the non-homogeneous Neumann condition on the pressure is recovered.

Once again it is possible to increase the accuracy of the scheme through a backward diUerence

formula (1.35) and a diUerent pressure extrapolation (1.36). The framework of these splitting ap-

proaches is interesting since it makes it possible to show the existence and unicity of a solution

to the pressure Poisson equation regardless of the domain topology, which is not so easy with the

pressure-correction and velocity-correction schemes presented above. It has been widely used in

Finite Elements.

1.2 Turbulence modelling

It is a well-known feature of the Navier–Stokes equations that they present a chaotic behaviour for

suXciently high values of the Reynolds number, Re = UL
ν (L being a characteristic length scale

and U a characteristic velocity scale of the Wow). This corresponds to the existence of turbulent

Wows, which are geometrically complex, rapidly varying over time and very sensitive to initial

conditions. It is possible to numerically model these Wows without introducing any model for tur-

bulence: such an approach is called Direct Numerical Simulation (DNS). However, since turbulent

structures reach very small scales compared to the main Wow structures, this requires very Vne 3-D

space discretisations. Besides, it also requires very small values of the time-step size, which leads

to tremendously high computational times. DNS is thus used to numerically study turbulence and

to obtain results on reference cases. Though, it is not suitable to industrial applications due to its

computational cost.

Other methods were thus developed in order to model the chaotic behaviour of turbulent Wows

without having to resolve all the Wow scales. The Vrst models introduced for turbulence rely on

the Reynolds-average formalism. Later on, Large Eddy Simulation (LES) models were developed,

which represent the turbulent eddies down to a certain scale and use a sub-grid model to represent

the eUects of the smaller eddies.
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1.2.1 Reynolds-Averaged Navier–Stokes models

This kind of approach was the one chosen in this work for turbulence modelling, thus its description

is quite detailed in order to introduce our notations for the following Chapters and also in order to

give a clear idea about the assumptions and approximations of the k − ε model.

While a turbulent Veld is highly variable in space and time, it presents a smooth and less variable

mean. This observation led to the idea of applying a statistical mean operator to the equations. For

N occurrences of a Wow the Reynolds average applied to a Veld A is deVned as:

A = lim
N→∞

1

N

N∑
i=1

Ai (1.40)

This newly deVned Veld A is called the mean Veld and is a Wow feature: it is not sensitive to

small perturbations of the initial conditions. Considering an instantaneous Veld A (dropping the

superscript i which referred to the instance number), it is then written as:

A = A+A′ (1.41)

where A′ is a Wuctuating Veld which is diUerent between two instances of the Wow. The mean

Veld, contrarily to the instantaneous one, is smooth and reproducible. It may be constant over time

or invariant along a direction, while the instantaneous Veld is always time-variable and three-

dimensional. Thus, an approach for modelling turbulent Wows is to try to simulate the mean Velds.

Applying the Reynolds average operator to the Navier–Stokes equations (1.7) yields the Reynolds-

Averaged Navier–Stokes (RANS) equations for incompressible Wows:
∇ · v = 0

dv

dt
= −1

ρ
∇p+

1

ρ
∇ ·

(
µ
[
∇v + (∇v)T

])
+ g −∇ ·R

dr

dt
= v

(1.42)

The application of the Reynolds average operator to the non-linear convection term in the momen-

tum equation (2nd term in the left-hand side of (1.2)) led to an additional stress tensorR called the

Reynolds stress tensor and deVned as:

R = v′ ⊗ v′ (1.43)

A transport equation on the components of the Reynolds stress tensor (called Reynolds stresses)

can be obtained by subtracting (1.42) to (1.7), tensorially multiplying the result by v′ and then ap-

plying the Reynolds average operator. Though, this does not close the problem since this transport

equation involves new unknown terms, in particular third order moments of v′. It is thus necessary

to Vnd a heuristic closure law in order to solve the system.
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A Vrst-order closure of the system consists in writing a closure law linking the second order mo-

ments of the Wuctuating velocity to its Vrst order moments, without solving the transport equation

on R. In other words, it relies on the construction of a behaviour law that expresses R as a func-

tion of v. Such a behaviour law was proposed by Boussinesq through a model similar to the Stokes

model (1.3) for the Cauchy stress, which aims at representing the diUusion and dissipation eUects

of the turbulent eddies through an eddy viscosity, as well as the additional “pressure” they induce

in the Wow. The Boussinesq model reads:

R =
2

3
kId − 2νTS (1.44)

where S is the mean strain rate tensor:

S + s =
1

2

(
∇v + (∇v)T

)
(1.45)

k is the kinetic energy of the Wuctuating velocity Veld per unit mass (called turbulent kinetic en-

ergy):

k =
1

2
trR =

1

2
|v′|2 (1.46)

and νT is the eddy viscosity. With this model the RANS equations are written as:
∇ · v = 0

dv

dt
= −1

ρ
∇p̃+

1

ρ
∇ · [2µES] + g

dr

dt
= v

(1.47)

where p̃ = p +
2

3
ρk and µE = µ + µT is an eUective viscosity, with µT = ρνT . The remaining

task is then to build a model for the turbulent kinetic energy and eddy viscosity computations.

This is done starting from the transport equation on k, which is obtained by taking the trace of the

transport equation on the Reynolds stresses, and reads:

dk

dt
= P +∇ ·Qk − ε (1.48)

where P is a production termwhose deVnition is P = −R :S 3. By using the Boussinesq model (1.44),

it can be written as4:

P = νTS
2 (1.49)

with S the scalar mean rate-of-strain deVned as:

S =
√

2S : S (1.50)

3We recall thatA :B = tr(ABT ) = AijBij with the Einstein notation.
4Strictly speaking, the term − 2

3
k∇ · v should be taken into account for Wows that are not truly incompressible.
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On the other hand, ε corresponds to a dissipation of turbulent kinetic energy (transformed into

thermal energy) due to the viscosity, deVned as:

ε = ν
∑
i

∑
j

(
∂v′i
∂xj

)2

(1.51)

where ∂v′i
∂xj

denotes the derivative of the ith component of v′ with respect to the jth coordinate.

Although it is possible to write an exact transport equation on ε, the latter includes complex terms

that cannot be explicitly calculated. This is why, in the k − ε model ε is computed through a

simpliVed equation that reproduces the k equation (see equation (1.54) below).

In (1.48), Qk is the Wux of k, which represents a transport of kinetic and potential energy by the

eddies and the molecular viscosity. The Wux of k can be modelled through a diUusion term:

∇ ·Qk =
1

ρ
∇ · (µk∇k) (1.52)

where µk is deVned as µk = µ+
µT
σk

, σk being a model constant.

Then, a variety of models is available to compute the eddy viscosity, from the simplest and coarsest

(zero equation mixing length model) to more complex ones like the k − ε model. The latter was

chosen in this work for its simplicity and wide use in the industry. It is a two-equation model,

which means k and ε are computed through transport equations. The Kolmogorov dimensional

analysis [63] leads to a deVnition of the eddy viscosity as a function of k and ε, which corresponds

to the fact that the large turbulent eddies are the ones that most interact with the mean Wow. νT is

thus written as proportional to the length scale of the large eddies, Lt ∼ k3/2

ε , which yields:

νT = Cµ
k2

ε
(1.53)

Cµ is the Prandlt-Kolmogorov constant which value was determined through experiments. The

transport equation on k is given by (1.48), while the dissipation ε is computed through a similar

equation:
dε

dt
=
ε

k
(Cε1P− Cε2ε) +

1

ρ
∇ · (µε∇ε) (1.54)

where µε is deVned as: µε = µ + µT
σε
, σε being a constant. Cε1 and Cε2 are also constants of

the model. All the model constants are given in Table 1.1. Equation (1.54) has no theoretical

background but relies on empirical considerations. The term ε
k ensures the equation homogeneity

and the source terms are supposed proportional to the ones in the k equation. It is the frequency of

the large eddies.

Note that the k− ε model is not accurate concerning non-inertial and streamline curvature eUects,

as well as severe deviation from local equilibrium. Besides, it was shown that computing the

production term through (1.49) leads to over-estimations of k and thus of νT . In order to avoid this,
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Table 1.1: Values of the k − ε model constants [69]

κ Cµ Cε1 Cε2 σk σε PrT
0.41 0.09 1.44 1.92 1.0 1.3 0.85

Guimet & Laurence [41] proposed to restrict the production term to a linear behaviour for high

values of the rate-of-strain, obtained from the equilibrium between P and ε for fully developed

homogeneous turbulence. This yields a linear-quadratic model for the production5:

P = min
(√

CµkS, νTS
2
)

(1.55)

Another issue is that the size of the large eddies, given by Lt ∼ k3/2

ε , may be predicted arbitrarily

large, which is not physical since Lt should be bounded at least by L, the characteristic size of the

Wow. To remedy this issue, Yap [156] proposed a modiVcation of the Cε2 coeXcient in order to

increase the dissipation of turbulent kinetic energy:

Cε2,Y = max

(
Cε2 −max

[
0, 0.83

(
Lt
L
− 1

)(
Lt
L

)2
]
, 0

)
(1.56)

The Boussinesq model used to close the equations (1.44) establishes a linear relation betweenR and

S. It is also possible to use a non-linear model (see e.g. [113]). This still corresponds to a Vrst-order

closure. On the other hand, a second-order closure of the system consists in writing a closure law

linking the third order moments (and other unknown terms in the governing equation forR) of the

Wuctuating velocity to its second order moments and solving the transport equation on the second

moments (i.e. the Reynolds stresses). Such models are called Reynolds Stress Transport Models

(RSTM) [68].

For a weakly-compressible Wow the density Wuctuations are restricted such that ρ and ρ are as-

sumed to be equal and applying the Reynolds average operator to the continuity equation of (1.5)

gives:
dρ

dt
= −ρ∇ · v (1.57)

This is the only diUerence compared to the truly incompressible model. Indeed, in what was written

above a possibly varying density Veld was considered. Note, however, that the k− ε model takes a

more complicated shape for highly compressible Wows [99].

The presence of walls in turbulent Wows makes the latter anisotropic and increases the production of

turbulence due to shearing eUects. Modelling near-wall turbulence is crucial in order to correctly

reproduce the Wows, since the no-slip condition leads to large values of the velocity gradient at

5This essentially recovers the SST modiVcation [96], although it does not include a low-Reynolds treatment.
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the walls, which generates turbulence. Let us denote by y+ the dimensionless distance to a wall,

deVned as:

y+ =
yu∗
ν

(1.58)

with y the wall normal coordinate and u∗ a friction velocity:

u2
∗ = ν

dvτ
dy

∣∣∣∣
y=0

(1.59)

where vτ is the wall tangential velocity component. The observation of the turbulent Wow between

two horizontal parallel plane walls (this conVguration is called the plane Poiseuille channel) led to

a sub-division of the near-wall region into three areas [152]:

• the viscous sub-layer: 0 < y+ < 8

• the buUer layer: 8 < y+ < 30

• the inertial sub-layer: 30 < y+ < 0.2e+

where e+ is the dimensionless half-height of the channel, deVned by e+ = eu∗
ν with e the half-

height. The turbulence is negligible in the viscous sub-layer while the viscous eUects are small in

the inertial sub-layer. In the latter, the velocity proVle distribution along the normal to the wall

follows a logarithmic law, so that this zone is also called the logarithmic zone.

Directly simulating near-wall turbulence requires very Vne meshes and modiVed turbulence mod-

els (low-Reynolds-number turbulence models). Then, the computational points closest to the wall

must be located in the viscous sub-layer. This is computationally expensive, especially for Wows

with high-Reynolds numbers. This led to the development of wall functions, based on semi-

empirical formulae, which are used to reproduce near-wall eUects with coarser discretisations. This

corresponds to high-Reynolds-number turbulence models and requires the computational points

closest to the wall to be located in the inertial layer.

In Eulerian models, this can be done by designing the mesh so that the Vrst calculation point is in

the logarithmic zone. Another possibility is to solve the discretised equations on a ’classical’ mesh,

where the nodes located on the wall are treated in the same way as if they were shifted in the

normal direction so as to be in the logarithmic zone, as for instance in [66]. This makes it possible

to resolve the region with more than one or two points. This may also be done in a Lagrangian

framework. The velocity Veld is then set at the wall in order to have a value for the wall shear-

stress that makes it possible to reproduce a turbulent plane Poiseuille Wow case. In a Lagrangian

framework, this can be done by deVning an Eulerian mean velocity, whose tangential component

takes non-zero values at the walls. This velocity Veld only serves to compute the rate-of-strain

tensor and the viscous forces. At the wall, the shear-stress vector is thus set through:

τ = µE
∂u

∂n
= −ρu2

∗
u

|u|
(1.60)
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whereu is the Eulerian mean velocity and u∗ is assumed to satisfy the logarithmic law (considering

a smooth velocity proVle):
vτ
u∗

=
1

κ
ln
(yu∗
ν

)
+ 5.2 (1.61)

where κ is the von Kármán constant (see Table 1.1). Recall that y is the distance to the wall. u∗ may

then be computed through an iterative process. The following wall functions can be deduced from

the equilibrium P = ε in the logarithmic zone (recall this holds for fully developed turbulence):
k|∂Ωw =

u2
∗√
Cµ

∣∣∣∣∣
∂Ωw

ε|∂Ωw =
u3
∗
κy

∣∣∣∣
∂Ωw

(1.62)

However, it is more recommended to impose Neumann boundary conditions on k and ε instead of

these Dirichlet conditions, in order to avoid coupling the boundary conditions of the momentum

equation and the k and ε equations. Indeed, imposing the Dirichlet boundary conditions (1.62)

makes the boundary values of k and ε depend solely on u∗, thus on u. The normal derivatives of k

and ε can be derived from (1.62): 
∇k · n|∂Ωw = 0

∇ε · n|∂Ωw = − u3
∗

κy2

∣∣∣∣
∂Ωw

(1.63)

There exists many variants of the wall functions, see for example [14, 28, 66, 70]. More details

about the wall boundary conditions in turbulence models can also be found in [13].

The inWow boundary conditions on k and ε read:{
k|∂Ωi = ki

ε|∂Ωi = εi
(1.64)

where ki and εi are imposed values of these Velds, which may be set as:
ki =

3

2
(uI)2

εi = Cµ
k3/2

l0

(1.65)

with l0 the mixing length, which takes similar values as Lt, the size of the large eddies, and is set

by the user6, and I the turbulence intensity, which can be obtained from experiments and is usually

taken equal to 0.16Re−1/8 for duct Wows.

6For instance in a Smoothed Particle Hydrodynamics simulation it may be set as the kernel support size (see sec-
tion 2.2.1).
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On the other hand, the outWow boundary conditions on k and ε read:{
∇k · n|∂Ωo = 0

∇ε · n|∂Ωo = 0
(1.66)

Finally, the free-surface boundary conditions to be applied to k is a homogeneous Neumann (no

Wux of energy in the absence of wind):

∇k · n|∂Ωη = 0 (1.67)

while some authors recommend to link the value of εwith that of k at the free-surface through [107]:

ε|∂Ωη =
k3/2

αεH

∣∣∣∣∣
∂Ωη

(1.68)

with αε = 0.18 a constant and H the water depth. Although this condition is not applicable in

case of Wows presenting complex free-surface shapes like a breaking wave, so that in this work the

free-surface condition imposed on ε can be assumed to be a homogeneous Neumann condition, as

a Vrst approximation. Note that the imposition of free-surface boundary conditions on ε in general

is still an open question.

1.2.2 Large Eddy Simulation

The development of LES in SPH was not the topic of the present work, though it is mentioned

here due to its signiVcant importance in turbulence modelling. Indeed, in many industrial and

environmental cases it is necessary to obtain the Wuctuating Velds, which cannot be achieved with

RANS models, sophisticated as they may be. As mentioned above, the LES technique represents

the turbulent eddies down to a certain scale and uses a subgrid-scale model to represent the eUects

of the smaller eddies. To do so, considering an incompressible Wow the velocity Veld is Vltered

according to:

ṽ =

∫
Ω
v(r′, t)G∆(r, r′)dr′ (1.69)

where ṽ is the Vltered velocity Veld7 and G∆ is a Vlter function, chosen so that it behaves like a

low-pass Vlter, allowing to keep only the largest turbulent structures. The Vlter function may take

the shape of a Gaussian or of a rectangular function, its characteristic size ∆ corresponding to the

size of the smallest modelled structures. ∆ is of the order of magnitude of the spatial resolution.

The Vlter function satisVes a normalisation condition:

∀r,
∫

Ω
G∆(r, r′)dr′ = 1 (1.70)

7Here ṽ should not be confused with the estimated velocity in the projection methods of section 1.1.2.
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The characteristic time of the smallest simulated structures being higher than in a DNS, the time-

step size can be increased compared to the latter, which also reduces computational times. On the

other hand, LES still requires 3-D simulations in order to be consistent.

Although the Vltering operator does not present the same properties as the Reynolds-average op-

erator, it is possible to show that the equation of motion of the Vltered Velds can be written as:

dṽ

dt
= −1

ρ
∇p̃+ ν∇2ṽ −∇ · τR + g (1.71)

where p̃ is the Vltered pressure Veld and τR is a tensor representing the impact of the subgrid scale

structures on the Vltered Veld. A model for this tensor is required in order to close the equations,

which is usually an eddy viscosity model. Indeed, taking ∆ in the range of medium-sized eddies

the turbulent structures can be considered as isotropic and in quasi-equilibrium. Thus, a similar

model than the Boussinesq one (1.44) can be used with a subgrid viscosity computed according

to a mixing length model. Several models are then available to Vnd the length to be used for the

subgrid viscosity, like the Smagorinsky model [131], or more complex ones [114]. Note that near-

wall turbulence also needs to be modelled in LES, which is done in a similar way as in the RANS

models on the Vltered velocity Veld.

1.3 Buoyancy modelling

Many industrial and environmental Wows involve Wuids which density varies as a function of the

temperature or of a scalar concentration like salinity. In many of these Wows the Mach number

is low (< 0.3) so that they are weakly-compressible (the variations of density due to velocity

variations can be neglected as a Vrst approximation). Such Wows are subject to buoyancy eUects

due to gravity, which may generate density currents and stratiVcations. Besides, in most cases

they are turbulent. It is then important for numerical models to represent the buoyancy eUects

in combination with turbulence eUects. There are important diUerences in terms of vocabulary

between Wows where the active scalar is the temperature and where it is a scalar concentration. In

order to avoid introducing too many notations, the framework of non-isothermal Wows was chosen

in this work, although the model also applies to other active scalars. In this section the diUusion

equation on the temperature is derived from the energy equation on the enthalpy and the boundary

conditions necessary for the closure of the system are described. Then, the eUects of buoyancy on

the equation of motion and on the k and ε equations are described.

1.3.1 DiUusion equation on the temperature

Let h be the enthalpy deVned in thermodynamics through h = e+ p
ρ , e being the internal energy

per unit mass. It is possible to show [151] through energy balances that h satisVes the following
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equation:

ρ
dh

dt
= −∇ · q +

dp

dt
+ τ : s (1.72)

where q is the heat Wux vector, given by the Fourier law of heat conduction:

q = −λT∇T (1.73)

T being the temperature and λT the thermal conductivity. On the other hand, τ was deVned in (1.3)

and s in (1.4), and τ : s represents the dissipation of mechanical energy. In thermodynamics the

variation of h is expressed as a function of the variations of temperature and of pressure through:

dh = CpdT +
1

ρ
(1− βT )dp (1.74)

where β is the thermal expansion coeXcient deVned by:

β = −1

ρ

∂ρ

∂T

∣∣∣∣
p

(1.75)

Substituting (1.74) into (1.72) then gives:

ρCp
dT

dt
= ∇ · (λT∇T ) + βT

dp

dt
+ τ : s (1.76)

For low-velocity Wows, the terms βT dp
dt and τ : s can be neglected before the others so that this

equation becomes:

ρCp
dT

dt
= ∇ · (λT∇T ) (1.77)

If λT is constant, which is generally valid when δρ
ρ << 1, this equation is written as:

dT

dt
= K∇2T (1.78)

with K = λT
ρCp

the thermal diUusivity. This equation of diUusion on the temperature must be

solved additionally to the Navier–Stokes equations. Note that dT
dt implicitly includes the Wuid

velocity since dT
dt = ∂T

∂t + v ·∇T , so that equation (1.78) is coupled to the momentum equation.

When a RANS approach is used, for an incompressible Wow the Reynolds-averaging of equa-

tion (1.77) yields:
dT

dt
= ∇ · (K∇T )−∇ · (v′T ′) (1.79)

where v′T ′ is the turbulent heat Wux. The same kind of model as for the Reynolds stresses (as well

as Wuxes of k and ε) can be used, namely a turbulent thermal diUusivity model, deVning:

v′T ′ = −KT∇T (1.80)
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thus assuming that the turbulent heat Wux is aligned with the mean temperature gradient. KT is

the turbulent thermal diUusivity. Then, the diUusion equation on the temperature reads:

dT

dt
= ∇ · (KE∇T ) (1.81)

where an eUective thermal diUusivity KE = K + KT was deVned. KT is usually taken as pro-

portional to the eddy viscosity, the ratio of the two being (by deVnition) the turbulent Prandlt

number:

PrT =
νT
KT

(1.82)

Although the latter is not constant in a Wow, neither universal, it is often taken as constant in CFD

codes for the sake of simplicity. The value used for PrT in this work is given in Table 1.1.

At solid walls the boundary conditions applied to the temperature in laminar mode can be of

Neumann type (e.g. adiabatic wall, imposed heat Wux) or Dirichlet type (e.g. isothermal wall). With

a k − ε model it is necessary to impose a wall function on the temperature since the temperature

gradients close to the walls are large in turbulent mode, which generates turbulence as in the case of

the velocity gradients. Considering a 1-D fully developed Wow Veld and thermal Veld in a channel,

the integration of the temperature equation along the normal to the wall, from the wall to the

centre of the channel reads:

−Qw = KE
dT

dy
(1.83)

where y is the normal distance to the wall and Qw the heat Wux applied at the wall. Integrating

once more yields: ∫ T

Tw

dT = −Qw
∫ y

0

dy

KE
(1.84)

where Tw is the wall temperature. DeVning the dimensionless variable:

T+ =
(Tw − T )u∗

Qw
(1.85)

equation (1.84) can be written as:

T+ =

∫ y+

0

νdy+

KE
(1.86)

where y+ is deVned by (1.58). The integration of this equation can be done assuming a decomposi-

tion of the near-wall region into a laminar layer where T+ varies linearly with y+ and a turbulent

layer where it follows a logarithmic law, as in [13]. It is also possible to use a three-layers model
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(see [29]) through: 

T+ = Pr y+ if y+ < y+
1

T+ = a2 −
PrT

2a1 (y+)2 if y+
1 ≤ y+ < y+

2

T+ =
PrT
κ

ln y+ + a3 if y+ > y+
2

(1.87)

where the following constants were deVned:

y+
1 =

( a4

Pr

)1/3

y+
2 =

√
a4κ

PrT

a1 =
PrT
a4

a2 = 15Pr2/3

a3 = 15Pr2/3 − PrT
2κ

(
1 + ln

a4κ

PrT

)
a4 = 1000

(1.88)

Recall that κ is deVned in the Table 1.1. Finally, Pr = ν
K is the molecular Prandlt number.

At the free-surface a homogeneous Neumann condition is imposed (no heat-Wux). On the other

hand, at inWow boundaries a Dirichlet condition is set on the temperature, whereas at outWow

boundaries a homogeneous Neumann condition is prescribed (like for k and ε).

1.3.2 Buoyancy eUects in the momentum equation

The density variations in buoyant Wows mainly aUect the Wow dynamics through the gravity term.

In a numerical model one possibility is to let the density vary according to equation (1.75). Then

the expression of the momentum equation is not modiVed but care must be taken when solving

the Navier–Stokes equations that the density is a varying quantity. With such a model a weakly-

compressible formalism must be adopted since the continuity equation in the one of (1.5). The

equation of state is then modiVed since the pressure depends on the temperature, besides the den-

sity.

An alternative approach is to apply the so-called Boussinesq approximation for Wows where δρρ <<

18, which enables the treatment of buoyancy aUecting the Wuid motion by means of the gravity

term only. Then, the Wuid density is considered as constant. This framework was the one chosen

8The upper limit for the Boussinesq approximation validity is considered in [151] to be δρ
ρ
< 0.1.
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in this work for the sake of simplicity. The Navier–Stokes equations then read:
∇ · v = 0

dv

dt
= −1

ρ
∇p+

1

ρ
∇ ·

(
µE
[
∇u+ (∇u)T

])
+
[
1− β(T − T0)

]
g

dr

dt
= v

(1.89)

where T0 is the mean temperature of the Wow. Recall u is now used instead of v in the viscous

force, as said in section 1.2.1 when presenting the turbulent wall boundary conditions.

In the RANS formalism, when deriving the Reynolds stress equation a new term G = −βg · v′T ′

appears, which thus also appears in the k equation. This term is modelled through equation (1.80)

which yields the following modiVed equations on k and ε:
dk

dt
= P + G− ε+

1

ρ
∇ · (µk∇k)

dε

dt
=
ε

k
(Cε1P + Cε3G− Cε2ε) +

1

ρ
∇ · (µε∇ε)

(1.90)

where G is now deVned through:

G = βKT∇T · g (1.91)

In the equation on ε, the constantCε3 was introduced in order to represent the fact that stable strat-

iVcations weaken turbulence. It is thus taken as equal to one if G is negative, and zero otherwise.

Note that the other constants of the k − ε model and the wall functions are considered as unaf-

fected by the temperature variations, which is questionable, even in the frame of the Boussinesq

approximation.

1.4 System of equations to be solved and associated set of boundary

conditions

In the subsequent Chapters the overbar referring to the mean Velds in turbulent mode is dropped for

the sake of simplicity. Nevertheless, the reader should bear in mind that all the resolved equations

refer to the mean Velds when the k − ε turbulence closure is used. The system of equations to be
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solved reads: 

∇ · v = 0

dv

dt
= −1

ρ
∇p̃+

1

ρ
∇ ·

(
µE
[
∇u+ ∇uT

])
+ [1− β(T − T0)] g

dr

dt
= v

dk

dt
= P + G− ε+

1

ρ
∇ · (µk∇k)

dε

dt
=
ε

k
(Cε1P + Cε3G− Cε2,Y ε) +

1

ρ
∇ · (µε∇ε)

dT

dt
= KE∇2T

(1.92)

Recall that v is the Lagrangian velocity used to move the particles while u is an Eulerian velocity

used to better represent the near-wall turbulence. The k− ε model constants are given in Table 1.1

(p.19) and the following variables were deVned:

p̃ = p+
2

3
ρk

µE = µ+ µT , µT = ρCµ
k2

ε
, µk = µ+

µT
σk
, µε = µ+

µT
σε

P = min
(√

CµkS, νTS
2
)
, S =

√
2S : S, S = 1

2

(
∇u+ ∇uT

)
KE = K +KT , KT =

µT
ρPrT

, G = βKT∇T · g

(1.93)

Besides, the Yap correction is applied:

Cε2,Y = Cε2 −max

[
0, 0.83

(
Lt
L
− 1

)(
Lt
L

)2
]

(1.94)

with Lt +
k3/2

ε
and L the characteristic length of the Wow. The set of boundary conditions

associated to these equations is summarised in Table 1.2. Recall that p∗ = p+ ρgz, y is the normal

distance to a wall and u∗ is a friction velocity computed through equation (1.61).
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Table 1.2: Summary of the boundary conditions imposed on the Velds at the solid walls ∂Ωw, the
free-surface ∂Ωη , the inWow ∂Ωi and outWow ∂Ωo boundaries.

HH
HHH

HHField

Location Walls
∂Ωw

Free-surface
∂Ωη

Inlet
∂Ωi

Outlet
∂Ωo

v v|∂Ωw
= vw

(
∂z

∂t
+ v · n

)
∂Ωη

= 0

τ · n|∂Ωη = 0

v|∂Ωi = vi
∂v

∂n

∣∣∣∣
∂Ωo

= 0

p
∂

∂n

(
v2

2
+
p∗

ρ

)
∂Ωw

=
(
ν∇2v

)
∂Ωw
· n p|∂Ωη = 0

∂p

∂n

∣∣∣∣
∂Ωi

= 0 p|∂Ωo = po

k ∇k · n|∂Ωw = 0
∂k

∂n

∣∣∣∣
∂Ωη

= 0 k|∂Ωi =
3

2
(uI)2

∣∣∣∣
∂Ωi

∂k

∂n

∣∣∣∣
∂Ωo

= 0

ε ∇ε · n|∂Ωw = − u3
∗

κy2

∣∣∣∣
∂Ωw

∂ε

∂n

∣∣∣∣
∂Ωη

= 0 ε|∂Ωi = Cµ
k3/2

l0

∣∣∣∣∣
∂Ωi

∂ε

∂n

∣∣∣∣
∂Ωo

= 0

T

T |∂Ωwor
∂T

∂n

∣∣∣∣
∂Ωw

imposed

(Tw imposed through (1.87)

in turbulent regime)

∂T

∂n

∣∣∣∣
∂Ωη

= 0 T |∂Ωi = Ti
∂T

∂n

∣∣∣∣
∂Ωo

= 0
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Chapter 2

Smoothed Particle Hydrodynamics:

Literature review

Ce Chapitre a pour objet une présentation de l’état de l’art concernant la méthode

Smoothed Particle Hydrodynamics (SPH), en particulier dans son application au sys-

tème d’équations auquel le Chapitre 1 a abouti, avec les conditions aux limites en-

visagées. Dans un premier temps, les possibilités en ce qui concerne la discrétisation

spatiale des équations sont détaillées. Ensuite, leur discrétisation temporelle est abor-

dée, avec la possibilité d’avoir des schémas quasi-incompressibles ou incompressibles.

Les techniques existantes pour la représentation des conditions aux limites sont alors

passées en revue, en ce qui concerne les parois solides, les surfaces libres et les fron-

tières ouvertes. Les modèles de turbulence et de Wottabilité ayant été développés pour

SPH sont ensuite présentés, avant de Vnir par une synthèse de ce qui a été fait en ter-

mes de parallélisme massif pour les algorithmes SPH depuis les années 2000. L’objectif

de ce Chapitre est de mettre en relief les techniques existantes ayant été utilisées dans

la construction du modèle développé dans ce travail, qui sera présenté au Chapitre

suivant.
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As mentioned in the Introduction, the Smoothed Particle Hydrodynamics (SPH) method is a La-

grangian method for Wuid Wow simulation. In SPH the continuous medium is discretised into a

set of particles, which are interpolation points to which physical quantities are associated (veloc-

ity, density, pressure, etc.). These variables fulVl a set of discrete diUerential equations, which are

solved using a time discretisation and deVning space-discretised diUerential operators. We will see

in section 2.2 that in SPH the particles interactions depend on their mutual distances and on the

physical quantities they carry. The computed velocity of the particles is then used to move them,

which corresponds to a new distribution of the interpolation points and to the convection of the

physical quantities. In this Chapter an overview of SPH is provided, mainly focused on its appli-

cation to the resolution of the Navier–Stokes equations. It is mainly based on the 2005 paper by

Monaghan [103] and on the book Fluid Mechanics and the SPH Method [147].

2.1 Introduction to SPH

The SPH method was created in the late 70’s in the Veld of Astrophysics by Lucy [80] and by

Monaghan and Gingold [102]. Their aim was to model non-axisymmetric problems in unbounded

media that may undergo very large stretching. Compared to classical Eulerian methods, in this

Veld SPH presents several advantages such as the possibility to model highly distorted media and

to avoid building a mesh for the entire computational domain, much of which being often empty

and devoid of Wuid. Moreover, the framework of SPH, which relies on particles interactions, is

well adapted to including complex physics quite easily. SPH made it possible to model violent phe-

nomena in which matter is highly distorted, possibly non-axisymmetric and involving non-linear

interactions between particles. Phenomena such as galaxies colliding, star formations, supernova

explosions, etc. were modelled with SPH. For example, Figure 2.1 shows pictures of an SPH sim-

ulation of merging galaxies [89]. In this Veld, ongoing research relative to SPH aims at modelling

phenomena such as planet formations, solar system formations from dust and gas clouds, or the

electromagnetic interactions between colliding celestial bodies.

Figure 2.1: SPH modelling of the fusion of two spiral galaxies presenting central black holes [89].

Besides astrophysics, the method was applied to solid mechanics to model shocks and fracture [57].

Such phenomena are key-issues in solid mechanics, that are met with in several industrial sectors.
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Figure 2.2: Snapshot of an SPH simulation of a 2D shock at very high-speed between an aluminium
circular projectile and a thin aluminium plate [17].

Figure 2.3: Complete modelling of a 2-jets horizontal Pelton turbine (colours represent the veloc-
ity) [84].

They involve very high distorsion of the continuous medium, which makes their modelling through

mesh-based methods problematic. Figure 2.2 shows an example of shock modelling with SPH [17].

In the Veld of Wuid mechanics, SPH is also a promising method. To this day, it has been used in

the industry to simulate complex free-surface Wows, most of time involving moving objects, where

Eulerian methods can struggle or perform poorly. For example, Figure 2.3 shows a snapshot of a

3-D simulation of the Wow around a Pelton turbine with SPH [84]. In Wuid dynamics, SPH was

mostly applied to the resolution of the Navier–Stokes equations, although some authors applied it

to the resolution of the shallow-water equations (see e.g. [144, 158]). In the following sections, a

literature review of SPH is provided regarding its application to the resolution of the Navier–Stokes

equations.
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2.2 Classical SPH interpolation and diUerential operators

2.2.1 SPH interpolation

2.2.1.1 Construction of the SPH interpolation

The SPH interpolation corresponds to an estimation of the density from an arbitrary distribution

of point mass particles, where a local sampling of the mass distribution is done (in a sphere centred

around the sampling point) and where the density estimate is smoothed. Using a local sampling

instead of a global one (e.g. a Vxed mesh as in the Marker-In-Cell [43] or Particle-In-Cell meth-

ods [50]) results in higher accuracy, while the smoothing reduces the noise in the density estima-

tion. This technique makes it possible to estimate the value of a Veld at any point of space, based

on the value of this Veld at neighbouring points, with a certain error (expressing the latter proved

complicated in general conVgurations, see section 2.2.1.3).

The SPH interpolation is thus built in two steps: a continuous one (the smoothing) and a discrete

one (the sampling). Let us Vrst consider the smoothing step. An exact estimation of an arbitrary

function at a point can be obtained through the convolution between this function and the delta

Dirac distribution. Let A be an arbitrary scalar Veld deVned on the domain Ω. The value of A at

position r is given by:

A(r) =

∫
Ω
A(r′)δ(r − r′)dr′ (2.1)

The delta Dirac distribution is deVned as:

δ :


D → R

φ→< δ, φ >=

∫ +∞

−∞
δ(x)φ(x)dx = φ(0)

(2.2)

and δ(r) = δ(x)δ(y)δ(z) where r = xex + yey + zez and ex, ey , ez are unit vectors in the x, y,

z directions respectively. More information about the theory of distributions can be found in [128].

The delta Dirac distribution gives an exact estimate of a Veld at position r, but it is not possible to

deVne it numerically. It is thus necessary to represent it through a function called herein a kernel

and denoted by w(r − r′). The latter has similar properties as the delta Dirac distribution but is

deVned on a non-null interval of space. As a consequence, the value of A at r is estimated through

a continuous interpolation that involves its values at surrounding points. This reads:

[A]c(r) =

∫
Ωr

A(r′)w(r − r′)dr′ (2.3)

The smoothing is achieved through the choice of a kernel function that decreases with the distance

to the interpolation point (usually a bell-shaped function). This choice will be discussed in sec-

tion 2.2.1.2. Before that, let us go on with the construction of the SPH interpolation, for which in a



2.2 CLASSICAL SPH INTERPOLATION AND DIFFERENTIAL OPERATORS 35

second step the continuous medium is discretised into particles. The latter are macroscopic points

of matter to which physical quantities are associated like a pressure, a temperature, a velocity, etc.

They also serve as moving interpolation points and follow the Wuid trajectories. The continuous

interpolation (2.3) is then approximated by a discrete sum over the particles b surrounding the

interpolation point placed at ra, a being a particle. The resulting discrete interpolation reads:

[A]d(ra) =
∑
b∈P

VbAbwab (2.4)

whereP is the set of all Wuid particles, the subscripts a,b represent the particles,Ab = A(rb) and Vb
is the volume of particle b. wab = w(ra−rb) was also deVned. The volume of a particle is deVned

as Vb = mb
ρb
. The value of the particle massmb is based on the initial volume V 0

b and the reference

density ρ0, and is computed as mb = V 0
b ρ0. In some works, the particles masses are considered

as time-variable, but in the present work they are considered as constant (except at inlet/outlet

particles in our model for in/outWow boundaries, as will be explained in the section 3.5). The initial

volume in dimension d is calculated through V 0
b = δrd where δr is the interparticle distance,

taking care that at the initial time the particles are placed on a Cartesian grid. Note that with this

deVnition of the particle volume and mass, a partition of unity is achieved at the beginning of the

simulation, but it is not conserved during the simulation where the fraction of total Wuid volume

carried by a particle b is not equal to mb
ρb
.

2.2.1.2 DeVnition of the kernel function

The kernel function is most of time radial (i.e. w(r − r′) = w(|r − r′|)) and its value decreases

as the distance between r and r′ gets bigger, so that the interpolation is smooth. It can be deVned

on a compact or an inVnite support, denoted by Ωr for a kernel centred on r. When the support

is compact its size is usually parametrised by the so-called smoothing length h. In practice inVnite

supports are not used since it would mean that each particle interacts with all the particles of the

domain, which is computationally too expensive. Thus, in this work only kernels with compact

supports are considered. The kernel function must be suXciently smooth (at least C1), so as to be

able to compute interpolations of the Velds derivatives, as we will see in Sections 2.2.2 and 2.2.3.

Besides, it must tend to the Dirac distribution (2.2) (in the sense of distributions) when its support

size tends to zero:

w(r − r′) h→0−−−→ δ(r − r′) (2.5)

Regarding the accuracy of the continuous SPH interpolation (2.3), a second order Taylor expansion

of A(r′) around r yields:

A(r′) = A(r)− ∂A

∂r
· (r − r′) +O(|r − r′|2) (2.6)
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Substituting this expression in (2.3) gives:

[A]c(r) = A(r, t)

∫
Ωr

wh(r − r′)dr′ − ∂A

∂r
·
∫

Ωr

wh(r − r′)(r − r′)dr′ +O(|r − r′|2) (2.7)

Thus it appears that to obtain a Vrst order consistent continuous SPH interpolation the two follow-

ing conditions must be satisVed: ∫
Ωr

w(r − r′)dr′ = 1 (2.8)∫
Ωr

w(r − r′)(r − r′)dr′ = 0 (2.9)

The kernel functions are then built so that they satisfy these conditions. Equation (2.8) is a normal-

ising condition easily obtained for unbounded Wows through a normalising coeXcient. For condi-

tion (2.9) to be satisVed the kernel function must be even and Ωr must be central-symmetrically

invariant, which is true for radial functions. In the case of a bounded domain, the latter condition

and (2.8) are not respected in the vicinity of the boundary, due to the kernel support truncation.

This observation led to the development of techniques for boundary conditions based on a wall

normalising correction of (2.3), which makes property (2.8) valid even close to the boundary (see

Section 2.4.2).

