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Abstract

Several incompressible SPH (ISPH) methods have been proposed in the past

decade. Here only the widely-used projection method for the pressure and ve-

locity coupling is considered. Based on open source code SPHysics [121], the

stability and accuracy of three methods which enforce either a divergence-

free velocity field, density invariance, or their combination are tested here

through the standard Taylor-Green and spin-down vortex problems. It is

shown that the divergence-free ISPH method cannot maintain stability in

certain situations although it is accurate before instability sets in. The den-

sity invariant ISPH method is stable but inaccurate and noisy. The com-

bined ISPH, combining advantages in divergence-free ISPH and density-

invariant ISPH, can maintain accuracy and stability but at a high compu-

tational cost. A new divergence-free ISPH approach is proposed here which

maintains accuracy and stability without increasing computational cost by

slightly shifting particles away from streamlines while correcting their hy-

drodynamic characteristics. This avoids the highly distorted particle spac-

ings which cause instability. Although this algorithm is not strictly conser-

vative, importantly pressure fields are accurate and noise-free up to highest

Reynolds numbers tested. The accuracy and spatial convergence rate have

been tested for different operators with the Taylor-Green problem. Several
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Abstract

attempts to improve the accuracy have been conducted. The influence of the

Taylor-series correction in the new approach, by considering different terms

in Taylor expansion, is also studied. It is shown in this thesis that the ISPH

method spatially converges in a first-order way.

Through the benchmark test cases of the lid-driven cavity and bluff body, the

algorithm and the code have been validated. For lid-driven cavity case, three

different Re values, Re = 100, 400 and 1000, have been simulated here. How-

ever, it has been shown that ISPH method provides a slower convergence

rate, compared to the finite volume method (FVM), which is consistent with

the first-order spatial convergence rate, while the pressure predictions from

ISPH match the converged finite-volume results very well. For the bluff body,

cases with two different Reynolds numbers are simulated here. The lift and

drag coefficients are calculated from both ISPH and the FVM code Saturne.

With Re = 20, both methods give almost identical predictions, but differences

appear for higher Reynolds condition, Re = 100.

The new ISPH approach has also been applied in free-surface flow simula-

tions. A viscous damping method is proposed to overcome the instability

on the free surface caused by truncated kernels. The range of maximum

Peclet number for the calculation of the damping viscosity is also suggested,

which is demonstrated in this thesis by the collapsing water column problem

and other test cases. The instabilities are effectively damped by increasing

kinematic viscosity for particles on and adjacent to the free surface. The

algorithm is validated against an analytical solution for the flow due to an

impulsively started plate and (almost) exact solutions for wet bed dam break

problems at zero and small times. The method is also validated for progres-

sive regular waves with paddle motion defined by linear theory. The waves
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Abstract

propagate without decay. The highly accurate predictions show that increas-

ing surface viscosity locally by an order of magnitude does not reduce the

accuracy by damping the surface instabilities, generated by the inevitable

errors associated with truncated kernels. The quantitative validation is be-

lieved to be most thorough for this purpose. Good agreements are obtained

for the cases studied.
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Chapter 1

Introduction and Thesis

Objectives

1.1 Background

F
Luid mechanics has two philosophies for the description of fluid flows:

Lagrangian and Eulerian. In Lagrangian concept, the observation

point moves with the fluid element, with the observer moving with a velocity

identical to the fluid element, while in the Eulerian concept, the observer

keeps a fixed position without moving, with all the flow quantities as func-

tions of positions and time. The corresponding Computational Fluid Dynam-

ics (CFD) implementations are also classified as the Lagrangian method and

Eulerian method. The latter has been well studied for more than fifty years

and is widely applied in many aspects of flow simulations. The Eulerian-

based approaches are the finite volume method (FVM), the finite difference

method (FDM) and the finite element method (FEM). Several commercial
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Chapter 1. Introduction and Thesis Objectives

software packages, such as STAR-CD, FLUENT, ABAQUS, for instance, are

providing solutions for engineering and hydrodynamic problems. The La-

grangian approach has not been as widely used as the Eulerian one. How-

ever, it offers a different possibility over the Eulerian approach. In practical

applications, Eulerian based models are not suitable for large deformation

of fluids or structures, such as violent free-surface flows and the explosion of

solid blocks. Moreover, Lagrangian methods can better prescribe the physi-

cal process due to the fundamental similarity with the molecular dynamics

[42, 43].

Several Lagrangian methods, such as the vortex method [16], the Smoothed

Particle Hydrodynamics (SPH) method [67, 33], the Finite Point or Finite

Pointset Method (FPM) [83, 106, 107, 109], the Radial Basis Function Method

(RBFM) [50, 51, 79], the Finite Volume Particle Method (FVPM) [39, 80],

have been introduced during the last decades. The incompressible SPH

(ISPH) method as one of the SPH topics has been heavily studied due to

its accurate and efficient numerical performance. The aims of this thesis

are to investigate the existing ISPH methods, improving the accuracy and

efficiency of these methods and applying the ISPH method for accurate free-

surface simulations. The vortex method can date back to 1930s, when Rosen-

head [97] calculated Kelvin-Helmholtz instabilities by hand. And the mod-

ern developments have been promoted by Chorin [13], Leonard [64] and Re-

hbach [92]. As an extensively and deeply studied method, the discussion and

investigation to the vortex method will not be deployed in this thesis. More

details about this method can be found in textbooks [16, 69]. Here, a brief in-

troduction to FVPM, FPM and SPH will be presented. The reasons studying

Incompressible SPH (ISPH) method is explained in this chapter.
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1.2 Finite Volume Particle Method (FVPM)

As a similar particle method for incompressible flow simulations, the Finite

Volume Particle Method (FVPM) has been under study almost simultane-

ously in other different universities and institutions as ISPH method. Good

performace has been shown through several academic research cases. There-

fore, the author consider it is necessary to give a brief introduction about this

method.

FVPM was first introduced by Hietel et al. [39]. Recent developments have

been performed by Keck and Hietel [52, 53], Nestor et. al [80] and Teleaga

[104]. In FVPMs, the fluid is represented by a set of particles, which in

turn are associated with normalised, overlapping, compactly supported ker-

nel functions. A test function is defined related to the particle volume. The

particles are viewed as discrete volumes to which the integral form of the

governing equations applies. The interaction between particles is calculated

from the flux rate between neighbouring particles. The conservation law is

ensured. In contrast to the standard SPH method, the FVPM is conservative

regardless of the variation in the particle smoothing lengths. However, the

relative advantages of SPH and FVPM under complicated situations for both

internal and free-surface flows are not clear. Full comparison between the

SPH method and FVPM is needed in future work.

In 2000, Schick [98] applied anisotropic kernel functions and variable kernel

supports in the FVPM. Keck and Hietel [53] simulated an inviscid vortex

advection problem by applying the projection method [12] in FVPM. In 2008,

Teleaga and Struckmeier [105] modelled a compressible inviscid flow around

an oscillating circle, as presented in Fig. 1.1. In 2008, Nestor et al. [80] pro-
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posed a particle motion correction to prevent the development of poor particle

distributions in Lagrangian movement mode, which is also implemented in

this thesis with some modifications. Nestor and Quinlan [81] simulated the

flow around a circular cylinder with two different local refined particle dis-

tributions, as shown in Fig. 1.2. Promising potential for future complicated

problems is presented in [81]. The research about free-surface simulations

with FVPM however has not been reported, while this has been presented

in [100, 101, 54] with ISPH methods. Herewith, the ISPH method is studied

here for the purpose of free-surface predictions.

(a) Quasi-random distributed particles and their corresponding

density (left) and isolines of the density (right)

(b) Isolines of the u- (left) and v-velocity components (right) in the

same case as in (a)

Figure 1.1: Density and velocity graphs around an oscillating circle [105].
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(a) Re=40

(b) Re=100

Figure 1.2: Pressure contours and velocity vectors around a circular cylinder

in the fluid field [81].

1.3 Finite Pointset Method (FPM)

In the Finite Pointset Method (FPM) [83, 106, 107, 109], all the points in

the computing domain are only interpolation bases, without any relation to

the physical properties of the fluid, such as density and volume. The first

or second derivative of a hydrodynamic variable is obtained by minimizing

the quadratic form of the error function which is built up from the Taylor

expansion of the computing point value from the neighbouring points. The

details of this method can be found in [83, 106, 107, 109].

FPM was only recently proposed in [83], but the promising potential has
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been shown through its high accuracy prediction with disordered point dis-

tributions. The application of this method is mainly for fluid simulations. In

[83], Oñate et al. simulated inviscid compressible flow around a NACA0012

profile, shown in Fig. 1.3. In [107], the Rayleigh–Taylor instability is pre-

dicted with the consideration of the multiphase effect and surface tension,

presented in Fig. 1.4. By applying the Incremental Pressure Projection Al-

gorithm (IPPA) [7], Vacondio and Mignosa [109] successfully simulated free-

surface flows with FPM, as shown in Fig. 1.5.

Figure 1.3: Simulation of the inviscid compressible flow around a NACA0012

profile with FPM [83].
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The advantage of FPM is that it is a meshless method; any boundary condi-

tions can be enforced analytically by the Taylor expansion without the help

of extra particles outside of the simulation domain, and the accuracy of this

method can be theoretically increased with extra computing cost by consider-

ing more terms in the Taylor expansion for each particle. The stability of the

solution is preserved by adding or removing particles when the particle dis-

tribution is highly distorted. However, in this way conservation properties

are violated.

The biggest disadvantage of FPM is that it is computationally more expen-

sive than the Smoothed Particle Hydrodynamics (SPH) method. In the SPH

method, the first or second derivatives can be simply interpolated from the

hydrodynamic variable values of the neighbouring particles as presented in

§2.1 in Chapter 2, while in FPM the values of the first or second derivatives

are obtained from the solution of a linear system of equations based on least-

square approximation for each particle, where a matrix with 6 × 6 entries

for 2D and 9 × 9 entries for 3D are inverted to ensure a second-order accu-

racy. Also a local iteration approach based on least-square approximation

is used to force boundary conditions and satisfy the Pressure Poisson Equa-

tion (PPE) in the pressure-velocity coupling. The linear system is repeatedly

solved for each particle within the iteration until a converged pressure field

is obtained. All those computing procedures make FPM very time consum-

ing.
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Figure 1.4: Rayleigh–Taylor instability prediction by Tiwari with considera-

tion of the surface tension and multiphase effect [107].

Figure 1.5: Evolution of an initially circular fluid patch: FPM solution of the

pressure field at times = 0.2, 0.4, 0.6, 2.0 s [109].
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1.4 Smoothed Particle Hydrodynamics (SPH)

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method, where

the fluid medium is discretized by interaction between particles rather than

mesh cells. It was first introduced by Lucy [67], and Gingold and Monaghan

[71]. The use of SPH has since widely expanded in fluid dynamics and solid

mechanics [76] although its original applications were in astrophysics. The

basic concept of SPH is that continuous media are represented by discrete

particles with volume, density and mass. The particles have a kernel func-

tion to define their range of interaction, and the hydrodynamic variable fields

are approximated by integral interpolations. Meshes are not needed in the

simulation, which is a major advantage of SPH over Eulerian methods for

complex geometries.

1.4.1 SPH applications in astrophysics

The original purpose of the SPH method was to perform astrophysical sim-

ulations. In astrophysics, non-linear interaction between cosmic objects and

non-linear coupling between different interactions, such as electromagnetic,

gravitational, as well as the disordered distribution of cosmic objects make

it difficult to use traditional mesh-based methods to predict cosmic phenom-

ena. Due to the mesh-free feature, the SPH method can predict the com-

plicated astrophysical process such as fragmentation, supernovae explosion.

Fig. 1.6 shows the evolution of binary system in a star formation process [45].

SPH was also used for the star collisions and galaxy formulation predictions

[84].
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Figure 1.6: The secular evolution of the circumbinary disk [45].

Figure 1.7: Galaxy formulation predicted by the SPH method [84].
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(a)

(b)

Figure 1.8: Impact of a water column (SPH fluid) on a thin plate: FEM shell

(left), SPH shell (right). (a) elastic plate; (b) elastoplastic plate [87].

1.4.2 SPH applications in solid mechanics

Another big field of SPH application resides in solid mechanics. Traditional

mesh-based methods, such as Finite Element method (FEM), can perform

very well in many situations. However, for high distortion and large defor-

mation, the mesh-based methods cannot provide accurate predictions. With

the SPH method, Gray et al. [36] successfully investigated the linear and

non-linear oscillation of a plate. Another very interesting work was pre-

sented by Potapov et al. [87]. In their work, the fluid impact on a thin elas-

tic/elastoplastic plate was simulated, and the coupling between SPH fluid

particles and finite element points was achieved, shown in Fig. 1.8. This

work also demonstrated that by only using the SPH method, the fluid-body

interaction can be predicted accurately without the help of FEM for the

structure change. In 2008, Das and Cleary [21] used the SPH method to

successfully simulate the 3D fracture and fragmentation in a thin plate, as

shown in Fig. 1.9. The advantage of SPH, handling the large fragmentation

without mesh distortion problems, was fully presented in Das and Cleary’s

work.
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(a)

(b)

(c)

Figure 1.9: Fracture process for the plate during collision (left: colored by

von Mises stress and right: colored by damage). (a) time = 60µs; (b) time

= 65µs; (c) time = 100µs [21].
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1.4.3 SPH applications in fluid mechanics

Although the SPH method is still used for astrophysical simulations, its ap-

plications in fluid simulations are most notable. From compressible flows to

incompressible flows, the SPH method shows reliable performance. In 2007,

Monaghan [74] successfully simulated a shock tube with a SPH Riemann

solver, and the density and velocity jump of the gas in the shock tubes were

well predicted, shown in Fig. 1.10. Moreover, Welton [118] incorporated el-

ements of SPH to extract mean quantities from the particles, including the

mean pressure gradient, in simulations for compressible turbulent flows.

(a) Velocity against distance (b) Density against distance

Figure 1.10: Velocity and density profiles in shock tubes. Dot points : SPH

simulations; lines: analytical results. [74]

Despite the good performance of the SPH method in compressible flow simu-

lations, the SPH method reveals some difficulties in incompressible flow sim-

ulations, and this is now a main research focus. After the first application

of the SPH method in incompressible flow simulations in [72], simulations

of incompressible flows with the SPH method turned to be a critical area in

CFD. Fig. 1.11 shows the simulations of the internal flow, free-surface flow

and turbulence phenomena with the SPH method [47, 55, 117]. Compared to
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Figure 1.11: Simulations of incompressible flows by the SPH method. (a) flow

through an orifice conduit [55]; (b) benchmark dam-break case with parallel

computations [47]; (c) simulation of fish pass with turbulence models [117].

mesh-based methods, the meshless SPH method is more suitable for violent

deformation, such as violent change of free surfaces. Also, similar to its vor-

tex method counterpart, because of the Lagrangian movement of particles in

SPH simulations, at least for approaches without the remeshing, or during

processes before remeshing [25, 120], the SPH method is better suited to the

prescription of the physical processes in the fluid.

SPH simulations of the incompressible flows can be performed by two meth-

ods: 1) approximately simulating incompressible flows with a small com-
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pressibility, namely Weakly Compressible SPH (WCSPH); 2) simulating flows

by enforcing incompressibility, namely Incompressible SPH (ISPH). In WC-

SPH method, the flow is considered as slightly compressible, with a state

equation for the pressure calculation [18, 72, 77]. In ISPH methods the

pressure-velocity coupling has been generally achieved by the projection method

[12, 17, 44, 100, 63]. The recent alternative approach of imposing the kine-

matic constraint of a constant volume for each fluid particle through non-

thermodynamic pressure is also potentially competitive as shown through

comparisons with WCSPH in [25]. In this work, only the projection-based

ISPH methods are studied.

When modelling incompressible flows, traditional SPH solvers resort to a

weakly compressible approach. The incompressibility is enforced approxi-

mately by the use of a Mach number of approximately 0.1 [71]. It is easy to

program because the pressure is given by an algebraic thermodynamic equa-

tion [72][77]. The weakly compressible approach to simulate incompressible

flows causes problems, such as sound wave reflection at the boundaries and

the high sound speed leading to a small time step resulting in high comput-

ing cost. Small fluctuations in fluid density cause big errors on the pressure

field and numerical instability due to the use of the state equation [63].

Therefore, researchers are looking for better approaches to simulate incom-

pressible flows. A different approach to model free surface, incompressible

flows using a fully Lagrangian technique was the particle method proposed

by Koshizuka et al. [56], where a penalty-like formulation was employed

to adjust the pressure where density variations occurred. An iterative pro-

cess that converged when density changes were below a specified tolerance

was used. A similar approach was used in [58], where a pressure Poisson
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equation was solved instead of a penalty-like method with source terms pro-

portional to density variations. It is not clear though how efficient or ac-

curate these methods are for free-surface modelling compared to the use of

WCSPH. In 1999, Cummins and Rudman [17] applied a projection method

in SPH, which projects an intermediate velocity field onto a divergence-free

field and a curl-free field respectively. Shao and Lo [100] used an incompress-

ible method, similar to that in [58], to describe the free surface in dam-break

flow. Colin et al. [14] proposed an improved Laplacian operator in a method

similar to [17]. In 2007 and 2008, Lee et al. [62, 63] pointed out that a truly

ISPH method could improve the accuracy of the SPH method. In 2007, differ-

ent from the projection-based ISPH, the non-thermodynamic pressure in [25]

is calculated to maintain constant volume for each fluid particle. In 2007, Hu

and Adams [44] proposed a stable algorithm ensuring both divergence-free

velocity field and constant density, with an additional Poisson equation solu-

tion. A new ISPH algorithm is proposed in this thesis. The comparison of the

new algorithm to the existing ones is conducted. The accuracy and stability

of ISPH methods based on the projection algorithm is also discussed.

Another issue to investigate in this thesis is to use ISPH method to simulate

incompressible free-surface flows. The ability of the SPH method to capture

the fundamental fluid motion is needed in free-surface flow simulations. A

mesh-based method, Volume of Fluid (VOF) method, was proposed by Hirt

and Nichols [40], and it receives strong popularity nowadays in two-phase or

free-surface flow simulations [20, 22, 60, 65]. But it has numerical difficul-

ties in capturing the sharp interface with rapid changes [108]. As famous

VOF researchers Hirt and Nichols [40] said, it is the flaw of the Eulerian ap-

proach, fluid elements are convected through the grid interface with the av-
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eraged velocity instead of its own, which make it difficult to describe the free

surface. This is the reason why Fox and McDonald [30], in their introductory

fluid mechanics text book, state "Clearly the type of analysis depends on the

problem. Where it is easy to keep track of identifiable elements of mass, we

use a method of description that follows the particles".

In 1999, Monaghan used the Weakly Compressible SPH (WCSPH) method

to simulate the solitary wave propagating along the beach [75]. Meanwhile,

instead of simulating only one phase in two-phase flows, Colagrossi and Lan-

drini [15], with WCSPH method, treated two-dimensional interfacial flows

with different fluids separated by sharp interfaces. In 2004, Rogers et al.

[96] used a combined Large Eddy Simulation (LES) type scheme or subparti-

cle scale (SPS) scheme to capture coherent turbulent structures in breaking

waves. Dalrymple and Rogers [18] applied a LES model to wave propagation

and interaction with coastal defence. In 2007, Violeau and Issa [116] mod-

eled the free-surface flow with the consideration of complex turbulence mod-

els. To better capture the physical process of the violent free-surface change,

Ferrari et al. [28] performed simulations involving millions of particles, run-

ning on modern massively parallel supercomputers. Although WCSPH pre-

dicted some highly transient flows quite well, notably dam break flows, pres-

sures were extremely noisy and the method highly dissipative. An important

development was made by Vila [114] who introduced a Riemann formulation

between interacting particles, reducing pressure noise markedly. It is how-

ever not clear here whether ISPH or Riemann-based SPH will finally win the

competition on free-surface predictions.