Coming back to the building of a kernel, the most intuitive choice is a Gaussian function, since

it satisVes (2.5). Though, it is also possible to build piecewise compactly-supported polynomials

having the required properties. The kernel function used in this work is the 5th order Wendland

kernel, a polynomial kernel deVned as: w(|r − r′|) =
αW,d
hd

fW (q)

q +
|r − r′|
h

(2.10)

where αW,d is a normalising constant, which depends on the problem dimension d. The function

fW is deVned as:

fW (q) =


(

1− q

2

)4
(1 + 2q) 0 ≤ q ≤ qmax

0 qmax < q
(2.11)

where qmax = 2 is the dimensionless size of the kernel support. Its Vrst derivative reads:

f ′W (q) =

 −5q
(

1− q

2

)3
0 ≤ q ≤ qmax

0 qmax < q
(2.12)

The normalising constants in 2-D and 3-D are:

αW,2 =
7

4π
, αW,3 =

21

16π
(2.13)



2.2 CLASSICAL SPH INTERPOLATION AND DIFFERENTIAL OPERATORS 37

Other kernels that are are widely used in the SPH literature are the B-splines. In particular the 5th

order B-spline is deVned as:

w(|r − r′|) =
α5,d

hd
f5(q) (2.14)

with:

f5(q) =


(3− q)5 − 6 (2− q)5 + 15 (1− q)5 0 ≤ q ≤ 1

(3− q)5 − 6 (2− q)5 1 ≤ q ≤ 2

(3− q)5 2 ≤ q ≤ 3

0 if 3 < q

(2.15)

and the normalising constant in 2-D and 3-D reads:

α5,2 =
7

478π
(2.16)

α5,3 =
1

120π
(2.17)

The derivative of f5(q) then reads:

f ′5(q) = −5


(3− q)4 − 6 (2− q)4 + 15 (1− q)4 0 ≤ q ≤ 1

(3− q)4 − 6 (2− q)4 1 ≤ q ≤ 2

(3− q)4 2 ≤ q ≤ 3

0 if 3 < q

(2.18)

Another kernel quite often used in the literature is the truncated Gaussian, deVned as:

w(|r − r′|) =
αG,d,hc
hd

(
e−q

2 − e−(hch )
2
)

(2.19)

where most of time hc = 3h and the normalising constant in 2-D and 3-D reads:

αG,2,3h =
1

π (1− 10e−9)
(2.20)

αG,3,3h =
1

π (
√
π − 36e−9)

(2.21)

Figure 2.4 shows plots of these kernels and their Vrst derivatives.

The ratio h
δr appears as important since it is linked to the number of neighbours taken into account

in the interpolation when the particles are arranged in a homogeneous and isotropic conVgura-

tion (recall that δr is the initial interparticular distance). In this work this ratio is Vxed during a

simulation, although it is possible to allow it to vary.
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Figure 2.4: Plot of the non-normalised 5th order Wendland, 5th order B-spline and truncated Gaus-
sian kernels (left) and their Vrst derivatives (right) in 2-D.

2.2.1.3 Accuracy of the SPH interpolation

The error made through the SPH interpolation of a VeldA can be written as the sum of a continuous

error Ec (the integration error) and a discrete error Ed, with:

Ec = [A]c(ra)−
∫

Ω
A(r′)δ(ra − r′)dr′ (2.22)

Ed = [A]d(ra)− [A]c(ra) (2.23)

where [A]c(ra) is the continuous interpolation ofA at ra, deVned through (2.3) and [A]d(ra) is the

discrete interpolation of A at ra, deVned through (2.4). We saw that provided the kernel function

fulVls properties (2.8) and (2.9), the integration errorEc is order h2. More precisely, following [147],

the integration error is expressed as:

Ec =
Cw,2
2d
∇2A(ra)h

2 +O(h4) (2.24)

where Cw,2 is a factor that depends on the kernel function:

Cw,2 = αw,dSd

∫ qmax

0
f(q)qn+1dq (2.25)

αw,d is the kernel normalising constant, f(q) the non-normalised kernel function (see section 2.2.1.2)

and Sd is the area of a d-sphere with unitary radius:

Sd =
2π

d
2

Γ(d2)
(2.26)

Γ being the Gamma Euler function (see [2] for its deVnition).
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However, estimating the discretisation error is very complex since the particles move and reach

disordered conVgurations. For random arrangements of particles it is possible to estimate the mean

error since the discrete interpolation operator is then similar to a Monte Carlo type statistical eval-

uation [114]. Though, the particles are not placed randomly: the disorder is lower and determined

by the discrete equations of motion. It is interesting to consider a simple case where the parti-

cles are placed on a Cartesian grid on an unbounded domain. It is then possible to evaluate the

discretisation error through [147]:

Ed = d A(ra)ŵ
(
K+
δr

)
− 1

2
∇2A(ra)h

2ŵ′′
(
K+
δr

)
+O(h3) (2.27)

where d is the geometrical dimension of the domain, ŵ is the Fourier transform of w and K+
δr =

2hπ
δr is a dimensionless wave number.

Thus, we see that (under the crude assumption of a Cartesian particle distribution) the total inter-

polation error varies in h2 but reaches a lower bound (d A(ra)ŵ
(
K+
δr

)
) for small enough values

of h (since h
δr is considered as constant in this work). It is also important to note that the Fourier

transform of the kernel function plays a crucial role in the error being made. Note that when the

kernel has a decreasing Fourier transform (which is the case for the Gaussian kernel but not for

the B-splines and the 5th order Wendland kernel), the error decreases when increasing h
δr . On

the other hand, at a Vxed ratio h
δr , decreasing h (and thus reVning the discretisation) reduces the

error until the lower bound of the later is reached. As a consequence, the convergence of the SPH

interpolation can only be achieved when h tends to 0 while h
δr tends towards inVnity.

A similar consistency analysis was done with an arbitrary distribution of points in 1-D by Quinlan

et al. [117], and later on in 3-D by Amicarelli et al. [5] (although both suppose that the particles

volumes form a partition of unity, which is not the case with the deVnition Vb = mb
ρb
). It comes

out that the accuracy of the SPH interpolation also depends on the particles distribution: the error

is lowest with a homogeneous particle distribution (e.g. Cartesian), provided the conditions (2.8)

and (2.9) are fulVlled.

2.2.2 First order diUerential operators in SPH

In order to solve the system (1.92) it is necessary to build discrete diUerential operators of Vrst

and second order. In this section the construction of SPH gradient and divergence operators is de-

tailed. It is based on the SPH interpolation deVned in the previous Section, considering unbounded

domains1.

1Actually they are used with classical treatments of the boundary conditions in SPH, as we will see in Section 2.4.
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2.2.2.1 SPH gradient

According to (2.3), the continuous interpolation of the gradient of an arbitrary C1 VeldA at position

r reads:

[∇A]c(r) =

∫
Ω∩Ωr

∂A(r′)

∂r′
w(r − r′)dr′ (2.28)

An integration by part of the right-hand side yields:

[∇A]c(r) = −
∫
∂Ω∩Ωr

A(r′)w(r − r′)n(r′)dΓ′ −
∫

Ω∩Ωr

A(r′)
∂w(r − r′)

∂r′
dr′ (2.29)

where ∂Ω is the domain boundary, n(r′) is the inward2 normal to the boundary at r′ and dΓ′ is

a surface element of ∂Ω ∩ Ωr . For an unbounded domain the Vrst integral cancels out3. Then,

equation (2.29) becomes:

[∇A]c(r) = −
∫

Ω∩Ωr

A(r′)
∂w(r − r′)

∂r′
dr′ (2.30)

Since the kernel is radial it is symmetric, its gradient is antisymmetric:

∂wh(r − r′)
∂r′

= −∂w(r − r′)
∂r

+ −∇w(r − r′) (2.31)

so that Vnally:

[∇A]c(r) =

∫
Ω∩Ωr

A(r′)∇w(r − r′)dr′ (2.32)

The discrete interpolation corresponding to this classical continuous interpolation of the SPH gra-

dient reads:

Ga{Ab} =
∑
b∈P

VbAb∇wab (2.33)

where P is the set of all Wuid particles and:

∇wab +
dw(rab)

dra
= −∇wba (2.34)

with rab = |ra − rb|. It is thus possible to compute an approximate value of the gradient of a

Veld from the Veld values at surrounding particles and the kernel gradient value, which is known.

However, we see that with (2.33) the SPH gradient of a constant is not equal to zero. Thus, other

expressions for the SPH gradient have been looked for. For example it can be deVned by applying

2Note that in this Chapter and the subsequent ones, we use the convention of inward normal vector n, contrary to
Chapter 1.

3With classical treatments of the boundary conditions in SPH, the boundary term is considered as equal to zero (see
Section 2.4).
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the same procedure as shown above to the right-hand side of the following equality:

∇A =
1

ρ
[∇(ρA)−A∇ρ] (2.35)

Then another expression for the SPH gradient is obtained:

G−a {Ab} = − 1

ρa

∑
b∈P

mbAab∇wab (2.36)

where Aab = Aa −Ab. It can also be applied to a vector Veld, which reads:

G−a {Ab} = − 1

ρa

∑
b∈P

mbAab ⊗∇wab (2.37)

These expressions are symmetric (see (2.34)) and thus equal to zero for a constant Veld (zero-order

consistency). In an SPH model it is used to compute velocity gradients for example. It ensures

that a constant velocity Veld does not lead to artiVcial turbulent kinetic energy production (see

equation (1.55)).

Since the gradient operator is also involved in the pressure forces in the Navier–Stokes equations,

it is important to have an expression for the SPH gradient which conserves linear momentum. The

gradient as deVned through (2.36) does not fulVl this requirement since it is symmetric, while the

action-reaction principle requires an antisymmetric gradient. To build such an SPH operator it is

possible to start from the right-hand side of the following equality:

∇A = ρ∇
(
A

ρ

)
+
A

ρ
∇ρ (2.38)

This leads to the following expression for the SPH gradient:

G+
a {Ab} = ρa

∑
b∈P

mb

(
Aa
ρ2
a

+
Ab
ρ2
b

)
∇wab (2.39)

This time the operator fulVls the action-reaction principle (in the absence of walls) when applied

to the pressure.

2.2.2.2 SPH divergence

The same reasoning can be applied to obtain an expression for the SPH divergence of a Veld.

Expressions similar to (2.33), (2.36) and (2.39) are then obtained. The SPH divergence derived from

the continuous interpolation of∇ ·A reads:

Da{Ab} =
∑
b∈P

VbAb ·∇wab (2.40)
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On the other hand, the symmetric form of the SPH divergence reads:

D−a {Ab} = − 1

ρa

∑
b∈P

mbAab ·∇wab (2.41)

whereas the antisymmetric expression reads:

D+
a {Ab} = ρa

∑
b∈P

Vb

(
Aa

ρ2
a

+
Ab

ρ2
b

)
· ∇wab (2.42)

The latter was not used in this work, except for the construction of a Laplacian operator (see

section 2.2.3). It has been used in few works only for the velocity divergence computation (see

e.g. [129]).

2.2.2.3 Properties of the Vrst order diUerential operators in SPH

It is interesting to note that the operatorsG+
a andD−a are skew-adjoint, like the continuous gradi-

ent and divergence operators under relevant boundary conditions (see section 1.1.2.1 of Chapter 1).

To prove that, let us deVne the following inner products on the vectorial spaces of {Ab} and {Ab}
(they are of Vnite dimension, proportional to the number of particles):

〈{Aa}, {Ba}〉 =
∑
a∈P

VaAa ·Ba ≈
∫

Ω
A(r) ·B(r)dΩ

({Aa}, {Ba}) =
∑
a∈P

VaAaBa ≈
∫

Ω
A(r)B(r)dΩ

(2.43)

(compare to (1.13)). Then the following relation is found [147]:

〈G+
a {Ab}, {Ba}〉 =

∑
a,b∈P

mbma

(
Aa
ρ2
a

+
Ab
ρ2
b

)
Ba ·∇wab

= −
∑
a,b∈P

mbma

(
Aa
ρ2
a

+
Ab
ρ2
b

)
Bb ·∇wab

=
1

2

∑
a,b∈P

mbma

(
Aa
ρ2
a

+
Ab
ρ2
b

)
Bab ·∇wab

(2.44)

(the second line holding due to the antisymmetry of the kernel gradient and the last line being an

average of the Vrst two ones). Concerning the inner product with the SPH divergence, the same
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reasoning yields :

({Aa}, D−a {Bb}) = −
∑
a,b∈P

mamb
Aa
ρ2
a

Bab ·∇wab

= −1

2

∑
a,b∈P

mamb

(
Aa
ρ2
a

+
Ab
ρ2
b

)
Bab ·∇wab

(2.45)

Thus, the following relation holds:

(
{Aa}, D−a {Bb}

)
= −〈G+

a {Ab}, {Ba}〉 (2.46)

which shows that the G+
a and D−a operators are skew-adjoint, as said earlier. This property will

prove important when making a choice for the SPH operators. Indeed, in WCSPH this property

yields energy conservation [115] while in ISPH it is useful for the accuracy of the projection method

(see sections 2.3.1.1 and 2.3.2). Note that the G−a and D+
a operators are also skew-adjoint, which

can be proved in the same way.

An issue with the classical SPH divergence and gradient operators is that they lack accuracy. The

antisymmetric forms of these operators (D+
a and G+

a ) are not even zero-order consistent. The

symmetric forms (D−a andG−a ) are zero-order consistent (as pointed out forG
−
a in section 2.2.2.1)

and can be made 1st order consistent through a renormalisation technique [20, 109, 145]. The idea

is to impose the gradient of the position to be equal to the identity tensor through a renormalisation

matrix:

−
∑
b∈P

Vbrab ⊗ (Ma∇wab) = I (2.47)

whereMa is a renormalisation matrix deVned through:

Ma =

−(∑
b∈P

Vbrab ⊗∇wab

)T−1

(2.48)

The modiVed Vrst-order consistent gradient operator thus reads:

G−,1a {Ab} = −
∑
b∈P

VbAabMa∇wab (2.49)

The same applies to the symmetric SPH divergence operator:

D−,1a {Ab} = − 1

ρa

∑
b∈P

mbAab ·Ma∇wab (2.50)



44 CHAPTER 2: SMOOTHED PARTICLE HYDRODYNAMICS: LITERATURE REVIEW

2.2.3 Second order diUerential operator in SPH

2.2.3.1 Construction of a Laplacian operator in SPH

An SPH form of the Laplacian operator is needed to solve system (1.92), in order to compute the

viscous term, the temperature, k and ε diUusion terms and to write the pressure Poisson equation

in case of an incompressible scheme. The Vrst possibility is to proceed as in Section 2.2.2 and to

write:

La{Ab} =
∑
b∈P

Ab∇2wab (2.51)

where La is the discrete SPH Laplacian. Though, this expression depends on the second derivative

of the kernel function, which makes it very sensitive to particle disorder [103]. Besides, the second

derivative of the kernel may change signs and this expression is not antisymmetric, which is not

representative of forces interactions (although it is possible to make it antisymmetric as we did

for G+
a ). A better formulation consists in writing the Laplacian as the SPH divergence of an SPH

gradient, as proposed by Cummins & Rudmann [19]. This is much more interesting since it makes

the Laplacian operator consistent with the divergence and gradient operators, as it is in a contin-

uous framework. Using such an operator in a projection method thus makes the projection exact

provided the gradient and divergence operators are skew-adjoint (see sections 1.1.2 and 2.2.2.3). Let

us consider the general case of the interpolation of ∇ · (B∇A), where B is a diUusion coeXcient

for the C2 Veld A. It is then possible to deVne the discrete SPH Laplacian as:

La{Bb, Ab} = Da{BbGb{Ac}} = −
∑
b∈P

VbBb

(∑
c∈P

VcAc∇wbc

)
·∇wab (2.52)

Recall that Da and Ga were deVned in equations (2.40) and (2.33). This expression involves a

two-fold summation over the neighbours, which is computationally very expensive. Besides, Cum-

mins & Rudmann [19] showed that using this form of the SPH Laplacian is not satisfactory (see

section 2.3.2.1).

A third way to write the discrete SPH Laplacian operator was proposed by Morris et al. [104]. Once

again the Laplacian is written as the divergence of a gradient, but this time while the divergence

is taken in an SPH form, the gradient is expressed through a Vnite diUerence approximation. Let

us consider a general case where a varying diUusion coeXcient B is applied. First, the Laplacian is

made symmetric through the equality:

∇ · (B∇A) = B∇A ·∇1 +∇ · (B∇A) (2.53)

which is the Vrst step to build an antisymmetric divergence operator. The continuous SPH interpo-
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lation of the right-hand side then reads, after integration by parts:

[∇ · (B∇A)]c (ra) =

∫
Ω∩Ωa

[
B(ra)∇A(ra) +B(r′)∇A(r′)

]
·∇w(ra − r′)dr′

−
∫
∂Ω∩Ωa

[
B(ra)∇A(ra) +B(r′)∇A(r′)

]
· n(r′)w(ra − r′)dΓ′

(2.54)

Note that the normal to the wall is oriented inwards (hence the minus in front of the boundary

integral). The boundary term vanishes in the absence of walls or with classical SPH boundary

conditions (see section 2.4.1). A Vnite diUerence approximation is then used to estimate the gradient

of the Veld in the volumic integral:

B(ra)∇A(ra) · (ra − r′) ' B(ra, r
′)(A(ra)−A(r′)) ' −B(r′)∇A(r′) · (r′ − ra) (2.55)

where B(ra, r
′) is a mean of the diUusion coeXcient between ra and r′. It may be chosen as an

arithmetic mean: B(ra, r
′) = B(ra)+B(r′)

2 or a harmonic mean: B(ra, r
′) = B(ra)B(r′)

B(ra)+B(r′) . In this

work an arithmetic mean was used. The continuous interpolation of the Laplacian then reads:

[∇ · (B∇A)]c (ra) = 2

∫
Ω∩Ωa

B(ra, r
′)
A(ra)−A(r′)

(ra − r′)2
(ra − r′) ·∇w(ra − r′)dr′ (2.56)

After approximating the volumic integral by the summation over the Wuid particles, the following

SPH Laplacian operator is obtained, which will be referred to as the Morris Laplacian in what

follows:

La{Bb, Ab} = 2
∑
b∈P

VbBab
Aab
r2
ab

rab ·∇wab (2.57)

Recall that Aab + Aa − Ab. In the case where B = 1 everywhere, this SPH Laplacian may be

simpliVed into:

La{Ab} = 2
∑
b∈P

Vb
Aab
r2
ab

rab ·∇wab (2.58)

Note also that the Morris Laplacian can be applied to vectors, which reads:

La{Bb,Ab} = 2
∑
b∈P

VbBab
Aab

r2
ab

rab ·∇wab (2.59)

Other SPH Laplacian operators exist, like the one proposed by Monaghan & Gingold [101], but

the one used in this work is the Morris Laplacian (2.57) since it was shown in [10] that it provides

better results when applied to the viscous forces on a Poiseuille channel Wow and on a lid-driven

cavity case for a range of Reynolds numbers. However, the Morris Laplacian operator was shown

in [16] to be inconsistent close to the free-surface, which suggests that another Laplacian operator

like the one proposed by Monaghan & Gingold may be more suited to free-surface Wows (although

this was not tested in the present thesis).
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2.2.3.2 Accuracy of the SPH Laplacian operator

The Morris Laplacian operator used herein is only zero-order consistent, and making it Vrst order

or second order consistent proved quite complex. Schwaiger [127] proposed a method to build

second-order consistent Laplacian operator, but this included an approximation. Later on, Fatehi

& Manzari [32] gave an exact formulation of this technique, which requires the calculation of a

fourth-order tensor. The Laplacian operator is then given by:

La{Ab} = M̂a :

[
2
∑
b∈P

Vbrab ⊗∇wab
(
Aab
r2
ab

− rab
r2
ab

·G−,1b {Ac}
)]

(2.60)

whereG−,1b is deVned through (2.49) and the fourth order symmetric tensor M̂a is given by:

M̂a :


∑
b∈P

Vb
rab
r2
ab

⊗ rab ⊗ rab ⊗∇wab

+

(∑
b∈P

Vb
r2
ab

rab ⊗ rab ⊗∇wab

)
·Ma ·

(∑
b∈P

Vbrab ⊗ rab ⊗∇wab

)
 = −I (2.61)

with Ma given by equation (2.48). The calculation of M̂a comes to solving a system of four

equations with four unknowns for each particle in 2-D4, and is thus computationally expensive.

2.3 Modelling incompressible Wows with SPH

2.3.1 Classical weakly-compressible approach

2.3.1.1 Formulation

Modelling incompressible Wows with SPH has classically been done through weakly compress-

ible SPH (WCSPH) models, as is thoroughly described in [103]. In WCSPH the Navier–Stokes

equations are solved in their weakly-compressible Lagrangian form (1.5) using the equation of

state (1.6) to close the system. The value of the numerical speed of sound c0 in (1.6) is set so that

the density variations are kept in the interval ±1%. For conVned Wows c0 is usually taken as

c0 = 10Umax, where Umax is the maximum velocity of the Wow. For free-surface Wows, c0 is taken

as c0 = 10 max(
√
gH,Umax), where H is a reference free-surface elevation.

It is interesting to derive the space-discretised inviscid WCSPH equations from the Lagrangian of a

4Indeed, I is the identity matrix so M̂a is a matrix too and the quantity in between brackets is a fourth order tensor.
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non-dissipative discrete system of particles [12, 115, 147]. The discrete Lagrangian L is deVned as:

L = T − V (2.62)

where T is the kinetic energy:

T =
∑
b∈P

1

2
mb|vb|2 (2.63)

and V is the total potential energy:

V =
∑
b∈P

mbeint,b(ρb, sb)−
∑
b∈P

mbg · rb (2.64)

where eint,b(ρb, sb) is the internal energy per unit mass of particle b, which depends on its density

ρb and on its entropy sb, the latter being a constant for a non-dissipative isothermal system. The

discrete (Euler-Lagrange) equation of motion for each particle a is then given by:

∀a ∈ P, d

dt

(
∂L

∂va

)
=

∂L

∂ra
(2.65)

DiUerentiating (2.63) and (2.64) gives the partial derivatives of the Lagrangian. Its partial derivative

with respect to the velocity is equal to the linear momentum: ∂L
∂va

= mava, while its partial

derivative with respect to the position can be written as:

∂L

∂ra
= −

∑
b∈P

mb
pb
ρ2
b

∂ρb
∂ra

+mag (2.66)

since the following relation holds:

∂eint,b
∂ra

=
∂eint,b
∂ρb

∂ρb
∂ra

=
pb
ρ2
b

∂ρb
∂ra

(2.67)

It is then necessary to estimate the quantity
∂ρb
∂ra

, which can be done starting from the discrete SPH

interpolation (2.4) applied to the density:

ρb =
∑
c∈P

mcwbc (2.68)

DiUerentiating this expression with respect to ra and considering a constant smoothing length for

the kernel gives:
∂ρb
∂ra

=
∑
c∈P

mc(δba − δca)
∂wbc
∂ra

(2.69)

where δba is the Kronecker symbol equal to one when b = a and zero otherwise. Writing equa-

tion (2.65) with these relations yields the following discrete equations of motion for all particles
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a:
dva
dt

= −
∑
b∈P

mb

(
pa
ρ2
a

+
pb
ρ2
b

)
∇wab + g

= − 1

ρa
G+
a {pb}+ g

(2.70)

whereG+
a is deVned through (2.39). This is a discretised form of the inviscid momentum equation

in (1.5) (the viscous forces will be dealt with in section 2.7.3). It can be shown (see [12]) that

relation (2.70) is also obtained when discretising the continuity equation (Vrst line of (1.5)) through:

dρa
dt

= −ρaD−a {vb} (2.71)

which is a time-derivative of (2.68):

dρa
dt

=
∑
b∈P

mb
dwab
dt

=
∑
b∈P

mbvab ·∇wab = −ρaD−a {vb} (2.72)

The internal force applied on a by the rest of the Wuid is obtained from (2.66) and reads:

F int
a =

∑
b∈P

mb
pb
ρ2
b

∂ρb
∂ra

(2.73)

The total virtual work of internal forces then reads:∑
a∈P

F int
a · dra =

∑
b∈P

mbpb
ρ2
b

∑
a∈P

∂ρb
∂ra
· dra =

∑
b∈P

mbpb
ρ2
b

dρb

= −
∑
b∈P

VbpbD
−
b {drc}

=
∑
a∈P

VaG
+
a {pb} · dra

(2.74)

Relation (2.71) was used to obtain the second line, while the last line stems for the fact that G+
a

andD−a are skew-adjoint (see equation (2.46)). Since (2.74) holds for arbitrary {dra}, the resulting
discrete momentum equation is thus (2.70) as before.

As a conclusion, the discrete operatorsG+
a andD−a are variationally consistent. As a consequence,

they ensure energy conservation of an isolated non-dissipative system. This was shown in [92, 147]

through the following reasoning: the energy of the system E for such a system is deVned as:

E = T + V (2.75)

so that:

E =
∑
a∈P

1

2
ma|va|2 −

∑
a∈P

mag · ra +
∑
a∈P

maeint,a(ρa) (2.76)
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The time-derivative of the Vrst two terms (T + Egravity) then reads:

d(T + Egravity)

dt
=
∑
a∈P

mava ·
(
dva
dt

+ g

)
= −

∑
a∈P

Vava ·G+
a {pb}

(2.77)

the second line corresponding to the deVnition of the discrete momentum equation (2.70). On the

other hand, the time-derivative of the internal energy Eint reads:

dEint
dt

=
∑
a∈P

ma

(
∂eint
∂ρ

)
a

dρa
dt

=
∑
a∈P

mapa
ρ2
a

dρa
dt

= −
∑
a∈P

VapaD
−
a {vb}

=
∑
a∈P

Vava ·G+
a {pb}

(2.78)

where the second line is obtained from equation (2.67), the third line from the discrete continuity

equation (2.71), and the fourth line from the skew-adjointness of the G+
a and D−a operators. This

shows that the time-derivative of the total energy (i.e. (2.77) + (2.78)) is equal to zero, so energy is

conserved in the absence of viscous forces.

On the other hand, the conservation of angular momentum is ensured for an isolated system as long

as the internal forces between particles are oriented along rab, which is true here since ∇wab is

aligned with rab [147]. Besides, the linear momentum is conserved when using the antisymmetric

operatorG+
a , since in that case the action-reaction principle is fulVlled.

However, until now the time has been considered as continuous, while its discretisation may have

eUects on the conservation properties. In what follows time-stepping schemes are presented that

ensure conservation of the required quantities.

2.3.1.2 Time-discretisation

Many methods can be used for the time discretisation of (1.5), but not all of them provide adequate

conservation and stability properties. It is possible to show that a time-scheme that derives from a

Lagrangian conserves total momentum. Let us consider the following Vrst-order approximation of

the time derivative of the position:
rna − rn−1

a

δt
= vna (2.79)
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At time n, the action associated to the discrete Lagrangian5 deVned in the previous section (equa-

tions (2.62)-(2.64)) reads:

S{rnb } =
∑
b,n

Lb
(
rnb , r

n+1
b

)
δt (2.80)

with:

∀(b, n) Lb
(
rnb , r

n+1
b

)
=

1

2δt2
mb

∣∣rnb − rn−1
b

∣∣2 − Vb{rnc } (2.81)

where the particle potential energy Vb{rnc } is a function of the discrete set of particles positions

since the internal energy depends on the density:

Vb{rnc } = mb eint,b(ρb = f{rnc })−mbg · rnb (2.82)

The variation of S due to any inVnitesimal variation δrnb should be equal to zero in a non-

dissipative system, which yields the relation6:

∀(b,m),
∂Lb
∂x1

(
rnb , r

n−1
b

)
+
∂Lb
∂x2

(
rn+1
b , rnb

)
= 0 (2.83)

the notations
∂

∂x1
and

∂

∂x2
referring to the partial derivatives of a function with respect to its

Vrst and second variable respectively. Given the deVnition (2.81) of Lb, this yields the following

relation:

∀(a, n), ma

(
vn+1
a − vna

)
= F n

a δt (2.84)

where F n
a is the total force applied on particle a at time n. From (2.79), (2.84) and (2.71) a time-

scheme is obtained that allows to conserve total momentum and which reads:

vn+1
a − vna
δt

= F n
a

rn+1
a − rna
δt

= vn+1
a

ρn+1
a − ρna
δt

= −ρnaD−a {vn+1
b }

(2.85)

where an implicit form of the continuity equation was chosen. The time-scheme used in the present

WCSPH simulations (Chapter 4) is this Vrst order sequential scheme. The fact that it derives from

an action principle gives to this scheme the same properties as the Hamilton equations and is thus

called symplectic [87]. It was chosen due to its conservation properties and its simplicity.

Note that starting from an explicit Vrst-order approximation of the time derivative of the position

(replacing vn by vn−1 in (2.79)) yields a fully implicit time-scheme. The fully explicit time-scheme

(used for instance in [21]) where all the variables at time n + 1 are computed from the values at

time n does not derive from a Lagrangian and thus does not ensure total energy conservation (even

5The action S is equal to the integration in time of the Lagrangian.
6This relation constitutes the discrete Lagrange equations [116].
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with the choice of diUerential operators mentioned in the previous section) [147].

Using a higher order approximation of the time derivative of the position yields symplectic higher

order time-schemes. The leap-frog time-scheme is often used in the SPH literature [103]: it is a

second order symplectic time-scheme and is built as:

v
n+1/2
a − vna
δt/2

= F n
a

rn+1
a − rna
δt

= v
n+1/2
a

ρn+1
a =

∑
b∈P

mbw
n+1
ab

vn+1
a − vn+1/2

a

δt/2
= F n+1

a

(2.86)

where the density interpolation (2.68) has been used in place of (2.71). Using such a scheme may

improve the WCSPH results compared to the results presented in Chapter 4, although comparisons

between a leap-frog and ISPH are not provided in this work. Note that there exists other time-

stepping schemes that do not derive from a variational principle. In particular, non-symplectic

Runge-Kutta schemes of 3rd or 4th order are often used in the literature (see e.g. [108]).

2.3.1.3 Numerical stability

Restrictions on the time-step size must be enforced in order to ensure numerical stability. Due

to the complexity of theoretical stability analysis in SPH, empirical conditions on the time-step

size are usually applied, inspired from the mesh-based methods [104]. The Vrst one is the Courant-

Friedrichs-Levy (CFL) condition, which ensures that the time-step remains lower than the maximal

convection time on the smoothing length h during the simulation. Moreover, a condition relative

to the viscous forces must be enforced. The time-step is then set through the following relation:

δt = min
(
CCFL

h

c0
, Cvisq

h2

ν

)
(2.87)

Recall that c0 is the numerical speed of sound. The coeXcients CCFL = 0.4 and Cvisq = 0.125

were determined based on numerical studies. The time-step size was set through equation (2.131)

in this work, though it is interesting to bear in mind that a theoretical stability analysis of the

WCSPH equations can be performed in arbitrary space dimension for unbounded Wows [149].

The Neumann approach can be applied to the SPH equations considering the continuous SPH

interpolants for the analysis, which yields a condition on the time-step size. This will be quickly

exposed in what follows, more details being available in [149]. Let us consider the Vrst order

symplectic scheme (2.85) presented in the previous section. We consider a reference state where

v = cst and ρ = ρ0, then search for small arbitrary perturbations δr, δρ and δv to the Velds. By
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linearising (2.85) it is possible to show that the latter obeys the following set of equations:

δvn+1
a − δvna
δt

= − c
2
0

ρ0

∫
Ω

[
δρna + δρ(r′)n

]
∇w(ra − r′)dr′

+2ν

∫
Ω

[
δvna + δv(r′)n

] ra − r′
|ra − r′|

·∇w(ra − r′)dr′

δrn+1
a − δrna
δt

= δvn+1
a

δρn+1
a − δρna
δt

= ρ0

∫
Ω

[
δvn+1

a + δv(r′)n+1
]
∇w(ra − r′)dr′

(2.88)

(see the Appendix A in [149] for more details about the calculations). Let us consider the following

space-periodic Wuctuations:

δvna = c0V (tn)exp (−iK · ra)

δrna = σR(tn)exp (−iK · ra)

δρna = ρ0R(tn)exp (−iK · ra)

(2.89)

withK a wavevector and σ the kernel standard deviation, deVned by:

σ2 =
1

d

∫
Ω
r̃2w(r̃)dr̃ (2.90)

Substituting the Wuctuations in (2.88) with (2.89) and transforming the kernel gradient integrals

into Fourier transforms of the kernel yields, after simpliVcations:

V (tn+1)− V (tn)

δt
=
ic0

σ
ŵ(K∗)R(tn)K∗ − ν

σ2
F2(K∗)V (tn)

R(tn+1)−R(tn)

δt
=
c0

σ
V (tn+1)

R(tn+1)− ρa(tn)

δt
=
ic0

σ
ŵ(K∗)K∗ ·U(tn+1)

(2.91)

where ŵ is the Fourier transform of the kernel function, K∗ + σK is the dimensionless wave

vector andK∗ = |K∗| is the dimensionless wave number. F2 is a function deVned by:

F2(K∗) + 2σ2

∫
Ω

[exp(−iK · r̃ − 1]
r̃

r̃
·∇w(r̃)dr̃ (2.92)

Now, one may search for a wave-like solution where:

V (t) = V0 exp(iωt)

R(t) = R0 exp(iωt)

R(t) = R0 exp(iωt)

(2.93)
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with ω a complex angular frequency. (2.91) then reads:

χ− 1

δt
V0 =

ic0

σ
ŵ(K∗)R0K

∗ − ν

σ2
F2(K∗)V0

χ− 1

δt
R0 = χ

c0

σ
V0

χ− 1

δt
R0 = χ

ic0

σ
ŵ(K∗)K∗ ·U0

(2.94)

where χ + exp(iωδt) is the wave ampliVcation factor: the numerical wave is multiplied by the

complex number χ at each iteration, so that a stability condition is |χ| ≤ 1. From (2.94) the

following equation is found:

[χ− 1 + CνF2(K∗)](χ− 1)K∗
2
V0 = −χC2F1(K∗)(K∗ ⊗K∗)V0 (2.95)

with F1(K∗) + [K∗ŵ(K∗)]2 and:

C +
c0δt

σ

Cν +
νδt

σ2
=

C

Re0

(2.96)

Re0 being a numerical Reynolds number deVned through Re0 +
c0σ

ν
. The eigenvalues ofK∗ ⊗

K∗ are 0 andK∗
2
. The eigenvalueK∗

2
yields the relation:

χ2 −
[
2− C2F1(K∗)− CνF2(K∗)

]
χ+ 1− CνF2(K∗) = 0 (2.97)

The roots χ of this second order polynomial should have a modulus lower than one, which yields

the condition:

C ≤

√
2 min
K∗

2− CνF2(K∗)

F1(K∗)
(2.98)

The functions F1 and F2 only depend on the kernel function and can be analytically calculated, so

that this condition deVnes a stability domain for C and Cν .

On the other hand, the zero eigenvalue of K∗ ⊗ K∗ yields a condition that is always veriVed

provided (2.98) is satisVed. Plotting the stability domain in the (C,Cν)-plane for various kernels

(among the classical SPH kernels: Gaussian, B-splines, Wendland kernels) showed that the stability

domain is almost independent of the kernel choice for a given space discretisation σ. It was also

shown in [149] that computing the density through an SPH interpolation (2.68) or from an SPH

divergence of the velocity (2.71) does not aUect the stability domain, neither the use of diUerent

SPH divergence and gradient operators in the SPH equations. Though, it was shown that the use

of a Morris Laplacian (2.57) yields a larger stability domain than the one proposed by Monaghan &

Gingold [101] (see end of section 2.2.3), especially for small values of Re0.

Changing the time integration scheme changes the condition (2.98) and it was shown in [149] that
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this has a great inWuence on the stability domain. Using a fully explicit scheme as in [21] yields a

much reduced stability domain compared to the Vrst and second order symplectic schemes (2.85)

and (2.86), especially at high Reynolds numbers: the stability domain was shown to tend to zero

when increasing the Reynolds number. This is an additional reason why the use of a fully explicit

scheme is not recommended, besides the fact that is is not symplectic. On the other hand, numerical

experiments seem to show that it is not possible to perform simulations at arbitrarily large Reynolds

numbers with the Vrst order symplectic scheme used in this work (2.85). The only scheme, among

those tested in [149], which made it possible to perform stable simulations with zero viscosity, is

the second order symplectic leap-frog scheme (2.86).

The formula (2.98) was proved to work perfectly for unbounded Wows [149]. However, it does not

hold anymore in the presence of walls or of a free-surface, neither in case of unsteady Wows. This

is why the time-step criterion given by equation (2.131) is usually used for SPH simulations, and

was used in this work. Nevertheless, the abovementioned analysis helps understanding how the

numerical stability acts in SPH.

2.3.1.4 Main drawbacks of WCSPH

The classical WCSPH method yields noisy pressure Velds, due to the fact that the pressure is a

function of a high power of the density through the equation of state. Small errors on the density

then yield very large errors on the pressure. This issue led to the development of the incompressible

schemes, which will be described in the next section. Though, many works have aimed at smooth-

ing the pressure Veld in WCSPH, starting from the introduction of an artiVcial viscosity [102]. Most

techniques for pressure smoothing now apply a diUusion term in the density computation, which

can take diUerent forms. Ferrari et al. [36] introduced such a diUusion term based on the theory of

Riemann solvers introduced by Vila for SPH [145]. They used an approximate Riemann solver to

obtain the following continuity equation:

dρa
dt

=
∑
b∈P

mb

(
vab + dab

rab
rab

ρab
ρa

)
·∇wab (2.99)

with dab = max (da, db) where:

da = c0

√(
ρa
ρ0

)ξ−1

(2.100)

The Vrst term in (2.99) is the traditional continuity equation in SPH (2.71), while the second term

corresponds to a density diUusion, which will be referred to as the Ferrari density diUusion in

what follows. In [95], a very similar formulation was used based on the idea that the numerical

Wuctuations tend to turn a laminar Wow into a “turbulent” Wow. Thus, assuming the numerical

noise is isotropic it is possible to recover a laminar Wow by modelling the numerical noise based on
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the concept of eddy diUusivity. This led to the following continuity equation:

dρa
dt

=
∑
b∈P

mb

(
vab + (Ka +Kb)

rab
rab

ρab
ρa

)
·∇wab (2.101)

whereK is a diUusivity computed through a mixing length model with Lm ∼ L
10 andMa = 0.1:

K =
L

δr

c0δr

103
(2.102)

This formulation was shown to dissipate less energy than the one proposed by Ferrari et al.. Many

other formulations were introduced in order to smooth the pressure Veld in WCSPH, an example

is the δ-SPH model [85]. A review of the three most used density corrections was provided by

Antuono et al. [7]. Note that the Ferrari density correction was shown in [6] to be inconsistent

at the free-surface. The diUusion technique used in the simulations presented in Chapter 4 is the

one proposed by Ferrari et al. (2.99), but in the second term under the sum ρab is replaced by

ρab − ρ0g
c20

(zb − za). This was shown to signiVcantly improve the results on free-surface Wows

in [92].

Another issue with the WCSPH schemes on conVned Wows is that the use of a background pressure

is necessary in order to ensure the stability of the simulations. A common way of imposing a

background pressure is to modify the equation of state (1.6) so as to have:

p =
ρ0c

2
0

ξ

((
ρ

ρ0

)ξ
− 0.5

)
(2.103)

In this way the background pressure is equal to 0.5
ρ0c20
ξ . Without the use of a background pressure,

voids tend to form in the Wow, making the simulations unstable. It was observed that the choice of

its value inWuences the results in a signiVcant way: larger values of the background pressure tend

to reduce the accuracy in the Velds prediction. There is thus a balance to Vnd so that the simulation

is stable and the results as accurate as possible. Besides, the background pressure was shown to

inWuence the stability domain found in the previous section [149]: larger values of the background

pressure tend to reduce the stability domain.

2.3.2 Truly incompressible SPH

While the previous section focused on the resolution of the weakly-compressible Navier–Stokes

equations (1.5), in this section SPH models for solving the incompressible Navier–Stokes equa-

tions (1.7) through projection methods are considered. This kind of SPH model is called in-

compressible SPH (ISPH). Several projection methods were proposed in SPH, all of them being

pressure-correction schemes. In SPH the incompressibility can be seen as the nullity of the velocity

divergence or as the constancy of the density Veld when estimated through the SPH interpolation.
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This led to two methods corresponding to a Chorin and Temam projection scheme but with diUer-

ent pressure Poisson equations, depending on whether the incompressibility constraint is imposed

on the velocity or on the interpolated density. A third method was introduced afterwards that

combines these two schemes. On the other hand, a rotational pressure-correction scheme was also

proposed for SPH. These methods are detailed in what follows.

2.3.2.1 The Chorin projection method in SPH

Classical Chorin projection method in SPH:

The Vrst adaptation of a projection scheme to SPH was proposed by Cummins & Rudman in

1999 [19]. It corresponds to the Chorin and Temam algorithm presented in section 1.1.2.2, with an

explicit viscous term in the Vrst substep. Later on, this algorithm was improved by Lee et al. [72]

and comparisons were done with WCSPH methods, showing that ISPH provides better pressure

Velds than WCSPH. Based on the continuous formulation of the projection method proposed by

Chorin and Temam (equations (1.19) to (1.21)), a laminar SPH projection method can be written as:

ṽn+1
a − vna
δt

= La{ν,vnb }+ g

La{pn+1
b } =

ρ

δt
D−a {ṽn+1

b }

vn+1
a − ṽn+1

a

δt
= −1

ρ
G+
a {pn+1

b }

(2.104)

Recall that the discrete operators are deVned by (2.39), (2.41), (2.58) and (2.59). The particle sub-

scripts were dropped for the density since in this scheme it is considered as invariant. The position

of the particles at the next time-step is then calculated through a second order time marching

scheme:

rn+1
a = rna + δt

(
vn+1
a + vna

2

)
(2.105)

The choice of skew-adjoint gradient and divergence operators in (2.104) is important (see sec-

tion 2.2.2.3), which is why theG+
a and D−a operators are used. This was also the case in the ISPH

model tested by Lee et al. [72]. The choice of the SPH Laplacian operator is also crucial. Cum-

mins & Rudman tested an exact operator (La = Da{Gb}) implying a double summation over

the neighbours (equation (2.52)). This led to spurious checker-board eUects due to the collocation

of the pressure and velocity computations and could hamper the linear solver convergence (see

section 2.3.2.3). The same problem is encountered with mesh-based collocated methods [123, 126].

Thus, an approximate projection is performed through the use of the Morris Laplacian (2.58).

It was shown that this method provides accurate and smooth pressure Velds, but it presents insta-

bilities since it leads to highly anisotropic and inhomogeneous particles arrangements which Vnally

causes blowing-up. An example of this phenomenon is provided Figure 2.5 on the Taylor-Green
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Figure 2.5: An example of highly anisotropic and inhomogeneous particles arrangement on the
Taylor-Green vortices case with a classical Chorin projection method adapted to SPH [76].

vortices case [76]. This kind of instability can be avoided through the use of the constant density

variant of the ISPH method [129]. However, stabilising methods for this classical Chorin scheme

were also introduced. Xu et al. [155] proposed a particle shift based on a Fick law of diUusion

so as to enforce a homogeneous arrangement of particles in the medium. This method was later

improved by Lind et al. [76] who also proposed a treatment for free-surface Wows. The particles

positions are slightly shifted of δra at each time-step with:

δra = −Cshifth2∇Ca (2.106)

where∇Ca is a concentration gradient computed as:

∇Ca ≈ Ga{1} =
∑
b∈P

Vb∇wab (2.107)

In [76] the coeXcient Cshift was taken equal to 0.5 with a 5th order B-spline kernel function. Lind

et al. observed that with the kernel they used (a 5th order B-spline), deVning the concentration

gradient through (2.107) was not suXcient to avoid particle clustering. This is why they modiVed

the concentration gradient based on the work by Monaghan [100] that aimed at reducing the so-

called tensile instability in SPH. Their concentration gradient is then computed through:

∇Ca =
∑
b∈P

Vb (1 + fab)∇wab (2.108)

where:

fab = R

(
wab
w(δr)

)n
(2.109)

It was shown in [25] that the 5th order Wendland kernel avoids particle clustering so that this
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modiVcation is not necessary with that kernel. On the other hand, close to the free-surface applying

the particle shift would lead to a movement of the particles towards the empty space across it. Lind

et al. then proposed to compute the diUusion through:

δr = −Cshifth2

(
∂C

∂s
s+ α

(
∂C

∂n
− β

)
n

)
(2.110)

instead of (2.106), where s and n are local tangent and normal and unit vectors to the free-surface.

β is a reference value for the concentration gradient at the free-surface and α ∈ [0, 1] controls the

diUusion amplitude along the normal to the free-surface. In their work it was set to 0 so as to have

no normal component of the position shift close to the free-surface. Note that the concentration

gradient (2.107) can be used to approximate n = ∇C
‖∇C‖ , so that ∂C∂s = 0. In this case the free-

surface adaptation of the shift proposed by Lind et al. is thus equivalent to switching oU the shift

close to the free-surface. Once the particles have been moved by δr, the corresponding convection

term must be added to the velocity as well as all relevant quantities like the temperature, k and ε.

For example, for the velocity this reads:

vn+1 ← vn+1 + ∇vn+1 · δr +O(δr2) (2.111)

for each a, where∇vn+1 is computed through a symmetric SPH gradient (2.37).

Finally, it should be noted that for all the ISPH methods based on this algorithm [19, 72, 76, 155]

the pressure wall boundary condition was a homogeneous Neumann. Since these methods were

based on ghost or dummy particles technique, this condition was not imposed exactly, but through

a mirroring of the pressure Veld (see section 2.4). As explained in section 1.1.2, this kind of bound-

ary conditions leads to a numerical boundary layer that prevents the scheme from reaching the

expected accuracy.

Constant-density variant of the Chorin projection scheme:

This method was proposed by Shao & Lo in 2003 for SPH [129] and consists in computing the den-

sity Veld through an SPH interpolation and ensuring that it remains constant. To our knowledge,

this algorithm was Vrst proposed for MPS (Moving Particle Semi-Implicit method), which is very

similar to SPH (see e.g. Koshizura et al. [64], Souto-Iglesias et al. [132]). The estimated velocity is

computed as:
ṽn+1
a − vna
δt

= La{ν,vnb }+ g (2.112)

This predicted velocity Veld is then used to update the particles positions:

r̃n+1
a = rna + δtṽn+1

a (2.113)

An intermediate density Veld ρ̃n+1
a is computed through the classical SPH interpolation of the
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density:

ρ̃n+1
a =

∑
b∈P

mbwab (2.114)

Supposing that the estimated density satisVes the continuity equation, we have:

ρ̃a
n+1 − ρna
δt

= −ρnaD+
a {ṽn+1

b } (2.115)

The density-invariance gives ρna = ρ where ρ is the reference density, and substituting (2.115)

in (1.21), a new Poisson equation is obtained:

La

{
1

ρ̃n+1
b

, pn+1
b

}
=
ρ− ρ̃n+1

a

ρδt2
(2.116)

Once again a homogeneous Neumann condition is imposed on the pressure at the solid walls. The

velocity Veld is then corrected through the second part of the momentum equation:

vn+1
a − ṽn+1

a

δt
= − 1

ρ̃n+1
a

G+
a {pn+1

b } (2.117)

Finally the new position of the particles is computed through the same second order time marching

scheme as previously:

rn+1
a = rna + δt

(
vn+1
a + vna

2

)
(2.118)

Note that in the algorithm proposed by Shao & Lo [129] the 1st order diUerential operators were

both antisymmetric and thus not skew-adjoint (D+
a and G+

a ). Moreover, these operators are not

zero order consistent. It was shown that this method does not present the instability problem of

the divergence-free projection method, but it provides noisier pressure Velds, which makes it less

attractive compared to WCSPH methods [155].

Divergence-free and constant density variant of the Chorin projection scheme:

A third Chorin-type projection method for SPH was proposed bu Hu & Adams [52], which consists

of a combination of the previous two methods. The principle is to split the time-step in two and

to solve a Poisson equation for each half, thus imposing both a divergence-free velocity Veld and a

constant density. Though, it does not prove necessary to solve the two Poisson equations at each

time-step. To determine if such a process is necessary, at each time-step an estimation of the density

is computed through an SPH interpolation for each particle. If the relative diUerence between this

computed density and the reference density exceeds a user-deVned criterion (for example 1%), the

two Poisson equations are solved.

The Vrst step is to compute a predicted velocity for the Vrst half of the time-step and to update the



60 CHAPTER 2: SMOOTHED PARTICLE HYDRODYNAMICS: LITERATURE REVIEW

positions:

ṽ
n+ 1

2
a = vna +

δt

2
(La{ν,vnb }+ g)

r̃n+1
a = rna + ṽ

n+ 1
2

a δt

(2.119)

Then, the intermediate density is computed through:

ρ̃n+1
a =

∑
b∈P

mbwab (2.120)

and the density-invariant Poisson equation is solved:

La

{
1

ρ̃n+1
b

, pn+1
b

}
= 2

ρ− ρ̃n+1
a

ρδt2
(2.121)

After that, the velocity is corrected through:

vn+1/2
a = ṽn+1/2

a − δt

2ρ
G+
a {p

n+1/2
b } (2.122)

and the position is updated:

rn+1
a = r̃n+1

a + v
n+ 1

2
a δt (2.123)

This ends the Vrst half of the time-step, followed by a divergence-free projection algorithm for the

second half with Vrst a velocity prediction:

ṽn+1
a = ṽ

n+ 1
2

a +
δt

2
(La{ν,vnb }+ g) (2.124)

Then the second pressure Poisson equation is solved:

La{pn+1
b } =

2ρ

δt
D−a {ṽn+1

b } (2.125)

and the velocity is corrected:

vn+1
a = ṽn+1

a − δt

2ρ
G+
a {pn+1

b } (2.126)

In case the relative diUerence between the interpolated density (2.120) and the reference density

ρ is low enough at the beginning of the time-step, only the divergence-free projection method

is applied. It was shown that this method provides smooth and accurate pressure Velds and is

stable, but the computational cost is relatively high due to the resolution of two pressure Poisson

equations. This method allows to reorder the particles positions in a more consistent way than with

the particle shift proposed in [76, 155]. As before, a homogeneous Neumann condition is applied

on the pressure at solid walls.



2.3 MODELLING INCOMPRESSIBLE FLOWS WITH SPH 61

2.3.2.2 Rotational pressure-correction method in SPH

In 2012, Hosseini et al. [51] proposed a rotational pressure-correction scheme in SPH. This al-

lowed to impose a non-homogeneous Neumann condition on the pressure at solid walls (see sec-

tion 1.1.2.2). Their SPH algorithm reads:

1

2δt

(
3ṽn+1

a − 4vna + vn−1
a

)
−La{ν, ṽn+1

b } = g − 1

ρ
G−,1a {pnb }

La{φn+1
b } =

3ρ

2δt
D−,1a {ṽn+1

b }

1

2δt

(
3vn+1

a − 3ṽn+1
a

)
+

1

ρ
G−,1a {φn+1

b } = 0

(2.127)

where φn+1
a is deVned as:

φn+1
a = pn+1

a − pna +D−,1a {µ, ṽn+1
b } (2.128)

Note that it is necessary to have an implicit viscous term in the Vrst substep in order to obtain the

consistent pressure wall boundary condition. In the validation cases presented in [51], the viscous

term was explicit in the Vrst substep which destroys the advantage of working with this scheme.

The authors chose to use renormalised symmetric gradient and divergence operators (2.49), (2.50),

which are not skew-adjoint but provide better accuracy. The Laplacian operator they used was a

Morris Laplacian and they tried to make it Vrst order consistent by applying the renormalisation

matrix of the 1st order diUerential operators, although it seems better to use the 1st order Laplacian

operator proposed by Fatehi & Manzari [32] (see section 2.2.3.2). The stabilisation method based

on a particle shift [155] was used.

The main advantages of this methods compared to the ones presented in section 2.3.2.1 are the

increased accuracy of the scheme (see section 1.1.2.2), and the fact that it yields a non-homogeneous

Neumann condition on the pressure at the walls, which was shown to be more consistent than a

homogeneous Neumann condition (see section 1.1.2.2, that was also observed by Hosseini et al.).

This scheme is slightly more complex than the divergence-free Chorin-type scheme presented in

section 2.3.2.1, which yields additional computational time. However, Hosseini et al. mentioned

the rotational scheme is more robust than a Chorin-type one so they could use a time-step twice as

large on a validation case of a Wow around a square cylinder.

2.3.2.3 Resolution of the pressure Poisson equation

The pressure Poisson equation (e.g. the second line of (2.104) or (2.116)) corresponds to a linear

system that can be written as:

AP = B (2.129)
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withA the SPH Laplacian matrix,P the vector of unknowns (the discrete set of particles pressures)

and B the right-hand side (divergence of the predicted velocity or ρ−ρ̃
n+1
a

ρδt2
). Denoting the matrix

indexes as a or b and considering the Morris Laplacian operator (2.58), the entries of matrixA read:
Aaa = 2

∑
b∈P

Vb
rab
r2
ab

·∇wab

Aab = −2Vb
rab
r2
ab

·∇wab
(2.130)

Thus, in case each particle has the same volume (which holds with classical boundary conditions,

see section 2.4.1), the Laplacian matrix is symmetric. On the other hand, as we will see this is

not the case with the algorithm proposed in this work that relies on another type of boundary

conditions (see section 3.6). Many methods can be used to solve this system, the most used in the

SPH literature being the Bi-CGSTAB [72] and GMRES methods.

2.3.2.4 Numerical stability

Restrictions on the time-step size are necessary in order to ensure the numerical stability of the

ISPH schemes, in the same way as for WCSPH. A theoretical analysis of the numerical stability

of ISPH has not been provided yet. Though, it would be possible to perform a Neumann stability

analysis of the ISPH schemes, similarly to what was presented in section 2.3.1.3 regarding the

WCSPH schemes. Anyway, since such analysis does not consider the presence of walls or of a

free-surface, empirical conditions would have to be used. Such empirical conditions have been

used in all the ISPH models in the literature. The condition relative to viscous forces is unchanged

compared to WCSPH, but the CFL condition is modiVed and the maximum velocity of the Wow

vmax replaces the numerical speed of sound c0 [19]. The consequence is that the time-step size is

larger with ISPH than with WCSPH, since the maximum velocity of the Wow is usually ten times

smaller than the numerical speed of sound. Thus, the time-step size is determined by the relation:

δt = min
(
CCFL

h

vmax
, Cvisq

h2

ν

)
(2.131)

The value of Cvisq = 0.125 is the same as for WCSPH schemes, but several values of the CFL

number CCFL are found in the literature for ISPH. Indeed, while Cummins & Rudman introduced

a CFL number equal to 0.25 [19], Lee et al. used the value 0.4 [72] (as in WCSPH) while Shao

& Lo used 0.1 [129] and Hu & Adams used 0.25 [52]. It was shown on several test-cases in 2-

D that the computational times are usually smaller with ISPH than with WCSPH [72, 155]. This

shows that the use of larger time steps more than compensates the additional computational eUort

required by the resolution of the pressure Poisson equation. Note that Hosseini et al. give hints

that their rotational scheme is more stable than the classical SPH Chorin-type scheme, but they do

not provide values for the CFL number [51].
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2.4 Wall boundary conditions in SPH

2.4.1 Classical treatment of the wall boundary conditions

2.4.1.1 Particle-based approaches

As mentioned in Section 2.2.1 the presence of domain boundaries makes the SPH interpolation in-

consistent in their vicinity, where the kernel properties (2.8) and (2.9) are not satisVed. Besides, close

to the boundaries, the surface integral in (2.29) does not cancel so that the formulations (2.39), (2.41)

and (2.58) for the SPH diUerential operators are inaccurate.

A classical way of imposing wall boundary conditions in SPH is to leave these issues unaddressed,

but to discretise the boundary through particles, and then impose repulsive forces between bound-

ary particles and what is called herein free particles (particles moving according to the SPH equa-

tions). For example in Monaghan’s method [103], the repulsive force employed derives from the

Lennard-Jones potential. An illustration of this method is provided on Figure 2.6 (a). This method

is easy to implement even for complex geometries and is computationally cheap, but leads to spu-

rious behaviours of the particles, as pointed out by Ferrand et al. [35] for example. Indeed, none

of the consistency issues are addressed and though the impermeability of the walls is ensured, the

SPH equations are inaccurately solved close to the boundaries. One eUect is that the Wuid does

not remain still near the walls in a hydrostatic case. Besides, this method makes it diXcult - if not

impossible - to accurately prescribe Neumann wall boundary conditions, which is a serious issue

for a numerical model. In particular, when dealing with ISPH it is necessary to impose a Neumann

condition on the pressure, which is probably not possible with this simple technique. Note that an

improvement of this technique was proposed by Rogers & Dalrymple [121] with a more physical

representation of the particles interactions.

Another very classical technique for modelling boundaries in SPH is the so-called ghost (or dummy)

particles technique [118], which exists under many forms. It has been widely used in WCSPH [54]

and ISPH formalisms [72, 129]. The idea is to model solid boundaries through particles, and place

two or more layers of ghost particles beyond the boundary, so as to Vll the void in the particle

kernel (see Figure 2.6 (b)). Thus the inconsistency in the SPH interpolation close to the walls is

removed (though one must be careful: with only two or even three layers of ghost particles the

kernel support may still be truncated, depending on the kind of kernel and on the ratio h
δr chosen).

The second step then consists in assigning appropriate values to the ghost particles’ Velds, which is

generally challenging. One possibility is to set the ghost particles’ velocity to that of the wall (in this

way it is easy to represent moving walls). An important feature of these ghost particles is that their

density is non-zero (e.g. equal to the reference density) so that the density interpolation through

the classical discrete SPH interpolation is more consistent close to the boundary. When solving the

weakly-compressible form of the Navier–Stokes equations, this generates a repulsive force oriented



64 CHAPTER 2: SMOOTHED PARTICLE HYDRODYNAMICS: LITERATURE REVIEW

from the dummy particles to approaching particles. On the contrary, this force is attractive for a

particle moving away from the wall. The closer the particle is to the wall, the higher the value of

the force. This reasoning does not hold when dealing with an incompressible SPH model since the

density is not computed anymore, but set as constant. As mentioned is section 2.3.2, the usual (but

erroneous) wall boundary condition applied on the pressure (or on a modiVed pressure in the case

of the rotational scheme, see section 2.3.2.2) is a homogeneous Neumann condition:

∂p

∂n

∣∣∣∣
∂Ωs

= 0 (2.132)

One possibility is to consider the wall particles as unknowns in the pressure Poisson equation and

to set the dummy particles pressure equal to that of the wall particles, as for example in [129].

Thus, in ISPH the Neumann condition on the pressure is only approximately imposed, the accu-

racy depending on the space discretisation. This inaccuracy also concerns the imposition of wall

functions on the velocity and on the turbulent quantities in turbulence models [148].

Note that the dummy particles placement is very important, in particular when dealing with com-

plex geometries. For example Takeda et al. [136] or Yildiz et al. [157], among others, proposed

methods for the dummy particles placement in case of complex geometries, in particular involving

curved walls. Though, the extension of such techniques to 3-D can prove quite complex. Besides,

the way the Velds are extrapolated from the free particles to the ghost particles may depend on

the shape of the wall, as in [51]. Note also that the ghost particles technique, as well as the mirror

particles technique which will be presented below, require additional memory space compared to

the repulsive forces method, especially in 3-D.

The last main classical technique for boundary modelling in SPH is the mirror particles tech-

nique [75], also illustrated on Figure 2.6. This time the wall is not discretised into particles but

for each Wuid particle a ’mirror’ particle is placed across the boundary. When imposing a homo-

geneous Neumann boundary condition, the values of the Veld are mirrored across the boundary.

With this technique the kernel of the particles close to the walls is not truncated anymore. Though,

as in the ghost particles case, the imposition of boundary conditions is inaccurate and imposing

non-homogeneous Neumann boundary conditions is problematic. Besides, imposing a Dirichlet

condition is not straightforward since the boundary is not discretised into particles. For example,

in [134] a Dirichlet wall boundary condition on the temperature is imposed by considering a linear

evolution of the temperature between the ghost and free particles (see section 2.8).

Most available ISPHmodels in the literature are based on ghost particles [51, 72, 76, 129, 155] or mir-

ror particles [110]. Then, the imposition of the homogeneous Neumann wall boundary condition

on the pressure (or on the modiVed pressure in the case of the rotational scheme of section 2.3.2.2)

is done by manipulating the relevant entries in the linear system so that the value of the pres-

sure is mirrored across the solid boundary. This is not an exact prescription of Neumann pressure

wall boundary condition, and is a serious issue since the proper imposition of pressure boundary

condition is crucial when solving the pressure Poisson equation.
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(b) (c)(a)

Figure 2.6: Sketch of the main three techniques for wall boundary modelling in SPH. (a): Boundary
forces; (b) Dummy particles; (c) Mirror particles.

More generally, the use of approaches that try to manipulate the discretisation (i.e. add points

inside the wall or carry particle-owned stencils that enrich the discretisation close to the domain

boundaries) is questionable since wall-particle properties are irrelevant for wall gradients. This

motivated a change in the boundary management, with boundary integral approaches as described

in Sections 2.4.1.2 and 2.4.2.

2.4.1.2 Boundary integral approaches

Other methods to model solid boundaries were proposed, that rely on the use of a wall renormali-

sation factor in the SPH interpolation to restore the normalising property (2.8) in the vicinity of the

walls. The continuous SPH interpolation (2.3) is then modiVed and reads:

[A]γc (ra) =
1

γa

∫
Ωa

A(r′)w(ra − r′)dr′ (2.133)

where γa is a renormalisation factor deVned by:

γa =

∫
Ω∩Ωa

w(ra − r′)dr′ (2.134)

γa is thus equal to 1 far from the boundary and lower than one when the kernel support is trun-

cated. This is illustrated in Figure 2.7. Then the discrete interpolation of a Veld reads:

[A]γd(ra) =
1

γa

∑
b∈P

VbAbwab (2.135)

in place of (2.4). This newly deVned SPH interpolation leads to the application of a natural bound-

ary force in the Navier–Stokes equations. Indeed, Kulasegaram et al. [65] found that deriving the

SPH operators from a variational principle (as showed in section 2.3.1) led to the following modiVed
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Figure 2.7: Sketch of the kernel truncation. γa is the integral under w on the blue area.

deVnitions of the SPH gradient and divergence operators:

GK
a {Ab} = ρa

∑
b∈P

mb

(
Aa
γaρ2

a

+
Ab
γbρ

2
b

)
∇wab −

Aa
γa

∇γa

DK
a {Ab} = − 1

γaρa

∑
b∈P

mbAab ·∇wab +
1

γa
Aa ·∇γa

(2.136)

where∇γa is the gradient of γa. One should compare these formulae to (2.36) and (2.42). The total

linear momentum is conserved due to the use of an action principle to deVne these operators. As a

matter of fact, it is easy to check thatGK
a andDK

a are skew-adjoint (see section 2.2.2.3). However,

one may object that in the presence of walls the operators should not be skew-adjoint, since the

sum of the terms in (2.46) should give the total pressure work on the boundary (see (1.14)). Besides,

in these works the second order operator (Laplacian) was left unchanged. In [35], Ferrand et al.

proposed a diUerent formulation of the diUerential operators that addressed these issues. In partic-

ular, the Laplacian operator is modiVed according to the SPH interpolation deVned through (2.133).

In this framework, the imposition of boundary conditions can be done in a natural way through

the boundary term of the new Laplacian operator. This was applied in [35] to the k − ε turbulence
model where Neumann boundary conditions could be prescribed exactly on k and ε for the Vrst

time in SPH, the condition on ε being non-homogeneous. With this method the estimation of the

Velds is very accurate, even close to the walls. From now on these boundary conditions will be

referred to as uniVed semi-analytical wall (USAW) boundary conditions. Their description is the

object of the next section.

Before that, let us just evoke here the fact that the computation of γa and its gradient appears

as an issue in these recent methods. Kulasegaram et al. [65] and De LeUe et al. [22] proposed

approximate methods to calculate the renormalisation factor, but it appeared that an analytical

computation of this factor is necessary in order to ensure the walls impermeability with complex

geometries. Feldman and Bonet [33] proposed an analytical method for simple wall shapes with

applications in 2-D. Later on Ferrand et al. [35] proposed a method to compute the gradient of γa
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analytically in 2-D and then compute γa through a dynamic governing equation:

dγa
dt

= ∇γa · (va − vwall) (2.137)

where vwall is the wall velocity. This made it possible to model walls with complex shapes in 2-D

with suXciently accurate values for γa. These two methods for an analytical computation of γa or

its gradient are based on the application of the Gauss theorem so that the volume integral (2.134)

is reduced to a surface integral, easier to express. Thus, with these methods the domain boundary

must be represented as a surface. An extension of the method proposed by Ferrand et al. to 3-D

was proposed by Mayrhofer et al. [92] but is computationally expensive.

In the present work (section 3.8.1), a method is proposed to compute γa analytically in 2-D with the

possibility to represent arbitrarily complex shapes. This was inspired by the work of Feldman and

Bonet [33] and of Ferrand et al. [35]. More recently, Violeau et al. [150] proposed another method

for the analytical computation of γa and its gradient in 3-D based on the same technique.

2.4.2 UniVed semi-analytical wall boundary conditions

Although the boundary conditions technique detailed below is not yet very much used in SPH, we

include it in this literature review because the present work will take advantage of using it. In what

follows, these boundary conditions are referred to as the USAW boundary conditions (for UniVed

Semi-Analytical Wall boundary conditions). Note that the SPH equations remain unchanged with

this technique, but the SPH diUerential operators are modiVed, which is explained below.

2.4.2.1 ModiVed SPH interpolation

According to (2.133), the continuous SPH interpolation of the gradient of a Veld now reads:

[∇A]γc (ra) =
1

γa

∫
Ω∩Ωa

∇A(ra)w(ra − r′)dr′ (2.138)

An integration by parts of this integral gives (considering that the normal n is oriented inwards):

[∇A]γc (ra) =
1

γa

∫
Ω∩Ωa

A(ra)∇w(ra − r′)dr′

− 1

γa

∫
∂Ω∩Ωa

A(ra)w(ra − r′)n(r′)dΓ′
(2.139)

With the USAWmethod the boundary term is discretised so that the boundary must be represented

as a surface. It appeared easier from a computational point of view to split the boundary into a set of

boundary elements called herein segments s ∈ S . These boundary elements are indeed segments

in 2-D (see Figure 2.8), and triangles or quadrangles in 3-D. They are not Wuid particles and no
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mass is attributed to them. This wall discretisation proved practical for the computation of the

boundary integrals and allows the representation of complex geometries. Nevertheless, it appeared

important to also place Wuid particles at the boundary, which proved to increase the accuracy of

the modiVed SPH operators close to the boundary. These boundary Wuid particles are called herein

vertex particles v ∈ V . They are located at the extremities of the segments s so that the imposition

of Dirichlet and Neumann boundary conditions is not collocated (the Neumann conditions being

imposed through the segments). The vertex particles make it possible to eXciently impose Dirichlet

boundary conditions. The discretisation of (2.139) then gives the following discrete SPH gradient

in place of (2.33):

Gγ
a{Ab} =

1

γa

∑
b∈P

VbAa∇wab −
1

γa

∑
s∈S

As∇γas (2.140)

where ∇γas was deVned as:

∇γas =

∫
∂Ωs∩Ωa

w(ra − r′)n(r′)dΓ′ (2.141)

with ∂Ωs the portion of boundary spanned by the segment s. Note that:

∇γa =
∑
s∈S

∇γas =

∫
∂Ω∩Ωa

w(ra − r′)n(r′)dΓ′ (2.142)

The setP in (2.140) represents the set of all Wuid particles: free particles f ∈ F that move according

v1 s v2

Figure 2.8: Sketch of the continuous medium discretisation with the USAW boundary conditions
technique.

to the SPH equations and vertex particles v ∈ V that are located at the solid boundary (i.e. P =

F ∪ V). Note that in order to have a partition of unity at the initial time, the mass of the vertex

particles is set lower than that of the free particles. They are thus truncated particles. Besides, they

are Eulerian particles since they do not move according to the SPH equations. Figure 2.8 shows

a sketch of the diUerent entities (free particles, vertex particles and wall segments) used in the

medium discretisation with the USAW technique. Note that in equation (2.140) an approximation

was made when discretising the volumic term (sum overP), as in a classical SPH operator. Though,

the discrete boundary term corresponds to a nearly exact discretisation of the continuous one,

provided ∇γas is computed analytically: the only approximations are that the Veld is considered
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as constant along a segment and that the segments constitute a good geometrical description of the

wall shape.

As mentioned in the previous section, the quantities ∇γas are computed through an analytical

formula proposed by Ferrand et al., whereas γa is computed through a governing equation (2.137).

The latter leads to an additional restriction on the time-step size in order to ensure numerical

stability. Ferrand et al. proposed the following condition:

δt < Cγ
1

max
a∈P
{|∇γas · vas|}

(2.143)

with vas = va − vs and Cγ = 0.004 a constant they set through numerical experiments.

2.4.2.2 First order operators with the USAW boundary conditions

In the same way as for the classical SPH operators, it is possible to deVne symmetric and antisym-

metric versions of the SPH wall-renormalised diUerential operators. This was proposed by De LeUe

et al. [22] and then by Ferrand et al. [35] with a more accurate formulation. The latter then propose

the following form for the symmetric renormalised SPH gradient:

Gγ,−
a {Ab} = − 1

γaρa

∑
b∈P

mbAab∇wab +
1

γaρa

∑
s∈S

ρsAas∇γas (2.144)

in place of (2.36), while an antisymmetric renormalised SPH gradient is given by:

Gγ,+
a {Ab} =

ρa
γa

∑
b∈P

mb

(
Aa
ρ2
a

+
Ab
ρ2
b

)
∇wab −

ρa
γa

∑
s∈S

ρs

(
Aa
ρ2
a

+
As
ρ2
s

)
∇γas (2.145)

in place of (2.39). As for classical operators, the antisymmetric gradient is used to compute the

pressure gradient while the symmetric operator is used to compute velocity gradients for example.

Besides, a wall-renormalised symmetric SPH divergence operator is given by:

Dγ,−
a {Ab} = − 1

γaρa

∑
b∈P

mbAab ·∇wab +
1

γaρa

∑
s∈S

ρsAas ·∇γas (2.146)

The antisymmetric form of the divergence operator was not used in this work. One may compare

(2.145) and (2.146) to the operators (2.136) proposed by Kulasegaram et al..

The operatorsGγ,+
a andDγ,−

a are not skew-adjoint anymore, contrary to the ones proposed by Ku-

lasegaram (2.136). Indeed, Mayrhofer et al. [95] investigated the properties of the operators (2.145)

and (2.146) and showed that they are skew-adjoint in their continuous forms, but they are only

approximately skew-adjoint in their discrete form.



70 CHAPTER 2: SMOOTHED PARTICLE HYDRODYNAMICS: LITERATURE REVIEW

2.4.2.3 Second order operator with the USAW boundary conditions

A similar Laplacian operator as the one proposed by Morris et al. [104] can be deVned in this

framework, which was done by Ferrand et al. [35]. Let us consider the general case where a non-

constant diUusion coeXcient B is involved. Recall that the Laplacian is Vrst made symmetric (see

section 2.2.3):

∇ · (B∇A) = B∇A ·∇1 +∇ · (B∇A) (2.147)

which is the Vrst step to build an antisymmetric divergence operator like (2.42). The continuous

SPH interpolation of the right-hand side then reads after integration by parts:

[∇ · (B∇A)]c (ra) =
1

γa

∫
Ω∩Ωa

[
B(ra)∇A(ra) +B(r′)∇A(r′)

]
·∇w(ra − r′)dr′

− 1

γa

∫
∂Ω∩Ωa

[
B(ra)∇A(ra) +B(r′)∇A(r′)

]
· n(r′)w(ra − r′)dΓ′

(2.148)

Compared to (2.54), we now added the normalising factor γa. The boundary term does not cancel

anymore, and the Vnite diUerence approximation (2.55) is used to estimate the gradient of the Veld

in the volumic integral, so that the continuous interpolation of the Laplacian reads:

[∇ · (B∇A)]c (ra) =
2

γa

∫
Ω∩Ωa

B(ra, r
′)
A(ra)−A(r′)

(ra − r′)2
(ra − r′) ·∇w(ra − r′)dr′

− 1

γa

∫
∂Ω∩Ωa

[
B(ra)∇A(ra) +B(r′)∇A(r′)

]
· n(r′)w(ra − r′)dΓ′

(2.149)

Recall that B(ra, r
′) is a mean of the diUusion coeXcient B between positions ra and r′, and that

in the present work the arithmetic mean was used. Then the boundary integral is discretised into

its sum over all the segments and the volumic integral is approximated by the summation over the

Wuid particles:

Lγa{Bb, Ab} =
2

γa

∑
b∈P

VbBab
Aa −Ab
r2
ab

rab · ∇wab

− 1
γa

∑
s∈S

∫
s

[
Ba∇Aa +B(r′)∇A(r′)

]
· n(r′)w(ra − r′)dΓ′

(2.150)

Supposing that the gradient of the Veld is constant over each segment and using the deVnition of

∇γas and replacing Bab by
Ba+Bb

2 Vnally gives:

Lγa{Bb, Ab} =
1

γa

∑
b∈P

mb
Ba +Bb

ρb

Aab
r2
ab

rab ·∇wab−
1

γa

∑
s∈S

(Ba∇Aa +Bs∇As) ·∇γas (2.151)
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This Laplacian operator can also be applied to a vector, which reads:

Lγa{Bb,Ab} =
1

γa

∑
b∈P

mb
Ba +Bb

ρb

Aab

r2
ab

rab ·∇wab−
1

γa

∑
s∈S

(Ba∇Aa+Bs∇As) ·∇γas (2.152)

to be compared to (2.59). In case there is no diUusion coeXcient, the Laplacian operator is written

as:

Lγa{Ab} =
2

γa

∑
b∈P

mb

ρb

Aa −Ab
r2
ab

rab ·∇wab −
1

γa

∑
s∈S

(∇Aa + ∇As) ·∇γas (2.153)

The boundary term of the Laplacian operator will appear frequently in what follows. It is deVned

as:

Lbounda {Bb, Ab} = − 1

γa

∑
s∈S

(Ba∇Aa +Bs∇As) ·∇γas (2.154)

The same notations as for the Laplacian operator are used in case there is no diUusion coeXcient

(Lbounda {Ab}) and for the Laplacian of a vector (Lbounda {Bb,Ab}). It was chosen not to approxi-

mate the gradient of the Veld in these boundary terms since at the wall its value is known when

imposing a Neumann boundary condition. Note that (B∇A) is the diUusive Wux of A. It is impor-

tant to note that with this deVnition, Lγa now depends not only on the discrete set {Ab}, but also
on Ba∇Aa and the set {Bs∇As}. Thus, in that case the Neumann condition is directly applied

in Lbounda . In section 3.3, a detailed explanation of how the wall boundary conditions are imposed

with the USAW technique is given. Though it is interesting to note that with this deVnition of the

Laplacian operator, it is possible to accurately impose arbitrary Neumann boundary conditions on

the Velds. When dealing with an ISPH model this is particularly interesting since, as we saw, it is

important to impose a non-homogeneous Neumann boundary condition on the pressure in order

to obtain a consistent projection method. In 2012, Macià et al. [81] applied the USAW boundary

conditions to ISPH, but they focused on the prescription of Dirichlet boundary conditions on the

pressure Veld, which is not appropriate in dynamic cases. Moreover, they did not present any

applications of their ISPH model to 2-D or 3-D.

On the other hand, the possibility to accurately impose non-homogeneous Neumann conditions

is crucial in turbulence models where wall functions must be imposed on the turbulent quanti-

ties and on the velocity, which corresponds to non-homogeneous Neumann boundary conditions

through the diUusion terms (see section 1.2.1 of Chapter 1). It is also crucial when modelling the

temperature diUusion, in which case non-zero heat-Wuxes may be imposed through the walls. Be-

sides a temperature wall function may be used in turbulent mode (see section 3.3.3). All these

improvements will be proposed in Chapter 3.



72 CHAPTER 2: SMOOTHED PARTICLE HYDRODYNAMICS: LITERATURE REVIEW

2.4.2.4 First-order consistent USAW operators

The modiVed diUerential operators presented above are subject to the same accuracy issues as

the classical operators (see section 2.2.2). To solve this problem, it is possible to employ the same

renormalisation technique as the one presented in section 2.2.2.3. Though, the renormalising matrix

is changed due to the boundary terms in the diUerential operators [90]. Thus, we deVne a d × d
matrix,Mγ

a for each particle, so as to have:

− 1

γa

∑
b∈P

Vbrab ⊗ (Mγ
a∇wab) +

1

γa

∑
s∈S
ras ⊗ (Mγ

a∇γas) = I (2.155)

thus: (
− 1

γa

∑
b∈P

Vbrab ⊗ (∇wab)T +
1

γa

∑
s∈S
ras ⊗ (∇γas)T

)
(Mγ

a )T = I (2.156)

or:

Mγ
a =

(− 1

γa

∑
b∈P

Vbrab ⊗∇wab +
1

γa

∑
s∈S
ras ⊗∇γas

)T−1

(2.157)

Finally, the Vrst order consistent gradient of A is obtained through:

Gγ,−,1
a {Ab} = − 1

γa

∑
b∈P

VbAabM
γ
a∇wab +

1

γa

∑
s∈S

AasM
γ
a∇γas (2.158)

The same can be done concerning the divergence operator, which yields:

Dγ,−,1
a {Ab} = − 1

γaρa

∑
b∈P

mbAab ·Mγ
a∇wab +

1

γaρa

∑
s∈S

ρsAas ·Mγ
a∇γas (2.159)

One may compare the above two formulae with (2.49) and (2.50). It is possible to check that the

renormalised operators are indeed Vrst-order consistent. For example Figure 2.9 shows the values

of the SPH divergence of the position at all the particles of a square tank discretised with 40× 40

particles, with Dγ,−
a and Dγ,−,1

a . Similar results are obtained regarding the gradient operator.

On the other hand, the Laplacian operator given by equation (2.151) is not 1st order consistent.

This can prove problematic, in particular in the case of free-surface Wows where the pressure has

a linear component. The works by Schwaiger et al. [127] and by Fatehi et al. [32] that aimed at

building a 2nd order consistent Laplacian operator was done in the framework of classical boundary

conditions (see section 2.2.3.2). In order to use such formulations in the framework of the USAW

boundary conditions, it is necessary to adapt them so as to take the boundary term into account.

Such a work is still to be conducted and looks challenging.
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Figure 2.9: values of the SPH divergence of the position (x, z) at all the particles of a square tank
discretised with 40× 40 particles, with Dγ,−

a and Dγ,−,1
a . (x, z). Comparison with the analytical

value Div(x, z) = 2.