The ISPH method with properties of noise-free pressure field and bigger time

step limits is also preferable in free-surface flow simulations. In 2002 [66]
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and 2003 [100], Lo and Shao applied a projection-based ISPH method in the

simulation of free-surface flows. In 2004, Shao and Gotoh [101] simulated

the coupled motion between progressive wave and floating curtain-wall type

breakwater with consideration of turbulence effect through a Large Eddy

Simulation (LES) model. The interface idea applied in WCSPH method in

[15] was also adopted in the ISPH method by Hu and Adams [44]. In 2008,

Lee et al. [63] applied a so-called Truly Incompressible SPH (TISPH) method

to simulate a 2-D dam break. In [54], the ISPH method similar to the one

introduced in [63] is also compared with the counterpart in [66, 100], with

previous one showing obvious improvement over the later method. But the

free-surface predictions are still noisy in [54]. The ISPH method is also ap-

plied here for free-surface flow simulations. The problem in ISPH method

for free-surface prediction is first analyzed here, and one possible solution

is proposed. Rigorous validation is conducted against analytical or highly

accurate solutions as undertaken for internal flows through impulsive fluid-

structure interaction, free-surface evolution with very high curvature and

wave propagation.

1.5 Outlines of thesis

In this thesis, the basic SPH methodologies and incompressible SPH meth-

ods, including the new ISPH approach, will be introduced in Chapter 2. The

structure of the incompressible SPH code will be presented in Chapter 3.

In Chapter 4, the comparison between existing ISPH methods and the new

ISPH method is conducted, and the accuracy of the new ISPH method will

be investigated. In Chapter 5, the validation of the method and the code is
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conducted through simulations of lid-driven cavity and flows around a circu-

lar bluff body in a channel. And the application of the new ISPH approach in

free-surface flows is presented in Chapter 6. Finally, conclusions are drawn.
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Chapter 2

The SPH Methodology, Existing

and New ISPH Methods

I
N the SPH method, the Navier-Stokes equations are solved in Lagrangian

form, defined by Eq. 2.1 and 2.2. Eq. 2.3 is also solved for the particle

positions. SPH deals with operators for first and second derivative terms,

and the pressure gradient as well as the viscous terms and Laplacian opera-

tors are presented in the following. Incompressibility here is enforced in the

projection method by a pressure Poisson equation [12].

∇ · u = 0 (2.1)

Du

Dt
= −1

ρ
∇P + ν∇2u+ F (2.2)

Dr

Dt
= u (2.3)

where u is the particle velocity; P is the pressure; F is an extra body force;

ν is the kinematic viscosity; ρ is the density; t is the time; r is the particle
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position.

2.1 SPH methodology

2.1.1 Basic SPH methodology

For a variable A, in SPH formalism, the value ofA at a point r, with r = (x, y),

is written as a convolution product of the variable A with the Dirac δ function

A(r) =

∫

A(r′)δ(| r− r′ |)dr′. (2.4)

In SPH, the δ function is approximated by a kernel function ωh(| r−r′ |), with

a smoothing length h. Therefore, Eq. 2.4 can be approximated as

A(r) ≈
∫

Ω

A(r′)ωh(| r− r′ |)dr′, (2.5)

where Ω is the supporting domain. In a discrete format, the interpolation

can be written as

A(ri) ≈
∑

j

VjA(rj)ωh(rij). (2.6)

where Vj is the volume of particle j, and subscript j stands for the neighbor-

ing particle; rij is the distance between particle i and j. A quintic kernel is

used for all the SPH interpolation in this thesis [77]. It is written as
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ωij =
7

478π















































(3− q)5 − 6 (2− q)5 + 15 (1− q)5 , 0 ≤ q ≤ 1;

(3− q)5 − 6 (2− q)5 , 1 ≤ q ≤ 2;

(3− q)5, 2 ≤ q ≤ 3;

0, q ≥ 3,

(2.7)

where q = |rij |/ls. ls is the kernel support size, ls = 3 · h, with h = c · δr . δr is

the initial particle distance, c is a constant, equal to 1.3 for all simulations

in this thesis. Some other kernels can be found in Appendix A.

Straightforwardly, the gradient and divergence can be respectively written

as

∇A(r) ≈
∫

Ω

A(r′)∇ωh(| r− r′ |)dr′, (2.8)

∇ ·A(r) ≈
∫

Ω

A(r′) · ∇ωh(| r− r′ |)dr′, (2.9)

or

∇A(r) ≈
∑

j

VjA(rj)∇ωh(rij), (2.10)

∇ ·A(r) ≈
∑

j

VjA(rj) · ∇ωh(rij). (2.11)

These operator are referred as the basic gradient or divergence operator. In

the later part, ω(rij) and ∇ωh(rij) are simply referred as ωij and ∇ωij respec-

tively.
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2.1.2 SPH operators

Gradient and divergence operators

To solve the Navier-Stokes equations, the gradient and the divergence op-

erators are needed. It has been shown in the previous part that the basic

gradient or divergence operator can be obtained directly from SPH interpo-

lation. However, it may result in large problematic errors [82]. Through

simple algebraic manipulation, an expression for αn∇A, with integer n 6= 0,

can be formulated as

αn∇A = ∇ (αnA)− nαn−1A∇α (2.12)

where α is a variant scalar. Substituting Eq. 2.12 with Eq. 2.10, the SPH

formulation for gradient is

αn∇A ≈
∑

j

Vj

[

(αnA)j −
(

nαn−1A
)

i
αj

]

∇ωij (2.13)

If n = 0, ∇A can be deduced through a similar simple algebraic operation as

∇Ai ≈
∑

j

Vj(Ai + Aj)∇ωij (2.14)

∇Ai ≈ −
∑

j

Vj(Ai − Aj)∇ωij (2.15)

In [4], Bonet and Lok presented a correction method to preserve the angular

momentum in gradient or divergence operators. In 2007, Oger et al. [82]

analyzed the accuracy of different operators, and pointed out that with Eq.

2.15 the accuracy can be improved up to second order with the normaliza-
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tion of the kernel function. The same normalization of the kernel was also

proposed by Vila [114]. The expression for the kernel normalization can be

expressed as

∇Wij = L(r)∇ωij. (2.16)

where r = (x, y), ∇Wij is substituted into Eq. 2.15 for ∇ωij as a normalized

kernel first derivative, and

L(r) =









∑

j

Vj (xj − x)
∂ωij

∂x

∑

j

Vj (xj − x)
∂ωij

∂y
∑

j

Vj (yj − y)
∂ωij

∂x

∑

j

Vj (yj − y)
∂ωij

∂y









−1

. (2.17)

A similar operator with kernel normalization is also used for divergence.

The normalization cannot improve the accuracy of Eq. 2.14 to second-order

as Eq. 2.15. This was first addressed in [82]. However, Eq. 2.14 has the

antisymmetric character, the influence from particle i to particle j is the

same magnitude as the influence from particle j to particle i, but with a

opposite sign, which means Eq. 2.14 implies the Newton’s third law (action-

reaction principle), and the linear momentum is conserved. In [82], Oger et

al. pointed out that although the conservation law is breached by Eq. 2.15

with the normalization, the high accuracy obtained by the normalization still

places Eq. 2.15 in a superior position to Eq. 2.14.

Viscous term and Laplacian operator

In 1997, Morris et al. [77] deduced the laminar viscosity term by combining

SPH and FDM approaches. The viscous term is presented in Eq. 2.18. In

this approximated viscous term, only the first derivative of the kernel func-
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tion is used. The calculation of first derivative can be used not only in the

divergence or gradient calculation, but also for the viscous term. This saves

the computing time. One of the viscous term expressions used in this work

is identical to the one suggested by Morris [77],

(∇ · µ∇u)i ≈
∑

j

mj(µi + µj)rij · ∇ωij

ρj(r
2
ij + η2)

uij (2.18)

where m is the mass of the particle; ρ is the fluid density; µ is the dynamic

viscosity; ui is the velocity of particle i, uij = ui − uj ; ri is the position of

particle i, rij = ri − rj, and rij =| rij | ; η is a small value to avoid singular

denominator. With constant viscosity and density in this thesis, a similar

viscosity term is formulated as

(∇ · µ∇u)i ≈
∑

j

2mjµjrij · ∇ωij

ρj(r
2
ij + η2)

uij. (2.19)

An approximate Laplacian operator with the same format is used for scalars.

Here is the example of the pressure.

4pi ≈
∑

j

2
mj

ρj

pijrij · ∇ωij

(r2ij + η2)
(2.20)

where, pij = pi − pj . In [14], a new Laplacian operator was proposed, but

with the calculation of the second derivative of the kernel, introducing extra

computing expense. In [10, 11] Chen et al. by inverting the whole matrix

for each particle, normally 3 × 3 for 2-D problem and 6 × 6 for 3-D problem,

calculate the whole Hessian,
∂2A

∂xi∂xj
, for any general variable A, and achieve

2nd-order accuracy. However, this demands a huge computing expense, for

simulations with millions of particles almost practically impossible. In 2007,
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Schwaiger [99] deduced another viscous/Laplacian operator with better per-

formance around the free surface, shown in Eq. 2.21.

(∇ · µ∇A)i ≈
tr (Γ−1)

n
{
∑

j

Vj(λj + λi) (Aj − Ai)
rij · ∇ωij

r2ij

− [∇ (λiAi)−Ai∇λi + λi∇Ai] · (
∑

j

Vj∇ωij)} (2.21)

where Γ is a tensor, and written as

Γαβ =
∑

j

rij · ∇ωij

r2ij
(rij)α (rij)β . (2.22)

And α and β are the coordinate directions. λ is the diffusion coefficient, which

is assumed to be spatially variant. The Laplacian operator can be obtained

by simply setting λ = 1. The influence of two different Laplacian operators

on the accuracy and spatial convergence speed is discussed in Chapter 5, and

their performances in free-surface cases with the truncated kernel are also

compared in Chapter 6.

2.1.3 Wall boundary conditions

Since the first time the SPH method was proposed, three widely-used wall

boundary conditions have been used, the dummy particle method [63, 100],

the mirror particle method [77, 72] and the boundary force method [18].

It is very difficult to build some boundary conditions, such as the homoge-

neous Neumann boundary for the pressure, with the boundary force method.

Therefore, the dummy particle and the mirror particle methods are normally

used in incompressible SPH simulations. Both of the boundary methods
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have been applied in the incompressible SPH code. The comparison has been

made, presented in the next chapter about the code structure.

Dummy particles and wall boundaries

In the dummy particle method, several extra layers of particles are placed

inside the wall, with the same pressure and velocity values as corresponding

normal direction solid wall particles. The dummy particle method is applied

in the incompressible SPH method successfully by Lee et al. in [62]. The

special treatment for the inner or outer corners and curved surfaces in [62],

is shown in Fig. 2.1. For the outer corner, dummy particles, D2 in Fig. 2.1 (a),

carry the identical velocity and pressure value to their wall particle, W2 in

Fig. 2.1 (a). For the inner corner, dummy particles for the two walls, which

are perpendicular to each other, overlap with the same treatment for the

flat wall. Special treatment is done by using the averaged value for dummy

particles at the diagonal position, Da in Fig. 2.1 (b). For the curved wall,

dummy particles are located along the opposite direction of the wall normal.

Dummy particles are easy to implement. They are set up at the first time

step, without update as the time marches, which is not the case in mirror

particle method. The discussion about wall boundaries with dummy particle

method, especially about the inner/outer corner and curved wall, will not be

extended here. More detail about the dummy particle method can be found

in [63, 100]. Dummy particles are only used for the flat wall boundary in this

thesis in comparison with the mirror-particle method in §3.5.
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Figure 2.1: The special treatment for dummy particles at the inner or outer

corner and the curved wall. Blue circles: fluid particles; red circles: wall

particles; yellow circles: dummy particles; purple circles: dummy particles

for the special treatment at corners.
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Mirror particles and wall boundaries

Figure 2.2: Mirror particle method for the static wall boundary. uf and um
are the velocities for the fluid particle and its corresponding mirror particle

respectively; pf and pm are the pressures for the fluid particle and its corre-

sponding mirror particle respectively; w is the wall velocity, and here w = 0.

The mirror particle method is firstly proposed by Morris et al. in 1997 [77]

to build the non-slip boundary condition at walls. Cummins and Rudman

[17] used the mirror particle method to build both non-slip and Neumann

boundaries for walls. The particles close to the wall, whose distances to the

wall are less than the support size, are reflected on the other side of the wall

as mirror particles or fictitious particles. Mirror or fictitious particles carry

the same pressure as their corresponding fluid particles, and their velocity
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values are calculated by the central differencing scheme,

w = (uif + ui)/2 (2.23)

where ui and uif are the velocities for fluid particle i and its corresponding

mirror particle respectively, w is the wall velocity. At a corner, the special

treatment, similar to the counterpart in the dummy particle method, is

performed, shown in Fig. 2.2.

2.1.4 Instability in SPH

In [5, 27, 44], it was shown that increasingly irregular particle distribu-

tions exhibit increasing numerical errors in results. Fang and Parriaux [27]

pointed out that an ill-conditioned matrix in the linear system could appear,

with increasing non-uniformity of particle distribution.

In [76], Monaghan pointed out that the tensile instability in SPH results

in the clustering of particles. The clustering is particularly noticeable in

materials which have an equation of state which can give rise to negative

pressures, but it can occur in the fluid where the pressure is always positive.

It is a particular problem in solid body computations where the instability

may corrupt physical fragmentation by numerical fragmentation which, in

some cases, is so severe that the dynamics of the system is completely wrong.
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Figure 2.3: Streamlines in Taylor-Green vortices flow. The clustering points

are marked by red points. Coordinates have been non-dimentionalized by

the unit square length D. ◦ = fluid particles; −→ = streamlines.

Here, the author takes this instability problem as the effect of the kernel

flaw. The non-uniformity or the clustering could reasonably happen in some

special fluid situations, taking Taylor-Green flow as an example. When the

Navier-Stokes equations are solved in Lagrangian form, fluid particles move

along stream lines. Therefore, it is very possible that fluid particles clump

together at stagnation points in the fluid field, shown in Fig. 2.3. However,

the flaw of the smoothing kernel introduces interpolation error. Fig. 2.4 (a)

shows the contour graph of the 2-D quintic kernel value [77], and 2.4 (b)

its first derivative. From the cross-section profile of the first derivative, at

x = 0, Fig. 2.4 (c), it can be seen that when particles are getting close to

each other within a certain distance range, the interaction between them is

not increased, but reduced. This non-physical behavior of the kernel func-
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tion introduces huge error in simulations, such as in the pressure gradient,

or the Laplacian operator, and causes the particle clustering phenomenon,

resulting in non-physical predictions.
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Figure 2.4: (a) contour graph for 2-D quintic kernel; (b) contour graph for the

first derivative, ∂f
∂y

, of 2-D quintic kernel; (c) profile for the first derivative of

quintic kernel, ∂f
∂y

, at cross section x = 0.

Although it is reported that the quadratic kernel can reduce this non-physical

behavior [18], its low-order accuracy and second derivative property, which

strongly influences the stability of the SPH method [77], limits its applica-

tion in high-accuracy simulations. In [76], Monaghan introduced an extra ar-

tificial stress in the pressure term to overcome particle clustering problems.
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An effective alternative is to remesh on a fixed uniform grid as proposed

by Chaniotis et al. [9]. In this thesis, a new method, based on the projec-

tion method with slight particle shifting, is introduced to overcome particle

clustering without relying on the background uniform mesh. The shifting

method is first introduced by Nestor et al. [80] in the context of Finite Vol-

ume Particle Method (FVPM), where the particles are shifted based on the

local particle distribution.

2.2 Existing projection-based ISPH method

2.2.1 ISPH with divergence-free velocity field (ISPH_DF)

To keep a divergence-free velocity field, the projection method [12] is used, as

first presented by Cummins and Rudman [17] in 1999. This incompressible

divergence-free SPH method will be referred to as ISPH_DF. A second-order

time marching scheme is applied, where both the density and mass of par-

ticles are constant. Particle positions, rni , are updated with velocity un
i to

positions r∗i ,

r∗i = rni +4tun
i (2.24)

where 4t is the time step. An intermediate velocity u∗
i is calculated at the

position, r∗i , based on the momentum equation without the pressure gradient

term,

u∗
i = un

i +
(

ν∇2un
i + Fn

i

)

4t, (2.25)
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where, Fn
i is a body force. This intermediate velocity u∗

i can be projected onto

a divergence-free velocity field and a curl-free pressure gradient field [12] as

u∗
i = un+1

i +
4t
ρ
∇pn+1

i . (2.26)

By taking the divergence of Eq. 2.26 and enforcing ∇ ·un+1
i = 0, the pressure

at time n + 1 can be obtained from the pressure Poisson equation (PPE),

written as

∇ ·
(

1

ρ
∇pn+1

)

i

=
1

4t∇ · u
∗
i . (2.27)

If there is a free surface, free-surface particles need to be identified with the

criterion described in §6.1 in Chapter 6 and the pressure values for free-

surface particles are forced to be 0 in the pressure Poisson equation, Eq.

2.27. The velocity at time n+1, un+1
i will result from the projection of u∗

i , Eq.

2.26. Therefore,

un+1
i = u∗

i −
4t
ρ
∇pn+1

i . (2.28)

The particle position is finally advanced in time,

rn+1
i = rni +4t

(

un+1
i + un

i

2

)

. (2.29)

In an alternative formulation, Lee et al. [63] derived the velocity from the

pressure correction with the particles at rni before advancing their positions

with the total velocity, termed as truly incompressible SPH. This formulation

is also applied here and produces results identical to [17] for the test cases

investigated. An interesting point is that Eq. 2.27 is obtained from the conti-

nuity equation, ∇·u = 0, therefore, the divergence operator in the Laplacian
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should be the same as the one used in the velocity divergence calculation,

and the gradient operator should be the same as the pressure gradient cor-

rection part in Eq. 2.28, which means the compatibility for the operators.

However, Cummins and Rudman [17] proved that the compatible Laplacian

operator causes the checker-board effect in the pressure field, similar to the

one observed with collocated Finite Volume Method [93].

2.2.2 ISPH with density invariance (ISPH_DI)

Similar to the method in [58], Shao and Lo [100] proposed a projection-based

incompressible method to impose density invariance to describe free-surface

flows. This density-invariant ISPH method is referred to as ISPH_DI. In

this case, the density is not kept constant in the course of the simulation. An

intermediate velocity, u∗
i , is calculated without the pressure gradient term

as before,

u∗
i = un

i +
(

ν∇2un
i + Fn

i

)

4t. (2.30)

The particle positions are updated to an intermediate position, r∗i ,

r∗i = rni +4tu∗
i . (2.31)

At this intermediate position, the intermediate velocity is projected onto two

spaces, ∇pn+1 and un+1
i , which is similar to ISPH_DF. But instead of cal-

culating the pressure field pn+1 through a Poisson equation with a velocity

divergence on the right hand side (R.H.S.), the pressure field is obtained by

solving a Poisson equation with a relative density difference on R.H.S., as
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shown in Eq. 2.32.

∇ ·
(

1

ρ∗
∇pn+1

)

=
ρ0 − ρ∗
ρ04t2

(2.32)

where ρ0 and ρ∗ are respectively the initial and temporal fluid density of each

particle, calculated as

ρi =
∑

j

mjωij. (2.33)

And the intermediate velocity field is corrected by the pressure gradient,

un+1
i = un

i −
4t
ρ∗
∇pn+1. (2.34)

To complete the time step, as for ISPH_DF, a second-order time marching

scheme is used.

rn+1
i = rni +4t

(

un+1
i + un

i

2

)

(2.35)

Eq. 2.32 and Eq. 2.27 are actually equivalent, if one assumes the continuity

equation for the flow to be valid at the intermediate position, r∗i , with

(∇ · u)r∗
i
= −

(

1

ρ

dρ

dt

)

r∗
i

. (2.36)

Eq. 2.32 can be obtained by substituting Eq. 2.36 into Eq. 2.27. It will be

shown in §4.1 and 4.2 in Chapter 4 that the numerical performance of both

Poisson equations, Eq. 2.27 and Eq. 2.32, are quite different.

2.2.3 ISPH with velocity and density control (ISPH_DFDI)

In [44], Hu and Adams point out that if only a divergence-free velocity field

is enforced, a large density variation will appear. They suggested that a
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divergence-free and density-invariance algorithm should be applied. This

requires two pressure Poisson equations to be solved in this algorithm. This

combined incompressible SPH method is referred to as ISPH_DFDI.

Similar to Shao and Lo’s method [100], to keep the density constant, repre-

sented as ρni = ρ0i , the particle positions are adjusted. First, intermediate

velocities and particle positions are obtained by

u
∗,n+1/2
i = un

i +
(

ν∇2un
i + Fn

i

) 4t
2

(2.37)

r
∗,n+1
i = rni + u

∗,n+1/2
i 4t (2.38)

The intermediate particle density ρ∗,n+1is calculated. A pressure Poisson

equation, as presented by Eq. 2.39, is repeatedly solved through internal

iteration to obtain the pressure for particle position adjustment.