2.5 Imposition of free-surface boundaries in SPH

2.5.1 Pressure condition

In WCSPH, the density tends to zero when approaching the free-surface due to the absence of

neighbours in the kernel support, which, due to the equation of state, makes the pressure tend to

zero. Thus, the Dirichlet condition on p at the free-surface (see Table 1.2) is naturally fulVlled.

This is not the case in ISPH models where it is thus necessary to impose the Dirichlet condition at

the free-surface. Due to the kernel truncation close to the free-surface, and since the latter is not

meshed so that the USAW technique does not restore the kernel normalisation condition, the only

condition that can be imposed is a zero pressure at the free-surface. This thus excludes the idea

of working on the dynamic pressure in an ISPH scheme for free-surface Wows, where a non-zero

Dirichlet should be imposed (at least with the present state-of-the-art). This also implies that it

is necessary to detect the particles that belong to the free-surface in order to impose the Dirichlet

condition. Lee et al. [72] proposed an algorithm based on the value of the position divergence

computed through:

D−a {rb} = − 1

ρa

∑
b∈P

mbrab ·∇wab (2.160)

In dimension d = 2, a particle is considered as belonging to the free-surface when D−a {rb} ≤ 1.5

and when D−a {rb} ≤ 2.4 in dimension d = 3 [71, 72]. Other free-surface detection techniques

exist, like the one proposed by Marrone et al. [86], but only the one presented above was tested in

this work.
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The imposition of a zero pressure at the free-surface in ISPH is done by manipulating the system

entries. Let E be the set of free-surface particles and e a particle belonging to E . Using the notations
of section 2.3.2.3, the system to be solved for a set of n particles reads:

Aaa · · · Aae · · · Aan
...

. . .
...

. . .
...

Aea · · · Aee · · · Aen
...

. . .
...

. . .
...

Ana · · · Ane · · · Ann





pa
...

pe
...

pn


=



Ba
...

Be
...

Bn


(2.161)

The component pe of the unknown vector of pressures is known through the Dirichlet condition

pe = 0. Thus it is not necessary to do the product between the line of index e and the vector P and

one can suppress the matrix line that corresponds to e, which yields a rectangular matrix. On the

other hand, since the value pe is known the product of the column of index e and P may be passed

to the right-hand side of the equation, thus yielding a square matrix again. These manipulations

are done with all the particles e ∈ E . In the end the system to be solved does not involve the

free-surface particles anymore and they appear in the right-hand side:
Aaa · · · Aan
...

. . .
...

Ana · · · Ann



pa
...

pn

 =


Ba
...

Bn

−∑
e∈E

pe


Aae
...

Ane

 (2.162)

Since a zero pressure is imposed at the free-surface the last term in this equation vanishes. Though,

bear in mind that the interactions of the free-surface particles with the remaining particles is rep-

resented since they are involved in the pressure gradient computation.

2.5.2 Conditions on the velocity, the temperature, k and ε

According to Table 1.2, the free-surface boundary conditions imposed on v read:
(
∂z

∂t
+ v · n

)
∂Ωη

= 0

τ · n|∂Ωη = 0

(2.163)

While the Vrst condition is automatically veriVed in a Lagrangian framework, the second one (a

homogeneous Neumann on µ ∂v∂n ) is ensured by the absence of neighbours across the free-surface.

Indeed, considering the framework of the USAW boundary conditions, at a solid wall imposing

a homogeneous Neumann is done by cancelling the boundary term in the Laplacian operator. A

similar process thus naturally happens close to a free-surface and the derivatives of the Velds along

the normal to the free-surface tend to zero when approaching it. Thus, nothing has to be done
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Figure 2.10: Sketch of the buUer layer method for the imposition of open boundaries, with the
dummy particles technique for the walls representation. The buUer layers appear in dark blue.

regarding the imposition of a homogeneous Neumann at the free-surface. This also holds for the

k, ε and T Velds.

2.6 Imposition of open boundaries in SPH

The imposition of open boundaries in SPH has classically been done through the buUer layer

method [51, 67, 143]. Layers of particles are placed beyond the boundary so as to Vll the ker-

nel supports in its vicinity. Usually four layers are used. The values of the Velds in the buUer zone

are imposed as the ones at the boundary. At an inWow boundary, a particle that enters the domain

is changed into a free particle and its physical quantities are not imposed anymore. On the other

hand, at an outWow boundary, a particle that leaves the domain is changed into a buUer particle

and its physical quantities are prescribed. A sketch of this technique is provided in Figure 2.10 with

the dummy particles technique for wall treatment. This way of handling ingoing and outgoing

particles by sudden changes of their nature was shown to generate shocks. With WCSPH mod-

els, using Riemann solvers (based on [39]) partially solves this issue [82]. To our knowledge, the

only ISPH model where inlet/outlet conditions were introduced is the one proposed by Hosseini et

al. [51] based on a rotational projection scheme. They used the buUer layer technique, imposing

a homogeneous Neumann condition on the pressure at the inlet and a Dirichlet condition at the

outlet. This was done in an approximate way, by setting the pressure in the buUer zone through an

SPH interpolation over the surrounding free particles.

However, the boundary layers technique is problematic for complex inlets where the Wow may not

be parallel to the boundary normal. In particular, it does not make it possible to generate waves at

an inlet. Besides, Kassiotis et al. [59] encountered issues when trying to use it for coupling with a

1-D Finite DiUerences model. To remedy these problems, the uniVed semi-analytical technique for

imposing wall boundary conditions was extended to the imposition of open boundaries by Kassio-
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us

s

v

(a) (b) (c) (d)

Figure 2.11: Sketch of the process of particles creation with vertices v and segments s at an inWow
boundary [60]: a) the vertex masses grow due to the ingoing Wux; b) their mass has reached the
maximum threshold; c) new free particles are released and the vertex masses become negative; d)
the vertex masses start growing again.

tis et al. [60]. This was done with a WCSPH model. The idea is to discretise the boundary through

vertex particles and segments (see Figure 2.8), and then let the masses of the vertex particles be-

longing to open boundaries evolve over time as a function of the desired ingoing/outgoing mass

Wux through the open boundary segments. The vertex particles are then used to create/delete Wuid

particles, which is done by setting a minimum and a maximum value for their mass, proportional

to the mass of the free particles. At an inlet, the mass Wux is positive and the mass of a vertex in-

creases until it reaches the higher threshold. Then, a Wuid particle is created at that location while

its mass is decreased by a reference mass. An illustration of this process is provided in Figure 2.11.

At an outlet, the mass Wux is negative and when a Wuid particle crosses a segment it is deleted and

its mass is distributed onto the vertices directly linked to the segment, a weight being associated to

each of these vertices. Care was taken when deVning the weights that the largest amount of mass is

attributed to the closet vertex particle, which minimises mass displacement. This technique ensures

that the total mass variation is a continuous function of time, so that the particle creation/destruc-

tion does not introduce any perturbation on the density or on the momentum. Besides, it keeps

a correct particle distribution near the open boundaries. A more detailed description of this algo-

rithm will be given in section 3.5.1 since it was used for the representation of open boundaries in

this work and extended to ISPH.

In WCSPH, without additional treatment the particle creation/destruction induces variations of the

density Veld with a constant velocity imposed at the inlet, which is incorrect. To avoid this, it is

necessary to introduce additional terms in the SPH continuity equation (2.68). Their description

is given in [34]. Note that in [60], the Riemann invariants of Euler equations were not used to

prescribe the Velds at the open boundaries, which was done afterwards by Ferrand et al. [34].
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2.7 Turbulence modelling and treatment of the viscous term in SPH

2.7.1 Turbulence modelling: state-of-the-art in SPH

Two main issues have to be tackled regarding turbulence modelling with SPH. First, 3-D compu-

tations of turbulent Wows through DNS requires massively parallel codes. The impressive develop-

ment of GPU cards over the last few years and the adaptation of SPH codes to their architecture

made massive parallelism Vnancially accessible, thus solving this issue. A quasi DNS simulation

on a minimal channel at Re∗ = 210 was performed with WCSPH and the USAW boundary con-

ditions in [91, 93] (though not in a GPU framework). The second issue concerns the imposition of

wall functions in turbulence models (recall they are required for RANS7 and LES models, see sec-

tion 1.2), which is inaccurate when using classical SPH boundary conditions. As said earlier, some

of the classical boundary models in SPH do not even allow for the imposition of complex Neumann

boundary conditions, as it is required for v and ε (see section 2.4). In spite of this, RANS and LES

turbulence models began to be developed in SPH with classical boundary conditions. In [148], a

mixing length model, a k−Lm model and a k− εmodel were introduced in WCSPH with dummy

particles. These models were applied to the simulation of plunging breaking solitary wave in [54].

Moreover, a k − ε model was introduced with the ghost particle technique in [23]. On the other

hand, a 2-D LES model was introduced in WCSPH by Lo & Shao [79], which was also applied by

Dalrymple & Rogers [20]8. A 3-D LES model with dummy particles was also introduced in WCSPH

and tested on the modelling of non-linear water waves [56].

Recently, the development of the USAW boundary conditions led to improvements of these turbu-

lence models: in [35] a k−εmodel in WCSPH was proposed with much improved results compared

to [148]. On the other hand, a 3-D LES model based on the USAW boundary conditions was pro-

posed in [92]. In this work a LES simulation of a 3-D turbulent channel Wow was performed, but

the results showed a clear deviation from the DNS results on that case. They identiVed inaccuracies

in the prediction of pressure within the eddies, leading to a wrong isotropy redistribution through

the pressure-strain correlations. Besides, they showed that a much Vner discretisation than that

they used was required to improve the results. This is problematic for industrial applications in

terms of computational times.

Modelling turbulence through LES models is thus still problematic in SPH. On the other hand,

RANS models in SPH now provide a quality of results quite close to mesh-based methods [35]. The

most advanced RANS model that was adapted to SPH is the k− εmodel. To our knowledge, RANS

RSTM models (see section 1.2.1) were never introduced in an SPH framework. Thus, in this work

a k − ε RANS turbulence closure was chosen, which presents limits (see section 1.2) but is widely

used in the industry due to its simplicity and fairly good quality of results on most problems.

7Note that this holds for high-Reynolds and low-Reynolds models.
8Although the relevance of 2-D LES is quite doubtful since turbulence is a 3-D phenomenon.
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2.7.2 SPH k and ε equations

With classical SPH boundary conditions, the space discretisation of the k and ε equations, (1.48)

and (1.54) reads: 
dka
dt

= Pa − εa +
1

ρa
La{µk,b, kb}

dεa
dt

=
εa
ka

(Cε1Pa − Cε2εa) +
1

ρa
La{µε,b, εb}

(2.164)

with the SPH Laplacian operator given by (2.58). The production term Pa may be computed

through:

Pa = νT,aS
2
a (2.165)

with the scalar mean rate of strain deVned as Sa =
√

2Sa : Sa where Sa is computed through:

Sa =
1

2

[
G−a {ub}+G−a {ub}T

]
(2.166)

where the symmetric form of the SPH gradient operator G−a (2.144) may be used for the rate of

strain computation for more accuracy.

2.7.3 Treatment of the viscous term

The Morris Laplacian operator (2.58) was recommended in [10] to compute the viscous term, which

comes to writing:

∇ · τa = ∇ ·
[
µa∇ua + µa(∇ua)T

]
+ ∇(λa∇ · ua)

≈∇ · (µa∇ua)

≈ La({µb}, {ub}) = 2
∑
b∈P

Vbµ̄ab
uab
r2
ab

rab ·∇wab

(2.167)

The second line was obtained by suppressing the term∇(λa∇·ua), which is actually equal to zero
for an incompressible Wow and usually neglected in WCSPH. Besides, the term (µa∇ua)T was also

suppressed, which is correct as long as the viscosity is constant. Though, the viscosity varies in case

a RANS or LES turbulence closure is used (since an eddy viscosity is then added, see section 1.2.1).

It also varies in multiphase Wows or in case it is considered a function of the temperature. In these

cases the transpose velocity gradient term (µa∇ua)T should be represented. However, that was

not the case in the k − ε model proposed by Ferrand et al. [35] and in the LES model proposed by

Mayrhofer [91]. A formulation of the viscous term that includes the transpose velocity gradient

was proposed in [146] but it depends on the problem dimension and requires testing in 3-D.

In equation (2.167), the same notations as in section 1.2.1 were used: the viscous term involves an

Eulerian velocity u, which is non-zero at the walls in the RANS or LES formalism in order to better

represent near-wall eUects (see section 1.2.1). This technique was used in the k− εmodel proposed
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by Ferrand et al. [35] and in the LES model proposed by Mayrhofer [91].

Note that the viscous term can be treated implicitly or explicitly, although few works in SPH treat

it implicitly (which requires a matrix inversion, see e.g. [141]).

2.8 Buoyancy modelling in SPH

To our knowledge, only two authors contributed to buoyancy modelling with SPH so far: Szewc

et al. [134] and Ghasemi et al. [37]. Szewc et al. proposed two buoyancy models in a WCSPH

framework, one based on the Boussinesq approximation (see section 1.3) and one with a variable

density Veld. The boundary conditions were represented through mirror particles. At isothermal

walls, the wall temperature was imposed through the prescription of the ghost particles’ temper-

ature according to Ta′ = 2Tw − Ta. where a is the free particle, a′ its mirror particle and Tw is

the imposed temperature at the wall. This allowed them to prescribe the Dirichlet boundary con-

dition, though not exactly. At adiabatic walls they prescribed Ta′ = Ta, a classical way to impose

a homogeneous Neumann. The results they obtained with the Boussinesq approximation and with

the variable density model were very close to each other and well validated against mesh-based

methods. They presented 2-D quantitative validation on the Rayleigh-Taylor instability and on a

horizontally diUerentially heated square cavity.

On the other hand, Ghasemi et al. [37] proposed a buoyancy model in an ISPH framework, based

on the Boussinesq approximation. They modelled the boundaries through ghost particles, imposing

a homogeneous Neumann boundary condition on the pressure and either a Dirichlet or a homoge-

neous Neumann condition on the temperature. They presented qualitative 2-D validation on two

lock-exchange cases.

In the above two works, no case presenting a non-zero imposed heat Wux through a wall was

presented. They are based on classical SPH boundary conditions, which makes the wall boundary

conditions inaccurate. Besides, these works do not include any turbulence model.

2.9 Reduction of the computational times through parallel program-

ming

The high number of neighbours for each particle (around 30 in 2-D, 250 in 3-D) makes the SPH

method computationally expensive (much more than mesh-based methods). The number of parti-

cles required in 3-D simulations is usually too large to be handled by a single processor. This is a se-

rious obstacle to the extension of the method to an industrial scale, but also to its development since

even relatively small validation cases in 3-D may take days or even weeks on sequential SPH codes.

Massive parallelism is thus a key-issue in SPH and closely linked to the growth of the method. As
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Figure 2.12: 3-D modelling of the Goulours dam spillway (EDF, south of France) with the
SPARTACUS-3D code. About 1.1 million particles and 7.7×105 boundary elements were used [94].

in mesh-based methods, SPH was Vrst made parallel on Central Processing Units (CPU) clusters.

Such SPH codes began to be developed and tested in the 2000’s. In astrophysics, the code GADGET,

later improved into GADGET-2, was developed [133]. In hydrodynamics, Marongiu [83], then Issa

et al. [54] and Moulinec et al. [53, 105, 106] developed a parallel SPH code called SPARTACUS-3D

and presented applications to various cases like a Wow across periodic hills. Later on, that code was

run on an IBM BlueGene/L for the modelling of the water collapse in waterworks in 3-D [73, 74]. In

particular, a simulation of the Goulours dam spillway was performed. Figure 2.12 is an illustration

of this case, where the USAW boundary conditions were used. Other parallel SPH codes running on

CPUs were developed around the world, like SPH-Wow [88], the open-source code SPHysics [122]

or a code developed in Trento [36]. Though, BlueGene-type machines are extremely expensive

and very few research entities have access to such super-computers (access to large enough CPU

clusters is also diXcult). Until 2008, the extension of the SPH method to an industrial scale was

thus still hindered by the diXculty to realise simulations involving high numbers of particles.

A technological breakthrough was achieved in the 2010’s with the very fast development of SPH

codes running on Graphical Processing Units (GPUs, also called graphic cards herein). The latter

were at Vrst dedicated to video game computing and quickly evolved into powerful parallel com-

puting devices. Nowadays, GPU cards are also aimed at scientiVc computations, not only video

games. Their computational power is such that they are able to match huge CPU clusters in terms

of performance, turning a laptop into a very powerful computer. On the other hand, compared to

CPU clusters, GPU cards are extremely cheap. As pointed out by Hérault et al. [45], the use of

GPUs instead of CPU clusters for SPH is well suited since GPUs perform best on computationally

intensive problems (instead of data intensive). In SPH, the operations-to-data ratio is quite high in

comparison to mesh-based methods, which makes GPU computing more advantageous with SPH
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Figure 2.13: 3-D modelling of a breaking wave with the GPUSPH code. Representation of the free-
surface shape and of the three-dimensional large-scale coherent structures under a plunging wave.
About 4.5 million particles were used [31].

than with the latter. The Vrst adaptation of SPH to GPU (Amada et al. in 2003 [4]) used it only

for the computation of the forces, leaving the neighbours search computation to the CPU. In 2005,

Kolb & Cuntz [62] used the GPU to compute the whole SPH algorithm, followed by Harada et al.

in 2007 [42]. In these works, the OpenGL language (dedicated to graphics rendering) was used

to program on the GPU, which was the only possibility at that time, but required a quite deep

knowledge of computer graphics. To use OpenGL for scientiVc computing, conversions between

mathematical operations and equivalent graphical rendering operations must be done. In 2007, the

GPU provider Nvidia R© introduced a new programming language: CUDA (standing for Compute

UniVed Device Architecture), solely dedicated to GPU programming, either for computer graphics

or scientiVc calculations. The CUDA language is based on C++ with extensions to handle the spe-

ciVc needs of the GPU and its interfacing with the CPU host. From 2008, Hérault et al. developed

an SPH code called GPUSPH, based on the CUDA language and running on one Nvidia graphic

card [45, 47]. This was closely followed by the development of the DualSPHysics code (Crespo et

al. in 2011 [18]). DualSPHysics is now able to run on multiple CPUs or on multiple GPUs [27],

while GPUSPH can be run on multiple GPUs [124]. Figure 2.13 shows an example of simulation

performed with the GPUSPH code while Figure 2.14 shows two examples of simulations performed

with the DualSPHysics code.
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Figure 2.14: Examples of 3-D cases simulated with the Dual SPHysics code: modelling of a wave
impacting a breakwater [3] (left) and an oil rig [26] (right). The latter simulation involved about
one billion particles.



Chapter 3

A new incompressible SPH model

Dans ce Chapitre, le modèle développé dans ce travail est présenté, qui s’applique à la

résolution du système d’équations auquel le Chapitre1 a abouti avec les conditions aux

limites envisagées. Cette résolution repose sur la méthode numérique SPH décrite au

Chapitre 2. L’objectif est de produire un modèle capable de prédire les champs de pres-

sion avec précision, qui puisse modéliser la turbulence et les eUets de scalaires actifs.

La possibilité d’imposer des conditions de frontière ouvertes ainsi que le parallélisme

massif du code sont apparus comme primordiaux pour l’application à des écoulements

industriels. En vue de cela, un modèle SPH incompressible a été développé, fondé sur

la technique des conditions aux limites semi-analytiques pour la représentation des

frontières du domaine de calcul. Un modèle de turbulence k − ε y a été incorporé,

ainsi qu’un modèle pour les scalaires actifs reposant sur l’approximation de Boussi-

nesq. On propose une technique pour la représentation des frontières ouvertes et le

modèle est implémenté dans un code massivement parallèle fonctionnant sur carte

graphique. Dans ce Chapitre, la discrétisation temporelle des équations est d’abord

décrite, suivie de leur discrétisation spatiale. Ensuite, le traitement des conditions aux

limites en paroi, en surface libre et aux frontières ouvertes est détaillé. La résolution

de l’équation de Poisson sur la pression fait l’objet de la section suivante, et l’on voit

comment les conditions aux limites sont prises en compte dans le système linéaire.

EnVn, une section est consacrée au calcul des intégrales de bord apparaissant dans la

technique des conditions aux limites semi-analytiques, avant de Vnir avec une courte

section donnant quelques informations sur le code massivement parallèle.
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3.1 Preliminary considerations

Several key-issues were identiVed regarding the SPH method, which still hinder its application to

industrial cases. Here, we address several of them, namely:

• the lack of accuracy in the pressure prediction;

• the treatment of the wall and inWow/outWow boundary conditions;

• the modelling of turbulence;

• the modelling of buoyancy and its interactions with turbulence.

The proposed solutions are the following:

• using an incompressible SPH model;

• adapting it to the uniVed semi-analytical wall boundary conditions;

• developing inWow/outWow boundary conditions in this framework;

• improving the existing SPH k−εmodel for turbulence and include it in the new ISPH model;

• including a buoyancy model in this framework, taking the interactions with turbulence into

account.

Besides, the application on industrial cases requires the implementation of the developments in a

massively parallel code. Here the GPU framework was chosen.

In section 3.2, the space-time discretisation of the equations (1.92) is described. We include laminar

and turbulent (Reynolds-averaged) Wows in the same framework, our purpose being to unify all

wall boundary treatment from [35], including the Poisson equation, the heat equation and the

k − ε model. In sections 3.3, 3.4 and 3.5 the imposition of boundary conditions at the solid walls,

the free-surface and the inlet/outlet boundaries are described. In section 3.6 the resolution of the

pressure Poisson equation is dealt with. We will also explain how the method proposed by Bonet

and Feldman for the analytical computation of the wall renormalisation factor can be applied to our

description of the solid boundaries in 2-D, in order to reduce computational time. The technique

for the computation of the wall renormalisation factor in 3-D is also explained. Finally, section 3.9

quickly describes the main features of the parallel GPU code.

3.2 Space-time discretisation of the governing equations

Recall that the system of equations to be solved is the one given by (1.92), with the set of boundary

conditions given in Table 1.2. In section (3.2.1) the time-discretisation of the equations is described,
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followed by the space discretisation in section (3.2.2).

3.2.1 Time discretisation

In this section, we drop the particle subscripts, since we focus on time discretisation. In case the

k − ε model is used, k and ε are calculated at the beginning of each time-step in order to compute

the eddy viscosity. This is done through a semi-implicit time-scheme, which is the same as in [35]

except for the buoyancy term G:
kn+1 − kn

δt
= Pn + Gn − εnk

n+1

kn
+

1

ρ
∇ · (µnk∇kn)

εn+1 − εn

δt
=
εn

kn

(
Cε1Pn + Cε3Gn − Cnε2,Y ε

n+1
)

+
1

ρ
∇ · (µnε∇εn)

(3.1)

The deVnitions of all the variables are given in equation (1.93) and the k − ε model constants are

given in Table 1.1. The negative dissipation terms are treated implicitly in order to avoid negative

values of k and ε.

The production term Pn involves the velocity Veld at time n:

Pn = min
(√

Cµk
nSn, νnTS

n2
)

(3.2)

The buoyancy production/destruction term Gn involves the temperature Velds at time n and is

made semi-implicit in case it is negative. This avoids negative values of k and ε:

Gn =


βCµ
PrT

knkn+1

εn
∇Tn · g if∇Tn · g ≤ 0

βCµ
PrT

(kn)2

εn
∇Tn · g otherwise

(3.3)

The Yap correction is applied:

Cnε2,Y = Cε2 −max

[
0, 0.83

(
Lnt
L
− 1

)(
Lnt
L

)2
]

(3.4)

with Lnt +
kn

3/2

εn
and L the characteristic length of the Wow.

Note that the velocity is usually initialised at zero and the initial values of k and ε, denoted by k0

and ε0, are usually set according to: 
k0 = (0.002U)2

ε0 = 0.16

√
k3

0

Lm

(3.5)
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with U the characteristic velocity of the Wow and a mixing length Lm = max(2δr, 10−5m) 1. The

eddy viscosity is then given by:

νn+1
T = Cµ

kn+12

εn+1
(3.6)

After the computation of νn+1
T , the time discretisation of (1.92) follows a Chorin predictor-corrector

scheme with a pressure Poisson equation (see section 1.1.2). The time discretisation of the momen-

tum equation with the incompressibility condition thus reads:

ṽn+1/2 − vn

δt
=

1

ρ
∇(µn+1

E ∇un)− [β(Tn − T0)− 1] g

∇2p̃n+1 =
ρ

δt
∇ · ṽn+1/2

vn+1/2 − ṽn+1/2

δt
= −1

ρ
∇p̃n+1

(3.7)

with p̃n+1 = pn+1 + 2
3ρk

n+1. Recall that the viscous force is based on an Eulerian velocity Veld

u rather than the Lagrangian velocity v, as explained in the section 1.2.1 of Chapter 1. Note

that in case of conVned Wows, solving the system on the dynamic pressure proved to yield more

accurate results than solving on the total pressure as was shown in system (3.7). Thus, in cases of

conVned Wows p̃ is replaced by p∗ = p̃ + ρgz in the second and third lines of (3.7) and the term

[β(T − T0)− 1] g is replaced by β(T − T0)g in the Vrst line of (3.7). It was not possible to do

so for free-surface Wows because this leads to the imposition of a non-zero Dirichlet condition on

the pressure, that is not correctly imposed with our treatment of the free-surface (see sections 2.5.1

and 3.4).

In the third line of (3.7), vn+1/2 is a velocity Veld that serves to move the particles on a Vrst half

time-step. Indeed, the position update is done through a second order time-scheme so that it is split

into two parts: 
rn+1/2 − rn

δt/2
= vn+1/2

rn+1 − r∗

δt/2
= vn+1

(3.8)

In between, a stabilising procedure consisting in a particle shift is applied, which is why a modiVed

position r∗ appears in the second line of (3.8) instead of rn+1/2. On the other hand, the heat

equation is solved at the position rn+1/2:

Tn+1 − Tn

δt
= ∇ · (Kn+1

E ∇Tn) (3.9)

The modiVed position r∗ is computed through:

r∗ = rn+1/2 + δr (3.10)
1Note though that in some cases, like the turbulent plane Poiseuille Wow, the initial values of k, ε and v are chosen

diUerently so as to be closer to the expected steady-state solution (see Chapter 4).
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with:

δr = −Cshifth2∇C (3.11)

in the same way as Lind et al. in their ISPH model [76] (see section 2.3.2.1). C is a particle

concentration, h is the smoothing length and Cshift is a coeXcient set to 0.7 in this work for the

Wendland kernel (based on numerical experiments). The convection term corresponding to the

particles displacement of δr must be added to the other Velds2. For example, on the velocity and

the temperature, this reads: {
vn+1 = vn+1/2 + ∇vn+1/2 · δr

Tn+1 ← Tn+1 + ∇Tn+1 · δr
(3.12)

This correction is also applied to k and ε. To summarise, the position, temperature, k and ε updates

are performed through:

rn+1/2 − rn

δt/2
= vn+1/2

Tn+1 − Tn

δt
= ∇ · (Kn+1

E ∇Tn)

r∗ = rn+1/2 + δr with δr = −Cshifth2∇C

(T, k, ε)n+1 ← (T, k, ε)n+1 + ∇(T, k, ε)n+1 · δr

vn+1 = vn+1/2 + ∇vn+1/2 · δr
rn+1 − r∗

δt/2
= vn+1

(3.13)

Our time-marching scheme is thus made of (3.1), (3.7) and (3.13). A possibility, instead of applying

this particle shift (which does not respect the incompressibility constraint) would be to correct the

particles positions by imposing the SPH interpolation of the density to be constant, as in [52] (see

section 2.3.2.1). Though, this was not tested in this work and would require some care regarding

the imposition of the boundary conditions at each sub-step.

3.2.2 Space discretisation

3.2.2.1 k and ε equations

A space discretisation of the k and ε equations (3.1) in the framework of the USAW boundary

conditions was proposed by Ferrand et al. [35] (see section 2.7). Here the same approach is followed,

2Although it is not necessary for the pressure because the latter is not involved in any step between the particles
displacement and the pressure Poisson equation, and then pn only serves as an initial bet.
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with the additional buoyancy term. Thus, (3.1) is space-discretised by:
kn+1
a − kna
δt

= Pna + Gn
a − εna

kn+1
a

kna
+

1

ρ
Lγa{µnk,b, knb }

εn+1
a − εna
δt

=
εna
kna

(
Cε1Pna + Cε3Gn

a − Cnε2,Y,aε
n+1
a

)
+

1

ρ
Lγa{µnε,b, εnb }

(3.14)

Since the density is constant in the model the particle subscript was dropped for ρ. The Ferrand

Laplacian (2.153) is used for the computation of the diUusion terms on k and ε, which reads (drop-

ping the time superscripts for the sake of simplicity):

Lγa{µk,b, kb} =
1

γa

∑
b∈P

Vb (µk,a + µk,b)
kab
r2
ab

rab ·∇wab −
1

γa

∑
s∈S

(µk,a∇ka + µk,s∇ks) ·∇γas

Lγa{µε,a, εb} =
1

γa

∑
b∈P

Vb (µε,a + µε,b)
εab
r2
ab

rab ·∇wab −
1

γa

∑
s∈S

(µε,a∇εa + µε,s∇εs) ·∇γas

(3.15)

The terms (µk,a∇ka + µk,s∇ks) and (µε,a∇εa + µε,s∇εs) in the summations involving the seg-

ments will be used to impose Neumann boundary conditions on k and ε. This will be described in

the sections 3.3, 3.4 and 3.5. Note that these boundary terms will then be denoted byLbounda {µk,b, kb}
and Lbounda {µε,a, εb}3, respectively.

The production term Pna is computed through:

Pna = min
(√

Cµk
n
aS

n
a , ν

n
T,aS

n2

a

)
(3.16)

in agreement with (3.2), with the scalar mean rate of strain deVned as Sna =
√

2Sna : Sna where

Sna is computed through:

Sna =
1

2

[
Gγ,−
a {unb }+Gγ,−

a {unb }T
]

(3.17)

the symmetric form of the SPH gradient operator Gγ,−
a (2.144) is used since it provides better

accuracy than the antisymmetric one.

The buoyancy production/destruction term Gn
a is computed through:

Gn
a =


βCµ
PrT,a

knak
n+1
a

εna
Gγ,−
a {Tnb } · g ifGγ,−

a {Tnb } · g ≤ 0

βCµ
PrT,a

(kna )2

εna
Gγ,−
a {Tnb } · g otherwise

(3.18)

in agreement with (3.3). Once again, the symmetric form of the SPH gradient operatorGγ,−
a (2.144)

is used for the sake of accuracy.

3the deVnition of Lbounda is that of equation (2.154).
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3.2.2.2 Momentum equation

The space discretisation of the momentum equation with the incompressibility constraint (3.7) is

done through: 

ṽ
n+1/2
a − vna

δt
=

1

ρ
Lγa{µn+1

E,b ,u
n
b } − [β(Tna − T0)− 1] g

Lγa{p̃n+1
b } =

ρ

δt
Dγ,−
a {ṽn+1/2

b }

v
n+1/2
a − ṽn+1/2

a

δt
= −1

ρ
Gγ,+
a {p̃n+1

b }

(3.19)

with the predicted velocity divergence computed through:

Dγ,−
a {ṽb} = − 1

γa

∑
b∈P

Vbvab ·∇wab +
1

γa

∑
s∈S
vas ·∇γas (3.20)

and the pressure gradient through:

Gγ,+
a {p̃b} =

1

γa

∑
b∈P

Vb (pa + pb)∇wab −
1

γa

∑
s∈S

(pa + ps)∇γas (3.21)

In comparison with (2.145) and (2.146), the Wuid density has been removed from the sums since

it is now a constant. As discussed in section 1.1.2.1, it is important to employ skew-adjoint di-

vergence and gradient operators in the projection method. This is why the Dγ,−
a operator is used

for the velocity divergence computation while theGγ,+
a operator is used for the pressure gradient

computation. However, these two operators are not exactly skew-adjoint since the integration of

their boundary terms does not yield the right Wux, so that the projection method is not exact. This

issue seems avoidable through the construction of SPH divergence and gradient operators with the

required skew-adjointness property, like the ones proposed by Kulasegaram et al. (2.136), although

this was not tested in this work.

The Laplacian operator used for the viscous term discretisation is the Ferrand Laplacian applied to

a vector (2.151), which reads:

Lγa{µE,b,ub} =
1

γa

∑
b∈P

Vb(µE,a + µE,b)
uab
r2
ab

rab ·∇wab −
1

γa

∑
s∈S

(µE,a∇ua + µE,s∇us) ·∇γas

(3.22)

On the other hand, the Laplacian operator used in the pressure Poisson equation is the Ferrand

Laplacian (2.153), i.e. the Morris Laplacian adapted to the USAW boundary conditions. The pres-

sure Laplacian then reads:

(∇2p̃)a ≈ Lγa{p̃b} =
2

γa

∑
b∈P

Vb
p̃ab
r2
ab

rab ·∇wab −
1

γa

∑
s∈S

(∇p̃a + ∇p̃s) ·∇γas (3.23)
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One reason why this Laplacian operator is used, and not a compatible operator as (2.52), is the

high computational cost of the latter, which involves a two-fold summation over the neighbours.

This issue could be partially overcome by computing the Laplacian in two steps: Vrst compute an

SPH gradient of the pressure and store it, then compute its SPH divergence. Though, the use of a

compatible Laplacian operator in the projection method was shown to lead to checker-board eUects

due to the collocation of the pressure and velocity computations, as already said in section 2.3.2.1.

This is a second reason why the SPH projection method proposed in this work is not exact and until

now no solution was proposed to this problem, even in mesh-based methods (to our knowledge).

The pressure Laplacian (3.23) is only zero-order consistent, which is an issue with regards to free-

surface Wows where the pressure has a linear component. Since the construction of a second-order

consistent Laplacian operator is complex in the framework of the USAW boundary conditions, as

said in section 2.4.2.4, it was chosen to keep a zero-order consistent Laplacian operator but to apply

a hydrostatic correction in order to obtain better accuracy on free-surface Wows. The idea is to

solve the pressure Poisson equation on the dynamic pressure, which is an equivalent problem in a

continuous framework. Thus, the pressure Poisson equation reads:

2

γa

∑
b∈P

Vb
p̃ab + ρgzab

r2
ab

rab ·∇wab −
1

γa

∑
s∈S

(∇p̃a + ∇p̃s − 2ρg) ·∇γas =
ρ

δt
Dγ,−
a {ṽ

n+1/2
b }

(3.24)

This equation is a linear system with unknowns {p̃n+1
b }. It is solved through an iterative linear

solver, as explained in the section 3.6.

3.2.2.3 Particles displacement and temperature update

A Ferrand Laplacian is used for the temperature diUusion (second line of system (3.27)), which

yields:

Lγa{KE,b, Tb} =
1

γa

∑
b∈P

Vb (KE,a +KE,b)
Tab
r2
ab

rab·∇wab−
1

γa

∑
s∈S

(KE,a∇Ta +KE,s∇Ts)·∇γas

(3.25)

On the other hand, the position shift δra (used in the fourth line of system (3.27)) is computed

through the simplest USAW-SPH gradient (2.140):

δra = −Cshifth2(∇C)a ≈ −Cshifth
2Gγ

a{1}

= −Cshifth
2

(
1

γa

∑
b∈P

Vb∇wab −
1

γa

∑
s∈S

∇γas

)
(3.26)

In this expression, the boundary term running over the segments s prevents the particles from

leaving the domain when the shifting is applied near a wall. Cshift is a diUusion coeXcient which

value was calibrated from various test cases (in particular the Taylor-Green vortices case [76, 155],



3.3 WALL BOUNDARY CONDITIONS 91

and a schematic 2-D dam-break case described in section 4.2.1.4) and taken equal to 0.7 for the

Wendland kernel.

In their work, Lind et al. [76] observed it was necessary to introduce an additional term in the

concentration gradient of equation (3.26) in order to avoid particle clumping (see equations (2.108)

and (2.109)). This was not the case in the present work due to the fact that we use a Wendland ker-

nel, which is known to avoid particle clumping due to the positiveness of its Fourier transform [25]

(Lind et al. had used a quintic spline kernel, which does not satisfy this property).

As stated in Chapter 2, applying the particle shift close to the free-surface would lead to an un-

physical behaviour of the particles due to the kernel truncation, which is not accounted for near

the free-surface, even with our boundary conditions. To avoid this issue, the shift is not applied to

the particles which distance to the free-surface is lower than hqmax/2 (qmax is the dimensionless

kernel support size, see (2.10)). This criterion was established by numerical experiments on the

dam-break over a wedge case (section 4.2.1.4). It was expressed as a function of hqmax in order to

have the same number of particle layers not shifted near the free surface, regardless of the kernel

and smoothing length choices. When deVning the position shift through (3.26) and usingGγ
a{1} to

determine the normal to the free-surface, this method is equivalent to the one proposed by Lind et

al. [76] that consists in applying a modiVed particle shift near the free-surface (see equation (2.110)).

In the end, the particles displacement and update of their temperature is done through:

r
n+1/2
a = rn +

δt

2
v
n+1/2
a

Tn+1
a = Tna + δtLγa{Kn+1

E,b , T
n
b }

r∗a = r
n+1/2
a + δra with δra = −Cshifth

2Gγ
a{1}

(Ta, ka, εa)
n+1 ← (Ta, ka, εa)

n+1 +Gγ,−
a {(Tb, kb, εb)n+1} · δra

vn+1
a = v

n+1/2
a +Gγ,−

a {vn+1/2
b } · δra

rn+1
a = r∗a +

δt

2
vn+1
a

(3.27)

in agreement with (3.13). The Velds corrections by the convection term associated to the position

shift (4th to 7th lines of system (3.27)) are performed with a symmetric gradient operatorGγ,−
a for

accuracy reasons.

3.3 Wall boundary conditions

The four following subsections summarise our wall boundary conditions on the velocity, p, T , k

and ε. Our technique is based on an analogy with Finite Volume and was validated in this work

regarding the pressure, the temperature and the k − ε turbulent model. Note that the Neumann

wall boundary conditions are applied through the surface term of the Laplacian operator given
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by (2.154), like in mesh-based methods, whereas the Dirichlet boundary conditions are imposed at

the vertex particles which are involved in the summations over b ∈ P in the Laplacian, gradient

and divergence operators. We recall here the expression of the discrete Laplacian boundary term,

which will be much used in the following sections:

Lbounda {Bb, Ab} = − 1

γa

∑
s∈S

(Ba∇Aa +Bs∇As) ·∇γas (3.28)

Except for the pressure, which case is treated in Section 3.3.4, the prescription of wall boundary

conditions is done by imposing both the Wux and the value of the Veld at the wall. Therefore, the

compatibility of the Velds values and Wuxes at the wall must be ensured. This technique allows the

Dirichlet and Neumann conditions to be imposed at diUerent locations, which proved important in

Finite Volumes.

3.3.1 Wall boundary conditions on the velocity

In the present section, as well as in sections 3.3.2 and 3.3.3, the particles a belong to F (free parti-

cles), whereas the particles b belong to P = F∪V (free and vertex particles). A Dirichlet boundary

condition is imposed on the Lagrangian velocity:

vv = vwallv , vs = vwalls (3.29)

the Lagrangian velocity of the walls vwall being an input data. The model thus includes the treat-

ment of forced wall movement through the velocities of the vertex and segments. The Lagrangian

velocity at the segments is then deVned by:

vs =
1

Ns

∑
Vs

vv (3.30)

where Vs is the set of vertices linked to s and Ns its size (in 2D, Ns = 2). Note that since the

Lagrangian velocity is not involved in any diUusion term, it is not necessary to impose a compatible

Neumann condition on this Veld. On the other hand, a non-homogeneous Neumann condition is

applied on u in the same way as in [35]. This is done through the boundary term of the velocity

Laplacian in (3.22), which is written as:

Lbounda {µE,b,ub} = − 1

γa

∑
s∈S

[
µE,a

(
∂u

∂n

)
a

+ µE,s

(
∂u

∂n

)
s

]
|∇γas| (3.31)

Here we used the fact that ∇γas is oriented along ns by deVnition (see (2.141)) to write that

(∇u)s ·∇γas =
(
∂u
∂n

)
s
·∇γas. DeVning a′ a Vctitious point placed at ra+rs

2 (see Figure 3.1) it is
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Figure 3.1: Sketch of the position of the Vctitious point a′ used for the imposition of Neumann wall
boundary conditions on u and ε.

assumed that: [
µE,a

(
∂u

∂n

)
a

+ µE,s

(
∂u

∂n

)
s

]
≈ 2µE,a′

(
∂u

∂n

)
a′

(3.32)

The boundary term of the velocity Laplacian then reads:

Lbounda {µE,b,ub} = − 2

γa

∑
s∈S

µE,a′

(
∂u

∂n

)
a′
|∇γas| (3.33)

In the laminar case, the velocity distribution near the wall is almost linear, thus:

µ

(
∂u

∂n

)
a′
≈ µvas · tas

δras
tas (3.34)

where:

tas =
vas − (vas · ns)ns
|vas − (vas · ns)ns|

(3.35)

and:

δras = max(ras · ns, δr) (3.36)

with δr the initial interparticular space.

In the turbulent case, a two layers model is used for the velocity near the wall, according to (1.60)

and (1.61). The Neumann condition then reads:

µE,a′

(
∂u

∂n

)
a′
· ns = u2

∗,a′tas (3.37)

where u∗,a′ is the friction velocity (see section 1.2.1) at the wall seen by particle a, which is a

solution of: 
vas · tas
u∗,a′

= y+
a′ if y+

a′ ≤ y
+
lim

vas · tas
u∗,a′

=
1

κ
ln
(
δrasu∗,a′

ν

)
+ 5.2 if y+

a′ > y+
lim

(3.38)
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where y+
lim = 1

κ with κ the Von Kármán constant (see Table 1.1, p.19) and:

y+
a′ =

δrasuk,a′

ν
(3.39)

In the inertial sub-layer (second line of (3.38)), u∗,a′ is computed through an iterative process (in-

volving 9 iterations). In (3.39), uk,a′ is a friction velocity based on the turbulent kinetic energy

which is deVned as:

uk,a′ = C
1
4
µ k

1
2
a (3.40)

Note that ka is used in the above equation instead of ka′ since a homogeneous Neumann condition

is applied on k at the wall so it is assumed that ka′ ≈ ka. The second line of (3.38) is solved through
an iterative process. On the other hand, a compatible Dirichlet condition is applied at the vertex

particles (and segments) by letting their tangential velocity evolve according to the viscous term:

un+1
v = unv + δt

1

ρ
Lγv{µE,b,ub} (3.41)

The normal component of un+1
v is imposed to be equal to zero by projecting un+1

v (and un+1
s )

along the tangent to the wall:

un+1
v ← un+1

v − (un+1
v · nv) nv (3.42)

This technique for imposing a kind of ’slip’ velocity at the wall for high Reynolds number simula-

tions was used in [35] for SPH and in other CFD codes [49].

3.3.2 Wall boundary conditions on k and ε

A homogeneous Neumann condition is applied on k as in [35], assuming that:

µk,a

(
∂k

∂n

)
a

≈ µk,s
(
∂k

∂n

)
s

= 0 (3.43)

which gives:

Lbounda {µk,b, kb} = 0 (3.44)

A compatible Dirichlet boundary condition on k is imposed at all vertex particles v through:

kv =
1

Nv

∑
s∈Sv

ks , ks =
1

αs

∑
b∈F

Vbkbwsb (3.45)

where Sv is the set of segments linked to v, Nv is its size and αs is the Shepard Vlter [130]:

αs =
∑
b∈P

Vbwsb (3.46)
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As for the dissipation ε, it was necessary to improve the treatment of the diUusion boundary term

in (3.15) compared to what was proposed in [35], in order to obtain better results close to the walls.

A non-homogeneous Neumann condition is applied on ε in (3.15) by imposing the terms µε,s
(
∂ε
∂n

)
s

and µε,a
(
∂ε
∂n

)
a
in:

Lbounda {µε,b, εb} = − 1

γa

∑
s∈S

[
µε,s

(
∂ε

∂n

)
s

+ µε,a

(
∂ε

∂n

)
a

]
|∇γas| (3.47)

Since ε quickly varies close to the wall a similar treatment as for the velocity Veld is applied:[
µε,s

(
∂ε

∂n

)
s

+ µε,a

(
∂ε

∂n

)
a

]
≈ 2

µT,a′

σε

(
∂ε

∂n

)
a′

(3.48)

where ra′ = 1
2(ra + rs) as in section 3.3.1. Here it was considered that since µ << µT , µε ≈ µT

σε
.

We assume that the theory of zero pressure-gradient turbulent boundary layer on a plane (local

turbulent equilibrium) is valid and use the theoretical relations ε =
u3
k

κy
and µT = κyuk, where y

is a small distance to the wall, and thus obtain:

µT,a′

σε

(
∂ε

∂n

)
a′

= −
2u4

k,a′

σεδras
(3.49)

where uk,a′ is deVned through equation (3.40), so that the boundary term of the Laplacian applied

to ε can be written as:

Lbounda {µε,b, εb} =
4Cµ
γaσε

∑
s∈S

k2
a

δras
|∇γas| (3.50)

On the other hand, the Dirichlet boundary condition is imposed at the vertex particles based on a

FV-like formulation where the Dirichlet boundary condition on ε is 2nd order accurate in space on

an orthogonal mesh. For this purpose, let us Vrst consider a 1D situation with the same notations

as before. We use the following Taylor series expansions:
εa′ = εa −

δras
2

(
∂ε

∂n

)
a

+
δr2
as

8

(
∂2ε

∂n2

)
a

+O(δr3
as)

εa′ = εs +
δras

2

(
∂ε

∂n

)
s

+
δr2
as

8

(
∂2ε

∂n2

)
s

+O(δr3
as)

(3.51)

Subtracting these two equations yields:

εs = εa −
δras

2

[(
∂ε

∂n

)
a

+

(
∂ε

∂n

)
s

]
(3.52)
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In order to impose a Dirichlet boundary condition compatible with the Neumann condition im-

posed above, we use equations (3.48) and (3.49), which yields:

εs = εa − δras
(
∂ε

∂n

)
a′

= εa +
4C

3/4
µ k

3/2
a

κδras
(3.53)

The extension to 2D is done by interpolating εs based on the value of the surrounding εa through:

εs =
1

αs

∑
b∈F

Vb

(
εb +

4C
3/4
µ k

3/2
b

κδrbs

)
wbs (3.54)

Finally, the Dirichlet boundary condition is imposed through the vertex particles by writing:

εv =
εs1 + εs2

2
(3.55)

Note that the wall boundary conditions imposed on ε have a great impact on the Wow representa-

tion. Starting from this second order formulation of the Dirichlet condition on ε gave better results

on a turbulent Poiseuille Wow case than using a Vrst order formulation and working at point a

instead of a′.

3.3.3 Wall boundary conditions on the temperature

Wewill now extend the ideas of sections 3.3.1 and 3.3.2 to the temperature. Again, what follows was

inspired by the FV technique. Wall boundary conditions on the temperature may be of Neumann

or Dirichlet type depending on the wall considered (adiabatic, isothermal, etc). In either case,

their prescription is done by imposing both a heat Wux through the segments and values of the

temperature at the vertex particles. Thus, the compatibility of the temperature values and of the

heat Wux at the wall must be ensured. The surface part of the diUusion term in the temperature

equation (3.25) is written as:

Lbounda {KE,b, Tb} = − 2

γa

∑
s∈S

QTa′ |∇γas| (3.56)

where QTa′ = KE,a′

(
∂T

∂n

)
a′

is the wall heat Wux. As for the velocity and ε, it was considered

that:

KE,s

(
∂T

∂n

)
s

+KE,a

(
∂T

∂n

)
a

≈ 2KE,a′

(
∂T

∂n

)
a′

(3.57)

The values of the heat Wux and of the temperature at the wall depend on the type of wall boundary

conditions.
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3.3.3.1 Neumann wall boundary condition

In this case the temperature is considered as slowly varying close to the walls so that:

KE,a′

(
∂T

∂n

)
a′
≈ KE,s

(
∂T

∂n

)
s

(3.58)

Thus the values ofQTs are directly imposed in the boundary term of the Laplacian according to the

Neumann condition:

Lbounda {KE,b, Tb} = − 2

γa

∑
s∈S

QTs |∇γas| (3.59)

A compatible Dirichlet condition is prescribed at the vertex particles, depending on the imposed

Wux:

Tv =
1

Nv

∑
s∈Sv

Ts , Ts =
1

αs

∑
b∈F

Vb

(
Tb −

QTs
K
δrsb

)
wsb (3.60)

by analogy with (3.54).

This formulation could be improved by considering rapidly varying temperature Velds close to the

wall. Then, the Neumann condition could be written in a similar way as for ε and the Dirichlet

condition would depend on the temperature wall function. Since such improvements were not

implemented, KT,s was used instead of KT,a′ to build the compatible Dirichlet condition. This is

why in the denominator of the Wux term in (3.54) K appears instead of KT,s, since νT is imposed

as zero at the wall.

3.3.3.2 Dirichlet wall boundary condition

In this case, the value of the temperature is imposed at the vertex particles. The QTs are then

imposed in a consistent way with the Dirichlet condition, so that equation (3.56) reads:

Lbounda {KE,b, Tb} = − 2

γa

∑
s∈S

T∗,a′uk,a′ |∇γas| (3.61)

where uk,a′ is a friction velocity and we deVned T∗,a′ = QTs
uk,a′

in analogy with (3.33) and (3.34). In

laminar mode, a linear temperature distribution is applied:

uk,a′T∗,a′ = QTs = K
Ta − Ts
δras

(3.62)

whereas in turbulent mode, uk,a′ is deVned through (3.40). On the other hand, T∗,a′ is deVned as:

T∗,a′ =
Ta − Ts
T+
a′

(3.63)
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where T+
a′ (see section 1.3.1) is computed through a three-layer model according to (1.87):

T+
a′ = Pr y+

a′ if y+
a′ < y+

1

T+
a′ = a2 −

PrT

2a1

(
y+
a′
)2 if y+

1 ≤ y
+
a′ < y+

2

T+
a′ =

PrT
κ

ln
(
y+
a′
)

+ a3 if y+
a′ > y+

2

(3.64)

where y+
a′ is deVned as in (3.38) and y+

1 , y
+
2 , a1, a2, a3 are constants deVned through (1.88). Recall

that in this work the turbulent Prandlt number PrT is considered as constant and equal to 0.85.

3.3.4 Wall boundary conditions on the pressure

Recall that the (dynamic) pressure wall boundary condition reads (see section 1.1):

∂

∂n

(
v2

2
+
p∗

ρ

)∣∣∣∣
∂Ωw

=
(
ν∇2u

)
· n
∣∣
∂Ωw

(3.65)

It was shown that the best pressure wall boundary condition in projection schemes (in terms of

consistency) is a non-homogeneous Neumann condition that reads (see section 1.1.2):

∂pn+1

∂n

∣∣∣∣
∂Ωw

=
ρ

δt
ṽn+1 · n|∂Ωw =

(
ρg + µ∇2un

)
· n|∂Ωw (3.66)

which comes to neglecting the term in v2 before the others in equation (3.65).

In the ISPH scheme proposed here the pressure boundary condition is imposed through the bound-

ary term of the Laplacian operator involved in the pressure Poisson equation (3.23), similarly to

what was presented in sections 3.3.1, 3.3.2 and 3.3.3.

Here we assume that (∇p̃)a · ns ≈ (∇p̃)s · ns, which is justiVed by the fact that the pressure

normal gradient does not vary much near the walls. The boundary term of the pressure Laplacian

thus reads:

Lbounda {p̃b} = − 2

γa

∑
s∈S

∇p̃s ·∇γas (3.67)

Projecting the second part of the momentum equation onto the normal nv to the wall in v and

substituting vn+1
v by its imposed value yields:

∇p̃n+1
v · nv =

ρ

δt
(ṽn+1
v − vwallv ) · nv (3.68)

The same applies to the segments since their velocity is calculated as the average of the velocities

of the vertex particles directly linked to it (see (3.30)). Finally, the boundary term of the Laplacian

operator applied to the pressure (with the hydrostatic correction, see equation (3.24)) can be written
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as:

Lbounda {pb + ρgzb} = −2ρ

γa

∑
s∈S

(
ṽn+1
s − vwalls

δt
+ g

)
·∇γas (3.69)

One can check on a simple case that this pressure wall-boundary condition is physical. Let us

consider the case of a Wuid at rest with a free-surface in a rectangular tank. Following the steps of

the projection method, the following holds:

ṽn+1
s = δtg (3.70)

because the velocity at the initial time n is equal to zero. Then the condition imposed on the

pressure gradient at the wall is:

∇p̃n+1
s · ns = ρg · ns (3.71)

which is the expected non-homogeneous boundary condition under gravity at rest. Thus we see

that the condition (3.68) provides the exact pressure condition in order to balance gravity forces on

a horizontal bed. This condition is non-homogeneous in many cases since the right-hand side de-

pends on viscous and external forces through ṽn+1. The same pressure wall boundary condition is

prescribed in the rotational projection scheme proposed by Hosseini & Feng [51] for SPH, although

their formulation is less accurate due to the use of ghost particles for the boundary modelling.

3.4 Free-surface conditions

Recall that the imposition of free-surface conditions on v, k, ε and T does not require any treat-

ment since it is a homogeneous Neumann condition (see Table 1.2 and section 2.5). However, it is

necessary to impose the Dirichlet condition on the pressure at the free-surface, which requires a

tracking of the free-surface particles. In this work the free-surface detection is done in a similar

way as in [72] (see section 2.5). However, the free-surface detection cannot be done with a classi-

cal SPH divergence (2.160) in the framework of the USAW boundary conditions, due to the kernel

truncation close to the walls. Instead, the position divergence is computed through:

Dγ,−
a {rb} = − 1

γaρa

∑
b∈P

mbrab · ∇wab +
1

γaρa

∑
s∈S

ρsras · ∇γas (3.72)

which is the counterpart of (2.160) in the framework of the USAW boundary conditions. The

boundary term in (3.72) avoids tracking particles that are close to the walls. Since γa is equal to

one and there is no boundary term far away from the walls (even close to the free-surface), this

position divergence gets lower values than the expected ones (2 in 2-D, 3 in 3-D) when approaching

the free-surface. Then, a particle is considered as belonging to the latter when Dγ,−
a {rb} ≤ 1.5 in

2-D and when Dγ,−
a {rb} ≤ 2.4 in 3-D, as in [71].

The free-surface particle tracking is crucial for the stability of the ISPH simulations and the walls’
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impermeability. Indeed, when particles with few neighbours are not identiVed as belonging to

the free-surface, the Laplacian matrix is ill-conditioned. On the other hand, when a free-surface

particle moves towards a non-immersed wall at high velocity it crosses it, since its pressure and the

wall’s pressure are set to zero. A modiVcation of the free-surface detection is proposed in this work

to Vx the latter issue: a particle is identiVed as belonging to the free-surface only if it is suXciently

far from a wall. Thus, for each particle a ∈ F fulVlling the above-mentioned position divergence

criterion, a test is performed to check whether it will cross the wall at the next time-step (with a

small margin), which is done through the following criterion:

rav + δt

(
va ·

rav
r2
av

)
<
hqmax

8
(3.73)

If the latter relation holds, the free particle a and the vertex particle v are not identiVed as free-

surface particles. This technique was tested on the triangular wedge case (Section 4.2.1.4).

It was observed on the free-surface test-cases presented in section 4.2 that the free-surface detection

has important eUects on the simulation behaviour. Attempts were made to work on the dynamic

pressure in the whole time-scheme (3.19), in order to increase the accuracy of the results and to get

rid of the hydrostatic correction (3.24). Though, this requires further investigation since it did not

work with our formulation, maybe due to the lack of accuracy of the present free-surface detection.

3.5 Open boundaries

The imposition of inWow/outWow boundaries is done through a similar technique as that proposed

by Kassiotis et al. [59] (see section 2.6). The open boundary is represented through a set of vertex

particles and segments (see the Figure 2.8 for the deVnition of the vertex particles and segments).

The set of vertex particles (resp. segments) belonging to an open boundary is denoted by Vi/o (resp.
Si/o). The set of vertex particles (resp. segments) belonging to an inWow boundary is denoted by Vi
(resp. Si). The set of vertex particles (resp. segments) belonging to an outWow boundary is denoted

by Vo (resp. So).

There are two main requirements for the imposition of open boundaries in the ISPH model pro-

posed here: an algorithm to let particles enter and leave the domain, and the correct imposition of

open boundary conditions on the Velds. Regarding the algorithm for particles creation/destruction,

the technique mentioned in section 2.6 is used. The idea is to let the masses of the vertex particles

v ∈ Vi/o evolve over time as a function of the desired ingoing/outgoing mass Wux through the

segments s ∈ Si/o directly connected to v. The vertex particles are then used to create/delete Wuid

particles, which is done by setting a minimum and a maximum value for their mass. This process

is described in section 3.5.1. On the other hand, the imposition of open boundary conditions on

the Velds is done in a similar way as for wall boundaries: Dirichlet conditions are imposed at the

vertex particles whereas the Neumann conditions are imposed through the segments by setting the
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boundary terms of the Laplacian operators. We will see how this is done in section 3.5.2.

3.5.1 Particles creation/destruction

As evoked above, the mass of inlet/outlet vertex particles varies as a consequence of ingoing/out-

going mass Wuxes. The mass evolution should not introduce any perturbations in the Wow, so

care must be taken that it evolves smoothly. The time-derivative of the mass, denoted by ṁn
v , is

determined by the Eulerian velocity us imposed at the open boundaries:

∀v ∈ Vi/o, ṁn
v =

1

Nsv

∑
s∈Nsv

ρSs(us − vs) · ns (3.74)

with Nsv the set of segments s directly connected to v, Nsv its size, Ss the surface of segment s

(or length in 2-D). The vertex particles are then used to create/delete Wuid particles, which is done

by setting a minimum and a maximum value for their mass, more precisely ±0.5mref on a plane

boundary, withmref the mass of a free particle. At an inlet, the mass Wux (3.74) is positive and the

mass of a vertex v increases until it reaches the higher threshold +0.5mref . Then, a free particle is

created at that location whilemref is subtracted tomv , so thatmv goes down to −0.5mref . This

process was illustrated in section 2.6 in the Figure 2.11. In this way the mass variation is smooth

regarding space and time. At an outlet, the mass Wux is negative and when a free particle crosses a

segment to get out of the domain it is deleted and its mass is distributed onto the vertices directly

linked to the segment, a weight βa,v being associated to each of these vertices. An illustration of the

notations and of the fraction of segment area βa,v attributed to a vertex is provided on Figure 3.2.

Let pi be the projection of ravi on s (see Figure 3.2): pi = ravi − (ravi ·ns)ns (vi being one of the
vertices linked to s). Then the coeXcient βa,v is computed as:

• in 2-D, for v0 and v1 connected to s:

βa,v0 =
p1 · rv0v1
|rv0v1 |2

βa,v1 =
p0 · rv1v0
|rv0v1 |2

= 1− βav0
(3.75)

• in 3-D, for v0, v1 and v2 connected to s:

βa,v0 =
1
2 [p2 × rv2v1 ] · ns

1
2 [rv0v1 × rv0v2 ] · ns

βa,v1 =
1
2 [p0 × rv0v2 ] · ns

1
2 [rv0v1 × rv0v2 ] · ns

βa,v2 =
1
2 [p1 × rv1v0 ] · ns

1
2 [rv0v1 × rv0v2 ] · ns

(3.76)
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(a) (b)

Figure 3.2: Open boundary technique based on the USAW boundary conditions: sketch of the
notations for the computation of the fraction of segment area βa,v (represented in red) attributed
to a vertex at the outlet [60]. (a) 2-D case; (b) 3-D case. The coeXcient associated to the vertex v0

is proportional to the red area so that the largest amount of mass goes to the closest vertex particle.

In this way the largest amount of mass is attributed to the closest vertex particle to the point where

a Wuid particle is destroyed, which minimises mass displacement. At an outWow, the mass variation

is thus smooth in time but not exactly in space, although care was taken to distribute the mass as

close as possible to the point where the particle is deleted.

The following mass evolution equation is thus solved ∀v ∈ Vi/o:

mn+1
v = mn

v + δtṁn
v + δmn

v (3.77)

with δmn
v the mass variation due to particle creation/destruction and ṁn

v the mass Wux corre-

sponding to the imposed velocity at the open boundary. This mass update is performed for each

half time-step of the particles position update. In the end, gathering this with equations (3.14),
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(3.19) and (3.27), the total system to be solved reads:

kn+1
a − kna
δt

= Pna + Gn
a − εna

kn+1
a

kna
+

1

ρ
Lγa{µnk,b, knb }

εn+1
a − εna
δt

=
εna
kna

(
Cε1Pna + Cε3Gn

a − Cnε2,Y,aε
n+1
a

)
+

1

ρ
Lγa{µnε,b, εnb }

ṽ
n+1/2
a − vna

δt
=

1

ρ
Lγa{µn+1

E,b ,u
n
b } − [β(Tna − T0)− 1] g

Lγa{p̃n+1
b } =

ρ

δt
Dγ,−
a {ṽn+1/2

b }

v
n+1/2
a − ṽn+1/2

a

δt
= −1

ρ
Gγ,+
a {p̃n+1

b }rn+1/2
a = rn +

δt

2
v
n+1/2
a

∀v ∈ Vi/o, m
n+1/2
v = mn

v +
δt

2
ṁn
v + δm

n+1/2
v

Tn+1
a = Tna + δtLγa{Kn+1

E,b , T
n
b }

r∗a = r
n+1/2
a + δra with δra = −Cshifth

2Gγ
a{1}

(Ta, ka, εa)
n+1 ← (Ta, ka, εa)

n+1 +Gγ,−
a {(Tb, kb, εb)n+1} · δra

vn+1
a = v

n+1/2
a +Gγ,−

a {vn+1/2
b } · δra

rn+1
a = r∗a +

δt

2
vn+1
a

∀v ∈ Vi/o, mn+1
v = m

n+1/2
v +

δt

2
ṁ
n+1/2
v + δmn+1

v

(3.78)

This model with the associated set of boundary conditions is referred to as ISPH-USAW in Chap-

ters 4 and 5.

3.5.2 Imposition of the inWow/outWow boundary conditions

Two types of open boundaries must be treated, as was described in Chapter 1. At an inWow, a

Dirichlet condition is imposed on the velocity, the temperature, k and ε. Besides, a homogeneous

Neumann condition is imposed on the pressure. At an outWow, a Dirichlet condition is imposed on

the pressure and a homogeneous Neumann condition is imposed on the velocity, the temperature,

k and ε. Note that the distinction is done in terms of what is imposed on the Velds but the algo-

rithm makes it possible to have particles leaving the domain through an inWow boundary, which

is necessary in case of a prescribed recirculation close to an inlet. In other words, inlet and outlet

conditions can be handled by any open boundary at the same time. In the same way, the particles

may enter the domain through an outWow boundary. As for wall boundary conditions, the Dirich-

let conditions are imposed at the vertex particles, whereas the Neumann conditions are imposed

through the segments.
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3.5.3 InWow boundaries

At an inWow boundary, the Dirichlet conditions on T , k and ε are imposed at the vertex particles

and a homogeneous Neumann condition is imposed at the segments on those Velds. The Dirichlet

condition on the Eulerian velocity u is imposed at the vertex particles in the correction step of the

projection method. The homogeneous Neumann condition on u is then imposed at the segments.

The homogeneous Neumann condition on the pressure is imposed through the pressure Laplacian

in the pressure Poisson equation. Moreover, the pressure of vertex particles belonging to an inlet

is not computed through the Poisson equation. Instead, it is extrapolated from the surrounding

Wuid particles so that a homogeneous Neumann is imposed. Thus, the inWow boundary conditions

imposed during the time-scheme read:

∀v ∈ Vi, ∀s ∈ Si,



kn+1
v = kinflowv

εn+1
v = εinflowv(
∂p

∂n

)n+1

s

= 0

un+1
v = uinflowv

Tn+1
v = T inflowv

(3.79)

The compatible inWow conditions read:

∀v ∈ Vi, ∀s ∈ Si,



(
∂k

∂n

)n+1

s

= 0(
∂ε

∂n

)n+1

s

= 0

pn+1
v =

1

αv

∑
b∈F

Vbp
n+1
b wvb(

∂u

∂n

)n+1

s

· ns =
uas
δras

· ns(
∂T

∂n

)n+1

s

= 0

(3.80)

The values of the Velds at the segments of the inWow is deduced from a mean of the directly

linked vertex particles. The Neumann conditions in equations (3.79) and (3.80) are imposed in the

boundary terms of the Laplacian operators ((3.15), (3.23), (3.22), (3.25)). In equation (3.80), the fourth

line corresponds to an estimation of the normal velocity gradient through a linear interpolation.



3.5 OPEN BOUNDARIES 105

3.5.4 OutWow boundaries

At an outWow boundary, the homogeneous Neumann condition on T , k and ε is imposed at the

segments in the boundary terms of the Laplacian operator applied to those Velds. A compatible

Dirichlet is deduced through an interpolation on the surrounding free particles. The Dirichlet on

the pressure is imposed at the vertex particles. It can be either a Vxed pressure value (like the

hydrostatic pressure) or a radiative condition (see equation (1.29)). In the latter case, the outWow

pressure condition reads, ∀v ∈ Vo, ∀s ∈ So:
pn+1
s = poutflows = pns −

Cδt

αs

∑
b∈F

Vb
pnb − pns
δrsb

wsb

poutflowv =
1

Nsv

∑
s∈Nsv

poutflows

(3.81)

where δrsb is deVned as in (3.36) and αs as in (3.46).

The Neumann condition imposed on the pressure is obtained through a linear interpolation of the

surrounding free particles pressure. Thus, the outWow boundary conditions imposed during the

time-scheme read:

∀v ∈ Vo, ∀s ∈ So,



(
∂k

∂n

)n+1

s

= 0(
∂ε

∂n

)n+1

s

= 0

pn+1
v = poutflowv(
∂u

∂n

)n+1

s

= 0(
∂T

∂n

)n+1

s

= 0

(3.82)

The compatible outWow boundary conditions read:

∀v ∈ Vo, ∀s ∈ So,



kn+1
v =

1

αv

∑
b∈F

Vbk
n+1
b wvb

εn+1
v =

1

αv

∑
b∈F

Vbε
n+1
b wvb[(

∂(p+ ρgz)

∂n

)n+1

a

+

(
∂(p+ ρgz)

∂n

)n+1

s

]
· ns = 2

[
pn+1
a − poutflows

δras
+ ρg · ns

]
un+1
v · nv =

1

αv

∑
b∈F

Vbu
n+1
b · nvwvb

Tn+1
v =

1

αv

∑
b∈F

VbT
n+1
b wvb

(3.83)
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3.6 Solving the pressure Poisson equation

In the framework of the USAW boundary conditions, the pressure Poisson equation with hydro-

static correction (see equation (3.24)) reads:

2

γa

∑
b∈P

Vb
pab + ρgzab

r2
ab

rab ·∇wab −
1

γa

∑
s∈S

[∇pa + ∇ps + 2ρg · ns] ·∇γas =
ρ

δt
Dγ,−
a {ṽn+1

b }

(3.84)

Taking the boundary conditions described in sections 3.3, 3.4 and 3.5 into account (equation (3.69)

and 3rd lines of (3.79) and (3.83)), this equation becomes:

2

γa



∑
b∈P

Vb
pab + ρgzab

r2
ab

rab ·∇wab

−
∑

s∈S\Si/o

ρ

(
ṽn+1
s − vwalls

δt
+ g

)
·∇γas

−
∑
s∈Si

ρg ·∇γas

−
∑
s∈So

(
pa − poutflows

δras
+ ρg · ns

)
|∇γas|


=

ρ

δt
Dγ,−
a {ṽn+1

b } (3.85)

First, let us keep in the left-hand side only the terms involving the unknown dynamic pressures:

2

γa


∑
b∈P

Vb
pab + ρgzab

r2
ab

rab ·∇wab

−
∑
s∈So

pa + ρgzas
δras

|∇γas|

 =
ρ

δt
Dγ,−
a {ṽn+1

b }+
2

γa

∑
s∈S\Si/o

ρ

(
ṽn+1
s − vwalls

δt

)
·∇γas

+
2

γa

∑
s∈S\So

ρg ·∇γas

− 2

γa

∑
s∈So

poutflows

δras
|∇γas|

(3.86)

The lines of the matrix corresponding to Dirichlet particles (particles on which a Dirichlet condi-

tion is imposed) are removed, as in section 2.5. Indeed, there is no need to solve the system for

these particles. Besides, the product of the columns corresponding to Dirichlet particles with the

unknown pressure vector is known and passed to the right-hand side. In the end the system to be

solved does not involve the free-surface particles e ∈ E and inlet/outlet particles anymore and they
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appear in the right-hand side:

2

γa



∑
b∈P\(E∪Vi/o)

Vb
pab + ρgzab

r2
ab

rab ·∇wab

+
∑

b∈E∪Vi/o

Vb
pa + ρgzab

r2
ab

rab ·∇wab

−
∑
s∈So

pa + ρgzas
δras

|∇γas|


=

ρ

δt
Dγ,−
a {ṽn+1

b }+
2

γa

∑
s∈S\So

ρg ·∇γas

+
2

γa

∑
s∈S\Si/o

ρ

(
ṽn+1
s − vwalls

δt

)
·∇γas

− 2

γa

∑
s∈So

poutflows

δras
|∇γas|

+
2

γa

∑
b∈E∪Vi/o

Vb
pimposedb

r2
ab

rab ·∇wab

(3.87)

where pimposedb denotes either pinflowb , poutflowb or 0 (when b ∈ E ). This equation corresponds to a

linear system:

Ax = B (3.88)

where x is the unknown vector of all particles dynamic pressures: xa = p∗a, B is the vector of

right-hand side values at all particles:

Ba =
ρ

δt
Dγ,−
a {ṽn+1

b }+
2

γa

∑
s∈S\So

ρg ·∇γas +
2

γa

∑
s∈S\Si/o

ρ

(
ṽn+1
s − vwalls

δt

)
·∇γas

− 2

γa

∑
s∈So

poutflows

δras
|∇γas|+

2

γa

∑
b∈E∪Vi/o

Vb
pimposedb

r2
ab

rab ·∇wab

(3.89)

A is a sparse matrix corresponding to the discrete Laplacian operator:
Aaa =

2

γa

∑
b∈P

Vb
rab
r2
ab

·∇wab −
2

γa

∑
s∈So

|∇γas|
δras

Aab = − 2

γa
Vb
rab
r2
ab

·∇wab

(3.90)

The Laplacian matrix is non-symmetric because of the term involving outlet segments and because

Vb is not constant with the USAW boundary conditions: the volume of the vertex particles is lower

than that of the free particles.

To solve system (3.88), the linear solvers GMRES [125] and Bi-CGSTAB [153] were implemented

on a CPU sequential code. The Bi-CGSTAB algorithm was also implemented on a GPU massively

parallel code (see section 3.9). In both cases, it was chosen not to use a library for the matrix

inversion, but to implement the algorithm, in order to avoid the matrix construction and storage

which requires much memory. Indeed, the solver is meant to invert only the matrix given by (3.90).
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Table 3.1: Non-preconditioned Bi-CGSTAB algorithm for the resolution ofAx = B [153].

1. x0 is an initial bet; r0 = B −Ax0;
2. r̂0 is an arbitrary vector that satisVes
3. (r̂0, r0) 6= 0, for instance, r̂0 = r0

4. ρ0 = α = ω0 = 1;
5. v0 = p0 = 0;
6. for i = 1, 2, 3, ...,
7. ρi = (r̂0, ri−1);β = (ρi/ρi−1)(α/ωi−1);
8. pi = ri−1 + β(pi−1 − ωi−1vi−1);
9. vi = Api;
10. α = ρi/(r̂0,vi);
11. s = ri−1 − αvi;
12. t = As;
13. ωi = (t, s)/(t, t);
14. xi = xi−1 + αpi + ωis;
15. if xi is accurate enough: quit;
16. ri = s− ωit;
17. end;

This is particularly important in the GPU code where memory storage and memory access (in

particular transfers of data between blocks) are the most limiting actions in terms of performance.

Let us consider the case of the Bi-CGSTAB algorithm, given in Table 3.1. The result of each matrix-

vector product (Ax0,Api,As) is known:

Ax =
2

γa

[∑
b∈P

Vb
xab
r2
ab

rab ·∇wab −
∑
s∈So

xa
δras
|∇γas|

]
(3.91)

Thus, each matrix-vector product (Ax0, Api, As) is stored in an array through the call of a

function that directly provides the result, without having to store the matrix. Note that in the GPU

code, all the vector-vector operations (dot products, norms computations, etc.) are performed using

the Cublas library, which is optimised for this purpose.

In the case of conVned Wows, if no Dirichlet condition is imposed the system has an inVnity of

solutions, and the matrix A is not invertible. It is made invertible by adding a small perturbation

through a slight reinforcement of the diagonal terms Aaa and by imposing the mean of the right-

hand side components to be zero.

3.7 Numerical stability

To our knowledge, there is no published theoretical study of ISPH numerical stability. Making a

count of all the variables involved in the discrete system of equations, it appears that the maximum



3.7 NUMERICAL STABILITY 109

time-step size for numerical stability is a function of 7 variables:

δtmax = φ (ρ, ν,K, βg, vmax, h,∆T ) (3.92)

where vmax is the maximum velocity of the Wow, h the smoothing length and ∆T = Th − Tc

with Th the highest and Tc the lowest temperature in the Wow. The system counts 8 variables with

4 units, but the density is the only one involving a mass unit. The Vaschy-Buckingham theorem

states it is determined by 4 dimensionless numbers:

δtmaxvmax
h

= ψ

(
vmaxh

ν
,
ν

K
,
βg∆Th3

ν2

)
= ψ (Re0, P r,Gr0)

(3.93)

where Re0 is a numerical Reynolds number, Pr is the Prandlt number and Gr0 is a numerical

GrashoU number. To obtain more details about the function ψ, it would be necessary to make a

Neumann stability analysis as the one presented in section 2.3.1.3. Though, obtaining a formula

like (2.98) for the stability domain is made diXcult by the additional heat equation. Anyway, such

an analysis does not take the presence of walls and of a free-surface into account, so it would still

be necessary to use the empirical conditions (2.131), which is what is done here:

δt = min
(
CCFL

h

vmax
, Cvisq

h2

ν

)
(3.94)

The value of Cvisq = 0.125 is the same as for WCSPH schemes (see section 2.3.1.3), and the CFL

number CCFL was taken as 0.2 in the present work, based on crude numerical tests. Recall that

several values of CFL number in ISPH are found in the literature, ranging from 0.1 to 0.4 (see

section 2.3.2.4).

Following [148], in turbulent conditions one may use the same kind of condition but replacing ν

by max(νT ) and Pr by PrT .

Note that no stability condition relative to the temperature was used in this work (i.e. no inWuence

of Pr and Gr0 in (3.94)), which was not a problem in the cases presented in section 4.3, except

at very high GrashoU numbers on the case of a turbulent Wow in a diUerentially heated rectan-

gular cavity presented in section 4.3.2.2. Further investigation would give a more general stability

condition of the form:

δt = min
(
CCFL

h

vmax
, Cvisq

h2

ν
, Cdiff

h2

K
,CGr

βg∆Th2

v3
max

)
(3.95)
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3.8 Computation of the kernel renormalisation factor and its gradient

As explained in section 2.4.1.2, computing γa through a governing equation (2.137) leads to an

additional time-step size restriction that proved to prevail on the CFL condition quite often in ISPH,

thus destroying the advantage of using vmax instead of the speed of sound in the CFL condition

(see section 2.3.2.4). It is thus advantageous to compute γa through an analytical equation in our

model. Here a technique is proposed to analytically compute γa in 2-D (section 3.8.1). Then, the

computation of γa and its gradient in 3-D are brieWy dealt with in section 3.8.2.

Recall that γa is deVned as:

γa =

∫
Ωa

w(|ra − r′|)dr′ (3.96)

while its gradient is deVned as:

∇γa =

∫
∂Ω∩Ωa

w(|ra − r′|)n(r′)dΓ′ =
∑
s∈S

∫
∂Ωs∩Ωa

w(|ra − r′|)n(r′)dΓ′ =
∑
s∈S

∇γas (3.97)

3.8.1 Computation of the kernel renormalisation factor and its gradient in 2-D

The computation of ∇γa in 2-D is done through the analytical formula proposed by Ferrand et

al. [35], which serves to compute the ∇γas terms appearing in equation (3.97). These terms are

the ones involved in the diUerential operators (2.145), (2.146) and (2.151). On the other hand, a

technique to compute γa through an analytical formula is proposed here and was used for all the

test-cases presented in Chapter 4. It follows the idea proposed by Feldman and Bonet [33], which

consists in writing γa as a boundary integral by applying the Gauss theorem to (3.96):

γa = −
∫
∂Ω

W
(∣∣ra − r′

∣∣) · n (r′) dn−1Γ
(
r′
)

(3.98)

where W is deVned as:

w (q) = ∇ ·W (q) (3.99)

Since w is a radial function, so isW:

W (q) = −ϕ (q) r̃ (3.100)

where q =
r̃

h
and r̃ = ra − r′. In polar coordinates w(q) = ∇ ·W (q) reads:

w(q) = −1

r̃

∂

∂r̃

[
r̃2ϕ(q)

]
(3.101)
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Multiplying by q and integrating gives:

ϕ(q) = − 1

q2

∫ qmax

q
q′w(q′)dq′ (3.102)

The calculations were done for the 5th order Wendland kernel (2.10), which yields:

ϕ (q) =
1

2πh2q2

(
1− q

2

)5
(

1 +
5q

2
+ 2q2

)
for q 6 2 (3.103)

Then we have :

γa =

∫
∂Ω
ϕ (q) r̃ · n (r̃) dn−1Γ (r̃) (3.104)

As pointed out in [33], the function h2ϕ (q) presents a singularity in q = 0, so that the Gauss

theorem invoked to obtain (3.98) is only valid if the integration is done on ∂Ω ∪ ∂Ωε, with Ωε a

small sphere of radius εh centred on q = 0. By decreasing ε to zero, it is possible to show that the

integral over ∂Ωε is equal to 1. Thus:

γa = 1−
∑
s

γ̃as (3.105)

with:

γ̃as = −ns ·
∫
s
ϕ

(
r̃

h

)
r̃dn−1Γ (r̃) (3.106)

Recall ns is the inward unit normal on segment s. Let ts be the unitary vector tangential to s (see

Figure 3.3). We have r̃ = r0 − ra + yts so (3.106) can be simpliVed to give:

γ̃as = ns · ra0

∫
s
ϕ

(
r̃

h

)
dn−1Γ (r̃) (3.107)

where ra0 = ra − r0 and r0 is the orthogonal projection of ra on the segment s. Let y be

the coordinate along ts, ra0 = |ra0| the distance from the integration point to the segment and

qa0 = ra0/h. We deVne:

ζi = min

(
1

2

√
q̃2
a0 +

y2
i

h2
, 1

)
(3.108)

for i = 1, 2, with q̃a0 = min (qa0, 2). y spans the interval [y1 = rav1 · ts; y2 = rav2 · ts]. It is then
found that:

γ̃as = sign (ns · ra0)
1

4π
[sign (y2)ψ (qa0, ζ2)− sign (y1)ψ (qa0, ζ1)] (3.109)
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Figure 3.3: Notations for the calculation of γ̃as.

with:

ψ (q, ζ) = q
√
ζ2 − q2

4


−4

3ζ
5 + 7ζ4 −

(
5
12q

2 + 14
)
ζ3

+7
3

(
q2 + 5

)
ζ2 − 1

4

(
5
8q

2 + 21
)
q2ζ

+7
6q

4 + 35
6 q

2 − 7


−
(

5
8q

2 + 21
) q5

16 arg cosh 2ζ
q + 2 arctan

√
4ζ2

q2
− 1

(3.110)

Let us now consider the particular case where a is located exactly on the straight line driven by the

segment s. The limit of γ̃as when qa0 tends to zero (the yi remaining diUerent from zero) is:

lim
qa0−→0

γ̃as =
1

4
[sign (y2)− sign (y1)] (3.111)

If the integration point is located inside the segment, y1 and y2 have opposite signs and y2 is

positive according to our notations, so we Vnd γ̃as = 1/2, as expected. On the contrary, if the

point is located outside the segment, y1 and y2 have the same sign, and we obtain γ̃as = 0. Thus,

for a point located on a straight wall, (3.109) gives the expected result: γa = 1/2.