4t2
2
∇ ·
((

1

ρ
∇p
)∗

i

)

=
ρni − ρ∗,n+1

i

ρni
(2.39)

where

(

1

ρ
∇p
)∗

i

is the intermediate pressure gradient to adjust the particle

position, with ρi = ρ0i . If we define

σi =
∑

j

ωij (2.40)

then

ρi =
∑

j

mjωij = miσi. (2.41)
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With the relation ρni = ρ0i = miσ
0
i and ρ∗,n+1

i = miσ
∗,n+1
i , Eq. 2.39 can be

written as

4t2
2
∇ ·
((

1

ρ
∇p
)∗

i

)

=
σ0
i − σ∗,n+1

i

σ0
i

. (2.42)

After the pressure is calculated, the particle positions are adjusted through

the pressure gradient

(

1

ρ
∇p
)∗

i

following

rn+1
i = r

∗,n+1
i −

(

1

ρ
∇p
)∗

i

4t2
2

(2.43)

During the simulation, the particle density will be recalculated at position

rn+1 from Eq. 2.41. A criterion for the relative density difference, typically

1%, is set. If the criterion is not fulfilled, particle positions will be adjusted

by the following internal iteration.

4t2
2
∇ ·
((

1

ρ
∇p
)∗,m

i

)

=
σ0
i − σn+1,m

i∗

σ0
i

→
(

1

ρ
∇p
)∗,m

i

r
n+1,m+1
i = r

n+1,m
i −

(

1

ρ
∇p
)∗,m

i

4t2
2

σn+1,m+1
i∗ ← r

n+1,m+1
i

(2.44)

where m is the number of internal iterations.

As for ISPH_DF, a Poisson equation needs to be solved to keep the velocity

field divergence-free. First, the velocity field is explicitly calculated without

considering the pressure gradient term.

u
∗,n+1
i = u

∗,n+1/2
i +

(

ν∇2u
∗,n+1/2
i + F

∗,n+1/2
i

)4t
2
. (2.45)
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The velocity field is then corrected by the pressure gradient,

un+1
i = u

∗,n+1
i − 4t

2ρ
∇pn+1

i (2.46)

where, the pressure field is obtained from the pressure Poisson equation,

shown as

∇ ·
(

1

ρ
∇pn+1

)

i

=
2

4t∇ · u
∗,n+1
i , (2.47)

with ρi = ρ0i . An interesting point for this method is that the pressure and

corresponding gradient fields are almost doubled due to the half-time-step

operation. In the second half step, the value of u
∗,n+1
i is actually the same as

that in ISPH_DF. Comparing Eq. 2.27 and 2.47, the R.H.S., is doubled in Eq.

2.47. Therefore, the pressure and corresponding gradient fields are doubled

in ISPH_DFDI, which will be shown in §4.2 in Chapter 4. A noteworthy

point is that the pressure is only used as an internal mechanism to drive

the velocity field in the correction stage, which happens in the half of the

time step, as shown in Eq. 2.46. Herewith, the doubled pressure field does

not influence the velocity results. Similar to Eq. 2.32 in ISPH_DI, Eq. 2.39

or 2.42 is solved to prevent particle clustering, while Eq. 2.47 is used to

keep a divergence-free velocity field. Uniform particle spacings improve the

stability of simulations. Through solving two Poisson equations, Eq. 2.39

and 2.47, both the density invariance and divergence-free velocity field are

approximated.
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2.3 New ISPH approach

In ISPH_DF, particles move along streamlines when the Lagrangian-form

Navier-Stokes equations are solved accurately. The stretching and compress-

ing of particle spacings, similar to the mesh distortion in the FV method,

happen under certain conditions, highlighted by the Taylor-Green vortices,

as shown in Fig. 2.5 (a). It is observed in the simulations that this non-

uniform particle distribution hinders the convergence of linear solvers. Also,

on the one hand, if the streamlines direct the particles towards each other,

taking Taylor-Green vortices as an example, Fig. 2.3, the particles will clus-

ter; on the other hand, the non-physical behavior of the kernel, introduced in

Section 2.3, will weaken the interaction between particles when particle dis-

tances are within a close range. Then particles will continue clustering if the

inertial motion is big enough, which is quantified by the Reynolds number,

and

Re =
UD

ν
(2.48)

where U is the characteristic velocity of the flow; D is the characteristic

length of the geometry; ν is the kinematic viscosity. The error, caused by

this kernel flaw, also causes the instability in the projection-based ISPH.

The following method stabilizes the accurate ISPH_DF method. The parti-

cle distribution is effectively well maintained, shown in Fig. 2.5 (b). The

pressure field is calculated as in ISPH_DF. And the particles are advanced,

shifted slightly, and accordingly, the hydrodynamic variables corrected by

the Taylor expansion,

φi′ = φi + (∇φ)i · δrii′ +O(δr2ii′ ) (2.49)
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where, φ is a general variable; i and i
′

are the particle’s old and new position

respectively; δrii′ is the distance vector between the particle’s new and old

position. The method with particle shifting is called ISPH_DFS. Here, only

the first two terms are applied in simulations, giving an order consistent

with the Laplacian operator. Higher order accuracy may be achieved with

additional terms. With the position shifting and interpolation, the particles

can jump from one streamline to another, and the particle clustering can be

avoided; the error caused by highly-distorted particle spacings is reduced.
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Figure 2.5: Particle distributions in simulations of Taylor-Green vortices

with different methods, at Re = 1000. (a) Highly distorted particle spac-

ings with ISPH_DF; (b) Well-maintained particle spacings with ISPH_DFS.

◦ = fluid particles.

The idea of shifting particle positions has been proposed previously in the

context of the Finite Volume Particle Method (FVPM) by Nestor et al. [80].

This allows the use of particle velocities with a correction, u′, added to con-

serve fluid momentum. Different from FVPM, the adjustment of particle
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velocity here introduces sink or source terms to the total momentum. The

position shift is applied to particles, and the use of a second-order Taylor ex-

pansion interpolates hydrodynamic variable values at the new position, as

given in Eq. 2.49. Similar to the velocity correction equation, u′, in [80],

but modifying the particle shifting magnitude, α, in relation to the particle

convection distance and the particle size, the position shift reads

δri = CαRi (2.50)

where C is a constant, set as 0.01 − 0.1, as discussed below; α is the shift-

ing magnitude which is equal to the maximum particle convection distance

Umax4t , with Umax the maximum particle velocity, and 4t the time step; Ri

is the shifting vector, and reads:

Ri =

Mi
∑

j=1

r̄2i
r2ij

nij (2.51)

where, Mi is the number of neighboring particles around particle i, it is the

same as the kernel interpolation for particles inside of the fluid, while for

particles i close to the free surface, only particles which have smaller dis-

tance to the particle i than the distance of particle i to the free surface are

considered; rij is the distance between particle i and particle j; r̄i is the aver-

age particle spacing in the neighborhood of i, and

r̄i =
1

Mi

Mi
∑

j=1

rij; (2.52)

nij is the unit distance vector between particles i and j. The number of

neighboring particles Mi is the same as that in the kernel interpolation for
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particles inside of the fluid, while for particles i close to the free surface,

only particles which have smaller distance to the particle i than the distance

of particle i to the free surface are considered. The summation of nij actu-

ally represents the anisotropy of the particle spacings. r̄2
i/r2

ij
is used here as

a weighting function to reduce the influence from remote neighboring par-

ticles. Ri is evaluated on a fixed particle map obtained after the evolution

equation Eq. 2.29. No internal iteration for a converged particle position is

needed here.

The shifting distance should be large enough to prevent instability and small

enough not to cause inaccuracy due to the Taylor expansion correction. Val-

ues of C within the range 0.01 - 0.1 satisfy these criteria for these test cases

and the dependence on Reynolds number was not observed. A value of 0.04

is generally used here. In [80], an average particle spacing, as defined in Eq.

2.52, is used as the shifting magnitude α, considering the influence of parti-

cle size. However, it is observed in simulations that when shifting distances

are much larger than convection distances, large numerical error appears in

the fields of hydrodynamic variables, even with the Taylor expansion update.

To avoid this an upper limit on shifting distance α is simply set as Umax4t,

updated at each time step. Note also that the shifting distance is always

much less than the smoothing length h.

All in all, the algorithm can be summarized here as

• Convect particle i to an intermediate position r∗i , as shown in Eq. 2.24;

• Calculate an intermediate velocity, u∗
i , without the pressure gradient

term, as shown in Eq. 2.25;
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• Calculate the pressure from the Poisson equation, as shown in Eq. 2.27;

• Correct the intermediate velocity, u∗
i , by the pressure gradient to obtain

the velocity for next time step, un+1
i , shown in Eq. 2.28;

• The particle position is advanced in time, as shown in Eq. 2.29;

• Shift the particle by Eq. 2.50;

• Correct the velocity field by Eq. 2.49;

• Continue the calculation for next time step.

This small change in ISPH_DF makes this method much more robust, and

the efficiency of simulations is improved in comparison with ISPH_DFDI.

It should be pointed out here that it is not a strictly conservative method,

similar to LFPM [27]. However it will be shown in the test cases in§4.3.3 that

accuracy is not sacrificed, using first-order accurate interpolation, within the

resulting stable algorithms.

2.4 Partial conclusion

The SPH method is a fully Lagrangian method. By approximating the Dirac

δ function with a so-called smoothing function, the Navier-Stokes equations

can be discretized on a meshless basis. However, by calculating the pres-

sure from a state equation, the traditional WCSPH method cannot provide

smooth prediction for the hydrodynamic field [63]. By applying the projec-

tion algorithm in SPH, the pressure field is smoother [63]. However, the
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instability may occur due to highly distorted particle spacings. It is partially

concluded here:

• The wall boundary condition is generally built up with mirror particle

or dummy particle method. The dummy particle method is more ef-

ficient without updating the dummy particles during the simulations.

Full comparison of these two boundary methods will be presented in

the next chapter.

• By projecting the intermediate velocity field onto the divergence-free

and curl-free fields, the projection algorithm highly improves the accu-

racy of the SPH method [63], taking the original incompressible SPH

method presented by Cummins and Rudman [17] as an example. How-

ever, the instability is set in the simulations when the particle spacing

is highly distorted. Another approach, called ISPH_DI here, was intro-

duced by Shao and Lo [100], and the incompressibility is achieved by

maintaining the particle volume constant. In 2007, Hu and Adams pro-

posed another ISPH method, called ISPH_DFDI here, in which both

constant particle volume and divergence-free velocity field are kept,

and the stability is well kept by this method. In this chapter, a new

approach called ISPH_DFS is also proposed. By slightly shifting the

particle position and correcting the corresponding hydrodynamic field,

the instability problem is overcome with ISPH_DFS method.
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The Incompressible SPH Code

T
He incompressible SPH program is coded based on the original Weakly

Compressible SPH (WCSPH) code SPHysics [121]. In SPHysics, the

pressure field is calculated from a state equation without solving the pres-

sure Poisson equation. This code is an open-source SPH code that has been

released in 1 Aug 2007, developed jointly by researchers at the Johns Hop-

kins University (U.S.A.), the University of Vigo (Spain), the University of

Manchester (U.K.) and the University of Rome La Sapienza (Italy) [121].

Version 1.4 and below contains the basic SPH formulation for free-surface

flows. The 2-D & 3-D code has been developed specifically for free-surface

hydrodynamics. The structure of the weakly compressible code SPHysics

can be referred to Appendix A and [31].

Based on the code SPHysics, an ISPH code is programmed. Both Laplacian

operators shown in §2.1.2 are built. Two linear solvers, namely Conjugated

Gradient (CG) and Bi-Conjugated Gradient (Bi-CGSTAB), are programmed.

The predictor-corrector time marching scheme is applied.
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3.1 Linked list

In SPH simulations, the influence of neighbouring particles within the ker-

nel support domain is considered. For a particular particle a, by calculating

the particle distance to all the other particles by which the status, inside or

outside of the support domain, is decided, the operations will be (N − 1) · N

for a N particles case. In the code SPHysics, square cells with a edge size

equal to the kernel support size are placed in the simulation domain [112].

For each particle, the linked list is built up with the consideration of particles

in neighbouring cells, which highly reduced the searching time. It has been

proved that this method can reduce the operation number from (N −1) ·N to

NlogN for N particles [70].

Figure 3.1: Neighbouring list in the incompressible SPH code. The neigh-

bouring particles are those located in the adjacent cells. In 2-D, only NW, N,

NE and E cells are used for neighbouring particle searching.

Another trick to speedup the building of the linked list is to search only

particles in northwest (NW), north (N), northeast (NE), east (E) and polar

(P) cells, shown in Fig.3.1. As shown in Chapter 2, all the SPH operators are

symmetric or anti-symmetric. The calculation for different operator is only
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needed once for each pair of particles. The influences of particles in west (W),

southwest (SW), south (S) and southeast (SE) cells to particles in P cell have

been considered when building linked list for particles in W, SW, S and SE

cells. By only sweeping through the NW, N, NE and E cells, the computing

cost is minimized.

A similar linked list building procedure can be easily extended to 3-D. Dif-

ferent linked list techniques can be found in [113].

3.2 Discretized Navier-Stokes equations

and time marching

ISPH_DF algorithm in §2.2.1 in Chapter 2 is taken as an example for the

illustration of the discretisation in the code. The simplest viscosity term,

divergence, gradient and Laplacian operators are considered. Other expres-

sions about algorithms and operators can be easily derived.

3.2.1 Calculation of intermediate velocity (u∗)

After particles are moved to the intermediate position r∗ by Eq. 2.24 in Chap-

ter 2, an intermediate velocity field u∗ is calculated as shown in Eq. 2.25 in

Chapter 2. If the viscous operator in [77] is used, u∗ is written as

u∗ − un

4t '
∑

j

4mjµrij · ∇ωij

(ρi + ρj) (r
2
ij + η2)

uij + F. (3.1)
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Similar expressions can be obtained for the operator defined in [99]. The

pressure gradient is not considered here, while it can be included for u∗ cal-

culation, and the pressure calculation for time n + 1 P n+1 from the Poisson

solver will be the correction to P n [17].

3.2.2 Pressure Poisson equation

The Laplacian and velocity divergence operators will be discretized by Eq.

2.20 and Eq. 2.15 respectively. The pressure Poisson equation can be written

as
∑

j

2
Vj
ρj

(

P n+1
i − P n+1

j

)

rij · ∇ωij

(r2ij + η2)
=

1

4t
∑

j

Vj
(

u∗
j − u∗

j

)

· ∇ωij . (3.2)

Therefore, a linear system AX = B is generated, with

A(i, j) = −2Vj
ρj

rij · ∇ωij

(r2ij + η2)
; (3.3)

A(i, i) = −
∑

j

A(i, j); (3.4)

X(i) = P (i); (3.5)

B(i) =
1

4t
∑

j

Vj
(

u∗
j − u∗

j

)

· ∇ωij. (3.6)

It will be solved implicitly by Bi-CGSTAB solver [111].

69



Chapter 3. The Incompressible SPH Code

3.2.3 Velocity at time n+ 1 un+1

The velocity at the new time n+ 1 un+1 is updated as

un+1
i = u∗

i −
4t
ρ

∑

j

Vj
(

P n+1
j − P n+1

i

)

· ∇ωij. (3.7)

And at the end the particle position at time n + 1 rn+1 is updated following

Eq. 2.29.

3.3 Linear solvers

Resolution of the linear systems is widely studied by mathematicians as the

demand for an efficient and smoothly-converging solver increases from nu-

merical simulations. In CFD, an efficient and robust solver also influences

the application of the new method and code. Several solvers are widely used

in academic and commercial codes: Gauss-Seidel, Conjugate Gradient (CG),

Bi-Conjugate Gradient (Bi-CG), etc. Here two solvers, CG and Stabilized Bi-

Conjugate Gradient (Bi-CGSTAB), applied in the code are introduced. It has

been reported in several publications [37, 111] that the abnormal behavior of

the residual norm in CG algorithm hinders the convergence, and by smooth-

ing the residual, the convergence is highly enhanced, even monotonically,

which is also observed in simulations, as shown in Fig. 3.2. In Fig. 3.2, for a

1-D SPH problem 4ϕ = 0 with
dϕ

dx
= 0 at x = 0 and ϕ = 0 at x = 1, the con-

vergence rates of linear solvers are plotted. The normalized residual, defined

in Appendix B, is used as the convergence criterion set as 10−5. The normal-

ized residual is reduced monotonically and rapidly with the preconditioned
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Figure 3.2: Convergence rate comparison between CG and Bi-CGSTAB lin-

ear solvers. A 1-D SPH problem 4ϕ = 0 with
dϕ

dx
= 0 at x = 0 and ϕ = 0 at

x = 1 has been solved to test the convergence speed of the linear solvers.

Bi-CGSTAB solver, while it converges irregularly with the preconditioned

CG solver. Without special declaration, the same convergence criterion is

used for all the simulations. The details about CG and Bi-CG solvers can be

found in the Appendix B. In this thesis, the Bi-CGSTAB linear solver with

the Jacobi Preconditioner is used in all the simulations.

One noteworthy point in ISPH method is that the convergence of pressure-

velocity coupling solvers only depends on the solution of the linear system

because the nonlinear convection term does not exist in Navier-Stokes (N.S.)

equations in Lagrangian form, while the solution of the linear system only

means the convergence of the internal iteration for segregated solvers in

Finite Volume method (FVM) [29], and the convergence criterion for linear

solvers in FVM is normally set as default value, such as 10−9 in Code Saturne

[1]. Due to nonlinear convection terms in N-S equations, several external it-

erations are conducted for segregated solvers in FVM, and their convergence
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can be decided by the relative difference of results from two consecutive ex-

ternal iterations [29].

3.4 Time-step constraints

In Weakly Compressible SPH (WCSPH) method, the choice of the time step

is based on three limitations:

• Courant–Friedrichs–Lewy (CFL) condition

• Condition on the viscous diffusion

• Condition on the force per unit mass

All these three time-step constraints were adopted by Lee et al. in the

Truly incompressible SPH method [63]. However only the first two condi-

tions are considered to determine the time step in the most of ISPH litera-

ture as the third condition is actually limiting the distance between particles

[77, 46] which can be avoided by the shifting of the particle position shown

in §2.2.4 or simply overcome by the algorithm, such as ISPH_DI [100] and

ISPH_DFDI [44]. Even with ISPH_DF [17] algorithm, the particle cluster-

ing does not depend on the time step, which has been tested in simulations of

Taylor-Green vortices. In [17], Cummins and Rudman stated that the time-

step constraint is different depending on the resolutions and the viscosity.

Also, it is presented in [100] that the viscous diffusion constraint is used as a

stability condition in the explicit finite difference method simulating viscous

flows, and for simulations with high resolution or large viscosity, the diffu-

sion constraint is more stringent than the CFL condition. In [44], in addition
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to the CFL and diffusion condition, Hu and Adams were also considering the

surface tension condition. In this work, both the CFL and diffusion condi-

tions are considered as time step criteria.

CFL condition

The CFL condition is written as

4tCFL ≤ σ
h

uref
(3.8)

where, σ is a constant, and here it is set as 0.2; h is the smoothing length,

which is proportional to the initial particle spacing δr; uref can be the numer-

ical speed of sound c0 for WCSPH and the maximum fluid velocity umax for

ISPH.

Viscous diffusion condition

The viscous diffusion condition is

4tν ≤ ϑmin

(

h2

νE,i

)

(3.9)

where, ϑ is a constant, and here it is set as 0.2; νE,i is the effective viscosity

for the particle i, and the minimum value for
h2

νE,i
is taken into account. The

effective viscosity νE,i is the kinematic viscosity ν in this work, as all the

flows are considered as laminar flows.
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3.5 Wall boundary tests

It has been introduced in §2.1.3 that the wall boundaries can be achieved

through the mirror particle or dummy particle method. With the mirror

particle method, the Neumann boundary can be easily built up through al-

gebraic operations in the matrix. If particle jm is the corresponding mirror

particle of the fluid particle j as shown in Fig. 3.3, the discretized Poisson

equation for particle i is

...+ P (j) · a(i, j) + ... + P (i) · a(i, i) + ...+ P (jm) · a(i, jm) + ... = b(i). (3.10)

For mirror particle jm, there is the relation

P (jm) = P (j). (3.11)

Substituting Eq.3.11 into Eq.3.10, we can obtain

...+ P (j) · [a(i, j) + a(i, jm)] + ...+ P (i) · a(i, i) + ... = b(i). (3.12)

A similar linear system can be also obtained for dummy particle boundary,

...+P (j) ·a(i, j)+ ...+P (i) ·a(i, i)+ ...+P (k) · [a(i, k) + a(i, kd1) + a(i, kd2)] = b(i).