The case where the integration point is located at the intersection of two segments corresponds to

a singularity. Let us consider a point a belonging to the segment s1 and getting closer of one of

its extremities rv , in the direction of segment s2, which makes an internal angle θv with s1 at the

point rv (see Figure 3.3). Let us assume that the lengths of the two segments are large enough so

that only the segments s1 and s2 have a contribution. What we saw before shows that γ̃as1 = 1/2

for any value of the distance rav > 0. Making rav tend to zero we obtain:

γ̃vs2 =
1

2
− θv

2π
(3.112)

Finally:

γv = 1− (γ̃vs1 + γ̃vs2) (3.113)

=
θv
2π
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Table 3.2: Summary of the various cases for the calculation of γ̃as in 2-D.

Particle position γ̃as

Near a wall eqn (3.109)

On a segment
1

2

On a vertex v
1

2

(
1− θv

2π

)

which is the expected result. If the shape of the wall changes quickly close to the vertex particle v,

other positive or negative contributions can appear in (3.105), but there is no singularity problem.

In Table 3.2 the techniques used to compute γ̃as in all the situations are summarised.

It was checked that the computed results perfectly match the theoretical values of γa in cases of a

straight inVnite wall and of an arbitrary angle.

3.8.2 Computation of the kernel renormalisation factor and its gradient in 3-D

In 3-D, γa is computed through the governing equation proposed by Ferrand et al. [35] (equa-

tion (2.137), repeated here):
dγa
dt

= ∇γa · (va − vwall) (3.114)

On the other hand,∇γa is computed through an analytical formula proposed in [150] and slightly

modiVed here so as to avoid numerical issues due to discontinuities in the original formula. The

idea is to apply the Gauss theorem to the deVnition of∇γa so as to compute it as a sum of integrals

over the edges of the segments, which are triangles in 3-D (note that they could be quadrangles).

The method is explained in Appendix A, which results in the formula (A.14) for the computation of

∇γa, that was used in the 3-D cases presented in Chapter 5. Note that a technique to analytically

compute γa in 3-D was proposed in [150], which could further improve the results on the 3-D cases.

3.9 Parallelisation in a GPU framework

Initially, the developments presented in this Chapter were introduced in a sequential code called

Spartacus-2D developped at EDF, that was based on a WCSPH formulation using a Vrst-order sym-

plectic scheme with USAWwall boundary conditions. The ISPHmodel was introduced in this code,

starting from a Bi-CGSTAB linear solver provided by Lee et al.. A GMRES solver was also imple-

mented which showed better convergence rates compared to Bi-CGSTAB, although no quantitative

comparisons are provided here. However, as evoked in section 2.9 the massive parallelisation of the
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code is necessary in order to bring the method to an industrial level. This was done in a code

called Sphynx, derived at EDF from the open-source code GPUSPH [45] but with simpliVcations

regarding the available options 4. Compared to GPUSPH, Sphynx does not allow to represent solid

objects which movements can be aUected by the Wow, and it does not provide all the boundary

conditions, time-scheme and kernel options. Besides, contrary to GPUSPH it is not able to run

on multiple GPUs. On the other hand, Sphynx was developed in order to implement the USAW

boundary conditions in a GPU framework. It also includes a treatment for inlet/outlet boundary

conditions in WCSPH following [60]. The present ISPH model was implemented in this code, as

well as the k − ε turbulence model and the buoyancy model. Besides, the inlet/outlet boundary

conditions for ISPH presented in section 3.5 were implemented.

As GPUSPH, Sphynx is working in single precision in order to spare memory and be able to per-

form bigger simulations. The whole algorithm is computed on the GPU, data being exchanged with

the CPU at the beginning of the simulation and for every output of a result Vle. As in GPUSPH, a

Cartesian grid of cell size the kernel support is used in order to compute the neighbour list faster.

The latter is stored in a table after each particle displacement. In order to get rid of numerical pre-

cision issues (enhanced by the use of single precision), the particles positions are stored relatively

to their cell position (homogeneous precision, see [46]). The absolute positions are only recovered

for visualisation and post-processing purposes. It was measured on the lid-driven cavity test-case

with 2.5× 105 particles that the computational time was divided by about a factor 50 compared to

the CPU sequential code.

4GPUSH can be downloaded from http://www.gpusph.org/

http://www.gpusph.org/


Chapter 4

Validation on 2-D cases

Ce Chapitre traite de la validation du modèle présenté au Chapitre 3 sur des cas 2-

D. Le modèle est comparé à d’autres modèles SPH, ainsi qu’aux Volumes Finis dans le

cas d’écoulements conVnés et à la méthode Volume of Fluid dans le cas d’écoulements à

surface libre, avec des résultats très satisfaisants. Dans un premier temps on s’intéresse

à la validation sur des écoulements isothermes. En régime laminaire, le cas de la cavité

entraînée a été testé, les résultats obtenus montrant que le modèle améliore eUective-

ment les résultats par rapport à des modèles SPH existants. On vériVe la capacité du

modèle à prédire les forces exercées sur les objets sur un cas d’écoulement autour de

cylindres et sur une rupture de barrage sur un obstacle. Un cas à surface libre présen-

tant des parois plus complexes et mobiles est également présenté. La formulation des

conditions aux frontières ouvertes est testée sur un canal de Poiseuille laminaire, sur

une rupture de barrage schématique coupée et sur un cas de propagation de vague.

Le modèle k − ε est testé sur un écoulement de Poiseuille turbulent dans un canal

inVni et sur un cas schématique de passe à poissons. Dans un deuxième temps, on

s’intéresse à la validation sur des écoulements non-isothermes. Deux cas laminaires

d’écoulements dans des cavités carrées chauUées diUérentiellement sont présentés, le

deuxième présentant une paroi supérieure mobile. Ensuite, deux cas d’écoulements

non-isothermes turbulents sont considérés : un écoulement dans un canal et un écoule-

ment dans une cavité rectangulaire chauUée diUérentiellement.
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This Chapter focuses on the validation of the buoyant incompressible SPH model described in

Chapter 3 with USAW boundary conditions in 2-D (system (3.78) and the subsequent boundary

conditions). The latter is referred to as ISPH-USAW in what follows. First, in the section 4.1 our no-

tations are introduced. Then, the validation on 2-D isothermal Wows is presented in the section 4.2.

The ISPH algorithm itself, without USAW boundary conditions, is relatively well established [76],

so that we do not present any validation on cases without walls in this work. In the section 4.2.1,

bounded isothermal laminar Wows are considered, for which reference results are widely available

in the literature. This includes free-surface and conVned Wows, as well as Wows with inlet/outlet

boundaries. In the section 4.2.2, two isothermal conVned turbulent Wows are considered, one of

them being a 2-D turbulent Poiseuille channel Wow, which is the standard case for validation of

the k − ε model. Finally, the section 4.3 focuses on the validation on 2-D non-isothermal conVned

laminar and turbulent Wows. The 5th order Wendland kernel (2.10) was used for all the simulations

with a smoothing length h = 2δr (recall δr is the initial interparticular spacing). In all the simula-

tions the reference density of the Wuid is ρ = 1000 kg.m−3. The results obtained with ISPH-USAW

are compared to mesh-based methods and to other SPHmodels. Comparisons with FV are provided

for most conVned cases, whereas comparisons with Volume of Fluid (VoF) are provided for most

free-surface cases. The FV results were obtained with the Code_Saturne open-source software [8]
and the VoF results with the OpenFOAM open-source software [140]. It seemed important to com-

pare the results of the new model to reference methods, which is why so many conVned cases were

tested.

4.1 Nomenclature

In all cases the characteristic length of the Wow is denoted by L and the characteristic velocity is

denoted by U . The isothermal Wows are characterised by the Reynolds number:

Re =
UL

ν
(4.1)

The non-isothermal Wows are characterised by three other dimensionless numbers: the Prandlt

number, the GrashoU number and, in case a non-zero heat Wux is imposed through a wall, a bulk

Nusselt number. The Prandlt number is deVned as:

Pr =
ν

K
(4.2)

The GrashoU number is deVned as:

Gr =
βg∆TL3

ν2
(4.3)

The Nusselt number is deVned as:

Nu =
LQT0
K∆T

(4.4)
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where ∆T = Th − Tc with Th deVned as the highest temperature and Tc the lowest temperature

of the Wow. On the other hand, QT0 is an imposed heat Wux through a wall (usually zero, except in

section 4.3.1.1).

In what follows, the dimensionless variables are identiVed with a + superscript. Our 2-D coordi-

nates are denoted by (x, z) and y represents the distance to a wall in section 4.2.2.1. The compo-

nents of the velocity Veld v are denoted by (vx, vz). Unless stated otherwise, the dimensionless

variables are deVned by:
x+ =

x

L
, z+ =

z

L
, v+ =

v

U
, ν+

T =
νT
LU

, t+ =
t√
gH

k+ =
k

U2
, ε+ =

εL

U3
, T+ =

T

Th
, p+ =

p

ρU2/2

(4.5)

where H is a reference water height.

4.2 Validation on isothermal 2-D cases

4.2.1 Laminar Wows

4.2.1.1 Lid-driven cavity

The lid-driven cavity test-case is classical in Wuid dynamics and is much used to validate numerical

models. It consists of a square closed cavity of size L (the characteristic length of the Wow) whose

lid slides laterally at a constant velocity U (the characteristic Wow velocity), driving the Wuid under

the eUect of the viscosity. For Reynolds numbers lower than about 7500 [112], it reaches a steady-

state after some time. Then, it is possible to compare the results between diUerent computational

Wuid dynamics (CFD) codes. In particular, the SPH results were compared to the ones obtained by

Ghia et al. [38] with a multigrid simulation method, and to the ones obtained with Code_Saturne,
a widely validated code based on FV [8]. The FV simulations were always done with 512 ×
512 cells. Three Reynolds numbers (deVned through (4.1)) were considered here: 100, 400 and

1000. A representation of the results obtained with the present ISPH-USAW model with 240× 240

particles and FV after time-convergence for a Reynolds number of 1000 is presented Figure 4.1,

which qualitatively shows that the two CFD codes give very similar results. Simulations on this

test-case showed that the impermeability of the walls is granted by the ISPH-USAW model.

For the Reynolds number 100, we compared ISPH-USAW results to Yildiz et al.’s results [157]

based on an ISPH model with the multiple boundary tangent method (ISPH-MBT). A discretisation

of 120×120 particles was used in both methods. The velocity proVles in x+ = 1/2 and z+ = 1/2

are shown in Figure 4.2, where the same quality of results was obtained with both ISPH models

compared to Ghia et al. and to FV results. We could not compare pressure results since there were
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Figure 4.1: Lid-driven cavity case for Re = 1000: comparison of the results obtained after conver-
gence with ISPH-USAW (left) and with FV (right).

none available in [157].

For the Reynolds number 400, we compared ISPH-USAW results to WCSPH using USAW boundary

conditions (WCSPH-USAW). A discretisation of 200×200 particles was used in both methods. For

WCSPH-USAW the numerical speed of sound was taken equal to 10U , and a background pressure

was imposed, without which cavities appear in the Wow, in agreement with [72]. Besides, a Ferrari

density correction (2.99) was applied, as adapted to WCSPH-USAW by Mayrhofer et al. [94]. The

dimensionless velocity proVles are shown on the left side of Figure 4.3, where the same quality of

results was obtained with ISPH-USAW and WCSPH-USAW compared to Ghia et al. and to FV.

The dimensionless pressure proVles in z+ = 1/2 and on the diagonal of the cavity, deVned as

that between the bottom-left and the top-right corners, are shown on the right side of Figure 4.3.

It appears that WCSPH-USAW results are far inferior to ISPH-USAW results in terms of pressure

prediction, even with a Ferrari density correction.

For the Reynolds number 1000, we compared our ISPH-USAW results to WCSPH-USAW and to

the results obtained by Xu et al. [155] using ISPH with a classical ghost particles technique (ISPH-

GP). A discretisation of 240 × 240 particles was used in all methods. The dimensionless velocity

proVles are shown on the Figure 4.4, where the same quality of results was obtained with both

ISPH models compared to Ghia et al. and to FV. The velocity results obtained with WCSPH-USAW

are slightly inferior to the two ISPH models. Both ISPH models are much better than WCSPH

in terms of pressure prediction, as can be seen in Figure 4.6. Finally, the computational time with

ISPH-USAWwas smaller than withWCSPH-USAW as shown in Table 4.1, and FV performed faster.
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Figure 4.2: Lid-driven cavity for Re = 100. Dimensionless velocity proVles in x+ = 1/2 and
z+ = 1/2. Comparison between ISPH-USAW, ISPH-MBT [157], FV and the results of Ghia et
al. [38].

For the three Reynolds numbers ISPH-USAW results are in good agreement with the ones obtained

with FV and by Ghia et al. in terms of velocity and pressure, which shows that the boundary

conditions are imposed satisfactorily for laminar Wows. It is expected that ISPH-MBT and ISPH-

GP perform well on this test-case where the geometry is simple. Though, no convergence study

was presented in the two latter works, so that the rate of convergence of those models is not known.

To quantify the error made with our ISPH model compared to the FV method, convergence studies

were performed at a Reynolds number of 1000 where the results obtained with FV on a cavity

discretised by 512 × 512 cells were taken as a reference. The L2 error was calculated based on

the values of the horizontal velocity Veld obtained by the ISPH method and by FV at all particles

positions, through:

L2 =

√√√√ 1

Vtot

∑
b∈P

Vb

(
vsolx,b − v

ref
x,b

vmax

)2

(4.6)

where Vtot =
∑
b∈P

Vb is the total volume of the computational domain, vsolx is the horizontal velocity

obtained by the ISPH model, vrefx is the horizontal velocity obtained with FV and vmax = U is the

maximum velocity of the Wow. The results of the convergence study are shown on the Figure 4.5,

where it appears that the rate of convergence of ISPH-USAW is close to 2, whereas WCSPH-USAW

presents a convergence order less than one and an error about 10 times higher than ISPH-USAW.

Note that to our knowledge there are no theoretical results concerning the convergence rate of the

ISPH method.
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Figure 4.3: Lid-driven cavity for Re = 400. Dimensionless velocity proVles (top), pressure pro-
Vles in z+ = 1/2 (bottom-left) and pressure proVles on the diagonal (bottom-right). Comparison
between FV, WCSPH-USAW and ISPH-USAW. Velocity results are also compared to Ghia et al.’s
results [38].
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ISPH-USAW, ISPH-GP [155], WCSPH-USAW and FV.

The simulations at Re = 1000 were also run on the GPU code with a discretisation similar to

that of the FV simulation (500 × 500 particles). The Figure 4.7 shows the results obtained with

ISPH-USAW and WCSPH-USAW compared to FV and to Ghia et al.’s results [38] regarding the

velocity Veld. The results quality is clearly higher with ISPH-USAW than with WCSPH-USAW.

4.2.1.2 InVnite array of cylinders in a channel

The second conVned laminar Wow considered in this work consists of a very viscous Wow around

an inVnite array of cylinders conVned in a channel. This case was chosen in order to check that

ISPH-USAW can accurately predict hydrodynamic forces on walls. The problem considered in this

work is the same as in [78] and [30]. Figure 4.8 shows a sketch of the geometry. All the distances

are made dimensionless by the radius of the cylinders L. Its dimensionless height H+ is set to 4

and a cylinder is placed at its half-height: z+ = 2. Periodic boundary conditions are applied along

the x-direction so that an inVnite array of cylinders is represented. The inter-cylinder distance

is set through the length of the channel. Various inter-cylinder dimensionless distances l+ were

considered, ranging from l+ = 2.5 up to l+ = 35. The Wuid considered presents a dynamic

viscosity ν = 10−4m2s−1. The value of the average Wow velocity in the unobstructed channel is

imposed as U = 1.2× 10−4ms−1, which produces a Reynolds number Re = 2.4× 10−2 . A body

force F = Fex is dynamically applied to the Wuid in order to obtain the desired value of U and the

simulations are run until a steady-state is reached. The formula used to compute the longitudinal

body force is the one proposed in [94] (here we drop the particle labels):

Fn = Fn−1 +
U − 2ṽn−1 + ṽn−2

δt
(4.7)
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Figure 4.7: Lid-driven cavity for Re = 1000. Dimensionless velocity proVles (top), pressure pro-
Vles in z+ = 1/2 (bottom-left) and pressure proVles on the diagonal (bottom-right). Comparison
between FV, WCSPH-USAW and ISPH-USAW. The discretisation used in the SPH simulations is
500× 500 particles. Velocity results are also compared to Ghia et al.’s results [38].

Figure 4.8: InVnite array of cylinders in a channel: sketch of the geometry with l+ = 6 [30, 78].
The orange lines correspond to the proVles plotted in Figure 4.10 (x+ = 3, 5, 6 and z+ = 2, 3.5).
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Figure 4.9: InVnite array of cylinders in a channel: dimensionless drag force as a function of
the inter-cylinder distance. Comparison between ISPH-USAW and the results obtained by Liu et
al. [78].

where ṽn is the average longitudinal Wow velocity in the unobstructed channel at time n, computed

as:

ṽn =
1

Nn
c

∑
a∈F∪Ωc

vnx (4.8)

where Ωc is a slice of the channel located at x+ = l+ of width equal to the initial interparticular

spacing δr, and Nc is the number of Wuid particles located in this slice at time n.

The total drag force per unit length acting on the cylinder, FD , was computed for several values of

l+. This force is oriented along the x-direction and was computed as:

FD =
∑
s∈Γ

(
−psns + µ

[
∇us + ∇uTs

])
· exSs (4.9)

where Γ is the boundary of the cylinder, Ss is the length of the segment s and the gradient of

velocity at the segments was computed as:

∇us +
1

2

∑
i=1,2

Gγ,−
vi {ub} (4.10)

where the vi are the vertices linked together by segment s and Gγ,−
a is deVned by (2.144). For the

following comparisons, the dimensionless drag coeXcient is deVned as CD = FDρ
νU [30]. Figure 4.9

shows the values of CD obtained with ISPH-USAW compared with the results of Liu et al. [78] for

several lengths of the channel. Their results were obtained with a Finite Elements Method (FEM).

The agreement is good for the three values of L considered.

Let us now focus on the case where l+ = 6. A comparison of velocity proVles at x+ = 3, x+ = 5,

x+ = 6, z+ = 2 and z+ = 3.5 was done with results obtained by Ellero et al. [30] where they

used the Immersed Boundary Method (IBM) [97, 98] and with WCSPH using mirror particles to

model boundaries (WCSPH-MP). For the SPH simulations, a discretisation of 120 particles along
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the height of the channel was used. We observe that the ISPH-USAW velocity proVles match quite

well the ones obtained with IBM (see Figure 4.10). Ellero et al. obtained slightly better velocity

proVles with WCSPH-MP, which can be explained by the fact that they used a ratio h/δr = 4.5,

whereas we took it equal to 2. With l+ = 6, Liu et al. obtained CD = 106.77 using periodic

boundary conditions along the x-direction. This value was taken as a reference and the relative

error compared to the SPH results was calculated for several discretisations1, using a Vxed ratio

h/δr = 2. The results of this convergence study are presented on the right-hand side of Figure 4.11,

where WCSPH-USAW and ISPH-USAW are compared. With ISPH-USAW, an order of convergence

of 1.39 ± 0.03 was obtained, while with WCSPH-USAW it was only of 0.94 ± 0.04. Note that

Ellero et al. obtained an order of convergence of about 0.94 with WCSPH-MP. Though, in their

simulations CD converged towards a higher value than the one obtained by Liu et al., as can be

seen on the left side of Figure 4.11. They attributed this to the fact that the discretisation error

becomes predominant for lower resolutions but it does not seem to be a relevant explanation since

we did not observe this phenomenon in our simulations. Nevertheless, our results show that the

pressure prediction is more accurate with ISPH-USAW than with WCSPH-USAW.

Note that for this test-case the numerical stability is conditioned by the viscous force, so that the

time-step is the same with WCSPH and ISPH. Thus, computational times are higher with the latter.

They are presented in Table 4.1. To reduce computational times at low Reynolds numbers with ISPH

a solution would be to treat the viscous term implicitly, as was presented in [141] for example.

4.2.1.3 Laminar plane Poiseuille Wow with inlet/outlet

In order to test the performance of the open boundaries algorithm, a laminar plane Poiseuille

Wow was modelled. The half-height of the channel is the characteristic length of the Wow, L, and

inWow/outWow conditions are applied at the extremities of the channel. The width of the channel

is equal to L
4 . The maximum velocity of the Wow is used as reference velocity U . It is imposed

through the prescription of the theoretical velocity proVle at the inlet:

v+ =
[
1− (z+ − z+

0 )2
]
ex (4.11)

where z+
0 is the dimensionless vertical coordinate of the channel centre. The Reynolds number

is set to 10. At the outlet, the pressure is imposed equal to zero. The simulation is run during

70s of physical time, which corresponds to about 2 × 105 iterations with an initial dimensionless

interparticular space of δr+ = 10−2. The results obtained with ISPH-USAW are presented in the

Figure 4.12, where the horizontal dimensionless velocity v+
x is plotted as a function of z+ for all

the particles. The agreement with the theoretical parabolic proVle is excellent, which shows the

inWow/outWow conditions are properly imposed on this case.

1δr+ = (0.25, 0.2, 0.17, 0.11, 0.083, 0.07, 0.06, 0.048, 0.042, 0.036)
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4.2.1.4 Dam-break over a wedge

This case was simulated in order to check that our new ISPH-USAWmodel can accurately represent

violent free-surface Wows. It consists of a schematic 2-D dam-break in a 2 meters long and 1 meter

high pool, presenting a triangular wedge in the bottom. The geometry is the same as in [35].

The initial interparticular spacing for the simulations with ISPH and WCSPH was taken equal to

10−2m and the kinematic viscosity to 10−2m2s−1. In the case of the WCSPH method, a Ferrari

density correction was used (2.99) and the numerical speed of sound was taken equal to 20ms−1.

The results obtained with ISPH and WCSPH with 5.881×103 particles were compared to the ones

obtained with VoF, with 6.322× 103 cells. Although in VoF the simulations were done for a two-

phase (air + water) model, which limits the extent of the comparison with the single-phase SPH

models, this comparison is useful to check the accuracy of our method. The results obtained with

VoF were considered as a reference against which the ones obtained with SPH were compared.

Figure 4.13 shows a qualitative comparison of the results obtained with VoF and ISPH-USAW. The

dimensionless time t+ was deVned as in equation (4.5) withH is the initial Wuid depth (H = 1m).

The two methods give similar results. DiUerences appear between the models that can be due to the

two-phase nature of VoF, while the SPH models are single-phase. Moreover, in the visualisation of

VoF results, the free surface is considered as the locations where the volume fraction is 0.5, which

can explain some of the diUerences appearing in Figure 4.13 at early times. Important diUerences

of behaviour appear from the moment when the jet impacts the wall, which has the eUect to

capture air inside the Wuid in the two-phase VoF simulation, which does not happen with SPH.

In Figure 4.13, one can observe that a consequent number of particles remain stuck to the walls

during the SPH simulation. For example, this can be seen quite well at time t+ = 3.13. This is

due to the high viscosity of the Wuid considered here. Furthermore, particle clumping is observed

at the free-surface, which is well visible on the jet. This is due to the switch oU for the diUusion
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Figure 4.13: Dam-break over a wedge. Comparison of the free-surface shapes and pressure Velds
obtained with VoF (left) and ISPH-USAW (right) at diUerent times.
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Figure 4.14: Dam-break over a wedge. Comparison of the evolution of the pressure force applied
on the left-side of the wedge between VoF (6322 cells), ISPH-USAW (5881 particles) and WCSPH-
USAW (5881 particles).

shift close to the free-surface as mentioned in section 3.2.2. In order to quantitatively compare the

diUerent methods, the evolution of the pressure force applied on the left side of the wedge during

the simulation is plotted, as in [35]. This normal force F was computed by integrating the pressure

on the left side of the wedge, Γ, according to:

F =
∑
s∈S∪Γ

psSs (4.12)

where Ss is the surface of the segment s. In this case all the surfaces of the segments are equal to δr.

The results obtained with ISPH-USAW, WCSPH-USAW and VoF are compared in Figure 4.14. The

sharp peaks that appear on the VoF curve correspond to the collapse of trapped air bubbles, which

hampers the convergence of the linear solver. The three methods give similar results. However,

the evolution of the value of the force is smoother with ISPH-USAW than with WCSPH-USAW.

Besides, the prediction of the maximum value of the force is closer to the one obtained by VoF with

ISPH-USAW than with WCSPH-USAW. When the pressure maximum occurs, the eUect of air is

likely to be small, so that ISPH probably predicts that maximum better than WCSPH.

On the other hand, simulations of this test case showed that the impermeability of the walls is

granted by the ISPH-USAW model even in the presence of strong impact of the water on a solid

wall. For the latter, the computational time was smaller than for WCSPH-USAW, as shown in

Table 4.1. VoF presented higher computational time than the two SPHmodels, which also happened

in the next test case (Section 4.2.1.5).
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4.2.1.5 Water wheel

A water wheel case is now considered in order to show that the new ISPH-USAW model is able

to represent Wows where complex free-surface shapes and complex moving wall boundaries are

involved. Figure 4.15 shows the problem geometry. The wheel radius L is the characteristic length.

The wheel turns counterclockwise at π/2 rad.s−1, driving the Wuid. The viscosity was set to

10−2m2s−1. Thus, the Reynolds number is about 300 and it is possible to assume that the Wow

is laminar. The latter is periodic along x, presents a free-surface and a horizontal bottom along

Figure 4.15: Water wheel test-case: sketch of the geometry.

z+ = 0. The dimensionless time t+ was deVned as in equation (4.5) withH the initial water height

(H = 0.9m). As for the dam-break case, the results obtained with ISPH-USAW are compared to

the VoF two-phase model. A comparison with WCSPH-USAW is also presented. The free-surface

shapes and velocity Velds obtained at t+ = 66 with the ISPH-USAW and the VoF method are

depicted in Figure 4.16. The simulation counted 8× 104 cells with VoF and 3× 104 particles with

ISPH-USAW. The Figure shows strong wetting of the wheel-arms in the VoF simulation whereas for

the ISPH-USAW simulation the arms out of the water are dry except for very few individual water

particles. This discrepancy is due to the post-treatment with OpenFOAM: as in Section 4.2.1.4

the free-surface is considered as the locations where the volume fraction is 0.5, which gives the

impression that there is water on the paddles. This is a drawback of the VoF method where the

free-surface is fuzzy. A quantitative comparison was done by comparing the time evolution of the

pressure force applied on the bucket P (in red in Figure 4.15) obtained with the three methods. The

results are presented in Figure 4.17, where we present smoothed results for the sake of readability,

since they were very noisy with the three methods. With ISPH-USAW and VoF this is explained by

the fact that it is hard for the pressure solver to converge. With VoF this is due to the rotating mesh,

while with ISPH-USAW it is due to the few particles wetting the wheel arms when they are above

the free-surface. Although some diUerences appear due to the fact that we are comparing a single-

phase model with a two-phase one, ISPH-USAW and VoF results are in reasonable agreement. On

the other hand, with WCSPH-USAW the pressure peaks present much greater amplitudes. The
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Figure 4.16: Water wheel test-case. Comparison of the free-surface shapes and velocity Velds
between VoF (left) and ISPH-USAW (right) at t+ = 66.

amplitude of the pressure force peaks is slightly higher with ISPH-USAW than with VoF because of

the presence of air trapped between the wheel and the Wuid. The air pockets provide an additional

pressure on the wheel, but they also reduce the water level beneath it, which in the end reduces

the force due to water on the paddle. In spite of this, the results obtained with ISPH-USAW are

quite satisfactory and show that the new model is robust and accurate, even with complex walls.

Besides, the computational time was lower with ISPH-USAW than with WCSPH-USAW and VoF

performed slower than the two SPH models, as shown in Table 4.1 (all codes running on one CPU).

The very high computational time exhibited by VoF on this case is due to the diXculty the pressure

solver had to converge.

4.2.1.6 Schematic dam-break with an outWow condition

This case consists of a schematic dam-break on a Wat bottom, which was cut so as to test the outlet

formulation, and check that the Wuid leaves the domain without reWections. The outlet boundary

is the left-wall (at each time) in Figure 4.18. The height of the Wuid column at the initial time is

H = 1m. The viscosity of the Wuid was set to 10−2m2s−1. A zero-pressure is imposed at the

outlet. The initial interparticular space was taken equal to δr = 6 × 10−3m. Figure 4.18 shows

the velocity Veld shape at several dimensionless times, the latter being deVned as in (4.5). The Wuid

correctly leaves the domain without reWections at the outlet. The free-surface shape of the same

non-cut dam-break simulated with ISPH-USAW is provided and appears in black in the Figure. The

agreement is quite good between the two simulations. DiUerences appear after some time, which

is expected since imposed pressure a the outlet diUers from the pressure in the non-cut simulation.
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Figure 4.17: Water wheel test-case. Evolution of the smoothed pressure force magnitude applied on
the bucket P . Comparison between VoF, WCSPH-USAW and ISPH-USAW.

Figure 4.18: Dam-break with an outWow condition: velocity Veld shape and comparison with the
free-surface shape of a non-cut dam-break (black dots).
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Figure 4.19: Sketch of the geometries of the two cases of solitary wave propagation.

4.2.1.7 2-D solitary waves

Two cases of solitary waves are presented here, one on a Wat bottom and the other on a slope where

the wave breaks before leaving the domain. Figure 4.19 shows the geometry of the two cases. The

incoming free-surface elevation is prescribed as a solitary wave (solution to the Korteveg-De Vries

equation) [24]:

η(x, t) = Asech2[k(x− Ct− x0)] (4.13)

where η is the free-surface elevation compared to a reference water level H , A is the wave ampli-

tude, k =
√

3A
4H3 is the wave number and C =

√
g(A+H) is the wave celerity. In both cases the

wave amplitude is A = H
2 . x0 is the initial position of the wave, equal to x0 = xinlet − 4

k here. At

the inlet (left boundary in Figure 4.19), the water height Ht is used to impose a linearised velocity

proVle: 

Ht(t) = H + η(xinlet, t)

ux(z, t) = C
η(xinlet, t)

h(t)

uz(z, t) =
z

Ht(t)

∂η

∂t
(xinlet, t)

(4.14)

with xinlet the horizontal coordinate of the inlet. At the outlet (right boundary in Figure 4.19), the

pressure is imposed through the Orlanski radiative boundary condition (equation (3.81)).

Figures 4.20 and 4.21 shows the propagation of the solitary wave on a Wat bottom with a dynamic

molecular viscosity of 10−2m2s−1 and 10−6m2s−1 respectively (for the latter no turbulence model

was used). The dimensionless time t+ is deVned as in (4.5). The colours correspond to the magni-

tude of the velocity Veld obtained with ISPH-USAW and the black lines to the analytical solution
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Figure 4.20: Propagation of a solitary wave on a Wat bottom with ν = 10−2m2s−1: the colours cor-
respond to the velocity magnitude obtained with ISPH-USAW and the black lines to the analytical
solution of equation (4.13). This simulation was run with 63206 particles (δr = 0.01m).

of equation (4.13). These simulations were run with 63206 particles (δr = 0.01m). The wave enters

correctly the domain and goes out smoothly. The agreement with the analytical solution is satis-

factory, considering that the latter does not account for viscous eUects and is not even a solution of

Euler’s equations. However, the water level drops slightly, initiating from the outlet, which shows

that the outWow condition on the pressure still needs to be improved. Besides, some discrepancies

in the velocity Veld appear in the low-viscosity simulation along the bottom wall (this is especially

visible at t+ = 2.89).

Figures 4.22 and 4.23 show the propagation of the solitary wave on a slope with a dynamic molec-

ular viscosity of 10−2m2s−1 and 10−6m2s−1 respectively (for the latter no turbulence model was

used). The colours correspond to the pressure Veld obtained with ISPH-USAW. These simulations

were run with 30315 particles (δr = 0.01m). This time the water level decrease is less visible (al-

though it still happens), and the breaking wave leaves the domain apparently without reWections.

4.2.2 Turbulent Wows

Two validation cases were performed to assess the performance of the k − ε model in the SPH

incompressible formalism. Let us recall that since we use a model based on the RANS formalism,

only the mean quantities of the Wows are modelled, which proves suXcient in many industrial

studies. A more accurate model would need, e.g. LES, but this is not the purpose of the present

work.
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Figure 4.21: Propagation of a solitary wave on a Wat bottom with ν = 10−6m2s−1: the colours cor-
respond to the velocity magnitude obtained with ISPH-USAW and the black lines to the analytical
solution of equation (4.13). This simulation was run with 63206 particles (δr = 0.01m).

Figure 4.22: Propagation of a solitary wave on a slope: pressure Veld obtained with ISPH-USAW
with 30315 particles (δr = 0.01m) and ν = 10−2m2s−1.
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Table 4.1: Computational times of the various models on several test-cases. The calculations were
performed on 1 CPU (Intel R© Xeon R© Processor E5504, 4M Cache, 2.00 GHz, 4.80 GT/s Intel R© QPI).

Model Number of cells/particles Time

Lid-driven cavity (Re = 1000, 60s of physical time)

FV 512× 512 38 h
ISPH-USAW 200× 200 31 h

WCSPH-USAW 200× 200 32 h

InVnite array of cylinders (80s of physical time)

ISPH-USAW 12.659× 103 10h00
WCSPH-USAW 12.659× 103 1h30

Dam-break over a wedge (2s of physical time)

VoF 6.322× 103 > 1h
ISPH-USAW 5.881× 103 20 min

WCSPH-USAW 5.881× 103 30 min

Water wheel (30s of physical time)

VoF ≈ 8× 104 5 days
ISPH-USAW ≈ 3× 104 15 h

WCSPH-USAW ≈ 3× 104 18.5 h

Fish-pass (20s of physical time)

FV ≈ 2.5× 104 26 h
ISPH-USAW ≈ 6× 104 76 h

WCSPH-USAW ≈ 6× 104 55 h
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Figure 4.23: Propagation of a solitary wave on a slope: pressure Veld obtained with ISPH-USAW
with 30315 particles (δr = 0.01m) and ν = 10−6m2s−1.

4.2.2.1 Turbulent channel Wow

In order to test the performance of the k−εmodel associated to ISPH, a turbulent Poiseuille channel

Wow was modelled. The half-height of the channel is the characteristic length of the Wow, L, and

periodic conditions are applied along the horizontal in the x-direction. The friction velocity u∗ is

set to 1ms−1 by imposing a horizontal volumetric force of constant magnitude, F = 1.0m.s−22.

At the initial time, the particles are aligned along horizontal lines and they remain so during the

simulation, even after 100s of physical time (about 60000 iterations), with either ISPH-USAW or

WCSPH-USAW. The dimensionless variables are the ones of equation (4.5) with U = u∗. Besides,

the dimensionless distance to the lower wall is deVned as:

y+ =
yu∗
ν

(4.15)

where y is the distance to the lower wall. The friction Reynolds number deVned through (4.1) with

U = u∗:

Re∗ =
u∗L

ν
(4.16)

2The friction velocity can be calculated by writing a balance of the forces and is equal to
√
fL = 1m.s−1.
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The friction Reynolds number is equal to the dimensionless vertical coordinate at the centre of the

channel, and was taken equal to 640, so that the molecular viscosity of the Wuid was taken equal to

1.5625 × 10−3m2.s−1. The results presented below were obtained with an initial interparticular

spacing of 5× 10−2m.

The results obtained with ISPH-USAW are presented in Figures 4.24 and 4.25, where the proVles

of dimensionless velocity, turbulent kinetic energy k+ and dissipation rate ε+ are plotted along

the lower half of the channel. A comparison is presented with Direct Numerical Simulation (DNS)

results obtained by Kawamura et al. [1, 61] and with a FV k − ε model. No comparison with

WCSPH-USAW is presented since in this case it perfectly matches ISPH-USAW. The results ob-
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Figure 4.24: Turbulent Poiseuille channel Wow at Re∗ = 640. Comparison of the dimensionless
velocity proVles obtained by ISPH-USAW, FV (both with the k − ε model) and DNS.

tained with ISPH-USAW match very well the FV ones and are very close to the DNS, although the

velocity near the viscous sub-layer is slightly overestimated. To our knowledge, this is the Vrst time

a RANS k − ε model is validated with the SPH method, reaching the same accuracy as FV. It is
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Figure 4.25: Turbulent Poiseuille channel Wow at Re∗ = 640. Comparison of the proVles of di-
mensionless turbulent kinetic energy (left) and dissipation rate (right) obtained by ISPH-USAW, FV
(both with the k − ε model) and DNS.
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noteworthy that the viscous sublayer is not meant to be reproduced by the k− ε turbulence model,

which explains why the turbulent kinetic energy proVle obtained with DNS is diUerent from the

ones obtained with FV and ISPH-USAW close to the wall.

4.2.2.2 Schematic Vsh-pass

Let us now consider another turbulent case, more complex and closer to reality: a water Wow

through a schematic periodic Vsh-pass system, which is the one considered in [35, 147]. It con-

sists of a series of pools communicating through vertical slots. When the number of pools is high

enough, the Wow can be considered as periodic and it is suXcient to study one of them. Exper-

imental results [137] showed that the mean Wow is approximately parallel to the bottom of the

pool, the latter being inclined of an angle I ≈ 0.1 rad compared to the horizontal. Thus, the

Wow was modelled in two dimensions (top-viewed) and the variations along the vertical were ne-

glected. The eUect of gravity was not taken into account and the free-surface behaviour was not

represented. Thus, this Wow does not represent the real one, since turbulence is a three dimensional

phenomenon and the free-surface cannot remain perfectly horizontal. For a complete description

of the geometry of the Vsh-pass, see [147]. In our simulations the Wow was driven by a constant

body force along the x axis of magnitude 1.885 m.s−2. The characteristic length is the size of the

slot, L = 0.3m and the characteristic velocity in the Wuid U is close to 1m.s−1. The molecular

viscosity of the Wuid is ν = 10−6m2.s−1 so the Reynolds number is between 105 and 106. The

results obtained with ISPH-USAW were compared to the ones obtains with FV and with WCSPH-

USAW. In all cases the RANS equations were solved using a k − ε model. The SPH simulations

were done with 58, 823 particles while the simulations with FV were done with 24632 cells. A

qualitative comparison of the results obtained with ISPH-USAW and FV after 20s of physical time

is presented in Figure 4.26. At that moment, the Wow has converged to a nearly steady-state. A

quantitative comparison of the three methods was done by comparing velocity, pressure, turbulent

kinetic energy and dissipation rate proVles at sections P1, P2 and P3 plotted in Figure 4.26. The

four Figures 4.27, 4.28, 4.29 and 4.30 show that ISPH-USAW improves the prediction of all quan-

tities in comparison to WCSPH-USAW, especially for pressure and near-wall velocity. Note that

the results obtained with WCSPH-USAW are sensitive to the imposed value of background pres-

sure: high values of the latter lead to inaccurate results. Its value was set equal to 5.10 × 104Pa

for this test-case, so as to avoid the formation of voids in the Wow. It was checked that velocity

and pressure Velds are accurately predicted at the wall when compared to FV results by plotting

them along the bottom-left part of the wall (proVle P4 in Figure 4.26). The results are shown in

Figure 4.31, where we see that ISPH-USAW improves a lot the distribution of wall pressures. The

diUerences observed between the two SPH models and FV can be due to slight diUerences in the

imposition of boundary conditions in the k − ε model. In this test case, WCSPH performed faster

than ISPH and FV performed faster than the SPH models (see Table 4.1). In summary, the new

ISPH-USAW model makes it possible to accurately represent turbulent Wows presenting complex
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Figure 4.26: Fish-pass after 20s. Comparison of the results obtained with ISPH-USAW (top) and FV
(bottom).

wall boundaries, while such Wows are very hard to model using ghost or mirror particles, due to the

accuracy required regarding the imposition of a non-homogeneous Neumann boundary condition

on p and ε.
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Figure 4.27: Fish-pass after 20s. Mean velocity proVles on P1 (left), P2 (middle) and P3 (right)
obtained with FV, ISPH-USAW and WCSPH-USAW.
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Figure 4.28: Fish-pass after 20s. Pressure proVles on P1 (left), P2 (middle) and P3 (right) obtained
with FV, ISPH-USAW and WCSPH-USAW.
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Figure 4.29: Fish-pass after 20s. Turbulent kinetic energy proVles on P1 (left), P2 (middle) and P3

(right) obtained with FV, ISPH-USAW and WCSPH-USAW.
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Figure 4.31: Fish-pass after 20s. Velocity and pressure proVles on proVle P4 obtained with FV,
ISPH-USAW and WCSPH-USAW.

4.3 Validation on non-isothermal 2-D cases

4.3.1 Laminar Wows

4.3.1.1 Laminar plane Poiseuille Wow

In order to check that the boundary conditions on the temperature are properly imposed by the

method described in section 3.3.3, two conVgurations of a 2D laminar plane Poiseuille Wow were

tested. A schematic description of their geometries is provided in Figure 4.32. The half-height of

the channel is the characteristic length L. In the Vrst case (denoted TT), constant temperatures

T1 = Tc and T2 = Th are imposed on the lower and upper walls, respectively. Recall that Th
denotes the highest temperature of the Wow whereas Tc the lowest. In the second case (denoted

QT), a constant heat Wux QT is imposed through the upper wall, while the lower wall remains

isothermal at the temperature T1. The Wow, with bulk velocity U , is driven by a constant volumic

force. In the two cases, the Prandlt number (equation (4.2)) was set to 1 and the Reynolds number

to 50. In the QT case, the bulk Nusselt number (equation (4.4)) was set to 0.5 and the GrashoU

number (equation (4.3)) was set to 196, while in the TT case the GrashoU number was set to 98 and

there is no bulk Nusselt number.

Note that for this case the dimensionless temperature and dynamic pressure were not deVned as

in (4.5), but as: 
T+ =

T − T1

∆T

p∗
+

=
p∗

ρβ∆TgL

(4.17)

where p∗ = p+ ρgz. Table 4.2 shows the theoretical expressions of the dimensionless temperature

and dynamic pressure as functions ofRe,Gr,Nu and of the dimensionless coordinates for the two

cases. In both cases the velocity Veld is that of the ordinary plane Poiseuille Wow. The simulations
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(a): TT (b): QT

Figure 4.32: Laminar plane Poiseuille Wow: sketch of the two conVgurations.

Table 4.2: Laminar plane Poiseuille Wow: theoretical solutions for T+ and p∗
+
.

Case (a): TT Case (b): QT

T+ = 1
2 (1 + z+) T+ = −Nu (1 + z+)

p∗
+

=
z+2

4
− 2

Re

Gr
x+ p∗

+
= z+

[
1

2
−Nu

(
1 +

z+

2

)]
− 2Re

Gr
x+

were done with 902 particles (δr+ = 0.05). Figure 4.33 shows the vertical proVles of dimensionless

temperature and dynamic pressure obtained with ISPH-USAW. It can be observed that an excellent

agreement with the theory is obtained in both cases. In the case QT, the vertical variation of the

Velds does not depend on the GrashoU number. Thus, diUerent values of the heat Wux should yield

the same results, which was checked with ISPH-USAW and gave similar errors between the model

and the theory in all cases (with a GrashoU number up to 1960). With the chosen discretisation,

the maximum relative error was of the order of 1%, on the temperature and on the pressure.

These results show that the imposition of Dirichlet and Neumann boundary conditions on the

temperature is properly done with our method.

4.3.1.2 DiUerentially heated square cavity

The second non-isothermal validation case consists of a laminar Wow in a diUerentially heated

square cavity of size L the characteristic length of the Wow, that was studied in [134] with the SPH

method. The left and right walls are isothermal, the right wall at temperature Tc and the left wall

at temperature Th. The upper and lower walls are adiabatic. The molecular Prandlt number is

Pr = 0.71 and three values of the Rayleigh number Ra = Pr ×Gr were tested, i.e. 103, 104

and 105. The characteristic velocity of the Wow is given by U = ν
L . A discretisation of 160× 160

particles was used for the SPH simulations. Figure 4.34 shows the shape of the dimensionless

temperature and velocity Velds (deVned through (4.5)) after convergence for Ra = 105. For the

FV simulation, a discretisation of 512 × 512 cells was used. Figure 4.35 shows the dimensionless

velocity and temperature proVles in x+ = 1/2 and z+ = 1/2 for Ra = 105. The SPH results
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Figure 4.33: Laminar plane Poiseuille Wow: proVles of dimensionless temperature (left) and dynamic
pressure (right) on the vertical section of the channel obtained with ISPH-USAW, compared to the
theoretical solutions of Table 4.2.

are compared to FV and to the ones obtained by Wan et al. [154] by discrete singular convolution.

Excellent agreement was obtained with both methods. The same quality of results was obtained

with ISPH-USAW for Ra = 103 and Ra = 104.

The local Nusselt number measures the ratio of convective over conductive heat transfer across

the boundary. For a wall segment s, it is deVned as Nus = L|
(
∂T
∂n

)
s
· ns|/∆T and computed

according to:

Nus =
L

∆T
|Gγ,−s {Tb} · ns| (4.18)

where Gγ,−
a is deVned by (2.144). Figure 4.36 shows the evolution of Nus along the cold wall

for the three values of Rayleigh number. It appears that the behaviour is globally well predicted.

However, a discrepancy occurs on the top of the curve Ra = 105, which corresponds to the

top right corner of the Wow in Figure 4.34, where temperature gradients are rather high. It is a

consequence of a lack of accuracy of the Gγ,− SPH gradient operator, used to compute Nus, since

our temperature proVles are still in very good agreement with FV in this area. Note that using a

Vrst-order consistent gradient,Gγ,−,1
a (2.158) did not improve the results.

4.3.1.3 DiUerentially heated lid-driven cavity

A diUerentially heated lid-driven cavity at Re = UL
ν = 1000 was tested, L being the size of the

cavity and U the velocity of the lid. The Wow is driven by the shear force resulting from the lid

motion and by the buoyancy force. The upper and lower walls are isothermal, their temperatures

being of Tc and Th respectively. The molecular Prandlt number was set to 1 and the GrashoU

number to 104 . A discretisation of 500×500 particles was used for the SPH simulation. Figure 4.37

shows the shape of the temperature and velocity Velds after convergence. The results are compared

to FV using a discretisation of 512×512 cells. Figures 4.38 and 4.39 show the dimensionless velocity

and temperature proVles along x+ = 1/2 and z+ = 1/2. Very good agreement is obtained
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Figure 4.34: DiUerentially heated square cavity at Ra = 105. Shape of the temperature (right) and
velocity (left) Velds obtained with ISPH-USAW (top) and FV (bottom) after convergence.
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Figure 4.35: DiUerentially heated square cavity at Ra = 105. ProVles of velocity (left) and tem-
perature (right) in x+ = 1/2 and z+ = 1/2 obtained with ISPH-USAW and FV after convergence.
The horizontal proVles are also compared to the ones obtained by Wan et al. [154] with the discrete
singular convolution method.
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Figure 4.36: DiUerentially heated square cavity. Evolution of the Nusselt number along the cold
wall of the cavity atRa = 103, 104 and 105. Comparison of the results obtained with ISPH-USAW,
FV and discrete singular convolution [154] after convergence.

with FV for the velocity and the temperature Velds. Figure 4.40 shows the repartition of local

Nusselt number (computed according to (4.18)) along the upper and lower walls of the cavity. The

formula (4.18) was used to compute the Nusselt number in the SPH simulation, and this time due to

the Vne discretisation used in the SPH model the agreement with FV is very good, although there

is a small underestimation of Nu with ISPH-USAW near the upper-left corner.

4.3.1.4 Lock-exchange

This validation case consists of a symmetric lock-exchange Wow in a rectangular cavity of height

2L and width 30L. This case was studied in [37] with the SPH method. All lengths are made

dimensionless by L, the half-height of the cavity. The Wow consists of two Wuids at temperatures

Th (on the right) and Tc (on the left) separated at t = 0 at the half-width of the domain. The

dimensionless numbers describing the Wow areGr = 1.25×106 and Pr = 1. For this test-case, the

dimensionless time is deVned through: t+ = tU
L with U =

√
β∆TgL. Figure 4.41 shows the shape

of the temperature Veld obtained with ISPH-USAW at t+ = 10. The SPH simulation was done with

a discretisation of 1500× 100 particles. Figure 4.42 shows the temperature contours obtained with

ISPH-USAW at several instants, compared to the ones obtained by Härtel et al. [44] through a 2-D

Direct Numerical Simulation (DNS) with a mixed spectral/spectral-element discretisation in space

together with Vnite diUerences in time. The shape and velocity of the front are well reproduced

by the present SPH model. It should be noted that the results shown in Figure 4.42 were obtained

with a symmetric operator for the pressure gradient (2.144), which better reproduced the vortices

at the interface of the two Wuids compared to the DNS results. For all other test-cases in the present

thesis, an antisymmetric operator (2.145) was used since it conserves linear momentum, but no

signiVcant diUerences were observed when using a symmetric operator.



4.3 VALIDATION ON NON-ISOTHERMAL 2-D CASES 147

ISPH-USAW

FV

Figure 4.37: DiUerentially heated lid-driven cavity. Shape of the temperature (right) and velocity
(left) Velds obtained with ISPH-USAW (top) and FV (bottom) after convergence.
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Figure 4.38: DiUerentially heated lid-driven cavity. ProVles of velocity in x+ = 1/2 and z+ = 1/2
obtained with ISPH-USAW and FV after convergence.
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Figure 4.39: DiUerentially heated lid-driven cavity. ProVles of temperature in z+ = 1/2 (left) and
x+ = 1/2 (right) obtained with ISPH-USAW and FV after convergence.
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Figure 4.40: DiUerentially heated lid-driven cavity. Evolution of the Nusselt number along the lid
(dash lines) and the lower wall (solid lines). Comparison of the results obtained with ISPH-USAW
and FV after convergence.

Figure 4.41: Lock-exchange: shape of the temperature Veld obtained with ISPH-USAW at t+ = 10.
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Figure 4.42: Lock-exchange: temperature contours at t+ = 5, 10, 15, 20. Top: ISPH-USAW. Bottom:
Härtel et al. [44].

4.3.2 Turbulent Wows

The validation of the k − ε turbulence model with buoyancy was done on two classical validation

cases: a turbulent plane Poiseuille Wow with two isothermal walls and a rectangular diUerentially

heated cavity.

4.3.2.1 Turbulent plane Poiseuille Wow with two isothermal walls

This case consists of a turbulent Wow between two parallel, inVnite vertical isothermal walls. The

temperature of the left wall is set to Th and that of the right wall to Tc, with Th > Tc. The Wow is

thus vertical (and invariant along z), driven by a prescribed pressure gradient (the friction velocity

is imposed and is the characteristic Wow velocity U ) and by the temperature diUerence between

the walls. The buoyancy force acts upwards near the hot wall and downwards near the cold wall.

The friction Reynolds number, Re∗ = u∗L
ν is set to 150, where L is the half-width of the channel

and u∗ is the friction velocity, used to deVned the dimensionless variables, and which was set to

1ms−1 through the imposition of an upward volumic force:

f =
u2
∗
L
− gβ

∑
b∈F

Vb(Tb − T0)∑
b∈F

Vb
(4.19)
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Figure 4.43: Turbulent plane Poiseuille Wow. ProVles of velocity (top) and temperature (bottom)
after convergence. Comparison of ISPH-USAW and FV with DNS results provided by Kasagi &
Iida [58].

where T0 = Th+Tc
2 . The molecular Prandlt number is set to 0.71 and the GrashoU number to

Gr = 9.6 × 105. The results obtained with SPH are compared to FV and to DNS data provided

by Kasagi & Iida [58]. Figures 4.43 and 4.44 show the proVles of velocity, temperature, turbulent

kinetic energy and dissipation rate as functions of x+. Good agreement is observed between the

FV and SPH results, although some discrepancies on k and ε are visible close to the walls. They

seem to be due to the diUerences in the imposition of the wall boundary conditions on those Velds

between FV and ISPH-USAW.

4.3.2.2 DiUerentially heated rectangular cavity in turbulent regime

The last 2-D validation case consists of a diUerentially heated rectangular cavity of aspect ratio 4.

The geometry of the case is described in Figure 4.45. The left and right walls are isothermal at

temperature Th and Tc respectively. The upper and lower walls are adiabatic. The reference length

L is the height of the cavity. The temperatures are made dimensionless by ∆T = Th − Tc. The
value of the molecular Prandtl number is 0.71 and that of the Rayleigh number Ra is 6.4× 108. In

the SPH simulation, a discretisation of 50×200 particles was used. The SPH results are compared to

DNS results provided by Trias et al. [142] and to FV. For the FV simulation the same discretisation

than in SPH was used. A comparison of the shape of the temperature Veld after convergence

between SPH and FV is provided in Figure 4.45. Figure 4.46 shows the temperature proVles along
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Figure 4.44: Turbulent plane Poiseuille Wow. ProVles of turbulent kinetic energy (top) and dis-
sipation rate (bottom) after convergence. Comparison of ISPH-USAW and FV with DNS results
provided by Kasagi & Iida [58].

Figure 4.45: DiUerentially heated rectangular cavity. Sketch of the case (left) and shape of the
temperature Veld after convergence with ISPH-USAW (middle) and FV (right).
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Figure 4.46: DiUerentially heated rectangular cavity. ProVles of temperature after convergence
along x+ = 0.125 (left) and z+ = 1 (right). Comparison of ISPH-USAW and FV with DNS results
provided by Trias et al. [142].

x+ = 0.125 and z+ = 1. A satisfactory agreement is observed between ISPH-USAW and FV.

Both methods present reasonable agreement with the DNS results, although some diUerences are

observed, which were expected since a 2D RANS k − ε model is not meant to perfectly reproduce

3D DNS data.



Chapter 5

3-D cases: validation and preliminary

application results

Ce Chapitre traite de la validation du modèle présenté au Chapitre 3 sur des cas 3-D.

Des résultats préliminaires sur un cas d’application sont également présentés. Dans

un premier temps, un cas d’écoulement laminaire dans un tuyau à section circulaire

avec des frontières ouvertes est présenté. On considère ensuite une rupture de barrage

sur un obstacle. EnVn, on propose un cas d’écoulement dans des tuyaux connectés

présentant des températures diUérentes.
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This Chapter focuses on the validation of the buoyant incompressible SPH model described in

Chapter 3 with USAW boundary conditions in 3-D. The latter is referred to as ISPH-USAW, as

in the previous Chapter. The notations used in this Chapter are nearly exactly the same as in

Chapter 4, except for the coordinates system which is now (x, y, z), the horizontal, transverse

and vertical coordinates. Two validation cases in 3-D are presented in what follows. The Vrst

case is an isothermal laminar Wow in a circular pipe with inWow/outWow conditions, for which

a theoretical solution is known. The second case is a schematic dam-break over an obstacle, for

which comparisons are provided with a WCSPH model that uses the USAW boundary conditions

(WCSPH-USAW). Comparisons are also provided with VoF results, that were obtained with the

OpenFOAM open-source software [140]. The last section of this Chapter presents preliminary

results on a simple application case that consists of a Wow through two connected pipes at diUerent

temperatures. For this case, inWow/outWow conditions are prescribed at the extremities of the two

pipes. The 5th order Wendland kernel (2.10) was used for the simulations with a smoothing length

h = 1.3δr (recall δr is the initial interparticular spacing). In all the simulations the reference

density of the Wuid is ρ = 1000 kg.m−3. Note that the 3-D geometries were generated with a GPU

pre-processing software called Crixus1 [91] that takes a skin-mesh of the boundary as input and

creates an SPH geometry from it, Vlling it with particles where required. This pre-processing tool

computes the masses of the particles and stores the connectivity between segments and vertices as

well.

5.1 Laminar Wow in a circular pipe with inWow/outWow boundaries

This case consists of a laminar Wow through a 3-D pipe with a circular cross-section. InWow and

outWow boundaries are imposed at the extremities of the pipe. The reference length of the Wow L

is the radius of the cross-section, it serves to make all lengths dimensionless. The dimensionless

length of the pipe is equal to 4. The reference velocity of the Wow U is the maximum velocity in

the pipe, set to 1ms−1 by imposing the theoretical dimensionless velocity at the inlet:

v+ =
[
1− (y+ − y+

0 )2 + (z+ − z+
0 )2
]
ex (5.1)

where (y+
0 , z

+
0 ) = (0, 0) are the dimensionless transverse and vertical coordinates of the cross-

section centre. At the outlet, a zero-pressure is imposed. The Reynolds number is set to 10. The

dimensionless time is deVned as t+ = tU
L . The simulation is run until t+ = 35, which corre-

sponds to about 1.4× 105 iterations with an initial dimensionless interparticular space δr+ = 0.3.

Figure 5.1 shows the shape of the velocity Veld in the pipe at t+ = 35.

Figure 5.2 shows velocity and pressure proVles in the pipe at t+ = 35. On the left, the horizontal

dimensionless velocity v+
x obtained with ISPH-USAW is plotted as a function of z+ along the

1Code available at https://github.com/Azrael3000/Crixus.

https://github.com/Azrael3000/Crixus
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Figure 5.1: Laminar Wow in a 3-D circular pipe with inWow/outWow conditions. Shape of the
velocity proVle obtained with ISPH-USAW using δr+ = 0.3 at t = 35s.

vertical proVle at the centre of the channel (x+ = 2 , y+ = 0). Note that the same results were

obtained on a vertical proVle in y+ = 0 but at x+ = 3.9 instead of x+ = 2. Good agreement

with the theoretical parabolic proVle (5.1) is obtained. On the right of Figure 5.2, the dimensionless

pressure p+ obtained with ISPH-USAW is plotted as a function of x+ along the horizontal proVle

at the centre of the channel. The agreement with the theoretical linear pressure distribution along

the channel is good, the latter being given by:

p+ =
8

Re

(
4− x+

)
(5.2)

whereRe = UL
ν . A small discrepancy close to the inWow boundary appears, where a homogeneous

Neumann condition is imposed on the pressure. Nevertheless, the quality of the results shows that

the 3-D ISPH-USAW model is performing well, even with inWow/outWow conditions.

5.2 Dam-break over an obstacle

This case consists of a 3-D schematic dam-break over an obstacle and is used to assess the capabil-

ity of the 3-D formulation to reproduce free-surface Wows. The geometry is provided as the second

SPHERIC validation test case [55], with pressure and water-depth probes located at the same posi-

tions. Figures 5.3 and 5.4 show a sketch of the geometry and the dimensions of the problem with

the location of the pressure and water height probes.

A viscosity of ν = 10−2m2s−1 is used so that the Wow remains laminar. There are still issues

regarding the modelling of low-viscosity Wows with a free-surface: the impermeability of the walls

is not granted everywhere. Note that this is also the case regarding low-viscosity Wows with in-
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Figure 5.2: Laminar Wow in a 3-D circular pipe with inWow/outWow conditions. Dimensionless
velocity proVle along the vertical line at the centre of the channel (left) and dimensionless pressure
proVle along the horizontal line at the centre of the channel (right). Comparison of the results
obtained with ISPH-USAW using δr+ = 0.3 with the theoretical velocity and pressure proVles.

let/outlet in 3-D. This is why a high viscosity was used, thus preventing a comparison with the

available experiments results on this case. Instead, comparisons are presented with VoF results.

Figure 5.3: Schematic 3-D dam-break over an obstacle. Sketch of the geometry [55].

Figure 5.5 shows the shape of the free-surface and velocity Veld obtained with ISPH-USAW with

δr = 0.02m at several dimensionless times. The dimensionless time is deVned as t+ = t√
gH

, with

H = 0.55m the initial water height. On the bottom-left picture of Figure 5.5, it is visible that a

consequent number of particles remains stuck to the walls during the SPH simulation. This is due

to the high viscosity of the Wuid considered here. Note that the walls impermeability is ensured

during the simulation.

Figures 5.6 and 5.7 show the time-evolution of the pressure at probes P2 and P5, and of the water

depth at probes H2 and H4 (see Figures 5.3 and 5.4). Comparisons are provided with a WCSPH

model using the USAW boundary conditions, that was run with a massively parallel CPU code

with δr = 0.0183m [91]. A Ferrari density correction was used for the WCSPH simulation and the

speed of sound was taken as 40ms−1. In the WCSPH simulation, ∇γa was computed analytically
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Figure 5.4: Schematic 3-D dam-break over an obstacle. Case dimensions and location of the pres-
sure and water height probes [55].

through the formula proposed in [92], which was shown to yield the same results as the simpler

formula used for the ISPH simulation (see Appendix A) [150]. γa was computed through a dynamic

governing equation in the two SPH models. Comparisons between the SPH results and VoF are

provided. Recall that in VoF the simulations are done for a two-phase (air + water) model, which

limits the extent of the comparison with the single-phase SPH models. Besides, in the visualisation

of VoF results, the deVnition of the free-surface is not obvious and it is considered as the locations

where the volume fraction of Wuid is 0.5. Though, this comparison is useful to check the accuracy

of the 3-D model. The results obtained with VoF are considered as a reference against which the

ones obtained with SPH are compared. The three methods give similar results, although some

diUerences appear between the models, which can be due to the two-phase nature of VoF, while

the SPH models are single-phase. In particular, air happens to be trapped inside the Wuid close to

the obstacle in the VoF simulation. This can explain the diUerences in the water level between the

SPH models and VoF at probe H2, which is close to the obstacle, while the eUect of air is less visible

at probe H4 which is far from the obstacle (see Figure 5.6). The new ISPH model better predicts the

pressure peak that occurs when the Wow hits the obstacle compared to WCSPH (see Figure 5.7).
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Figure 5.5: Schematic 3-D dam-break over an obstacle. Shape of the free-surface and velocity Veld
obtained with ISPH-USAW with δr = 0.02m at several dimensionless times.

5.3 Connected pipes case

This case is a preliminary application case in 3-D that consists of two connected pipes at diUerent

temperatures. The geometry is described in the Figure 5.8. The reference length L is the diameter

of the larger pipe. At the initial time, Wuid at the temperature Th is placed in a horizontal pipe

with zero velocity and pressure and Wuid at the temperature Tc is placed in a smaller inclined pipe

connected to the Vrst one with zero velocity and pressure. As time goes by, Wuid at the temperature

Th is injected through the left extremity of the horizontal pipe and Wuid at the temperature Tc
is injected at the highest extremity of the inclined pipe. The velocity is imposed at these inWow

boundaries. In the horizontal pipe, it is imposed through:

v = U
[
1− (y − y0)2 − (z − z0)2

]
n0 (5.3)

where y0 and z0 are the transverse and vertical coordinates of the centre of the big pipe cross-

section at the inlet, and n0 = ex is the unit normal vector to that cross-section. U is the reference

velocity of the Wow and was set to 0.5ms−1. The Reynolds number based on U and L was set to

10. On the other hand, in the inclined pipe the inlet velocity is imposed through

v =
U

2

(
1− (x− x1)2 − (y − y1)2

)
n1 (5.4)
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Figure 5.6: Schematic 3-D dam-break over an obstacle. Time-evolution of the water depth at probes
number H2 and H4. Comparison between ISPH-USAW, WCSPH-USAW [91] and VoF.
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Figure 5.7: Schematic 3-D dam-break over an obstacle. Time-evolution of the pressure at probes
number P2 and P5. Comparison between ISPH-USAW, WCSPH-USAW [91] and VoF.

where x1 and y1 are the horizontal and transverse coordinates of the centre of the small pipe cross-

section at this inlet, and n1 =
(
− 1√

3
, 0,− 2√

3

)
is the unit normal vector to that cross-section. An

outWow boundary condition is imposed at the right extremity of the horizontal pipe: the pressure

is imposed to zero and a homogeneous Neumann condition is imposed on the temperature. A

homogeneous Neumann condition is also imposed on the temperature at solid walls. The GrashoU

number (4.3) was set to 0.162, and the Prandlt (4.2) number to 692. Figure 5.9 shows the shape of

the temperature Veld at several times during the simulation.

The application of the new ISPH model to more complex 3-D Wows is an ongoing work. Though,

the 3-D model is not as robust as the 2-D one, which seems closely related to the accuracy and

robustness of the computation of γa. Further work is thus required regarding its computation in

2Actually the parameters of water are used: β = 2.07× 10−4K−1 andK = 1.43× 10−4m2s−1, but the viscosity
was set to 10−2m2s−1 otherwise the Wow is unstable, which is due to the inlet/outlet formulation (this was evoked in
section 5.2).



160 CHAPTER 5: 3-D CASES: VALIDATION AND PRELIMINARY APPLICATION RESULTS

Figure 5.8: Laminar Wow in two connected pipes at diUerent temperatures. Sketch of the geometry.

3-D. Besides, the issues regarding low viscosity Wows with the inlet/outlet formulation and with

free-surfaces require investigation. Nevertheless, the possibilities of applications of the new model

are promising.
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Figure 5.9: Laminar Wow in two connected pipes at diUerent temperatures. Shape of the temperature
Veld at several times.
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Conclusions

Dans cette thèse un nouveau modèle SPH incompressible est proposé, où la tech-

nique des conditions aux limites semi-analytiques est utilisée pour la représentation

de parois et de frontières ouvertes. Une amélioration majeure par rapport aux modèles

SPH incompressibles existants est l’imposition exacte d’une condition de Neumann

non-homogène consistente sur la pression au niveau des parois. Un modèle de tur-

bulence k − ε et un modèle de scalaires actifs ont été intégrés, ce dernier reposant

sur l’approximation de Boussinesq. Les interactions entre la Wottabilité et la turbu-

lence sont modélisées. L’utilisation de conditions aux limites semi-analytiques permet

d’imposer précisément les conditions aux limites adaptées sur les champs. Plusieurs

cas-tests en 2-D sont proposés pour la validation du modèle. Les résulats montrent que

le modèle permet de représenter précisément des écoulements laminaires et turbulents

conVnés ou à surface libre. Avec les conditions aux limites utilisées, il est possible

d’appliquer le modèle à des problèmes à géométrie complexe. De manière générale,

on obtient une bonne correspondance entre les résultats du nouveau modèle et des

méthodes à maillages. De plus, les résultats obtenus avec le nouveau modèle sont plus

précis que ceux obtenus avec un modèle SPH quasi-incompressible, en particulier sur

la pression, et sont obtenus en des temps de calcul similaires. Deux cas de validation

en 3-D sont présentés. Des améliorations du modèle k − ε présenté ici sont possibles,
et il serait intéressant de développer d’autres modèles de turbulence comme un modèle

bas-Renolds. Le comportement de la surface libre reste pourtant à améliorer, ce qui

pourrait permettre de résoudre le problème de fuites à travers les parois en faible vis-

cosité avec une surface libre. Le modèle est destiné à être implémenté dans le logiciel

GPUSPH, ce qui devrait permettre l’application à des cas d’application réels grâce au

multi-GPU et à la possiblité de représenter des objets mobiles dans l’écoulement.
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5.1. Achievements of this work

In this thesis a new ISPH (Incompressible SPH) method is proposed, in which solid boundaries

are modelled through the uniVed semi-analytical wall (USAW) boundary conditions. One major

improvement compared to a classical ISPH model is the exact imposition of a non-homogeneous

Neumann wall boundary condition on the pressure Veld to solve the pressure Poisson equation,

which makes it possible to prescribe the impermeability condition on solid walls. In order to

treat industrial or environmental Wows, a k − ε turbulence closure and a model for active scalars

eUects were introduced in the new ISPH model. The buoyancy model is based on the Boussinesq

approximation. The interactions between buoyancy and turbulence are modelled. On the other

hand, a technique to represent open boundaries in this formalism is proposed, the open boundary

conditions being accurately prescribed on the Velds. The use of USAW boundary conditions made

it possible to accurately prescribe arbitrary boundary conditions on T , k and ε.

Various 2-D test-cases are presented to show that ISPH-USAW is able to accurately model com-

plex laminar and Reynolds-averaged turbulent Wows, even with complex geometries. Convergence

studies on a lid-driven cavity are presented, the velocity Veld obtained with FV being taken as a

reference, that show a convergence rate close to 2 for the new model. This indicates that the wall

boundary conditions are satisfactorily imposed on the pressure. The accuracy of the k − ε turbu-
lence model combined to ISPH-USAW was checked on a turbulent plane Poiseuille Wow where an

excellent agreement between our results and DNS and FV results is observed. Besides, our results

are in good agreement with the ones obtained with FV in the case of the Vsh-pass. The buoy-

ancy model is tested in laminar and turbulent regimes and good agreement is obtained with FV

in all cases. Several cases presenting open boundaries are also presented, including two cases of

propagation of a solitary wave, which show the inWow/outWow conditions are properly imposed.

In general, the results obtained with the proposed ISPH-USAWmodel are better than withWCSPH-

USAW, especially regarding the pressure prediction, and are obtained in most cases with a similar

computational time. To achieve this reduction of computational time in ISPH-USAW, the wall

renormalisation factor γa is computed through an analytical formula, extending the method pro-

posed by Feldman and Bonet [33] to our wall discretisation in 2-D. It should be noted that with

the USAW boundary conditions it is possible to apply the ISPH method to complex geometries, not

easy to handle with the traditional SPH wall treatments like ghost particles. Besides, the model

proposed here is advantageous compared to mesh-based methods for the simulation of Wows pre-

senting complex free-surface shapes and/or involving moving solid bodies.

Finally, two laminar 3-D validation cases are proposed, one of themwith inWow/outWow conditions,

and preliminary results on a simple application case are presented. The application of the new

model to real-life cases is close to hand.
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5.2. Perspectives

In order to improve the present work, we now suggest possible further developments.

• Turbulence modelling:

Possible improvements concerning the turbulence modelling could be to take the deviatoric

part of S into account, to have a varying turbulent Prandlt number, to use a harmonic mean

of the viscosities in the viscous term instead of an arithmetic mean. On the other hand, the

implementation of other RANS models would be interesting, in particular a low-Reynolds

model. Further validation could include a turbulent jet and comparisons with experimental

results. Moreover, the Neumann condition on the temperature could be adapted in case of

turbulence in order to include the temperature wall function.

• Boundary conditions:

A stable formulation for the analytical computation of γa in 3-D has not been reached yet.

Further work is required in order to avoid numerical issues due to discontinuities in the

formula proposed in [150]. Using an analytical formula to compute γa in 3-D could help

reduce computational times, increase the simulations stability and their accuracy.

• Inlet/outlet formulation:

The technique proposed here for inWow/outWow conditions still requires improvements, since

it proved unstable with low viscosity Wows (without using a turbulence model). Besides, it is

still necessary to validate the inWow/outWow formulation with the k − ε model, since it was

not done in the present work. Finally, the radiative condition on the pressure, although it lets

the Wuid leave the domain without visible reWections, leads to a lowering of the free-surface

level, which is problematic.

• Projection method:

Concerning the projection method, a higher order scheme like a rotational projection scheme

could be implemented instead of the Chorin-type scheme proposed here. Then, care must

be taken that the viscous term must be treated implicitly in order to impose consistent wall

boundary conditions on the pressure.

• Low viscosity Wows :

There are still issues regarding the simulation of low-viscosity free-surface Wows: the walls

impermeability is not always ensured. This seems closely related to the free-surface detection

algorithm but may also be linked to the projection method used here. On the other hand, as

mentioned above low viscosity Wows with inWow/outWow boundaries are unstable.

• Free-surface Wows :

More advanced techniques for free-surface detection could be used instead of the one chosen
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here, like the one proposed in [86]. Moreover, further validation could be done, for example

based on the 2-D and 3-D cases considered in [85].

• Particle shifting :

An improvement could be to use a constant density projection scheme to stabilise the sim-

ulations, instead of the particle shift used here. Then, care must be taken regarding the

treatment of the boundary conditions. The free-surface shape is incorrectly predicted due

to the disabling of the particle shift in its vicinity, and such an approach could solve this

issue. Another possibility would be to apply only a tangential shift close to the free-surface,

and thus build the shift so as it reduces anisotropy but not heterogeneity in the particle

distribution.

• 3-D Wows:

The validation on 3-D Wows should be pushed further, and the application to more complex

industrial cases should be done.

• Multi-GPU:

The developments proposed here are meant to be included in the open-source code GPUSPH.

One aim is to run 3-D simulations with this model on multiple GPUs. Besides, GPUSPH

includes a module for interactions with moving bodies in the Wow, which opens more possi-

bilities of applications.

These suggestions do not pretend to be exhaustive.



Appendix A

Analytical computation of∇γa in 3-D

with the Wendland kernel
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In this Appendix the method to compute the gradient of γa through an analytical formula in 3-D

is explained. Note that using an analytical formula for∇γa instead of an approximate one greatly

improved the results on 3-D simulations with the new ISPH model. Recall that∇γa is deVned by:

∇γa =

∫
∂Ω
w(q)ndΓ

=
∑
s∈S

∫
s
w(q)nsdΓ

=
∑
s∈S

∇γas

(A.1)

where q = |ra−r′|
h = |r̃|

h . dΓ is an elementary surface of the boundary. The idea is to apply the

Gauss theorem to the second line of (A.1) so as to obtain∇γas as a sum of integrals over the edges

of segment s, which is a triangle in 3-D (see Figure A.1), although the boundary discretisation could

also be done with quadrangles or other polygons. This reads:∫
s
w(q)nsdΓ =

∫
∂s
χ(p) · n∂sdp (A.2)

where p is a 2-D dimensionless coordinate in the segment’s plane, taking the projection σ of the

particle a on s as an origin. On the other hand, χ is deVned through w(q) = ∇ · χ(p) and n∂s is

Figure A.1: 3-D sketch for the computation of the gradient of γa in 3-D.∇γa is computed as a sum
of integrals over the segments s.

the outward normal to the edges of the segment (see Figure A.2). χ is a radial function since w is,

so it can be written as χ(p) = −φ(p)p where p is the dimensionless 2-D vector in the segment’s

plane. As in the case of the analytical computation of γa in 2-D (see section 3.8.1), φ presents a

singularity in p = 0, so that the application of the Gauss theorem can only be done up to a small

disc sε of centre σ and radius ε, which boundary is denoted by ∂sε (see Figure A.2):∫
s
w(q)nsdΓ = −

∫
∂s
φ(p)p · n∂sdp

−lim
ε→0

∫
∂sε

φ(p)p · n∂sdp
(A.3)
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Figure A.2: 3-D and 2-D notations for the computation of the gradient of γa in 3-D. φ is equal to
zero everywhere outside the orange sphere in 3-D. ∇γas is computed as an integral over the red
line but the contribution of the dashed red lines is equal to zero.

With the same method as in section 3.8.1, but using 3-D spherical coordinates [150] we get:

φ(p) =
3

16h3p2

(
1− q

2

)5 (
2 + 5q + 4q2

)
(A.4)

and:

h2 lim
ε→0

∫
∂sε

φ(p)p · n∂sdp = − 3

8h

(
1− qaσ

2

)5 (
2 + 5qaσ + 4q2

aσ

)
(A.5)

Thus, we have:

|∇γas| = h2

∫
s
w(q)dΓ = − 3

16πh

∫
∂s

1

p2

(
1− q

2

)5 (
2 + 5q + 4q2

)
p · n∂sdp

+
3δσs
8h

(
1− qaσ

2

)5 (
2 + 5qaσ + 4q2

aσ

) (A.6)

where δσs = 1 if σ is inside segment s and δσs = 0 otherwise. The integral in the Vrst line

of (A.6) can be computed as a summation of integrals over the segment’s edges, the latter being

denoted by e. The algebraic dimensionless distances along the edges are denoted by l. For example,

the algebraic dimensionless distance between a vertex v0 and the projection of σ on the edge e

composed of the vertices v0 and v1 is equal to:

lev0 =
v1 − v0

|v1 − v0|
· rav0 (A.7)

Then, the three-dimensional distances q may be clipped to 2 since φ was chosen so as to be zero

when q ≥ 2. The clipped three-dimensional distances are denoted by qc. The corresponding clipped

2-D and 1-D coordinates can be deduced through the Pythagorean theorem and are denoted by pc

and lc. Then, the integral in the Vrst line of (A.6) only needs to be computed up to the clipped

quantities, as illustrated by the right sketch of Figure A.2 and Figure A.3. Then, ∇γas is given
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Figure A.3: DeVnition of the 3-D, 2-D and 1-D coordinates for the computation of the gradient of
γa in 3-D. On the left the triangle is completely contained in the sphere of interaction of particle a,
but not on the right where the clipped quantities diUer from the non-clipped ones. In this sketch
lev0 is higher than 0 whereas lev2 is lower than zero.

by [150]:

∇γas =
1

h
ns

[
2πδσsW (qcaσ) +

∑
e∈s

(
F3D(qcav1 , q

c
aσ, q

c
ae, p

c
σe, l

c
ev1)− F3D(qcav0 , q

c
aσ, q

c
ae, p

c
σe, l

c
ev0)
)]

(A.8)

withW (qaσ) given by:
3

16π

(
1− qaσ

2

)5 (
2 + 5qaσ + 4q2

aσ

)
(A.9)

In equation (A.8), the three-dimensional distances q are always positive, but the 2-D distance pσe
is algebraic and may be negative: pσe = ne · rav1 where ne is the normal to edge e, oriented

outwards. On the other hand, F3D is the integral of the second line of (A.6) and is given by:

F3D (qav, qaσ, qae, pσe, lev) =
1

4096π
(

−24(64 + 7q2
aσ(−16 + 5q2

aσ(4 + q2
aσ)))arctan

lev
pσe

+96q5
aσ(28 + q2

aσ)arctan
qaσlev
qpσe

+2levpσe


3q4
aσ(−420 + 29q2) + p4

σe(−420 + 33q)

+2q2
aσ(−210(8 + q2) + 756q + 19l2evq)

+4(336 + l4ev(−21 + 2q) + 28p2
av(−5 + 3q))

+2p2
σe(420(−2 + q) + 6q2

aσ(−105 + 8q) + l2ev(−140 + 13q))


+6sgn(lev)(5p

6
σe + 21p4

σe(8 + q2
aσ) + 35p2

σeq
2
aσ(13 + q2

aσ) + 35q4
aσ(24 + q2

aσ))acosh
lev
qae

)
(A.10)

Equation (A.8) already makes it possible to compute ∇γa, but there is an issue with this formula

when implementing it in a code. Indeed, δσsW (qaσ) and F3D are discontinuous functions, which

is a problem when it comes to the numerical computation of ∇γas. The discontinuity inW (qaσ)
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comes from the δσs term, which passes from 0 to 1 when the projection of a on the segment moves

outside of s.