(3.13)

Tests for linear solver and the wall boundary condition are conducted with

the Laplacian operator in [77]. A 1-D channel with periodic boundaries in

horizontal direction is set up. The Poisson equation d2P
dy2

= 1 is solved with

a homogeneous Neumann wall boundary, dP
dy

= 0 at y = 1, and a Dirich-

let boundary, P = 0 at y = 0. The analytical solution for this problem
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is P = 0.5y2 − y. During all the tests, the convergence tolerance is set to

1.0 × 10−7 for the normalized residual. The Neumann wall boundary is set

up with both dummy particle and mirror particle methods. In Fig. 3.4 the

Poisson equation is solved with the same Laplacian operator Eq. 2.20 in

§2.1.2 in Chapter 2 with a vertical resolution of 41 particles. The mirror

particle method provides more accurate predictions for the wall boundaries

than the dummy particle method. The non-uniform distribution of particles

in the practical simulation may however complicate the accuracy behavior

of the mirror-particle boundary method. The convergence is tested with dif-

ferent vertical resolutions, 40, 50 and 100 particles, and compared with the

analytical solution, shown in Fig. 3.5.

Figure 3.3: Mirror particle and dummy particle wall boundary. Black balls

are fluid particles, blue wall particles, red mirror particles or dummy parti-

cles.
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Figure 3.4: Boundary method investigation. A vertical resolution of 41 was

used for both wall boundary methods.

3.6 Periodic boundaries

In this ISPH code, periodic boundaries have been implemented. Particles

going out of the domain from one end will enter into the upstream end. For

polar cell P shown in Fig. 3.6, not only the neighbouring cells, N , S, W , NW

and SW , but also cells on the upstream end, NE, E and SE, are considered

in the linked list for periodic boundaries. Therefore for particles close to

different boundary ends, the distances between them are calculated from

subtracting their coordinate difference from the domain length. For example,

the horizontal distance 4x for particles, i and j, at the two ends respectively

is calculated as 4x = L− (xi − xj), where L = xmax − xmin, and xmax and xmin

are respectively the domain maximum and minimum horizontal coordinates,

as presented in Fig. 3.6.
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Figure 3.5: Linear solver and boundary conditions test.

Figure 3.6: Illustration of periodic boundaries in the ISPH code.
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3.7 Code structure

The code structure is detailed in Fig. 3.7. The geometry of the case is defined

in a separate file, datclass.f. The geometric data is read into the solver. Af-

ter choosing the ISPH solvers, ISPH_DI, ISPH_DFDI and ISPH_DFS, and

the boundary methods, mirror particle and dummy particle boundary, the

solver is ready for simulations. The ISPH_DF solver can be simply obtained

by commenting out the particle shifting part in the ISPH_DFS solver. For

the ISPH_DI, ISPH_DFDI and ISPH_DFS solvers, the corresponding vis-

cous term and intermediate velocity/density will be calculated, and then the

discretized Laplacian operator and the right hand side (R.H.S.), dependent

on the solvers, are calculated, and the linear problem is solved. The veloc-

ity field is corrected with the pressure field obtained from the linear solver,

and particle positions are updated. Differently, particle position are shifted

and correction for hydrodynamic values are done in ISPH_DFS simulations.

For ISPH_DFDI solver, an internal iteration for the converged particle posi-

tion is conducted, a tolerance for the relative density change, defined as the

R.H.S. in Eq.2.39, is normally 1% or 0.5%, and the maximum internal iter-

ation normally is 20. The pressure and velocity field are corrected in a way

similar to ISPH_DF.

3.8 Partial conclusion

Four incompressible SPH algorithms are applied with the help of open-source

code SPHysics[121]. The choice of the solvers is performed by changing the

switch in the code. Verlet’s method [112] is used in the code to build up the
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Figure 3.7: Code structure illustration. iter_max is the maximum iteration

times; k is the iteration counter.
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linked lists. A predictor-corrector scheme is applied. Two different linear

solvers, preconditioned CG and preconditioned Bi-CGSTAB, are also avail-

able for simulations. It is observed that with preconditioned Bi-CGSTAB

solver, the convergence of the linear problem is faster due to the residual

smoothing procedure [37, 111]. The time step depends on the CFL condi-

tion and the viscous diffusion condition. Both dummy-particle and mirror-

particle methods can be activated in the code to build up wall boundary

condition. It has been shown that mirror-particle boundary method pro-

vides more accurate predictions for the wall boundaries than dummy particle

method. The periodic boundaries are also available in the code.
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ISPH Method Comparisons and

Accuracy Study for ISPH_DFS

A
S shown in the previous chapters, several incompressible SPH (ISPH)

methods have been proposed in the past decade. This thesis is con-

cerned only with the widely-used projection method for the pressure and ve-

locity coupling. However, there is still no thorough analysis and comparison

about the projection-based ISPH methods to the author’s knowledge. The

stability and accuracy of three methods which enforce either a divergence-

free velocity field (ISPH_DF) [17, 63], density invariance (ISPH_DI) [100],

or their combination (ISPH_DFDI) [44] are tested here through the stan-

dard Taylor-Green and spin-down vortex problems. In simulations with the

ISPH_DF method, the truncation error may accumulate in certain situa-

tions, which leads to instability in simulations. This is numerically inves-

tigated in the following. The ISPH_DI method overcomes this problem by

using the relative density difference as the right hand side (R.H.S.) in the

pressure Poisson equation. But this method is inaccurate and noisy. The
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ISPH_DFDI, combining advantages in ISPH_DF and ISPH_DI, separates

the full time step into two half time steps: 1) Within the first half time step,

the constant particle density is kept by an internal iteration, where the par-

ticles are shifted in a way similar to that in ISPH_DI method; 2) During the

second half time step, the divergence-free velocity field is obtained by solving

a pressure Poisson equation with the divergence of the intermediate velocity

field as the R.H.S. This method can maintain accuracy and stability but at a

high computational cost.

A new divergence-free ISPH approach, ISPH_DFS, is presented in Chapter

3. This method maintains accuracy and stability without increasing com-

putational cost by slightly shifting particles away from streamlines while

correcting their hydrodynamic characteristics, which can be observed from

the discussion below. This should avoid the highly distorted particle spacing

or particle clustering which causes instability, which is investigated here.

The algorithm is not now analytically conservative, but importantly pres-

sure fields are noise-free up to highest Reynolds numbers tested.

In this chapter, the accuracy and stability of the four projection-based ISPH

methods are tested through two academic cases, Taylor-Green vortices and

vortex spindown flows. Comparisons in terms of accuracy, stability and com-

puting time are carried out.
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4.1 Taylor_Green vortices

4.1.1 Case description

Simulations of Taylor-Green vortices are conducted. The analytical velocity

field is

u = −Ueκtcos(2πx)sin(2πy)

v = Ueκtsin(2πx)cos(2πy)
. (4.1)

And the pressure field is

P = −1
4
e2κt [cos(4πx) + cos(4πy)] . (4.2)

U is the velocity scale, equal to 1.0m/s here; kinematic viscosity ν are 0.1m2/s,

0.01m2/s and 0.001m2/s in three runs with three different Reynolds numbers,

Re = 10, Re = 100, Re = 1000; κ = −8π2

Re
is the decay rate of the velocity field;

u and v are the horizontal and vertical velocity components respectively. Dif-

ferent resolutions are used to investigate the spatial accuracy of ISPH_DFS,

which will be shown in Chapter 4. The Reynolds number is calculated by

Re =
UD

ν
(4.3)

where, D is the length of the unit square side. Because of the existence of

analytical results for Taylor-Green vortices, the accuracy of the algorithm

and the code can be tested here.

During simulations, it is observed that, under high Reynolds number sit-

uations, the particle spacings are highly compressed in one direction, but

stretched in the other roughly normal direction, with ISPH_DF, shown in
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Figure 4.1: Highly distorted particle distributions in simulations of Taylor-

Green vortices with ISPH_DF, with Re = 1000.

Fig.4.1. Because of the error caused by highly-distorted particle spacings,

as mentioned before, the convergence with ISPH_DF may fail. For all val-

ues of Reynolds number, the four ISPH methods are applied. The accuracy,

stability and computing expense of the four methods are compared.

4.1.2 Simulation results

Taylor-Green vortices are simulated in this work, with Re = 10, Re = 100,

Re = 1000. For Re = 10, all four methods give stable and accurate solutions.

However, when the Re number increases to 100, with ISPH_DF method the

particle spacings are compressed in one direction, and stretched in the other

direction roughly normal, as shown in Fig.4.1. When particles cluster to-

gether as happens at the four points (±0.25 m,±0.25 m) in Fig.2.3, the error

caused by the kernel flaw, presented in §2.1.4, will increase with decrease
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in the particle spacing. The clustering cannot be avoided for high Reynolds

number situations if particles move accurately along streamlines. It is ob-

served that this error will accumulate, and jeopardize the simulation stabil-

ity for the higher Reynolds number situations.
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Figure 4.2: Normalized velocity and pressure profiles in Taylor-Green vor-

tices, Re = 10, t = 0.1s, with a resolution of 40 × 40. Velocity components

and distances are normalized by the velocity scale U , U = 1, and the square

length D, D = 1. Pressure is normalized by ρU2, and ρ is the fluid den-

sity. (a) Horizontal velocity component profile, at x/D = 0.0m; (b) Vertical

velocity component profile, at y/D = 0.0m; (c) Normalised pressure profile,

at x/D = 0.0m.

∆= ISPH_DFDI;© = ISPH_DF; � = ISPH_DI; ♦= ISPH_DFS; — = Analyti-

cal results.
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Figure 4.3: Normalized velocity and pressure profiles in Taylor-Green vor-

tices, Re = 100, t = 1.0s, with a resolution of 40×40. Velocity components and

distances are normalized with the velocity scale U , U = 1, and the square

length D, D = 1. Pressure is normalized by ρU2, and ρ is the fluid den-

sity. (a) Horizontal velocity component profile, at x/D = 0.0m; (b) Vertical

velocity component profile, at y/D = 0.0m; (c) Normalised pressure profile,

at x/D = 0.0m.

∆= ISPH_DFDI; � = ISPH_DI; ♦= ISPH_DFS; — = Analytical results.
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Figure 4.4: Normalized velocity and pressure profiles in Taylor-Green vor-

tices, Re = 1000, t = 1.0s, with a resolution of 40 × 40. Velocity components

and distances are normalized with the velocity scale U , U = 1, and the square

length D, D = 1. Pressure is normalized by ρU2, and ρ is the fluid density.

(a) Horizontal velocity component profile, at x/D = 0.0m; (b) Vertical ve-

locity component profile, at y/D = 0.0m; (c) Normalised pressure profile, at

x/D = 0.0m.

∆= ISPH_DFDI; � = ISPH_DI; ♦= ISPH_DFS; — = Analytical results.

Fig.4.2 presents the normalized velocity component, u, v and P profiles, at

x = 0.0 m and y = 0.0 m, t = 0.1 s, with Re = 10; Fig.4.3 and 4.4 at time

t = 1.0 s, for Re = 100 and Re = 1000 cases respectively. Due to the stability
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reason, for cases with high Reynolds numbersRe = 100 andRe = 1000 results

from ISPH_DF method are not obtainable and not plotted. It can be observed

in Fig.4.2 that all four projection-based ISPH methods can provide very good

prediction for both velocity and pressure fields with Re = 10. When the

Reynolds number increases to 100, ISPH_DF could not stably simulate the

flow development, while the other three methods could continue simulations.

In Fig.4.3, it is shown that ISPH_DFDI and ISPH_DFS predict both velocity

and pressure field accurately; ISPH_DI underpredicts the velocities at x =

±0.25 m and y = ±0.25 m. Increasing Reynolds number to 1000, ISPH_DFS

provides smooth velocity and pressure profiles, but slightly underpredicts

the velocity magnitudes; with ISPH_DI method, substantial numerical noise

is generated; with ISPH_DFDI, some small numerical noise occurs at y =

±0.25 m and x = ±0.25 m, shown in enlarged parts of velocity profiles in

Fig.4.4. With ISPH_DFDI algorithm, all the pressure gradient fields are

doubled as explained in §2.3.3.

Fig.4.5, 4.6 and 4.7 present the maximum velocity magnitude, umax, decaying

against time for Re = 10, Re = 100 and Re = 1000 respectively. For the low

Reynolds case, Re = 10, all the methods stably simulate the flow develop-

ment, and ISPH_DFS gives the most accurate prediction, shown in Fig.4.5.

Increasing Reynolds number to, or over 100, only ISPH_DI, ISPH_DFDI and

ISPH_DFS are presented, due to stability reasons. From Fig.4.6 and 4.7, it

can be seen that ISPH_DI does not provide accurate prediction. ISPH_DFDI

could simulate the flow with Re = 100. But with Re = 1000, and the same

particle resolution, 40× 40, certain numerical noise appears on the profile at

the beginning of the flow development, shown in the enlarged part in Fig.4.7.

Results with Re = 1000 were also not reported in [44]. Because ISPH_DFS
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underpredicts the maximum velocity magnitude, umax, with a resolution of

40 × 40, a run with a higher resolution of 80 × 80 is conducted. Convergence

towards analytical results is obtained.
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Figure 4.5: Maximum velocity, umax, decaying against time in Taylor-Green

vortices, Re = 10, with a resolution of 40 × 40. Maximum velocity, umax, is

normalized with velocity scale U ; time is scaled by T , where T = D/U .

- - - = ISPH_DF; -·- = ISPH_DI; · · · = ISPH_DFDI; -··- = ISPH_DFS; — =

Analytical results.

In Table 4.1 , the computing costs for the four methods are listed. ISPH_DFDI

is the most time-consuming method. The computing cost of ISPH_DFS method

is only slightly more than ISPH_DF and ISPH_DI.

All the four methods could manage to simulate the flow development with

a low Reynolds number, Re = 10. ISPH_DF cannot stably simulate higher

Reynolds cases. Although ISPH_DI could keep well distributed particle spac-

ings, the numerical noise generated by this method contaminates the results

under higher Reynolds number situations. ISPH_DFDI stably and accu-

rately simulates cases with Reynolds numbers, Re = 10 and Re = 100. But
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Figure 4.6: Maximum velocity, umax, decaying against time in Taylor-Green

vortices, Re = 100, with a resolution of 40 × 40. Maximum velocity, umax, is

normalized with velocity scale U ; time is scaled by T , where T = D/U .

-·- = ISPH_DI; · · · = ISPH_DFDI; -··- = ISPH_DFS; — = Analytical results.

Figure 4.7: Maximum velocity, umax, decaying against time in Taylor-Green

vortices, Re = 1000. Maximum velocity, umax, is normalized with velocity

scale U ; time is scaled by T , where T = D/U .

-·- = ISPH_DI(40× 40); · · · = ISPH_DFDI(40× 40); -··- = ISPH_DFS (40× 40);

- - - = ISPH_DFS (80× 80); — = Analytical results.
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Re = 10 Re = 100 Re = 1000

ISPH_DF 1,103 s unstable unstable

ISPH_DI 1,091 s 1,250 s 1,323 s

ISPH_DFDI 4,000 s 5,352 s 5,625 s

ISPH_DFS 1,213 s 1,281 s 1,387 s

Table 4.1: Computing costs comparison for Taylor-Green vortices with a res-

olution of 40 × 40. Physical time = 2.0 s. The same time step is used for all

the methods for a given Reynolds number.

with Re = 1000, small numerical noise appears on the profile, shown in Fig.

4.7. ISPH_DFS efficiently stabilizes all simulations, and supplies predictions

with less numerical noise for a given resolution.

4.2 Vortex Spin-down

4.2.1 Case description

Similar to Taylor Green vortices case, in vortex spin-down simulations, a

vortex is bounded by four walls, placed in the middle of the domain, shown in

Fig.4.8. The vortex spin-down cases, with Re = 10, Re = 100 and Re = 1000,

are simulated. An initial velocity field is given by

u = U(y − 0.5)

v = U(0.5− x)
(4.4)

in a unit square. 41 × 41 particles, equivalent to a resolution of 40 × 40 in

the Finite Volume (F.V.) method, are used to compare four projection-based
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ISPH methods. The Reynolds number calculation is defined in the same way

as for the case Taylor-Green vortices, Eq.4.3. Also, D, U and ν are the same

as those in Taylor-Green vortices.

The accuracy, stability and computing time are compared among all the four

ISPH methods. During simulations, it is found that particle spacings cannot

be well maintained if ISPH_DF is used. It is the same as the findings in [27]

that the irregular particle distribution hinders the convergence of the linear

solver, and sometimes even causes the convergence to fail.

X/D

Y
/D

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 4.8: The geometry and initial velocity field of vortex spin-down case.

Black solid line: wall; black lines with arrow: streamlines; circles: fluid

particles in ISPH simulations.
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4.2.2 FV simulations for reference

STAR-CD is a finite-volume based commercial software. Because of the lack

of analytical solutions and definitive data for the vortex spin-down cases, it is

computed using STAR-CD producing numerically convergent solutions. The

mesh convergence tests are considered for finite volume runs. The conver-

gence criterion is set as 10−5. The PISO algorithm is used for pressure and

velocity coupling. Second-order differencing schemes are used for convection

terms in the calculation.

4.2.3 Simulation results

In vortex spin-down simulations, cases with Re = 10, Re = 100 and Re = 1000

are simulated. Finite volume simulations, with STAR_CD commercial soft-

ware, were run as comparison against projection-based ISPH methods. The

mesh convergence test with uniform meshes, from 40×40, 80×80, to 160×160,

is conducted in finite volume simulations. Converged results are obtained

with a resolution of 160×160 and are used for the comparison. With Re = 10,

all four methods manage to provide accurate predictions, shown in Fig.4.9.

However, when the Reynolds number increases to 100, the simulation be-

came unstable with ISPH_DF. As with the Taylor-Green vortex simulations,

particle spacings are strongly distorted, which makes simulations quite un-

stable.

Fig.4.9 and 4.12 present the simulation results with Re = 10 situation us-

ing all four ISPH methods. All the methods provide very good prediction for

the velocity decay. Note that for ISPH_DFDI pressure is used as an inter-
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Figure 4.9: Velocity and pressure profiles in vortex spin-down, Re = 10, t =
0.1s, with a resolution of 40 × 40. Velocity components are normalized with

the velocity scale U , U = 1; the coordinates are normalized with the square

length D, D = 1; the pressure is normalized with ρU2, where ρ is the fluid

density. (a) Horizontal velocity component profile, at x/D = 0.0m; (b) Vertical

velocity component profile, at y/D = 0.0m; (c) Pressure profile at x/D = 0.0m.

∆ = ISPH_DFDI;© = ISPH_DF; � = ISPH_DI; ♦ = ISPH_DFS; — = STAR-

CD.
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Figure 4.10: Velocity and pressure profiles in vortex spin-down, Re = 100,

t = 1.0s, with a resolution of 40 × 40. Velocity components are normalized

with the velocity scale U , U = 1; the coordinates are normalized with the

square length D, D = 1; the pressure is normalized with ρU2, where ρ is

the fluid density. (a) Horizontal velocity component profile, at x/D = 0.0m;

(b) Vertical velocity component profile, at y/D = 0.0m; (c) Pressure profile at

x/D = 0.0m.

∆ = ISPH_DFDI; � = ISPH_DI; ♦ = ISPH_DFS; — = STAR-CD.
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Figure 4.11: Velocity and pressure profiles in vortex spin-down, Re = 1000,

t = 1.0s, with a resolution of 40 × 40. Velocity components are normalized

with the velocity scale U , U = 1; the coordinates are normalized with the

square length D, D = 1; the pressure is normalized with ρU2, where ρ is

the fluid density. (a) Horizontal velocity component profile, at x/D = 0.0m;

(b) Vertical velocity component profile, at y/D = 0.0m; (c) Pressure profile at

x/D = 0.0m.