The discontinuities in F3D stem from the two arctan functions in the Vrst two lines of (A.10).

Indeed, arctan passes from π
2 to −π

2 when its argument changes sign. Though, it is possible to

show that the discontinuities of the arctan terms of F3D and of δσsW (qaσ) compensate each other

and can thus be cleverly rearranged so as to write ∇γas as a continuous function. Here it is

considered that the vertices are always positioned counterclockwise when ns is oriented towards

us, which determines the signs of the arctan. First, let us note that 2πδσsW (qcaσ) can be re-written

as:

2πδσsW (qcaσ) = W (qcaσ)
∑
e∈s

(
arctan

lev1
pσe
− arctan

lev0
pσe

)
(A.11)

Then, writing F3D = F3D − W (qaσ)arctan levpσe + W (qaσ)arctan levpσe makes it possible to rear-

range (A.10). After factorisation, this yields:

F3D (qav, qaσ, qae, pσe, lev) = −W (qaσ)arctan
lev
pσe

+
1

4096π
(

+96q5
aσ(28 + q2

aσ)

(
arctan

qaσlev
qpσe

− arctan
lev
pσe

)

+2levpσe


3q4
aσ(−420 + 29q2) + p4

σe(−420 + 33q)

+2q2
aσ(−210(8 + q2) + 756q + 19l2evq)

+4(336 + l4ev(−21 + 2q) + 28p2
av(−5 + 3q))

+2p2
σe(420(−2 + q) + 6q2

aσ(−105 + 8q) + l2ev(−140 + 13q))


+6sgn(lev)(5p

6
σe + 21p4

σe(8 + q2
aσ) + 35p2

σeq
2
aσ(13 + q2

aσ) + 35q4
aσ(24 + q2

aσ))acosh
lev
qae

)
(A.12)

Now, the diUerence of the arctan terms in the second line of (A.12) is continuous because lev
pσe

and
qaσlev
qpσe

always change signs together so their diUerence is zero. The only remaining discontinuities

comes from the Vrst line of (A.12) and from the Vrst line of (A.8). Indeed, acosh levqae tends to inVnity

when qae tends to zero but that the last line of (A.10) is in fact continuously expendable in zero

since it tends to zero as xlogx when x tends to zero. Thus, a clip inside the acosh resolves this

problem.

Thus, let us write F3D as:

F3D(qav, qaσ, qae, pσe, lev) = −W (qaσ)arctan
[
lev
pσe

]
+HC0(qav, qaσ, qae, pσe, lev) (A.13)
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withHC0 a continuous function deVned by (A.12) (except the Vrst term). Now, (A.8) can be rewrit-

ten as:

∇γas =
1

h
ns


W (qcaσ)

∑
e∈s

 arctan
[
lev1
pσe

]
− arctan

[
lcev1
pcσe

]
−arctan

[
lev0
pσe

]
− arctan

[
lcev0
pcσe

]


+
∑
e∈s

(
HC0(qcav1 , q

c
aσ, q

c
ae, p

c
σe, l

c
ev1)−HC0(qcav0 , q

c
aσ, q

c
ae, p

c
σe, l

c
ev0)
)


(A.14)

All the terms of equation (A.14) are now continuous. This formula was used for the computation

of∇γa in the 3-D cases presented in Chapter 5.



Bibliography

[1] Abe, H., Kawamura, H., and Matsuo, Y. Direct numerical simulation of a fully developed

turbulent channel Wow with respect to Reynolds number dependence. ASME Journal of

Fluids Engineering 123, 2 (2001), 382–393.

[2] Abramowitz, M., and Stegun, I. A. Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables. Dover Publications, New-York, 1972. (10th edition).

[3] Altomare, C., Crespo, A. J. C., Rogers, B. D., Dominguez, J. M., Gironella, X., and

Gómez-Gesteira, M. Numerical modelling of armour block sea breakwater with smoothed

particle hydrodynamics. Computers & Structures 130 (2014), 34–45.

[4] Amada, T., Imura, M., Yasumuro, Y., Manabe, Y., and Chihara, K. Particle-based Wuid

simulation on the GPU. In Proc. ACMWorkshop on General-purpose Computing on Graphics

Processors (2003).

[5] Amicarelli, A., Marongiu, J.-C., Leboeuf, F., Leduc, J., and Caro, J. SPH truncation error

in estimating a 3D function. Computers & Fluids 44, 1 (2011), 279–296.

[6] Antuono, M., Colagrossi, A., and Marrone, S. Numerical diUusive terms in weakly-

compressible SPH schemes. Computer Physics Communications 183, 12 (2012), 2570–2580.

[7] Antuono, M., Colagrossi, A., and Marrone, S. On the use of numerical diUusive terms

in weakly-compressible SPH schemes. In Proc. 7th international SPHERIC workshop (2012),

pp. 200–207.

[8] Archambeau, F., Méchitoua, N., and Sakiz, M. Code_Saturne: a Finite Volume code for

the computation of turbulent incompressible Wows - industrial applications. International

Journal on Finite Volumes 1 (2004), 1–62.

[9] Aris, R. Vectors, Tensors and the Basic Equations of Fluid Mechanics. Prentice-Hall Inc.:

Engelwood CliUs, NJ, 1962.

[10] Basa, M., Quinlan, N. J., and Lastiwka, M. Robustness and accuracy of SPH formulations

for viscous Wow. International Journal for Numerical Methods in Fluids 60, 10 (2009), 1127–

1148.



174 BIBLIOGRAPHY

[11] Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, 1987.

[12] Bonet, J., and Lok, T. S. L. Variational and momentum preservation aspects of smoothed

particle hydrodynamics formulations. Computer Methods in applied mechanics and engi-

neering 180 (1999), 97–115.

[13] Bredberg, J. On the wall boundary condition for turbulence models. Tech. rep., Chalmers

University of Technology, Göteborg, Sweden, 2000.

[14] Chmielewski, M., and Gieras, M. Three-zonal wall function for k-epsilon turbulence mod-

els. Computational Methods in Science and Technology 19, 2 (2013), 107–114.

[15] Chorin, A. J. Numerical solution of the Navier–Stokes equations. Mathematics of Compu-

tation 22 (1968), 745–762.

[16] Colagrossi, A., Antuono, M., Souto-Iglesias, A., and Le Touzé, D. Theoretical analysis

and numerical veriVcation of the consistency of viscous smoothed-particle-hydrodynamics

formulations in simulating free-surface Wows. Physical Review E 84, 2 (2011).

[17] Connolly, A., and Iannucci, L. A modiVed Godunov SPH method for materials with

strength. In Proc. 7th international SPHERIC workshop (2012).

[18] Crespo, A. J. C., Dominguez, J. M., Barreiro, A., Gómez-Gesteira, M., and Rogers, B. D.

GPUs, a new tool of acceleration in CFD: EXciency and reliability on smoothed particle

hydrodynamics methods. PLoS ONE 6, 6 (2011), e20685.

[19] Cummins, S. J., and Rudman, M. An SPH projection method. Journal of Computational

Physics 152, 2 (1999), 584–607.

[20] Dalrymple, R. A., and Rogers, B. D. Numerical modeling of water waves with the SPH

method. Coastal Engineering 53, 2-3 (2006), 141–147.

[21] De Leffe, M. Modélisation d’écoulements visqueux par méthode SPH en vue d’application à

l’hydrodynamique navale. PhD thesis, Ecole Centrale de Nantes, 2011. (in French).

[22] De Leffe, M., Le Touzé, D., and Alessandrini, B. Normal Wux method at the boundary for

SPH. In Proc. 4th international SPHERIC workshop (2009), pp. 149–156.

[23] De Padova, D., Mossa, M., Sibilla, S., and Torti, E. 3D SPH modelling of hydraulic jump

in a very large channel. Journal of Hydraulic Research 51, 2 (2013), 158–173.

[24] Dean, R. G., and Dalrymple, R. A. Water wave mechanics for engineers and scientists,

volume 2 of Advanced Series on Ocean Engineering. World ScientiVc, Singapore, 1991.

[25] Dehnen, W., and Aly, H. Improving convergence in smoothed particle hydrodynamics

simulations without pairing instability. Monthly Notices of the Royal Astronomical Society 0

(2012), 1–15.



BIBLIOGRAPHY 175

[26] Domínguez, J. M., Crespo, A. J. C., Gómez-Gesteira, M., and Rogers, B. D. Simulating

more than 1 billion sph particles using gpu hardware acceleration. In Proc. 8th international

SPHERIC workshop (2013).

[27] Domínguez, J. M., Crespo, A. J. C., Valdez-Balderas, D., Rogers, B. D., and Gómez-

Gesteira, M. New multi-GPU implementation for smoothed particle hydrodynamics on

heterogeneous clusters. Computer Physics Communications 184, 8 (2013), 1848–1860.

[28] EDF R&D. Code_Saturne 3.0.0 theory guide. http://code-saturne.org/cms/sites/

default/files/theory-3.0.pdf. Accessed: 2013-10-16.

[29] EDF R&D. Code_Saturne 3.0.0 Theory Guide, 2013. http://code-saturne.org/cms/

sites/default/files/theory-3.0.pdf.

[30] Ellero, M., and Adams, N. A. SPH simulations of Wow around a periodic array of cylinders

conVned in a channel. International Journal for Numerical Methods in Fluids 86 (2011),

1027–1040.

[31] Farahani, R. J., Dalrymple, R. A., Hérault, A., and Bilotta, G. Turbulent coherent

structures under breaking water waves. In Proc. 7th international SPHERIC workshop (2012).

[32] Fatehi, R., and Manzari, F. T. Error estimation in smoothed particle hydrodynamics and

a new scheme for second derivatives. Computers & Mathematics with Applications 61, 2

(2011), 482–498.

[33] Feldman, J., and Bonet, J. Dynamic reVnement and boundary contact forces in SPH with

applications in Wuid Wow problems. International Journal for Numerical Methods in Engi-

neering 72 (2007), 295–324.

[34] Ferrand, M., an A. Joly, C. K., Violeau, D., Leroy, A., Morel, F.-X., and Rogers, B. D.

Semi-analytical conditions and riemann solver for open boundaries in sph. Journal of Com-

putational Physics (2015). to be submitted.

[35] Ferrand, M., Laurence, D. R., Rogers, B. D., Violeau, D., and Kassiotis, C. UniVed semi-

analytical wall boundary conditions for inviscid, laminar or turbulent Wows in the meshless

SPH method. International Journal for Numerical Methods in Fluids 71 (2013), 446–472.

[36] Ferrari, A., Dumbser, M., Toro, E. F., and Armanini, A. A new 3D parallel SPH scheme

for free surface Wows. Computers & Fluids 36, 6 (2009), 1203–1217.

[37] Ghasemi, V. A., Firoozabadi, B., and Mahdinia, M. 2D numerical simulation of density

currents using the SPH projection method. European Journal of Mechanics - B/Fluids 38

(2013), 38–46.

http://code-saturne.org/cms/sites/default/files/theory-3.0.pdf
http://code-saturne.org/cms/sites/default/files/theory-3.0.pdf
http://code-saturne.org/cms/sites/default/files/theory-3.0.pdf
http://code-saturne.org/cms/sites/default/files/theory-3.0.pdf


176 BIBLIOGRAPHY

[38] Ghia, U., Ghia, K. N., and Shin, C. T. High-Re solutions for incompressible Wow using the

Navier-Stokes equations and multigrid method. Journal of Computational Physics 48 (1982),

387–411.

[39] Giles, M. B. NonreWecting boundary conditions for Euler equation calculations. AIAA

Journal 28, 12 (1990), 2050–2058.

[40] Guermond, J. L., Minev, P., and Shen, J. An overview of projection methods for incom-

pressible Wows. Computer Methods in Applied Mechanics and Engineering 195, 44-47 (2006),

6011–6045.

[41] Guimet, V., and Laurence, D. A linearised turbulent production in the k-ε model for en-

gineering applications. In Proc. Vth International Symposium on Engineering Turbulence

Modelling and Measurements (2002), pp. 157–166. Majorqua (Spain).

[42] Harada, T., Koshizuka, S., and Kawaguchi, Y. Smoothed particle hydrodynamics on

GPUs. In Proc. Comput. Graph. Intl. (2007), pp. 63–70.

[43] Harlow, F. H., and Welch, J. E. Numerical calculation of time-dependent viscous incom-

pressible Wow of Wuid with free surface. Physics of Fluids 8 (1965), 2182–2189.

[44] Härtel, C., Meiburg, E., and Necker, F. Analysis and direct numerical simulation of the

Wow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip

boundaries. Journal of Fluid Mechanics 418 (2000), 189–212.

[45] Hérault, A., Bilotta, G., and Dalrymple, R. A. SPH on GPU with CUDA. Journal of

Hydraulic Research 48 (2010), 74–79.

[46] Hérault, A., Bilotta, G., and Dalrymple, R. A. Achieving the best accuracy in an SPH

implementation. In Proc. 9th international SPHERIC workshop (2014).

[47] Hérault, A., Vicari, A., and Del Negro, C. A SPH thermal model for the cooling of a lava

lake. In Proc. 3rd international SPHERIC workshop (2008), pp. 143–148.

[48] Hérault, A., Vicari, A., Negro, C. D., Bilotta, G., and Rustico, E. GPU-LAVA: SPH lava

Wow simulation on CUDA. In Proc. 6th international SPHERIC workshop (2011).

[49] Hervouet, J.-M. Hydrodynamics of Free Surface Flows: Modelling with the Finite Element

Method. John Wiley, 2007.

[50] Hockney, R. W., and Eastwood, J. W. Computer simulation using particles. McGraw-Hill,

New-York, 1981.

[51] Hosseini, S. M., and Feng, J. J. Pressure boundary conditions for computing incompressible

Wows with SPH. Journal of Computational Physics 230 (2011), 7473–7487.



BIBLIOGRAPHY 177

[52] Hu, X. Y., and Adams, N. A. An incompressible multi-phase SPH method. Journal of

Computational Physics 227 (2007), 264–278.

[53] Issa, R., Moulinec, C., Latino, D., Violeau, D., Biddiscombe, J., and Thibaud, G. Mod-

elling a plunging breaking solitary wave with eddy-viscosity turbulent SPH models. In Proc.

3rd international SPHERIC workshop (2008).

[54] Issa, R., and Violeau, D. Modelling a plunging breaking solitary wave with eddy-viscosity

turbulent SPH models. Computers, Materials, & Continua 8, 3 (2008), 151–164.

[55] Issa, R., and Violeau, D. Spheric test-case # 2, 2014.

[56] Issa, R., Violeau, D., Lee, E.-S., and Flament, H. Modelling nonlinear water waves with

RANS and LES SPH models, in Advances in Numerical Simulation of Nonlinear Water Waves,

vol. 11. Editor, Q. W. Ma and World ScientiVc Publishing Co, 2010, ch. 14.

[57] Johnson, G. R., Stryk, R. A., and Beissel, S. R. Sph for high velocity impact computations.

Computational Methods for Applied Mechanics and Engineering 139 (1996), 347–373.

[58] Kasagi, N., and Iida, O. Progress in direct numerical simulation of turbulent heat transfer.

In Proc. 5th ASME/JSME Joint Thermal Engineering Conference (San Diego, California, 1999).

[59] Kassiotis, C., Ferrand, M., Violeau, D., Rogers, B. D., Stansby, P. K., and Benoit, M.

Coupling SPH with a 1-D Boussinesq-type wave model. In Proc. 6th international SPHERIC

workshop (2011), pp. 241–247.

[60] Kassiotis, C., Violeau, D., and Ferrand, M. Semi-analytical conditions for open bound-

aries in smoothed particle hydrodynamics. In Proc. 8th international SPHERIC workshop

(2013).

[61] Kawamura, H., Abe, H., and Shingai, K. DNS of turbulence and heat transport in a channel

Wow with diUerent Reynolds and Prandtl numbers and boundary conditions. In Turbulence,

Heat and Mass Transfer 3 (Proc. of the 3rd International Symposium on Turbulence, Heat and

Mass Transfer) (2000), Y. Nagano and K. Hanjalic and T. Tsuji, pp. 15–32.

[62] Kolb, A., and Cuntz, N. Dynamic particle coupling for GPU-based Wuid simulation. In

Proc. 18th Symposium on Simulation Technique (2005), pp. 722–727.

[63] Kolmogorov, A. N. The local structure of turbulence in incompressible viscous Wuid for

very large Reynolds numbers. Proceedings of the Royal Society A: Mathematical, Physical

and Engineering Sciences 434, 1890 (1991), 9–13.

[64] Koshizura, S., Nobe, A., and Oka, Y. Numerical analysis of breaking waves using the

moving particle semi-implicit method. International Journal for Numerical Methods in Fluids

26 (1998), 751–769.



178 BIBLIOGRAPHY

[65] Kulasegaram, S., Bonet, J., Lewis, R. W., and Profit, M. A variational formulation based

contact algorithm for rigid boundaries in two-dimensional SPH applications. Computational

Mechanics 33 (2004), 316–325.

[66] Kuzmin, D., Mierka, O., and Turek, S. On the Implementation of the k-epsilon Turbulence

Model in Incompressible Flow Solvers Based on a Finite Element Discretization. Ergebnis-

berichte angewandte Mathematik. Tech. University of Dortmund, 2007.

[67] Lastiwka, M., Basa, M., and Quinlan, N. J. Permeable and non-reWecting boundary con-

ditions in SPH. International Journal for Numerical Methods in Fluids 61, 7 (2009), 709–724.

[68] Launder, B. E., Reece, G. J., and Rodi, W. Progress in the development of a reynolds stress

turbulent closure. Journal of Fluid Mechanics 68 (1975), 537–566.

[69] Launder, B. E., and Spalding, D. B. Mathematical models of turbulence. London: Academic

Press, 1972.

[70] Launder, B. E., and Spalding, D. B. The numerical computation of turbulent Wows. Com-

puter Methods in Applied Mechanics and Engineering 3 (1974), 269–289.

[71] Lee, E.-S. Truly incompressible approach for computing incompressible Wows in SPH and

comparisons with the traditional weakly compressible approach. PhD thesis, University of

Manchester, Manchester, UK, 2007.

[72] Lee, E.-S., Moulinec, C., Xu, R., Violeau, D., Laurence, D., and Stansby, P. K. Com-

parisons of weakly compressible and truly incompressible algorithms for the SPH mesh free

particle method. Journal of Computational Physics 227 (2008), 8417–8436.

[73] Lee, E.-S., Violeau, D., Issa, R., and Ploix, S. Application of weakly compressible and truly

incompressible SPH to 3-D water collapse in waterworks. Journal of Hydraulic Research 48

(2008), 50–60.

[74] Lee, E.-S., Violeau, D., Issa, R., Ploix, S., and Marc, R. Simulating a real dam spillway

Wow with 3-D SPH. In Proc. 4th international SPHERIC workshop (2009), pp. 339–345.

[75] Libersky, L. D., Petschek, A. G., Carney, T. C., Hipp, J. R., andAllahdadi, F. A. High strain

lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response.

Journal of Computational Physics 109, 1 (1993), 67–75.

[76] Lind, S., Xu, R., Stansby, P. K., and Rogers, B. D. Incompressible smoothed particle hydro-

dynamics for free-surface Wows: A generalised diUusion-based algorithm for stability and

validations for impulsive Wows and propagating waves. Journal of Computational Physics

231, 4 (2012), 1499–1523.

[77] Lions, P.-L. Mathematical Topics in Fluid Mechanics. Volume 1: Incompressible Models.

Clarendon Press, Oxford Lecture Series in Mathematics and Its Applications 3, 1996.



BIBLIOGRAPHY 179

[78] Liu, A. W., Bornside, D. E., Armstrong, R. C., and Brown, R. A. Viscoelastic Wow of

polymer solutions around a periodic, linear array of cylinders: comparisons of predictions

for microstructure and Wow Velds. Journal of Non-Newtonian Fluid Mechanics 77 (1998),

153–190.

[79] Lo, E., and Shao, S. Simulation of near-shore solitary waves mechanics by an incompress-

ible SPH method. Applied Ocean Research 24 (2002), 275–286.

[80] Lucy, L. B. A numerical approach to testing the Vssion hypothesis. The Astronomical Journal

82, 12 (1977), 1013–1924.

[81] Macià, F., González, L. M., Cercos-Pita, J. L., and Souto-Iglesias, A. A boundary integral

sph formulation - consistency and applications to isph and wcsph. Progress of Theoretical

Physics 128, 3 (2012), 439–462.

[82] Mahmood, O., Violeau, D., Kassiotis, C., Rogers, B. D., and Ferrand, M. Absorbing

inlet/outlet boundary conditions for 2D SPH turbulent free-surface Wows. In Proc. 7th inter-

national SPHERIC workshop (2012), pp. 296–302.

[83] Marongiu, J.-C. Méthode Numérique Lagrangienne pour la simulation d’écoulements à

surface libre – Application aux turbines Pelton. PhD thesis, Ecole Centrale de Lyon, 2007.

(in French).

[84] Marongiu, J.-C., Parkinson, E., Lais, S., Leboeuf, F., and Leduc, J. Application of SPH-

ALE method to pelton hydraulic turbines. In Proc. 5th international SPHERIC workshop

(2010).

[85] Marrone, S., Antuono, M., Colagrossi, A., Colicchio, G., Le Touzé, D., and Graziani,

G. δ-SPH model for simulating violent impact Wows. Computer Methods in Applied Mechan-

ics and Engineering 200, 13-16 (2011), 1526–1542.

[86] Marrone, S., Colagrossi, A., Le Touzé, D., and Graziani, G. Fast free-surface detection

and level-set function deVnition in SPH solvers. Journal of Computational Physics 229, 10

(2010), 3652–3663.

[87] Marsden, J. E., andWest, M. Discrete mechanics and variational integrators. Acta Numer-

ica 10, 1 (2001), 357–514.

[88] Maruzewski, P., Le Touzé, D., Oger, G., and Avellan, F. SPH high-performance com-

puting simulations of rigid solids impacting the free-surface of water. Journal of Hydraulic

Research 48 (2010), 126–134.

[89] Matteo, T. D., Springel, V., and Hernquist, L. Energy input from quasars regulates the

growth and activity of black holes and their host galaxies. Nature 433 (2005), 604–607.



180 BIBLIOGRAPHY

[90] Mayrhofer, A. Large eddy simulation with smoothed particle hydrodynamics: Part 1: Im-

provement and extension of the uniVed semi-analytical wall boundary conditions. Tech. rep.,

University of Manchester, 2011.

[91] Mayrhofer, A. Large Eddy Simulation with Smoothed Particle Hydrodynamics: an investi-

gation into wall boundary conditions and turbulent Wows. PhD thesis, University of Manch-

ester, Manchester, UK, 2013.

[92] Mayrhofer, A., Ferrand, M., Kassiotis, C., Violeau, D., and Morel, F.-X. UniVed semi-

analytical wall boundary conditions in SPH: analytical extension to 3-d. Numerical Algo-

rithms (2014).

[93] Mayrhofer, A., Laurence, D., Rogers, B. D., Violeau, D., and Ferrand, M. Direct nu-

merical simulation of 3-D turbulent wall bounded Wows with SPH. In Proc. 8th international

SPHERIC workshop (2013), pp. 130–138.

[94] Mayrhofer, A., Rogers, B. D., Violeau, D., and Ferrand, M. Study of diUerential operators

in the context of the semi-analytical wall boundary conditions. In Proc. 7th international

SPHERIC workshop (2012), pp. 149–156.

[95] Mayrhofer, A., Rogers, B. D., Violeau, D., and Ferrand, M. Investigation of wall bounded

Wows using SPH and the uniVed semi-analytical wall boundary conditions. Computer Physics

Communications 184, 11 (2013), 2515–2527.

[96] Menter, F. R. Two-equation eddy-viscosity turbulence models for engineering applications.

AIAA Journal 32, 8 (1994), 1598–1605.

[97] Meyer, M., Devesa, A., Hickel, S., Hu, X. Y., and Adams, N. A. A conservative immersed

interface method for large-eddy simulation of incompressible Wows. Journal of Computa-

tional Physics 229 (2010), 6300–6317.

[98] Meyer, M., Hickel, S., and Adams, N. A. Assessment of implicit large-eddy simulation with

a conservative immersed interface method for turbulent cylinder Wow. International Journal

of Heat and Fluid Flow 31 (2010), 368–377.

[99] Mohammadi, B., and Pironneau, O. Analysis of the k-epsilon turbulence model. France:

Editions MASSON, 1993.

[100] Monaghan, J. SPH without a tensile instability. Journal of Computational Physics 159, 2

(2000), 290–311.

[101] Monaghan, J., and Gingold, R. Shock simulation by the particle methos SPH. Journal of

Computational Physics 52, 2 (1983), 374–389.

[102] Monaghan, J. J. Smoothed particle hydrodynamics. Annual Review of Astronomy and

Astrophysics 30 (1992), 543–574.



BIBLIOGRAPHY 181

[103] Monaghan, J. J. Smoothed particle hydrodynamics. Reports on Progress in Physics 68 (2005),

1703–1759.

[104] Morris, J. P., Fox, P. J., and Zhu, Y. Modeling low Reynolds number incompressible Wows

using SPH. Journal of Computational Physics 136, 1 (1997), 214–226.

[105] Moulinec, C., Issa, R., Marongiu, J.-C., and Violeau, D. Parallel 3-D SPH simulations.

Computing Modeling Engineering Science 25, 3 (2008), 133–148.

[106] Moulinec, C., Issa, R., Violeau, D., Marongiu, J.-C., and Leboeuf, F. Parallel 3-D SPH

simulations over periodic hills. In Proc. Int. Conf. Comput. and Experimental Eng. and Sci-

ences, IInd symposium on meshless methods (2007).

[107] Nezu, I., and Nakawaga, H. Turbulence in open channel. In IAHR Monograph (1993),

Balkema, Ed.

[108] Oger, G., Doring, M., Alessandrini, B., and Ferrant, P. Two-dimensional SPH simula-

tions of wedge water entries. Journal of Computational Physics 213, 2 (2006), 803–822.

[109] Oger, G., Doring, M., Alessandrini, B., and Ferrant, P. An improved SPH method:

Towards higher order convergence. Journal of Computational Physics 225, 2 (2007), 1472–

1492.

[110] Oger, G., Leroy, C., Jacquin, E., Le Touzé, D., and Alessandrini, B. SpeciVc pre/post

treatments for 3-D SPH applications through massive HPC simulations. In Proc. 4th interna-

tional SPHERIC workshop (2009), pp. 27–29.

[111] Orlanski, I. A simple boundary condition for unbounded hyperbolic Wows. Journal of

Computational Physics 21 (1976), 251–269.

[112] Peng, Y.-F., Shiau, Y.-H., and Hwang, R. R. Transition in a 2-D lid-driven cavity Wow.

Computers & Fluids 32 (2003), 337–352.

[113] Pope, S. B. A more general eUective-viscosity hypothesis. Journal of Fluid Mechanics 72

(1975), 331–340.

[114] Pope, S. B. Turbulent Wows. Cambridge: Cambridge University Press, 2000.

[115] Price, D. J. Smoothed particle hydrodynamics and magnetohydrodynamics. Journal of

Computational Physics 231 (2012), 759–794.

[116] Quinlan, G. D., and Tremaine, S. Symmetric multistep methods for the numerical integra-

tion of planetary orbits. The Astronomical Journal 100 (1990), 1694–1700.

[117] Quinlan, N. J., Basa, M., and Lastiwka, M. Truncation error in mesh-free particle methods.

International Journal for Numerical Methods in Engineering 66 (2006), 2064–2085.



182 BIBLIOGRAPHY

[118] Randles, P. W., and Libersky, L. D. Smoothed particle hydrodynamics: Some recent im-

provements and applications. Computer Methods in Applied Mechanics and Engineering 139,

1–4 (1996), 375–408.

[119] Rannacher, R. On chorin’s projection method for the incompressible navier-stokes equa-

tions. In The Navier-Stokes Equations II — Theory and Numerical Methods, vol. 1530 of

Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1992, pp. 167–183.

[120] Rodi, W. Turbulence models and their applications in hydraulics. In IAHR monograph

(BrookVeld, Rotterdam, 2000).

[121] Rogers, B. D., and Dalrymple, R. A. SPH modeling of tsunami waves. Advanced numerical

models for simulating tsunami waves and runup 10 (2008), 75–100.

[122] Rogers, B. D., Dalrymple, R. A., Stansby, P. K., and Laurence, D. Development of a

parallel sph code for free-surface wave hydrodynamics. In Proc. 2nd SPHERIC International

Workshop (2007), pp. 111–114.

[123] Russell, P. A., and Abdallah, S. Dilation-free solutions for the incompressible Wow equa-

tions on nonstaggered grids. AIAA Journal 35, 3 (1997), 585–586.

[124] Rustico, E., Hérault, A., and Bilotta, G. Multi-GPU, multi-node SPH implementation

with arbitrary domain decomposition. In Proc. 9th SPHERIC International Workshop (2014),

pp. 127–133.

[125] Saad, Y., and Schultz, M. H. GMRES: a generalized minimal residual algorithm for solving

nonsymmetric linear systems. Journal on ScientiVc and Statistical Computing 7, 3 (1986),

856–869.

[126] Sani, R. L., Gresho, P. M., Lee, R. L., and Griffiths, D. F. The cause and cure (?) of the

spurious pressures generated by certain FEM solutions of the incompressible navier-stokes

equations: Part 1. International Journal for Numerical Methods in Fluids 1, 1 (1981), 17–43.

[127] Schwaiger, H. F. An implicit corrected SPH formulation for thermal diUusion with linear

free surface boundary conditions. International Journal for Numerical Methods in Engineer-

ing 75, 6 (2008), 647–671.

[128] Schwartz, L. Théorie des distributions 1-2. Hermann, Paris, 1950-1951. (in French).

[129] Shao, S., and Lo, E. Y. M. Incompressible SPH method for simulating Newtonian and non-

Newtonian Wows with a free-surface. Advanced Water Ressources 26 (2003), 787–800.

[130] Shepard, D. A two dimensional function for irregularly spaced data. In ACM National

Conference (1968).



BIBLIOGRAPHY 183

[131] Smagorinsky, J. General circulation experiments with the primitive equations i. the basic

experiment. Monthly Weather Review 91, 3 (1963), 99–164.

[132] Souto-Iglesias, A., Macià, F., González, L. M., and Cercos-Pita, J. L. On the consistency

of MPS. Computer Physics Communications 184, 3 (2013), 732–745.

[133] Springel, V. The cosmological simulation code GADGET-2. Monthly Notices of the Royal

Astronomical Society 364, 4 (2005), 1105–1134.

[134] Szewc, K., Pozorski, J., and Tanière, A. Modeling of natural convection with Smoothed

Particle Hydrodynamics: Non-Boussinesq formulation. International Journal of Heat and

Mass Transfer 54, 23-24 (2011), 4807–4816.

[135] Tait, P. G. Report on some of the physical properties of fresh water and sea water. Rept. Sci.

Results Voy. H.M.S. Challenger, Phys. Chem. 2 (1888), 1–76.

[136] Takeda, H., Miyama, S. M., and Sekiya, M. Numerical simulation of viscous Wow by

Smoothed Particle Hydrodynamics. Progress of Theoretical Physics 92, 5 (1994), 939–960.

[137] Tarrade, L., Texier, A., David, L., Pineau, G., and Larinier, M. Experimental approach

to adapt the turbulent Wow in the vertical slot Vshways to the small Vsh species. Journal

Hydrobiologia 1 (2008), 177–188.

[138] Temam, R. Une méthode d’approximation des solutions des équations de Navier–Stokes.

Bulletin de la Société Mathématique de France 98 (1968), 115–152. (in French).

[139] Temam, R. Sur l’approximation de la solution des équations de Navier–Stokes par la méthode

des pas fractionnaires II. Archive for Rational Mechanics and Analysis 33 (1969), 377–385.

(in French).

[140] The OpenFOAM Foundation, 2013. http://www.openfoam.org/index.php.

[141] Trask, N., Maxey, M., Yang, K., Hu, X. Y., and Xu, J. Accuracy and performance of implicit

projection methods for transient viscous Wows using SPH. In Proc. 8th international SPHERIC

workshop (2013).

[142] Trias, F. X., Gorobets, A., Soria, M., and Oliva, A. Direct numerical simulation of a

diUerentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 1011 – Part I: Nu-

merical methods and time-averaged Wow. International Journal of Heat and Mass Transfer

53, 4 (2010), 665–673.

[143] Vacondio, R., Rogers, B. D., Stansby, P. K., and Mignosa, P. SPH modeling of shallow

Wow with open boundaries for practical Wood simulation. Journal of Hydraulic Engineering

138, 6 (2012), 530–541.

http://www.openfoam.org/index.php


184 BIBLIOGRAPHY

[144] Vacondio, R., Rogers, B. D., Stansby, P. K., and Mignosa, P. Shallow water sph for

Wooding with dynamic particle coalescing and splitting. Advances in Water Resources 58

(2013), 10–23.

[145] Vila, J. P. On particle weighted methods and smooth particle hydrodynamics. Mathematical

Models and Methods in Applied Sciences 9, 2 (1999), 161–209.

[146] Violeau, D. Dissipative forces for Lagrangian models in computational Wuid dynamics and

application to Smoothed Particle Hydrodynamics. Physical Review E 80, 3 (2009).

[147] Violeau, D. Fluid Mechanics and the SPH method. Oxford University Press, 2012.

[148] Violeau, D., and Issa, R. Numerical modelling of complex turbulent free-surface Wows with

the SPH method: an overview. International Journal for Numerical Methods in Fluids 53

(2007), 277–304.

[149] Violeau, D., and Leroy, A. On the maximum time step in weakly compressible SPH. Jour-

nal of Computational Physics 256 (2014), 388–415.

[150] Violeau, D., Leroy, A., and Mayrhofer, A. Exact computation of SPH wall renormalising

integrals in 3-D. In Proc. 9th international SPHERIC workshop (2014).

[151] Viollet, P.-L. Mécanique des Wuides à masse volumique variable. Presses de l’Ecole Na-

tionale des Ponts et Chaussées, 1997. (in French).

[152] Viollet, P.-L., Chabard, J.-P., Esposito, P., and Laurence, D. Mécanique des Wuides ap-

pliquée. Presses de l’Ecole Nationale des Ponts et Chaussées, 2002. (in French).

[153] Vorst, H. A. V. D. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the

solution of nonsymmetric linear systems. Journal on ScientiVc and Statistical Computing 13,

2 (1992), 631–644.

[154] Wan, D. C., Patnaik, B. S. V., and Wei, G. W. A new benchmark quality solution for the

buoyancy-driven cavity by discrete singular convolution. Numerical Heat Transfer, Part B:

Fundamentals 40, 3 (2001), 199–228.

[155] Xu, R., Stansby, P. K., and Laurence, D. Accuracy and stability in incompressible SPH

(ISPH) based on the projection method and a new approach. Journal of Computational

Physics 228, 18 (2009), 6703–6725.

[156] Yap, C. J. Turbulent heat and momentum transfer in recirculating and impringing Wows.

PhD thesis, University of Manchester, Manchester, UK, 1987.

[157] Yildiz, M., Rook, R. A., and Suleman, A. SPH with the multiple boundary tangent method.

International Journal for Numerical Methods in Engineering 77 (2009), 1416–1438.



BIBLIOGRAPHY 185

[158] Zhao, J. Development of a fast SPH model for non linear shallow water Wows: application to

coastal Wooding and dam breaking. PhD thesis, Ecole Centrale de Nantes, 2012.


	Introduction
	Governing equations and modelling choices
	Navier–Stokes equations for incompressible flows
	Formulation
	Projection methods

	Turbulence modelling
	Reynolds-Averaged Navier–Stokes models
	Large Eddy Simulation

	Buoyancy modelling
	Diffusion equation on the temperature
	Buoyancy effects in the momentum equation

	System of equations to be solved and associated set of boundary conditions

	Smoothed Particle Hydrodynamics: Literature review
	Introduction to SPH
	Classical SPH interpolation and differential operators
	SPH interpolation
	First order differential operators in SPH
	Second order differential operator in SPH

	Modelling incompressible flows with SPH
	Classical weakly-compressible approach
	Truly incompressible SPH

	Wall boundary conditions in SPH
	Classical treatment of the wall boundary conditions
	Unified semi-analytical wall boundary conditions

	Imposition of free-surface boundaries in SPH
	Pressure condition
	Conditions on the velocity, the temperature, k and 

	Imposition of open boundaries in SPH
	Turbulence modelling and treatment of the viscous term in SPH
	Turbulence modelling: state-of-the-art in SPH
	SPH k and  equations
	Treatment of the viscous term

	Buoyancy modelling in SPH
	Reduction of the computational times through parallel programming

	A new incompressible SPH model
	Preliminary considerations
	Space-time discretisation of the governing equations
	Time discretisation
	Space discretisation

	Wall boundary conditions
	Wall boundary conditions on the velocity
	Wall boundary conditions on k and 
	Wall boundary conditions on the temperature
	Wall boundary conditions on the pressure

	Free-surface conditions
	Open boundaries
	Particles creation/destruction
	Imposition of the inflow/outflow boundary conditions
	Inflow boundaries
	Outflow boundaries

	Solving the pressure Poisson equation
	Numerical stability
	Computation of the kernel renormalisation factor and its gradient
	Computation of the kernel renormalisation factor and its gradient in 2-D
	Computation of the kernel renormalisation factor and its gradient in 3-D

	Parallelisation in a GPU framework

	Validation on 2-D cases
	Nomenclature
	Validation on isothermal 2-D cases
	Laminar flows
	Turbulent flows

	Validation on non-isothermal 2-D cases
	Laminar flows
	Turbulent flows


	3-D cases: validation and preliminary application results
	Laminar flow in a circular pipe with inflow/outflow boundaries
	Dam-break over an obstacle
	Connected pipes case

	Conclusions
	Appendix Analytical computation of a in 3-D
	Bibliography