∆ = ISPH_DFDI; � = ISPH_DI; ♦ = ISPH_DFS; — = STAR-CD.
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Re = 10 Re = 100 Re = 1000

ISPH_DF 913 s unstable unstable

ISPH_DI 934 s 997 s 1,233 s

ISPH_DFDI 1,262 s 5,339 s 7,679 s

ISPH_DFS 965 s 1,067 s 1,395s

Table 4.2: Computing costs comparison for vortex spin-down with a resolu-

tion of 40× 40. Physical time t = 2.0s. The same time step is used for all the

methods under the same Reynolds situation.

nal mechanism to drive velocity. Since this is applied in the correction at

the second half time step, Eq.2.46, the computed pressure appears as twice

the actual pressure. For Re = 100 or higher, ISPH_DF does not provide

stable simulations, as explained before. With ISPH_DI, the simulation is

stabilized. However, this method could not predict the fluid field accurately.

Much numerical noise appears in the simulations, shown in Fig.4.11, 4.13

and 4.14. ISPH_DFDI and ISPH_DFS both accurately predict the flow de-

velopment under the situation of Re = 100, presented in Fig.4.10 and 4.13.

For Re = 1000, they both underpredict the velocity decaying rate although

the velocity field is well predicted at a physical time of 1 s, shown in Fig.4.11

and 4.14. With Re = 1000, ISPH_DFDI produces small numerical noise at

the beginning of flow development, shown in the enlarged part in Fig.4.14.

In Table 4.2, the computing costs of all four methods are listed. Increas-

ing Reynolds number from 10 to 1000, the computing expense increases

markedly with ISPH_DFDI. For higher Reynolds numbers, the internal it-

eration in ISPH_DFDI, Eq.2.44, sometimes needs more than 10 cycles to

regularize particle spacing. It can be seen that ISPH_DFS is only slightly

more computationally expensive than ISPH_DF and ISPH_DI, while provid-

ing better stability and accuracy.
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Figure 4.12: Maximum velocity magnitude, Umax, decaying against time in

vortex spin-down, Re = 10, with a resolution of 40 × 40. Maximum velocity,

Umax, is normalized with velocity scale U ; the physical time, t, is normalized

with T , where T = U/D. - - - = ISPH_DF; -·- = ISPH_DI; · · · = ISPH_DFDI;

-··- = ISPH_DFS; — = STAR-CD.
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Figure 4.13: Maximum velocity magnitude, Umax, decaying against time in

vortex spin-down, Re = 100, with a resolution of 40 × 40. Maximum velocity,

Umax, is normalized with velocity scale U ; the physical time, t, is normalized

with T , where T = U/D. -·- = ISPH_DI; · · · = ISPH_DFDI; -··- = ISPH_DFS;

— = STAR-CD.
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Figure 4.14: Maximum velocity magnitude, Umax, decaying against time in

vortex spin-down, Re = 1000, with a resolution of 40× 40. Maximum velocity,

Umax, is normalized with velocity scale U ; the physical time, t, is normalized

with T , where T = U/D.

-·- = ISPH_DI; · · · = ISPH_DFDI; -··- = ISPH_DFS; — = STAR-CD.
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4.3 Accuracy test with Taylor-Green vortices

4.3.1 Relative error definition

To quantify the error in the ISPH_DFS methods, profiles of an estimated

relative error are plotted out. In [44, 9], a relative error, ε, is calculated, and

defined as

ε =| φex,max − φISPH,max

φex,max

|, (4.5)

where, φex,max and φISPH,max are respectively the exact and simulated max-

imum values of a general variable, φ. To better investigate the error, an

estimated relative error εL2, based on relative L2 norm, is also calculated,

given by

εL2 =













np
∑

i=1

(φex,i − φISPH,i)
2 vi

np
∑

i=1

φ2
ex,ivi













1

2

, (4.6)

where np is the number of particles; vi is the volume for particle i, which

is constant here; φex,i and φISPH,i are respectively the exact and simulated

general variable value for particle i. Due to the symmetry of flow pattern in

Taylor-Green vortices, only the error for horizontal velocity component, u, is

calculated in relative L2 norm. The corresponding L2-norm based absolute
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error is

eL2 =













np
∑

i=1

(φex,i − φISPH,i)
2 vi

np
∑

i=1

vi













1

2

, (4.7)

As discussed in §2.1.2, SPH operators can achieve higher accuracy through

algebraic reasoning of the Taylor expansion. In [10, 11] Chen et al. by in-

verting the whole matrix for each particle, normally 3 × 3 for 2-D problem

and 6 × 6 for 3-D problem, calculate the whole Hessian (φxixj
), and achieve

2nd-order accuracy. However, this demands a huge computing expense, for

large simulations with millions of particles almost practically impossible.

Schwaiger [99] suggested a new Laplacian operator with higher accuracy by

including the gradient terms and higher-order terms in the Taylor expan-

sion, as presented in §2.1.2. Here through the Taylor-Green vortex test case,

the influence of viscous and Laplacian operators on the simulation accuracy

is studied, and the difficulty in achieving high-accuracy simulations is dis-

cussed.

4.3.2 Accuracy and convergence rate of ISPH_DFS

The viscous and Laplacian operators are divided into two groups here, the

one presented in [77] called lower-order operators here and the one proposed

by Schwaiger [99], named higher-order operators. Fig. 4.15 and 4.16 show

time variations of estimated error with the viscous and Laplacian operators

in [77] for Re = 100 and Re = 1000 respectively. Based on the relative L2

norm, seeing Eq. 4.6, two maximum relative error values, 0.045% and 2.5%,

for the finest meshes are obtained respectively at Re = 100 and Re = 1000
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for the lower-order operators. For Re = 1000, a spatial convergence speed

is also estimated for both higher-order [99] and lower-order [77] operators,

shown in Fig. 4.17. An estimated absolute L2-norm value, eL2, is calculated,

at t = 2.0s. The estimated spatial convergence speed is close to first order for

ISPH_DFS with both two groups of viscous and Laplacian operators, with

slightly more accurate prediction from higher-order operators. The same

conclusion was also obtained in [63] for ISPH method. And in [110], the same

first-order convergence speed is also obtained with the kernel correction for

gradient and divergence operators [4, 82].

4.3.3 Influence of correction stage on the accuracy

By using Eq. 2.21 in §2.1.2, the accuracy of viscous and Laplacian operators

is improved [99]. The convergence speed may also be possibly improved.

However, with only first-order Taylor expansion in the correction stage, Eq.

2.49, the convergence speed is limited. To give an order consistent with or

higher than the improved operators, a simple expansion for the second-order

gradient operator, Eq. 2.15 with the normalised kernel Eq. 2.16, is applied

here as

∇(∇φ) '
∑

j

Vj

(

∑

k

Vk(φk − φj)∇Wjk −
∑

l

Vl(φl − φi)∇Wij

)

∇Wij , (4.8)
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Figure 4.15: Estimated relative error profiles for the horizontal velocity com-

ponent, u, in Taylor-Green vortices with different resolutions, Re = 100. (a)

estimated error based on Eq.4.5; (b) estimated error based on L2 norm. The

time is normalised by T , and T = U/D.

— = 40× 40; - - - = 80× 80; · · · = 120× 120; -·- = 160× 160; – – = 200× 200.
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Figure 4.16: Estimated relative error profiles for the horizontal velocity com-

ponent, u, in Taylor-Green vortices with different resolutions, Re = 1000. (a)

estimated error based on Eq.4.5; (b) estimated error based on L2 norm. The

time is normalised by T , and T = U/D.

— = 40× 40; - - - = 80× 80; · · · = 120× 120; -·- = 160× 160; – – = 200× 200; -··-
= 240× 240.
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Figure 4.17: Convergence speed estimation for both Laplacian operators in

[77] and in [99], based on the L2 error estimation of the horizontal velocity

component, u, in Taylor-Green vortices with ISPH_DFS, Re = 1000, t = 10.0 s.
The smoothing length, h, is normalised by the square length D, where D = 1.

106



Chapter 4. ISPH Method Comparisons and Accuracy Study for ISPH_DFS

where, ∇Wij and ∇Wjk are normalised kernels. By considering the whole

Hessian, the Taylor expansion is here written as

φi′ = φi + (∇φ)i · δrii′ +
1

2
δrii′∇(∇φ)δrii′ +O(δr3ii′ ). (4.9)

In Fig.4.18, the L2-norm based errors are plotted for different correction sit-

uations, and both corrections, including the first derivative terms in Taylor

expansion and including the second derivative terms in Taylor expansion,

gave almost the same prediction, more accurate than the simulation with-

out correction stage. Therefore, more terms in the correction stage do not

increase the accuracy, producing more or less similar predictions. The error

in the simulation without correction is still bounded. The reason why the

bounded error is obtained even without the Taylor-expansion correction is

possibly that the shifting of particle positions is more like “a random walk”;

that is, an extra diffusion is introduced, which makes the algorithm still sta-

ble even without correction.

4.4 Partial conclusion

The accuracy and stability of three existing projection-based incompressible

SPH (ISPH) methods have been tested for Taylor-Green and vortex spindown

flows. A new projection-based ISPH method is introduced which maintains

stability and accuracy without loss of efficiency. It can be concluded that:

1. ISPH_DF provides accurate predictions in certain cases. However, when
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Figure 4.18: The influence of correction stage to the simulation accuracy

in the Taylor-Green vortices test case. Simulations are conducted with a

particle resolution 160× 160.

the particle spacing becomes highly distorted, which occurs at high

Reynolds number, errors caused by anisotropic particle spacings accu-

mulate. ISPH_DF exhibits instability in such cases.

2. ISPH_DI overcomes the instability introduced by irregularly-distributed

particles. However, it is shown that this method does not give accurate

predictions for these flows. The numerical noise can be extremely high.

3. By combining the accuracy characteristics of ISPH_DF and the stabil-

ity of ISPH_DI, ISPH_DFDI produces accurate and stable simulations,

with evenly distributed particles. However, efficiency is sacrificed, as

the method often requires many internal iterations, and it gives dou-

bled pressure and pressure gradient fields. It can be observed in Fig.4.7

and Fig.4.14 that, with the same numerical parameters, ISPH_DFDI

could introduce small numerical noise in the result.
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4. Based on ISPH_DF, ISPH_DFS provides a stable algorithm without

sacrificing efficiency. Particles are shifted slightly across streamlines,

avoiding particle spacing distortion and the error resulting from parti-

cle clustering, and their hydrodynamic properties are adjusted by Tay-

lor series interpolation.

5. The accuracy of the new approach ISPH_DFS is tested through Taylor-

Green vortices. The new viscous and Laplacian operators, proposed

by Schwaiger [99], are also applied, and compared with the operators

in [77]. Both operators gave the first-order spatial convergence speed,

even with higher accuracy from operators in [99]. The influence of the

Taylor-expansion correction, with consideration of different terms in

Taylor expansion, is also studied. Having second-derivative terms in

the correction stage does not obviously improve the prediction accuracy.

However, it shows that the correction of hydrodynamic values by Taylor

expansion is necessary.
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Validation by Benchmark Test

Cases

I
N this Chapter, the accuracy of ISPH_DFS method will be analyzed through

two benchmark test cases. The lid-driven cavity and bluff body, nor-

mally squares or circular cylinders, are often used as benchmark test cases

to assess new codes and algorithms. Here, the lid-driven cavity and the

flow around a circular cylinder, at various Reynolds numbers, are simulated.

In this Chapter, except where stated otherwise the ISPH method used is

ISPH_DFS method introduced in Chapter 2.

110



Chapter 5. Validation by Benchmark Test Cases

5.1 Lid-driven cavity

5.1.1 Case description

The lid-driven cavity problem has long been used as a test or validation case

for new codes or new solution methods. A good set of data for comparison is

[32], where the data are listed out in a table for different Reynolds number

situations. The two-dimensional geometry is shown in Fig.5.1. Although the

lid-driven cavity case is often simulated as a steady case, in simulations,

the fluid is accelerated by the lid at the top of the cavity to a steady state.

Simulations with fully-developed flows are compared with numerical data in

[32] and STAR_CD results.

In this test case, the Reynolds number is calculated by

Re =
UD

ν
. (5.1)

U and D are set to 1 m/s and 1 m for the convenience in the normalization

and the calculation of Reynolds number. Three simulations with different

Reynolds numbers, Re = 100, Re = 400 and Re = 1000, are simulated.

To obtain convergence towards the data set in [32], high resolutions are used

in high Reynolds number situations. Tab.5.1 shows different resolutions

used in different Reynolds situations. The time step is decided based on

the analysis in §2.3.
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Figure 5.1: Geometry of lid driven cavity case. The graph shows the stream-

line in the case with Re = 400, simulated by ISPH_DFS, with a resolution of

61× 61.

Re = 100 Re = 400 Re = 1000

Resolution 1 41× 41 81× 81 81× 81
Resolution 2 81× 81 161× 161 161× 161
Resolution 3 161× 161 241× 241 241× 241

Table 5.1: Resolutions used in different Reynolds situations
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5.1.2 Simulations with STAR-CD

In [32], there is no reference data for pressure field. Therefore, the lid-driven

cavity cases are simulated by STAR-CD as well to provide comparison ob-

jects. The mesh convergence tests are considered for finite volume runs. The

convergence criterion is set as 10−5. The PISO algorithm is used for pres-

sure and velocity coupling. Second-order differencing schemes are used for

convection terms in the calculation.

5.1.3 Simulation results and discussion

As a widely-studied test case, the lid driven cavity is used to further vali-

date the ISPH_DFS algorithm. Reynolds numbers, Re = 100, Re = 400, and

Re = 1000, are simulated and results are compared with data from [32]. Con-

vergence tests for ISPH_DFS, with different resolutions are conducted for all

Reynolds numbers.

In Fig.5.2, 5.3 and 5.4, the velocity profiles in the middle of the domain,

x/D = 0.5 m and y/D = 0.5 m, are presented for each Reynolds number,

Re = 100, Re = 400, Re = 1000, respectively. With increasing the resolution,

the simulation results are converging to Ghia’s results [32]. However, as the

Reynolds number increases, the resolution has to also increase to produce

satisfactory results.

Fig.5.5, 5.6 and 5.7 present pressure profiles along the diagonal line, from

(0.0 m, 0.0 m) to (1.0 m, 1.0 m). With a resolution of 160 × 160, STAR-CD

can achieve almost the same accuracy for velocity as [32], and correspond-

ing pressure results are used for validation. ISPH_DFS produces almost
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Figure 5.2: Velocity profiles in lid-driven cavity, Re = 100. Velocity compo-

nents are normalized with the lid velocity U , U = 1. The distances are nor-

malized with the square length D, D = 1. (a) Horizontal velocity component

profile, at x/D = 0.0m; (b) Vertical velocity component profile, at y/D = 0.0m.

- - - = results with 41×41 resolution; · · · = results with 81×81 resolution; — =

results with 161× 161 resolution; Thick solid line = STAR-CD with 160× 160
resolution; � = Ghia 1982 [32].
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Figure 5.3: Velocity profiles in lid-driven cavity, Re = 400. Velocity compo-

nents are normalized with the lid velocity U , U = 1. The distances are nor-

malized with the square length D, D = 1. (a) Horizontal velocity component

profile, at x/D = 0.0m; (b) Vertical velocity component profile, at y/D = 0.0m.

− − − = results with 81 × 81 resolution; · · ·= results with 161 × 161 resolu-

tion; — = results with 241× 241 resolution; Thick solid line = STAR-CD with

160× 160 resolution; � = Ghia 1982 [32].
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Figure 5.4: Velocity profiles in lid-driven cavity, Re = 1000. Velocity compo-

nents are normalized with the lid velocity U , U = 1. The distances are nor-

malized with the square length D, D = 1. (a) Horizontal velocity component

profile, at x/D = 0.0m; (b) Vertical velocity component profile, at y/D = 0.0m.

- - - = results with 81×81 resolution; · · · = results with 161×161 resolution; —

= results with 241×241 resolution; Thick solid line = STAR-CD with 160×160
resolution; � = Ghia 1982 [32].

identical results for Re = 100 for all resolutions. For the higher Reynolds

numbers, results can be seen to converge with increasing resolution, with a

close agreement with 240× 240 resolution.

With the same resolution, ISPH_DFS predicts flows less accurately than the

finite volume method, which is probably caused by the first-order accuracy

limitation of ISPH_DFS, while the finite volume code STAR-CD can provide

second-order predictions [48, 63].
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Figure 5.5: Pressure profile along the square diagonal, from (0.0, 0.0) to (1.0,

1.0), in lid-driven cavity, Re = 100.

� = STAR-CD with 160× 160 resolution; – – – = ISPH_DFS with 41× 41 reso-

lution; · · · = ISPH_DFS with 81×81 resolution; — = ISPH_DFS with 161×161
resolution.
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Figure 5.6: Pressure profile along the square diagonal, from (0.0, 0.0) to (1.0,

1.0), in lid-driven cavity, Re = 400.

� = STAR-CD with 160× 160 resolution; – – – = ISPH_DFS with 81 × 81 res-

olution; · · · = ISPH_DFS with 161 × 161 resolution; — = ISPH_DFS with

241× 241 resolution.

117



Chapter 5. Validation by Benchmark Test Cases

X

P
/(

ρU
2 )

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.7: Pressure profile along the square diagonal, from (0.0, 0.0) to (1.0,

1.0), in lid-driven cavity, Re = 1000.

� = STAR-CD with 160× 160 resolution; – – – = ISPH_DFS with 81 × 81 res-

olution; · · · = ISPH_DFS with 161 × 161 resolution; — = ISPH_DFS with

241× 241 resolution.
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5.2 2-D laminar flow past a circular cylinder

in a channel

5.2.1 Case description

X/D

Y
/D

5 10 15

0

2

4

6

Figure 5.8: Vortex shedding around a cylinder placed in a periodic channel is

simulated by incompressible SPH, Re = 100. The colored contour shows the

vorticity.

When the fluid passes over a body, separation will happen depending on the

body shape and the incident flow. Depending on the flow and fluid conditions,

separation may cause vortex shedding, which occurs as vortices are created

at the back of the body and become detached from each side periodically,

shown in Fig. 5.8. This phenomenon happens in many engineering problems,

such as buildings, bridges, offshore pipelines and even airfoils at high angles

of attack etc . If the frequency of the shedding vortex matches the resonance

frequency of the structure, the structure will resonate and the structure’s

movement can become self-sustaining, which may cause structure failure.

Therefore, full understanding of this fluid behavior is very important.
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δr 0.025 0.02 0.015 0.01 0.005

Re = 20 10466 16266 n/a 64379 256114

Re = 100 33426 51966 101263 n/a n/a

Table 5.2: The particle number in each case.

The flow past a circular cylinder located in a channel is investigated to assess

the ability of the code to predict drag and lift in a flow with the obstacle.

Periodic boundaries are applied at the two ends of the channel. The Reynolds

number is calculated as

Re =
UD

ν
, (5.2)

where U is the bulk/average velocity in the channel, D is the cylinder di-

ameter, D = 2R, and ν is the kinematic viscosity, which is set as 1.0 ×

10−3m2/s. Two situations with two different Reynolds numbers, 20 and 100,

are simulated. Therefore, the bulk velocities U corresponding to two differ-

ent Reynolds numbers, 20 and 100, are 0.01/R and 0.05/R.

Four different initial particle sizes, δr =0.025, 0.02, 0.01 and 0.005, were

used for cases withRe = 20, and three different initial particle sizes,δr =0.025,

0.02 and 0.015, were used for cases with Re = 100. Particle numbers in each

cases are listed in Table 5.2.

The geometry of the case is shown in Fig. 5.9. To allow the flow to become

fully developed, the channel is much longer for the case with Re = 100. The

geometry parameters in different Reynolds situations are listed in Table 5.3.
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Reynolds Number Re L/R Wch/R R (m) l/R

20 64 10 0.1 7
100 204 10 0.1 7

Table 5.3: Geometry parameters in bluff body cases.

Figure 5.9: Geometry of the bluff body test case.

5.2.2 Code Saturne

The prediction of the velocity and pressure field from ISPH method are com-

pared with code Saturne, which is a finite volume code developed in R & D

in Electricite de France (EDF) [1]. The same geometry size and boundary

conditions are used in F.V. simulations. Three different meshes with differ-

ent resolutions, 16858 cells, 67353 cells and 255711 cells, are used for the case

with Re = 20, while another three different meshes with different resolu-

tions, 15914 cells, 62094 cells and 251293 cells, are used for the other case

with Re = 100. One of the meshes with a resolution of 67353 in the case with

Re = 20 is shown in Fig. 5.10. In simulations by code Saturne, the SIMPLE
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Figure 5.10: Meshes used in the FV simulations.

algorithm is used for the pressure-velocity coupling. Second-order central

differencing scheme is used for the convection term. Convergence criterion

is set to 10−6 for linear solvers in the internal iterations.

5.2.3 Simulation results and discussion

Re=20

Fig. 5.11 shows the velocity and pressure contour in the case with Re =

20 at the time when the flow is fully accelerated. The new ISPH approach

provides very smooth prediction for both velocity and pressure field. Fig.

5.12 and 5.13 present the velocity and pressure profiles, at Re = 20, along the

cross sections, x/D = 2.5, 5.0, 7.5, 10.0, 12.5 and 30.0. Both the results from

ISPH with an initial particle distance δr = 0.01 and code Saturne with a grid

number of 255711 are plotted. The vertical coordinates are normalised by
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the cylinder diameter D, the velocity by the bulk/average velocity U and the

pressure by
1

2
ρU2. To better illustrate the profiles change along the channel,

excluding the profile at x/D = 2.5, normalised variable values are shifted

with the cross-section coordinates x, for example, the normalised horizontal

velocity u/U is changed by u/U + x, for x = 1.0. It can be observed in Fig.

5.12 (a) that due to the blockage effect of the cylinder, the horizontal velocity

is greatly reduced in the middle of the channel, and at the upstream of the

cylinder the vertical-velocity profiles show both positive and negative peaks

at upper and bottom halves of the channel. The positions of the positive and

negative peaks will be swapped downstream of the cylinder due to the flow

recirculation. The blockage effect is reduced as the fluid moves along the

channel. Both code Saturne and ISPH give almost identical predictions for

the velocity and pressure field.

Other noteworthy variables to predict in this bluff body case are the lift and

drag forces. They are calculated as

Fd =

∫

Γ

pnx −
∫

Γ

(τxx · nx + τxy · ny) (5.3)

Fl =

∫

Γ

pny −
∫

Γ

(τyx · nx + τyy · ny) (5.4)

where nx and ny are two components of the normal direction at the cylinder

surface; τxy is the viscous stress, τxy = µ

(

∂ux
∂y

+
∂uy
∂x

)

. The forces are usually

normalised by the bulk/average velocity U as

Cd =
Fd

0.5ρU2D
(5.5)

Cl =
Fl

0.5ρU2D
(5.6)
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Figure 5.11: Velocity and pressure field in the bluff body case, Re = 20, initial

particle size δr = 0.01, at the time when the fluid fully developed. (a) Contour

of the horizontal velocity U ; (b) Contour of the vertical velocity V ; (c) Contour

of the Pressure P .
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Figure 5.12: The velocity profiles along different cross sections, x/D = 2.5,

5.0, 7.5, 10.0, 12.5 and 30.0, in the channel, Re = 20. The vertical coordinates

y and velocity components u and v are normalised by the cylinder diameter

D and the bulk velocity U . To better present the profiles along the channel,

excluding the profile at x/D = 2.5, normalised velocity values u/U and v/U
are shifted with the cross-section coordinates x.

(a) Profile of the horizontal velocity u; (b) Profile of the vertical velocity v.
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Figure 5.13: The pressure profiles along different cross sections, x/D = 2.5,

5.0, 7.5, 10.0, 12.5 and 30.0, in the channel, Re = 20. The vertical coordinates

y and pressure P are normalised by the cylinder diameter D and
1

2
ρU2 re-

spectively. To better present the profiles along the channel, excluding the

profile at x/D = 2.5, normalised pressure values p/
1

2
ρU2 is shifted with the

cross-section coordinates x.
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Figure 5.14: Drag and lift coefficients results in ISPH simulations.

where D is the cylinder diameter. In ISPH simulations, different initial par-

ticle sizes, δr = 0.025, 0.02, 0.01 and 0.005, are used for Re = 20. It should be

pointed out that due to the movement of particles, which introduces small

variance in the interpolation, the results of drag and lift force are not as

smooth as counterparts in the finite-volume simulations, shown in Fig. 5.14.

After the fluid is fully accelerated, the time-averaged values are calculated

for the coefficients. In the case with Re = 20, the values for Cd with different

resolutions and extrapolated values, based on Richardson extrapolation, are

plotted in Fig. 5.15. The extrapolated values, 4.640 for ISPH and 4.642 for

Saturne, are calculated.

Re=100

In the case with Re = 100, three different initial particle spacings, δr = 0.025,

0.02 and 0.015, are tested here. As different shedding frequencies predicted
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Figure 5.15: Drag coefficients Cd from both ISPH and code Saturne as a

function of resolution, Re = 20. dx in (a) is the initial particle size. An

extrapolated value has been calculated.
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and different time steps used in both ISPH and FVM, it is difficult to com-

pare contour graphs at a certain time. In Fig. 5.16, the contours of velocity

and pressure fields from ISPH are plotted, and it is shown in the graphs

that the new ISPH approach provides smooth predictions for the velocity

and pressure fields. Fig. 5.17 and 5.18 show velocity and pressure profile

comparisons between FVM and ISPH. Due to the anisotropic and chang-

ing particle distribution in ISPH, calculating the time-averaged value is not

achieved here. Therefore, all the velocity and pressure values within several

shedding periods along the cross sections are plotted in the same graph as

time-averaged velocity profiles from code Saturne. It can be seen from Fig.

5.17 and 5.18 that ISPH method gives similar velocity and pressure predic-

tions to code Saturne. The maximum and minimum values for Cd and Cl

from code Saturne are also presented in Fig. 5.19. The extrapolated values

for maximum and minimum drag coefficients are 2.829 and 2.673, while the

lift coefficients are ±1.215. Although the averaged values are quite close to

the predictions by code Saturne it is difficult for ISPH to provide smooth pro-

files for the drag and lift coefficients as particles moving around the cylinder

causes inaccuracy and noise in the force calculations, as shown in Fig. 5.20.

A clear vortex shedding period, T ' 1.54s, is obtained from the finest reso-

lution, as presented in the zoomed part in Fig. 5.20. Comparing with the

counterpart from code Saturne, T = 1.68s, there is 8% relative difference.

The Strouhal numbers, St = fD
U

, are calculated for both methods based on

the bulk velocity, U , and cylinder diameter, D. They are listed in Tab. 5.4.

Because the maximum and minimum drag coefficients are difficult to obtain

from ISPH simulations, and it is difficult to run another simulation with a

higher resolution on a single CPU, the averaged drag coefficient, Cd = 2.34, is
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Strouhal No. Averaged Drag Coe. (Cd) Lift Coe. (Cl)

ISPH 0.2597 2.34 ±0.87
Code Saturne 0.2381 2.751 ±1.215
Relative Diff. 9% 15% 28.4%

Table 5.4: Strouhal numbers, drag and lift coefficients from ISPH and

FVM, Re = 100. FVM simulations are conducted with open source code,

Code_Saturne [1].

calculated for ISPH simulation; the maximum and minimum lift coefficients

from the ISPH simulation with δr = 0.015 are approximately ±0.87. The rel-

ative differences between results from ISPH and code Saturne are 15% for

the drag coefficient and 28.4% for lift coefficient.

It should be noted here that accurate predictions are obtained in [81] by us-

ing local refinement around the bluff body and fixing all particles or particles

around the bluff body with the help of an Arbitrary Lagrangian-Eulerian

(ALE) [41] type algorithm. The numerical error introduced by the irreg-

ular particle distributions, which appear in SPH simulations with moving

particles, is avoided in [81]. Also the local refinement around the cylinder

improves the accuracy of force predictions. However, without an ALE-type

ISPH algorithm, if particle positions are fixed and resolutions are refined

around obstacles, we need remeshing and conservative interpolations with

various support sizes which are still an unconcluded research topic now [9],

and also the meshless advantage is lost with all particle fixed. Therefore,

we did not extend the work to regular and fixed particle distribution. How-

ever, wall boundary methods with smaller numerical errors are needed in

the future.
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Figure 5.16: Velocity and pressure field in the bluff body case, Re = 100,

initial particle size δr = 0.015, at time = 196.65 s. (a) Contour of the horizontal

velocity U ; (b) Contour of the vertical velocity V ; (c) Contour of the pressure

P .
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Figure 5.17: The time-averaged velocity profiles along different cross sec-

tions, x/D = 2.5, 5.0, 7.5, 10.0 and 12.5, in the channel, Re = 100. The vertical

coordinates y and velocity components u and v are normalised by the cylinder

diameter D and the bulk velocity U . To better present the profiles along the

channel, normalised velocity values u/U and v/U are shifted with the cross-

section coordinates x/0.5. Red dots: F.V. method; black dots: ISPH method.

(a) Profiles of the horizontal velocity u; (b) Profiles of the vertical velocity v.
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Figure 5.18: The pressure profiles, from left to right, along different cross

sections, x/D = 2.5, 5.0, 7.5, 10.0 and 12.5, in the channel, Re = 100. The ver-

tical coordinates y and pressure P are normalised by the cylinder diameter

D and
1

2
ρU2 respectively. To better present the profiles along the channel

profiles are shifted. Red dots: F.V. method; black dots: ISPH method.
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Figure 5.19: Drag Cd and lift Cl coefficients from code Saturne with different

resolutions, Re = 100. An extrapolated value has been calculated.
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Figure 5.20: Drag Cd and lift Cl coefficients from ISPH with different resolu-

tions, Re = 100. (a) dx = 0.025; (b) dx = 0.02; (c) dx = 0.015.
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5.3 Partial conclusion

Through the benchmark test cases, lid-driven cavity and bluff body, the al-

gorithm and the code have been validated. Both cases are simulated by both

ISPH and FVM, with the commercial software STAR-CD or code Saturne [1].

Three different Re situations, Re = 100, 400 and 1000, have been simulated

for the lid driven cavity. However, it has been shown that the ISPH method

provides a slower convergence rate, compared to second-order of FVM, as

shown by the velocity profile comparison in Fig. 5.4. The pressure predic-

tions from ISPH match the converged finite-volume results very well.

For the bluff body, cases with two different Reynolds numbers are simulated

here. The vortex shedding happened at Re = 100. The lift and drag coef-

ficients are calculated on both ISPH and FVM with code Saturne [1]. At

Re = 20, both methods give almost identical predictions. However, differ-

ences appear at higher Reynolds number, Re = 100. The ISPH prediction of

force coefficients is quite noisy with low resolutions. The vortex-shedding pe-

riod is only obtained from the highest resolution in ISPH. The time-averaged

drag coefficient is calculated from ISPH simulation with the highest resolu-

tion. Relative differences between ISPH and code Saturne, 8%, 15% and

28.4%, are obtained for vortex-shedding period, drag and lift coefficients re-

spectively. Wall boundary methods with less numerical errors are needed in

the future.
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ISPH_DFS Method in

Free-Surface Flow Simulations

T
Raditional Eulerian methods have some difficulties in describing the

free surface, while Lagrangian methods possess natural ability to de-

scribe the details of complicated phenomena. It is much easier for Lagrangian

method to include complicated integration. The traditional WCSPH method

has predicted some highly transient flows quite well [96, 18, 115, 116, 28],

pressures were noisy and the method highly dissipative [63]. Therefore, the

application of ISPH method in free-surface prediction is desirable.

A highly accurate, incompressible, mesh-free, noise-free method for arbitrary

free-surface flows is attractive for many problems in engineering which in-

volve both fluid-structure interaction and multi-phase fluid simulations. Rig-

orous validation is desirable against analytical or highly accurate solutions

as undertaken for internal flows. The following phenomena can occur in one

simulation or in different simulations separately:
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1. impulsive fluid-structure interaction,

2. free-surface evolution with very high curvature,

3. wave propagation.

We use the analytical solution for impulsive plate motion with zero grav-

ity [86] which shows asymptotic-like behavior at the fluid-solid intersection.

The dam-break flow has received considerable attention but has not been

fully exploited. For the wet-bed case we use the highly accurate solution

for flow acceleration at zero time, with a singularity in the free surface at

the lower gradient discontinuity [102]. With an analytic initial condition

a highly accurate high-order boundary integral method for potential flow

[24] is available for small times showing jet-like mushroom behavior [102].

This is preferable to direct experimental comparison, which shows similar

phenomena, since the plate removal time is of the same order as the time

scale for the formation of the initial flow structures. Finally non-dissipative

wave propagation should be demonstrated. Regular waves are generated by

a piston-type paddle for several periods and surface profiles, velocities and

pressures are compared against accurate stream-function theory [94]. This

is undertaken for small and moderate waves for which linear wavemaker

theory is realistic. To the authors’ knowledge, this is the first time ISPH

simulations of free-surface flows have been validated for both pressure and

velocity fields.

In this Chapter, without special declaration, the ISPH method used is ISPH_DFS

method introduced in Chapter 2.
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6.1 Identification of free-surface particles

In free-surface simulations, the free-surface boundary is located simply through

the value of∇·r without the kernel correction. If the particle has a full kernel

support, the value of∇·r from SPH interpolation should be around 2.0, with-

out the interpolation error. For particles close to the free surface, this value

should be smaller than 2.0. In the free-surface simulations, the criterion to

locate free-surface particles is set as 1.5. More details can be obtained in [63].

However, it is found in the simulations that this method cannot locate the

free surface with absolute precision. Some internal fluid particles may have

values of ∇ · r smaller than the criterion, while some free-surface particles

may have larger values. This misjudgment for the free-surface boundary will

introduce certain error in the results, although this appears to be insignifi-

cant in this work. To keep the free-surface prediction uncontaminated by the

artificial movement of particles, the shifting in §2.2.4 is not applied for the

free-surface particles.

6.2 Truncated-kernel error on the free surface

As the kernel function is an approximation of the Dirac δ function, full kernel

support is needed to give accurate kernel interpolation. However, particles

at and adjacent to the free surface cannot obtain the full kernel support,

which introduces error in the free-surface prediction, potentially causing

non-physical instability. The truncated-kernel error in SPH interpolation is

also reported in [26]. Even with the improved Laplacian operator, Eq. 2.21,

Schwaiger has shown a large relative error to the analytical value at the free
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surface, almost 70% [99]. This error strongly distorts the free surface, and

sometimes hinder the convergence of the prediction.

The same numerical test as that in [99] has been repeated here, where the

values for ∇ · ∇ϕ with the test function ϕ = xm + ym, m =2, 3 and 4, are

calculated respectively with the operator in [77], referred to as Laplacian

operator proposed by Morris et al. (LM) here, and the counterpart in [99],

referred to as Laplacian operator proposed by Schwaiger (LS) here. To avoid

singularity in the denominator of the relative error and to keep the same

geometry as in [99], a uniform 50 × 50 particle distribution is used within a

unit square with a dimension 2.0 ≤ x/D ≤ 3.0 and 2.0 ≤ y/D ≤ 3.0. The

relative error, defined as

ε =
| φSPH − φexact |

φexact

, (6.1)

where φSPH is the value obtained from SPH calculation, and φexact is the

analytical value, has been plotted in Fig. 6.1. Fig. 6.1 shows the same

results as in [99]: the relative errors for the LS operator on the free surface

are around 70%, while the relative errors for the LM operator on the free

surface reaches 4000%; at the row just below the free surface, the relative

error for LS operator rapidly reduces to around 4%, while LM operator still

gives a high relative error value, around 500%. In this work, the LS operator

is used for viscous and Laplacian terms. A similar test is also conducted here

for gradient operator introduced in §2.1.2 on the same particle distribution.

The test function is ϕ = ym, with m =1, 2 and 3. The relative error for

∂ϕ

∂y
along the line x/D = 2.5 is plotted in Fig. 6.2. The maximum relative

error, located at the free surface, is around 1% with the gradient operator for
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Figure 6.1: Relative error profiles at the right end along y/D = 2.5 for test

function ϕ = xm + ym with the Laplacian operator in [99] and that in [77],

where ϕ is the general function; m are equal to 2, 3 and 4; D is the domain

length, equal to 1. Profiles for the Laplacian operator in [99] are black, while

profiles for the Laplacian operator in [77] are red. The same symbols are

used for the same test functions ϕ. Circles : test function with m = 2; dia-

monds : test function with m = 3; squares : test function with m = 4.

the test function, and for function ϕ = y, the accuracy has reduced to the

machine precision.

Because the pressure value on the free surface is constant, conveniently zero,

the Poisson equation is not solved for the free-surface particles, and the er-

ror introduced by the Laplacian operator on the free surface thus thus does

not strongly contaminate predictions. However, under different particle dis-

tribution situations, the error may change. To investigate the influence of
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along x/D = 2.5 for test function ϕ =

ym with the gradient operator introduced in §2.1.2, where ϕ is the general

function; m are equal to 1, 2 and 3; D is the domain length, equal to 1. Circles

: test function with m = 1; diamonds : test function with m = 2; squares :

test function with m = 3.
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the truncated-kernel error introduced by Laplacian operator in [99], the so-

lutions for a set of Poisson equations, 4ϕ = ym with m =0, 1, 2 and 3 respec-

tively, in a 1-D periodic open channel with a horizontal bed at y = 0.0 and a

stationary free surface at y = 1.0 are calculated for a uniform particle distri-

bution. This open channel geometry is set up by several columns of particles

with periodic boundaries at two ends. 4ϕ = 1 with the same boundaries is

also solved for a non-uniform particle distribution. In the open channel, the

Dirichlet boundary condition ϕ = 1.0 is applied at the free surface y = 1.0,

and the Neumann boundary
dϕ

dy
= 10.0 at y = 0.0. With a uniform particle

distribution, the relative errors are plotted in Fig. 6.3. For all the exponent

numbers considered, the relative errors are no larger than 7 × 10−5, and ex-

actly 0 on the free surface. However, the relative errors could be greater with

the non-uniform particle distribution. In further tests, particles above 0.8

are shifted in both x and y coordinates with small random numbers between

±0.5dx and between ±0.1dx , where dx is the mean particle spacing. Fig. 6.4

(a) and 6.4 (b) show the relative error values along the channel for the solu-

tion of the Poisson equation 4ϕ = 1.0. It can be observed that the maximum

error around the free surface reaches almost 17% in Fig. 6.4 (a) and 1.5%

in Fig. 6.4 (b). It is also reported in [2], [90] and [99] that the disordered

particle distribution will complicate the convergence behavior of operators.

This lack of convergence caused by truncated-kernel errors on the free sur-

face will result in noisy free-surface evolution which will be demonstrated

later. Therefore, suppressing this free-surface instability is desirable but of

course this may sacrifice accuracy and this needs to be investigated.
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Figure 6.3: Relative errors in the solution for4ϕ = ym in a 1-D periodic open

channel with boundary conditions ϕ = 1.0 at y = 1.0 and
dϕ

dy
= 10.0 at y = 0.0

with a uniform particle distribution, where m = 0, 1, 2, 3 in the tests.

6.3 Free-surface instability damping

It has been observed in simulations that the noisy free surface can be smoothed

by artificially increasing viscosity, which is shown in Fig.6.5 as below, where

the smooth free surface is predicted in the mud-flow simulation with higher

viscosity, 10−3m2/s. Here we are trying to increase the viscosity of the free-

surface particles and particles adjacent to the free surface, within a distance

of twice of the initial particle spacing, in order to obtain the same effect

as the high viscosity used in mud-flow simulations without strongly influ-

encing the free-surface predictions. The global maximum Peclet number

Pemax =
umaxdx

νd
, with umax as the maximum global velocity and dx as the

initial particle spacing, is introduced here to calculated the higher viscos-

ity νd around the free surface; that is, νd =
umaxdx

Pemax
. the The effect on the

144



Chapter 6. ISPH_DFS Method in Free-Surface Flow Simulations

0 0.5 1
y/D

0

0.05

0.1

0.15

0.2

R
el

at
iv

e 
E

rr
or

(a)

0 0.5 1
y/D

0

0.005

0.01

0.015

0.02

R
el

at
iv

e 
E

rr
or

(b)

Figure 6.4: Relative errors in the solution for 4ϕ = 1 in a 1-D periodic

open channel with boundary conditions ϕ = 1.0 at y = 1.0 and
dϕ

dy
= 10.0

at y = 0.0 with non-uniform particle distributions. (a) small random par-

ticle displacement between ±0.5dx; (b) small random particle displacement

between ±0.1dx.
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accuracy of free-surface predictions needs to be explored. This numerical

treatment is called free-surface damping here.
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Figure 6.5: High viscosity reduces noise in the collapse of a mud column with

a dimension of a× 2a, where a is the dimension unit.

To compare the effect of higher viscosity on free-surface profiles and hydro-

dynamic variables, the collapse of water column with a dimension a×2a, and

a = 0.1m, has been simulated. The initial water column is placed within a

tank with a dimension of 4a × 4a. The pressure field and free surface are

compared for cases with and without free-surface damping. The geometry of

the case is shown in Fig. 6.6. Fig. 6.7 shows the free surfaces at the same

time with and without free-surface damping. It can be observed that with

damping the predicted free surface is smooth compared with the simulation

without viscosity damping. It should be recognized that higher viscosity not

only limits the unbounded numerical error to a small value, but also damps

small-scale physical motion of the fluid. However, by choosing the damping

viscosity appropriately as discussed below, this numerical tool will be shown

not to reduce accuracy in the test cases considered.
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Figure 6.6: Geometry of dam break, with a = 0.1m.

A numerical experiment has thus been conducted to investigate the relation-

ship between the particle size, velocity and the damping viscosity. Different

resolutions have been used with different viscosity values for the collapse of

water column shown above. The maximum fluid velocity at the free sur-

face, umax, is estimated as
√
4ga [72, 63]. The maximum Peclet number,

Pemax =
umaxdx

ν
, is calculated through the free surface evolution for each

case. If the surface viscosity is too high, the artificial diffusion will influence

the free-surface prediction, while values which are too low cannot provide

enough artificial damping for the truncated-kernel error. It has been shown

through numerical experiments that the viscosity value should be limited

to satisfy the maximum local Peclet number approximately in the range,

7 ≤ Pemax ≤ 150 shown in Fig. 6.8, and a value around 30.0 is used in this

work. Through the Pemax limit the estimated maximum free-surface velocity

and the particle size, the damping viscosity can be calculated for each case.
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Figure 6.7: The free-surface comparisons in dam break simulations, grey

symbols are simulations without damping; black lines are free surfaces with

Pemax = 30 on the free surface. (a) t ' 0.2s; (b) t ' 0.4s; (c) t ' 0.6s.
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To reduce the influence from free-surface damping, the viscosity value for

particles adjacent to the free surface has been reduced to half or a quarter of

free-surface viscosity.

It may be noted that a variable damping viscosity can also be calculated from

the local velocity, particle size and a specified local Peclet number. The same

dam break case is also simulated by specifying the local Peclet number of 10.

The same effect as constant damping viscosity has been observed, shown in

Fig. 6.9. In the results presented below a constant value has been used for

simplicity.

In the numerical experiment, the water column height at the left side, H,

and the water front edge, X, are recorded, comparing with experimental

results from [57] and WCSPH results from [116] with the k − ε turbulence

model. In Fig. 6.10, it is shown that both ISPH and WCSPH obtained quite

similar results, both overpredict the water front although the column height

predictions match the experiment very well. The free-surface damping did

not strongly influence the predictions of the water column height and the

water front edge. Lots of reasons may cause the overprediction of the water

front. It should be pointed out that both ISPH and WCSPH suffer from

the truncated kernel error, which may be an explanation for the difference

between simulations and experiments.

The similar numerical scheme was also applied in [89, 6], where the arti-

ficial dissipation term was used to diffuse discontinuities with the smooth-

ing scale similar to that resolved by the numerical method. In the previous

ISPH free-surface simulations in [63], instabilities were not apparent but the

k − ε turbulence model was used which effectively increases viscosity above
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Figure 6.8: Graphs of the free-surface profiles and pressure contours in the

collapse of water column, t ' 0.6s. (a) Pemax = 7.0, dx/a = 0.04; (b) Pemax =
150.0, dx/a = 0.04; (c) Pemax = 7.0, dx/a = 0.025; (d) Pemax = 150.0, dx/a =
0.025; (e) Pemax = 7.0, dx/a = 0.0125; (f) Pemax = 150.0, dx/a = 0.0125.
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Figure 6.9: Graphs of the free surface and pressure contour in the collapse

of water column, t ' 0.6s, dx/a = 0.0125. The damping viscosity is calculated

from the local maximum Peclet number limit, which is 10 for free-surface

particles, and 20 for particles close to the free surface.
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Figure 6.10: Collapse of a water column in a tank simulated. Non-

dimensional column height H/2a at the left side and water front position

X/a. Comparison is made against the experimental data from [57] and WC-

SPH results from [116]. Solid line = ISPH results with a resolution of 12, 800
fluid particles; Dashed line = WCSPH results from [116] with a resolution of

20, 000 fluid particles; circles = experimental results from [57].
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its molecular value. For almost inviscid fluids the effect on the accuracy of

highly distorted flows and wave propagation needs to be assessed.

6.4 Simulation of impulsive paddle

6.4.1 Case description

A vertical plate in still water of depth d = 0.5m is given an impulsive motion

so that it moves instantaneously with steady velocity U . A jet of water travels

up the face of the plate. The geometry is shown in Fig. 6.11.

An analytical solution for the free surface was derived by Peregrine [86] to

first order in time, assuming zero gravity. The free-surface elevation, η, is

written as

η = −2Ut
π
ln
(

tanh
(πx

4h

))

(6.2)

This transient free-surface flow has been further generalized by Roberts [95]

for different paddle motions.

6.4.2 Simulation parameters

The free surfaces around the paddle, with two different paddle velocities,

U = 0.2m/s and U = 1.0m/s, are simulated for a water depth of 0.5m. Two

different initial particle spacings, 0.0125m and 0.00625m, corresponding to

6380 and 25520 fluid particles, are used in both simulations. Due to the
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Figure 6.11: Impulsive paddle geometry

movement of the paddle, the number of solid particles on the bed is actually

reduced according to the change of the bed length.

6.4.3 Simulation results

Fig. 6.12 shows the effect of Pemax and Fig. 6.13 and 6.14 show the free-

surface development with two different constant paddle velocities, U = 0.2m/s

and U = 1.0m/s for different resolutions and Pemax = 30.0. With smaller

Pemax limit, the free-surface predictions are less smooth than those with

larger Pemax limit, shown in Fig. 6.12. Generally, the ISPH predicts the free

surface well with the limit Pemax = 30.0. At the paddle, a jet is generated,

but the free surface becomes scattered at the crest. At the crest, only very

few particles are present in the SPH interpolation, therefore the truncated-

kernel error will be higher here than elsewhere on the free surface. What

is more, the value of ∇ · r cannot accurately identify the free-surface parti-

cles, as shown in Fig. 6.13 and Fig. 6.14. Some particles inside of the free

surface may also be taken as free-surface ones. The error caused by this
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Figure 6.12: The free-surface simulations due to the impulsive paddle mo-

tion with different Pemax limits, with a resolution of dx = 0.0125, a constant

velocity U = 1.0m/s, at time 0.04s, 0.08s, 0.12s, and 0.16s, from left to right

respectively.

mis-identification is also another reason for the scattered free surface at the

crest of the jet.

In this simulation case, a higher resolution is also used in both cases shown

in Figs. 6.13 and 6.14. More accurate predictions are obtained through the

higher resolution simulations.

6.5 Simulation of 2-D dam break

6.5.1 Case description

The dam break is a widely used test case for impulsively started, rapid evolv-

ing free-surface flows. Experiments have been undertaken but results are

affected by the withdrawal of the plate which has a similar time scale to

the formation of the initial surface structures [102, 49]. For the dam break
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Figure 6.13: The free-surface simulations due to the impulsive paddle mo-

tion, with a constant velocity U = 0.2m/s, Pemax = 30.0, at time 0.2s, 0.4s, 0.6s
and 0.8s, from left to right respectively. — = the analytical results [86]; 4 =

the ISPH simulation with a resolution of dx = 0.0125; ◦= the ISPH simulation

with a resolution of dx = 0.00625.
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Figure 6.14: The free-surface simulations around the impulsive paddle, with

a constant velocity U = 1.0m/s, Pemax = 30.0, at time 0.04s, 0.08s, 0.12s, and

0.16s, from left to right respectively. — = the analytical results [86]; 4 = the

ISPH simulation with a resolution of dx = 0.0125; ◦= the ISPH simulation

with a resolution of dx = 0.00625.
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Figure 6.15: Geometry of dam break with wet bed. The board separating two

water columns is removed or dissolved instantaneously.

with a wet bed, Stansby et al. [102] showed that the pressure distribution at

t = 0.0 s and the resulting flow acceleration may be determined accurately by

the solution of Laplace’s equation for pressure. They also computed time evo-

lution of the highly distorted free surface for small time assuming potential

flow and solving by a highly accurate boundary integral method [24]. These

solutions for t = 0.0 s and small times provide ideal tests for the ISPH algo-

rithm developed here. The initial geometry is shown in Fig. 6.15. The gate

separating the two columns is dissolved or removed immediately at t = 0.0 s.

6.5.2 Simulation parameters

The fluid density ρ and kinematic viscosity ν are 1000kg/m3 and 1.0×10−6m2/s.

In the investigation of the initial stage of dam break with the wet bed, the

geometry parameters, h1, h2, x1 and x2, are set as 1.0m, 0.1m, 2m and 2m

respectively. For t = 0.0 s, the Laplacian equation for pressure is solved in

finite difference form on a uniform mesh with different mesh sizes of 0.025m,

0.02m, 0.01m, 0.005m and 0.0025m, with the 2nd-order differencing. The lin-
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ear system is solved by the successive over-relaxation (SOR) method. The

same resolutions are used for ISPH simulations. The horizontal accelera-

tion component ax and the angle, θ, between the acceleration vector and the

horizontal, from both methods are compared. The accelerations along the

free-surface are plotted with results from both methods.

For the free-surface evolution within a small time, the free-surface profiles

at different time are digitised from [102], and used as validation of ISPH

predictions.

6.5.3 Simulation results

For the initial condition (t = 0 s), Fig. 6.16 presents the pressure contours

from both the Laplacian solution with the second-order finite difference method

[102] and ISPH with a resolution of 0.01m. The results are almost identical to

each other. To compare further the results with each other, two cross-section

pressure profiles, at y = 0.0 and y = 0.5, are plotted, as shown in Fig. 6.17.

With a regular particle distribution, similar to a uniform structured mesh in

finite difference or finite volume methods, the ISPH and Laplacian solvers

provide an almost identical prediction.

Fig. 6.18 presents the acceleration profiles from both the ISPH and Lapla-

cian solvers along the free surface, with Fig. 6.18 (a) showing horizontal

acceleration values ax at the free surface along x = 2.0m, and Fig. 6.18 (b)

showing vertical acceleration values ay at the free surface along y = 0.1m.

The ISPH and Laplacian solvers provide almost identical predictions. ISPH

however predicts slightly smaller values at the singularity point x = 2.0m

and
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Figure 6.16: Comparison of the pressure P (Pa) between the finite-difference

Laplacian solver and ISPH at t = 0.0s.· · · · · · : ISPH; — : finite-difference

Laplacian solver.
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Figure 6.17: Pressure profiles at two different cross sections, (a) y = 0.0m
and (b) y = 0.5m, at t = 0.0s.

158



Chapter 6. ISPH_DFS Method in Free-Surface Flow Simulations

y (m)

ax
(m

/s
2 )

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

(a)

x (m)

ay
(m

/s
2 )

2 2.2 2.4 2.6 2.8 3

-2

0

2

4

6

8

10

12

14

16

18

20

22

(b)

Figure 6.18: The fluid acceleration comparison along the free surface at x =
2.0m and y = 0.1mwith the same initial mesh/particle size, dx = dy = 0.025m.

Solid line with square symbols : ISPH; Dashed line : finite-difference Lapla-

cian solver. (a) Profile of horizontal acceleration values ax at the free surface

x = 2.0m; (b) Profile of vertical acceleration values ay at the free surface

y = 0.1m.
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Figure 6.19: The fluid acceleration comparison at the singularity point x =
2.0m and y = 0.1m. Solid line : finite-difference Laplacian solver; Dashed line

: ISPH. (a) Profile of horizontal acceleration values ax against resolutions

1/dx; (b) Profile of angle θ, between the acceleration vector and the horizontal

line, against resolution 1/dx.

y = 0.1m relative to the Laplacian solver. The behavior at the singularity is

further investigated with different resolutions, shown in Fig. 6.19. In Fig.
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6.19 (a), the horizontal accelerations from both methods are increasing with

the increase of the resolution, and in Fig. 6.19 (b), the angle θ, between ac-

celeration vector and the horizontal direction are converging towards about

45o. The accelerations from ISPH are slighter lower but identical predictions

at a singularity by different schemes are not expected, although they are

expected in continuous regions.

For small time evolution, shown in Fig. 6.20 and 6.21, the predictions of the

free surface from ISPH with Pemax = 7.0, Pemax = 150.0 are compared with

digitised data from [102]. It is shown in Fig. 6.20 that ISPH with Pemax = 7.0

damps some feature of the small-scale motion on the free surface, which

is indicated by the loss of accurate mushroom-jet prediction, while in Fig.

6.21 ISPH with Pemax = 150.0 provides small noise distorting the capture

of the small-scale motion. By increasing the Pemax limit to 30.0, the ISPH

prediction generally matches the results based on the nonlinear potential-

flow theory very well. However, at t = 0.08s in Fig. 6.22, the cap of the

mushroom-shape jet slightly deviates from the prediction in [102], which

may be caused by the truncated-kernel error along the free surface. It should

be noted that in [102] a tanh profile was used to define the initial condition

to avoid sharp corners as required for the boundary integral method. This

only changed the SPH distribution by one or two particles and had negligible

influence on the results.
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Figure 6.20: Free surface comparison at the initial stage of dam break with

wet bed. From the left to the right, the solid lines and groups of symbols

show the free surface at t = 0.024s, t = 0.04s, t = 0.066s and t = 0.08s. —

: digitised free-surface elevations from [102]; ◦ : free-surface particles from

the ISPH simulation with Pemax = 7.
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Figure 6.21: Free surface comparison at the initial stage of dam break with

wet bed. From the left to the right, the solid lines and groups of symbols

show the free surface at t = 0.024s, t = 0.04s, t = 0.066s and t = 0.08s. —

: digitised free-surface elevations from [102]; ◦ : free-surface particles from

the ISPH simulation with Pemax = 150.
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Figure 6.22: Free surface comparison at the initial stage of dam break with

wet bed. From the left to the right, the four solid lines and groups of symbols

show the free surface at t = 0.024s, t = 0.04s, t = 0.066s and t = 0.08s. — :

digitalised free-surface elevations from [102]; ◦ : free-surface particles from

the ISPH simulation with Pemax = 30.

6.6 Simulation of linear wave propagation along

the channel

6.6.1 Case description

In this work, regular waves with wave heights, H = 0.05m and H = 0.1m,

in water of depth d = 0.5m are simulated with the ISPH method. Waves

are generated by the piston-type paddle in a rectangular wave tank with a

length of 18m. Based on linearized wavemaker theory [23], the paddle motion

follows

u =
S

2
ωcos(ωt). (6.3)

where u is the paddle velocity; S is the stroke of the wavemaker; ω is the

wavemaker frequency. The stroke of the wavemaker S has the relation with
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Figure 6.23: Waves generated by the paddle. a is the wave amplitude; H is

the wave height; d is the water depth; L is the wave length; e is the free-

surface elevation; c is the wave speed.

the wave height H, given by

H

S
=

2 (cosh 2kd− 1)

sinh 2kd+ 2kd
, (6.4)

and d is the water depth; k is the wave number.

k = 2π/l (6.5)

The angular wave frequency ω in Eq. 6.3 has the relation with the wavenum-

ber as

ω2 = gk · tanh (kd) . (6.6)

The wave parameters and geometry are illustrated in Fig. 6.23.

Even with small wave heights waves show slightly non-sinusoidal form and

comparisons are made with highly accurate stream function theory of Rie-
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Wave Heights H (m) Wave Periods T (s) Wave Length l (m)

0.05 0.9951 1.5

0.1 1.5688 3.0

Table 6.1: Parameters for different wave conditions

necker and Fenton [94] based on Fourier approximations, generalized in code

SAWW (Steady Arbitrary Water Waves) by Buss and Stansby [8].

6.6.2 Simulation parameters

The wave conditions are listed in Table 6.1. The water depth d is 0.5m, the

wave tank length L is 18m. The fluid density ρ is 1000kg/m3, the kinematic

viscosity ν 10−6m2/s, the initial particle spacing δr is 0.005m.

6.6.3 Wave reflection absorption

To absorb the wave reflection from the wall at the end of the open channel, an

exponential damping zone is placed over a distance of at least a wavelength.

In the damping zone, the velocity of fluid particles will be damped as

U = U0f(x) (6.7)

where U is fluid velocity, and

f(x) = 1− e(−α(δx0−(x−x0))). (6.8)

α is a coefficient, equal to 2.0; δx0 is the damping zone length, equal to 3.0m;

x0 is the damping zone starting point, equal to 15.0m, x0 = L − δx0, and L is
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Figure 6.24: Profile of exponential damping function used for wave absorp-

tion. α = 2.0; δx0 = 3.0; x0 = 0.0; dx = x− x0.

the channel length. A similar exponential scheme has been used by Larsen

and Dancy [61] for Boussinesq wave modelling. It is shown in Fig. 6.24 that

when the particles are getting close to the right end of the wave tank, the

velocity U will decrease to 0. This simple method effectively reduces the

reflection of the wave from the right end.

6.6.4 Simulation results

Fig. 6.25 shows the wave propagation case with different damping viscosi-

ties. The wave with a wave height of 0.05m and a wave length of 1.5m is

simulated. The wave tank length is set to 5m to reduce computing expense.

The same Pemax limits have been used as those in the previous numerical

tests. It is shown that with Pemax = 150.0, the free-surface prediction is not
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as smooth as with Pemax = 7.0. However, since it has been observed in earlier

simulations that using too small Pemax number limit can introduce too much

numerical diffusion, Pemax = 30.0 has again been chosen for the following

wave propagation cases.
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Figure 6.25: Damping investigation for wave propagation. (a) Pemax = 7; (b)

Pemax = 150.

Fig. 6.26 and 6.28 show the wave propagation along the open channel for two

different wave heights, H = 0.05m and H = 0.1m, with snapshots of the free

surface at different times. It is observed from the graphs that the first wave

decayed soon after it is generated by the paddle. The second wave decayed

gradually during the propagation process. But the other waves propagate

along the channel without decaying. It can be observed that the damping

zone effectively reduces the reflection from the right end of the channel under
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Figure 6.26: Wave propagation along the channel, from the top to the bottom,

t = 1.70625s, t = 5.3625s, t = 9.01875s, t = 12.675s, t = 16.33125s, t = 19.9875s,
the wave height H = 0.05m, the wave length L = 1.5m, the water depth

d = 0.5m, Pemax = 30.0. + : the free-surface particles in the simulation.

these situations, with very small reflection apparent in the last profiles in

both Fig. 6.26 and 6.28.

Fig. 6.27 and 6.29 show comparisons of free-surface predictions from ISPH

and stream function theory (code SAWW) at t = 19.99s and t = 9.75s for

the two different wave heights, H = 0.05m and H = 0.1m, respectively. It

can be observed that for the larger wave height, waves are noticeably non-

sinusoidal but a generally good agreement between ISPH and SAWW is ob-

tained, with SAWW describing all nonlinear effects.

Fig. 6.30 and 6.31 present the total pressure, non-hydrostatic pressure and

velocity profiles predicted by both ISPH and SAWW, below the crest and
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Figure 6.27: Comparison of free-surface predictions from both ISPH with

Pemax = 30.0 and SAWW [8]. Wave height H = 0.05m; Wave length l = 1.5m;

Water depth d = 0.5m; t = 19.9875s.
+ : free-surface prediction from ISPH; — : free-surface prediction from

SAWW.
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Figure 6.28: Wave propagation along the channel, from the top to the bottom,

t = 0.78s, t = 3.12s, t = 4.68s, t = 6.24s, t = 7.8s, t = 9.36s, t = 12.48s, the

wave height H = 0.1m, the wave length L = 3.0m, the water depth d = 0.5m,

Pemax = 30.0. + : the free-surface particles in the simulation.
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Figure 6.29: Comparison of free-surface predictions from both ISPH with

Pemax = 30.0 and SAWW [8]. Wave height H = 0.1m; Wave length l = 3.0m;

Water depth d = 0.5m; t = 9.75s.
+ : free-surface prediction from ISPH; — : free-surface prediction from

SAWW.

trough, with positions given on the figure caption. The non-hydrostatic pres-

sure is given by

p = P − ρg(η − y), (6.9)

where p is the non-hydrostatic pressure; P is the total pressure calculated

from ISPH; η is the free-surface elevation. It is shown that ISPH method

predicts the fluid field accurately for both the velocity and total pressure.

The non-hydrostatic pressure predictions from ISPH are however slightly

different from the predictions from code SAWW. The reason for this is un-

certain. It could be due to the effect of the wave maker being apparent in

comparison with an infinite wave train. The matter remains to be resolved.

6.7 Partial conclusion

An ISPH algorithm has been applied to almost inviscid free-surface flows.

It has been observed that instability can develop at the free surface due to
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Figure 6.30: Comparing velocity and pressure predictions from both ISPH

with Pemax = 30.0 and SAWW [8].Wave height H = 0.05m; Wave length l =
1.5m; Water depth d = 0.5m; t = 19.9875s.
(a) Pressure profiles below wave crest and trough; (b) Horizontal velocity

profiles below wave crest and trough; (c) Non-hydrostatic pressure profiles

below wave crest and trough.

— : prediction from SAWW below the wave crest ; − − −: prediction from

SAWW below the wave trough ; ◦ : prediction from ISPH along below the

wave crest, x = 1.61m ; � : prediction from ISPH line below the wave trough,

x = 2.36m.
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Figure 6.31: Comparing velocity and pressure predictions from both ISPH

with Pemax = 30.0 and SAWW [8].Wave height H = 0.1m; Wave length L =
3.0m; Water depth d = 0.5m; t = 9.75s
(a) Pressure profiles below wave crest and trough; (b) Horizontal velocity

profiles below wave crest and trough; (c) Non-hydrostatic pressure profiles

below wave crest and trough.

— : prediction from SAWW below the wave crest ; − − −: prediction from

SAWW below the wave trough ; ◦ : prediction from ISPH below the wave

crest, x = 5.943m; � : prediction from ISPH below the wave trough, x =
7.443m.
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the truncated kernel. This may be reduced by increasing kinematic viscos-

ity at the surface and, with sufficient particle resolution and surface Pemax

numbers below about 30, accurate flow predictions can be made. Surface

Pemax numbers may also be reduced by increasing particle resolution without

changing viscosity but this would increase computational times considerably.

The algorithm with artificially increased surface viscosity is tested for the

impulsive flows of the impulsively started plate and the wet bed dam break

for which there are analytical and highly accurate solutions. It is also shown

that regular wave propagation can be accurately simulated without decay.

Surface profiles, total pressures and velocities are simulated accurately, al-

though apparent small difference in non-hydrostatic pressure remain to be

resolved.
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Conclusions and Future Work

7.1 Conclusions

I
N this thesis, the stability and accuracy of existing incompressible SPH

methods, ISPH_DF [17, 63], ISPH_DI [100], ISPH_DFDI [44] have been

investigated. Success has been achieved in several different applications.

However, it has been discussed that due to the kernel flaw and the stream-

line movement of particles in the SPH method , ISPH_DF [17, 63] is not a

stable method; the simulations with ISPH_DI [100] are quite stable, but the

inaccurate prediction has dropped the advantage to use incompressible SPH;

ISPH_DFDI [44] can provide accurate predictions but with much higher com-

puting expense and doubled pressure and pressure gradient fields.

Based on the ISPH_DF [17, 63], the ISPH_DFS is a stable algorithm without

sacrificing efficiency. Particles are shifted slightly across streamlines, avoid-

ing particle spacing distortion and the error resulting from particle cluster-

ing, and their hydrodynamic properties are adjusted by Taylor series inter-
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polation. This small change to ISPH_DF method has stabilized the ISPH

method with very little increase of computing expense. Through the test

cases, Taylor-Green vortices, vortex spindown, it has been shown that that

ISPH_DFS method is much more efficient than ISPH_DFDI method [44];

the accuracy is improved over ISPH_DI method [100]; the stability is highly

enhanced comparing with ISPH_DF method [17, 62].

The accuracy of ISPH_DFS method has been studied in Chapter 5. Through

the error estimation in Taylor-Green vortices simulations the spatial con-

vergence speed of ISPH_DFS method has been shown to be first order. As

the gradient and divergence operators have already been shown to be second

order [82], the influence of the viscosity and Laplacian operators is investi-

gated. It is shown in §5.1 that although the operator proposed by Schwaiger

[99] has improved the accuracy performance, the spatial convergence speed

is not enhanced. Similar convergence speeds have been obtained for both

types of the viscous and Laplacian operators [77, 99]. This is most possibly

caused by the particle convection method – particles move after the velocity

at the new time step is updated, but will have the same velocity at the new

place as at the old position. This delayed velocity updating may be one of

main reasons causing slow spatial convergence.

Two benchmark cases, lid-driven cavity and bluff body in the channel, were

simulated. The results are compared with Ghia’s data [32] and the finite vol-

ume simulations from the commercial software STAR-CD and code Saturne

[1]. It has been shown that for low Reynolds number, ISPH method gave

quite good prediction as finite volume method did, while the low convergence

speed limits the accomplishment of acceptable results with low resolutions,

which is consistent with the first-order spatial convergence speed. The drag
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and lift forces were calculated in the bluff-body cases. It has been shown

that the movement of the particles around the circular cylinder has resulted

in the noisy force values. This noise may disable or place difficulty on the

prediction of the vortex-shedding frequency under the situation of low reso-

lutions. Although the increase of the resolution can provide higher accuracy

without considering the computing expense, a better approach for the simu-

lation of fluid on the wall is needed, especially for the accurate simulation of

fluid-body interaction.

In this thesis, the influence of the truncated-kernel error to the free-surface

prediction has also been discussed. With corrected kernels for different op-

erators, the error on the free surface can be highly reduced for uniformly

distributed particles, while this small error will be amplified as the parti-

cle distribution is distorted, and the free surface could be quite noisy with

ISPH method. One treatment has been introduced here by slightly increas-

ing the viscosity on the free surface. This has been proved to be an effective

way to reduce the noise on the free surface without strongly influencing the

free-surface prediction.

Three test cases, initial-stage investigation to the dam break, impulsive pad-

dle and wave propagation, have been studied. Good agreements are obtained

for the studied cases. The thorough quantitative validation has been con-

ducted for pressure and velocity predictions in the context of the SPH method

through the wave propagation test case. It is shown that for the free-surface

prediction, or for the velocity and pressure field, this ISPH method can pro-

vide accurate predictions.
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7.2 Future work and suggestions

In this work, a new ISPH algorithm to avoid instability caused by highly-

distorted particle distributions is proposed. The accuracy and stability are

well maintained without sacrificing the efficiency. However, it is shown that

this ISPH method only converges with first-order behavior as the spatial

resolution increases. The low-accuracy operators and time-marching scheme

may be the cause of the low-order convergence speed. Although the gra-

dient or divergence operators has been proved to be second-order [82], the

Laplacian or viscous operators are not. Higher order interpolation methods

are needed. In the existing algorithm, particles move explicitly with Crank-

Nicolson scheme. In the new position, particles are still having the old hy-

drodynamic variable values, such as velocity. Therefore, an investigation of

fully-implicit time marching is necessary.

In this work, all the simulated cases are with simple geometries. In this

way, the complexity caused by the geometries is avoided, and the boundary

condition problem is bypassed. In ISPH, the non-slip and numerical Neu-

mann boundary conditions are needed for velocity and pressure respectively.

The existing methods, mirror particle and dummy particle as presented in

this thesis, still have difficulties to build accurate boundary conditions for

complicated geometries.

At the end, the truncated-kernel error around free surface has been in-

vestigated in this work. A numerical approach to overcome the instability

caused by the truncated-kernel error on the free surface has been proposed.

However, it should admitted here that this approach is mainly a numerical

method. A better way is needed.
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Appendix A

The SPHysics Code

Here, only a brief instruction about code SPHysics will be presented to facili-

tate the further illustration about the incompressible SPH code, which is de-

veloped based on this WCSPH code SPHsysics. More details about SPHysics

can be obtained from the user guide [121].

Smoothing kernel

The accuracy of SPH simulations is strongly influenced by the choice of ker-

nel function. The kernel function is actually a mathematical approximation

to the Dirac δ function. The interesting ones for our purpose have a compact

support area. The smoothing function ωij should monotonically decrease as

the distance between particle i and its neighbouring particle j increase. The

smoothing length h is proportional to the initial particle distance dr, nor-

mally h = c · dr, and decides the support size of the particle i, Li. For differ-

ent kernels in a manner of linear algebraic equations, Li = αh with different

coefficient α value. The non-dimensional distance q is used in the kernel cal-

culation, and q = rij/h > 0, where rij is the distance between particle i and j.
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In SPHysics, four different kernel functions are available: Gaussian kernel,

quadratic kernel, cubic kernel and quintic kernel.

Gaussian kernel [73]

ω(q) = γe(−q2) (A.1)

where, γ is a coefficient, equal to 1/ (πh2) in 2D, and 1/
(

π3/2h3
)

in 3D.

Quadratic kernel [18]

ω (q) = γ















(

3

16
q2 − 3

4
q +

3
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0 ≤ q ≤ 2

0 q ≥ 2

(A.2)

where, γ is equal to 2/ (πh2) in 2D, and 5/ (4πh3).

Cubic kernel [70]

ω (q) = γ
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(A.3)

where, γ is equal to 10/ (7πh2) in 2D, and 1/ (πh3) in 3D.

Quintic kernel [119]

ω (q) = γ
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(A.4)
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where, γ is equal to 7/ (4πh2) in 2D, and 7/ (8πh3) in 3D.

Momentum equation

Artificial viscosity and Sub-Particle Scale model

In the momentum equation Eq. 2.2, one strong effect is viscosity. The viscous

effect can be simulated by the artificial viscosity [71] or by the approximated

laminar viscosity [77]. Excluding the artificial viscosity and the laminar

viscosity, the Sub-Particle Scale (SPS) approach, which was first introduced

by Gotoh et al. [34] in the context of Moving Particle Semi-implicit method

(MPS), to model turbulence was also developed in the code SPHysics.

The artificial viscosity was first proposed by Monaghan [71]. Due to its sim-

plicity, it is widely used in the SPH simulations. If we define the viscous

term in momentum equation as ψi, the formulation reads

ψi =
∑

j

mjΠij∇ωij (A.5)

Πij =















−ζcijµij

ρij
uij · rij < 0

0 uij · rij > 0

(A.6)

and

µij =
huij · rij
r2ij + η2

(A.7)

where, rij = ri−rj ; uij = ui−uj ; cij is the averaged speed of sound for particle

i and j, cij =
ci+cj

2
; ρij is the averaged density for particle i and j, ρij =

ρi+ρj
2

;

η = 0.1h; ζ is a coefficient, changed depending on the simulations.
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SPS model, similar to Large Eddy Simulation, is used to consider the effect

of fluid scale smaller than the particle size and simulate the turbulence effect

in the fluid, seeing Gotoh et al. [34]. In 2004, Gotoh et al. [35] extended the

SPS model into incompressible SPH. To include the sub-particle effect in the

fluid, the momentum equation is changed into

Du

Dt
= −1

ρ
∇P + ν∇2u+ F +

1

ρ
∇τ (A.8)

where F is the body force; τ is the SPS stress tensor. With the Boussinesq’s

hypothesis, SPS stress tensor is modeled as

τij = ρ

(

2νtSij −
2

3
kδij −

2

3
CI∆

2δij | Sij |2
)

(A.9)

where, νt is the eddy viscosity, νt = [min (Cs4l2)]2 | S |, CI = 0.0066, Sij is the

stress tensor element, Cs is the Smagorinsky constant, with a range of 0.1 -

0.2, and a value of 0.12 is used in SPHysics code. 4l is the particle-particle

spacing, and it is used as the implicit filter here, equivalent to the grid size

in mesh-based method; | S |= (2SijSij)
1/2

.

Pressure calculation and state equation

In original SPHysics code, the incompressible flow is assumed with weak

compressibility. The pressure field is not solved from a pressure Poisson

equation, but from a state equation. In the state equation, the speed of

sound, whose value should be at least ten times of the maximum fluid ve-

locity, is used for the calculation of coefficient. To satisfy the CFL condition,

the time step is limited to a very small value, which slows down the simula-

tion efficiency. Compressibility causes problems with sound wave reflection
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at the boundaries. However, due to its simplicity, the state equation is still

widely used in pressure calculation in the simulations. The state equation

follows the expression

P = B

[(

ρ

ρ0

)γ

− 1

]

(A.10)

where, γ = 7, B = c20ρ0/γ, with ρ0 being the reference density and c0 being

the speed of sound at the reference density and c0 = c (ρ0) =

√

∂P

∂ρ
.

Discretized momentum equation

With substituting the pressure gradient term and SPS stress gradient term

with Eq. 2.14, the viscous term with Eq. 2.19, and considering the SPS

model, the momentum equation, Eq. A.8 can be discretized as

(

du

dt

)

i

' −
∑

j

mj

(

Pi

ρ2i
+
Pj

ρ2j

)

∇ωij +
∑

j

4mjµrij · ∇ωij

(ρi + ρj) (r2ij + η2)
uij

+ F+
∑

j

mj

(

τi
ρ2i

+
τj
ρ2j

)

∇ωij (A.11)

Continuity equation

For the compressible flow, the continuity equation is

dρ

dt
+ ρ∇ · u = 0. (A.12)

Therefore, the particle density can be updated with Eq. 2.15 as the formula-

tion
(

dρ

dt

)

i

= −ρ∇ · u =
∑

j

mjuij · ∇ωij. (A.13)

The right hand side of Eq. A.13 is also briefly written as D in the later part.
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Also the particle density can be calculated from Eq. 2.6, which is

ρ =
∑

j

mjωij. (A.14)

For the accuracy consideration, both of the expression suffer from the trun-

cated kernel error at the free surface. For the efficiency consideration, Eq.

A.13 needs the first derivative of the kernel function, but Eq. 2.41 the kernel

value, which means extra memory and computing cost will be put in because

the momentum equation needs only the first derivative.

Time marching

In code SPHysics, several different time marching schemes, Predictor-Corrector

(also known as the modified Euler method) [72], Verlet and Beeman [3], are

used. The Predictor-Corrector and Verlet scheme are introduced here. Oth-

ers can be found in [31].

Predictor-Corrector

In Predictor-Corrector time marching scheme [72], the variable fields are

first predicted with the half step n + 1/2 based on time step n, and then

corrected based on the previous predicted stage, n + 1/2.

Predicting stage:

u
n+1/2
i = un

i +
∆t

2
Fn (A.15)

ρ
n+1/2
i = ρni +

∆t

2
Dn (A.16)

r
n+1/2
i = rni +

∆t

2
un (A.17)
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Correcting stage:

u
n+1/2
i = un

i +
∆t

2
Fn+1/2 (A.18)

ρ
n+1/2
i = ρni +

∆t

2
Dn+1/2 (A.19)

r
n+1/2
i = rni +

∆t

2
un+1/2 (A.20)

Variable field at time n+ 1:

un+1
i = 2u

n+1/2
i − un

i (A.21)

ρ
n+1/2
i = 2ρ

n+1/2
i − ρni (A.22)

r
n+1/2
i = 2r

n+1/2
i − rni (A.23)

Verlet Scheme

In Verlet scheme, a correction step . The variables are updated as

un+1
i = un−1

i + 2∆tFn; (A.24)

ρn+1
i = ρn−1

i + 2∆tDn; (A.25)

rn+1
i = rni +∆tun

i +
∆t2

2
Fn. (A.26)

To stop the integration diverging, every M time steps (M = 50 in SPHysics)

variables are calculated according to

un+1
i = un

i +∆tFn; (A.27)

ρn+1
i = ρni +∆tDn; (A.28)
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rn+1
i = rni +∆tun

i +
∆t2

2
Fn. (A.29)
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Linear Solvers

Conjugate gradient (CG) solver

CG is the most popular iterative solver. It is widely used to solve the Pressure

Poisson equation in incompressible simulations. The CG method is an algo-

rithm for the numerical solution of particular systems of linear equations,

namely those whose matrix is symmetric and positive-definite. Therefore,

the diffusion dominant problem, such as Pressure Poisson equations, will be

the best target for this solver. The CG method is an iterative method, so it

can be applied to sparse systems that are too large to be handled by direct

methods such as the Cholesky decomposition. Such systems arise regularly

when numerically solving partial differential equations. However, the abnor-

mal behavior of the residual norm hinders the convergence of the iteration,

even introduce instability in the simulations. For a linear system, AX = B,

with an initial guessed value X0, the CG algorithm is listed below.

r0 = B−AX0 (B.1)
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P0 = r0 (B.2)

Iterate the following conjugate-gradient root search process until the conver-

gence criterion is satisfied,

αk =
rTk rk

PT
kAPk

(B.3)

Xk+1 = Xk + αkPk (B.4)

rk+1 = rk − αkAPk (B.5)

And k = 0 at the first iteration. If the convergence criterion is satisfied,

the iteration will be stopped. The residual vector may direct the iteration to

divergence. Therefore, after several iterations, a correction step for residual

will be performed.

rk+1 = B−AXk+1 (B.6)

βk =
rTk+1rk+1

rTk rk
(B.7)

Pk+1 = rk+1 + βkPk (B.8)

k = k + 1 (B.9)

Bi-Conjugate Gradient Stabilized (Bi-CGSTAB) solver

The Bi-CGSTAB algorithm with a preconditioner, a Jacobi preconditioner in

the code, is simply listed below. The same as that in CG solver, the linear

system is simply written as AX = B with an initial guessed value X0 and a

preconditioner K, and the residual is

r0 = B−AX0 (B.10)
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r̄0 is an arbitrary vector, and the dot product (r0, r̄0) satisfies

(r0, r̄0) 6= 0 e.g. r̄0 = r0. (B.11)

The initial parameter setting can be performed as

ρ0 = α = ω0 = 1; (B.12)

v0 = p0 = 0. (B.13)

Then the following conjugated-gradient root searching process with the resid-

ual smoothing can be conducted until the convergence of the linear system is

achieved.

ρi = (̄r0, ri−1) ; β = (ρi/ρi−1) (α/ωi−1) ; (B.14)

pi = ri−1 + β (pi−1 − ωi−1vi−1) ; (B.15)

Solve y from Ky = pi; (B.16)

vi = Ay; (B.17)

α = ρi/ (̄r0,vi) ; (B.18)

s = ri−1 − αvi; (B.19)

Solve z from Kz = s; (B.20)

t = Az; (B.21)

ωi =
(

K−1t,K−1s
)

/
(

K−1t,K−1t
)

; (B.22)

Xi = Xi−1 + αy + ωiz. (B.23)
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If Xi is accurate enough then quite, otherwise

ri = s− ωit, (B.24)

and the root searching will restart again from Eq. B.14.

Although this linear solver demands more calculation during one iteration

than CG solver, its robustness and efficiency on the solution of linear systems

generated in ISPH algorithms, shown by the numerical experiment in §3.3,

have given itself more advantages than the CG solver.

Convergence criterion

The convergence of the linear solver is achieved when the iteration number

reaches the maximum iteration number, or

‖ ri ‖2
‖ r0 ‖2

≤ ε (B.25)

where ‖ · ‖2 is the l2-norm; subscript i and 0 are for the ith iteration and

the initial value respectively; ε is the linear solver tolerance, ε = 10−5. The

discussion about the convergence of linear system can be gained from [29].
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Publication lists

During three years PhD, the author did not only focus on the meshless SPH

method, but also studied some other topics, which provides great help for the

research. The publications during the PhD time are listed as follow.

Journal Publications:

R. Xu, P. Stansby, D. Laurence. Incompressible SPH method: analytical and

highly accurate validation for multiphase/free-surface flows. International

Journal of Numerical Method in Fluids, under review. R. Xu, P. Stansby, D.

Laurence. Accuracy and stability in incompressible SPH (ISPH) based on the

projection method and a new approach. Journal of Computational Physics,

228: 6703 - 6725, 2009.

E.-S. Lee, C. Moulinec, R. Xu, D. Violeau, D. Laurence and P. Stansby, Com-

parisons of weakly compressible and truly incompressible algorithms for the

SPH mesh free particle method, Journal of Computational Physics, 227:

8417-8436, 2008.
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Conference Publications:

R. Xu, P. K. Stansby, D. Laurence, A stabilized Incompressible SPH method,

ERCOFTAC SIG SPHERIC IV international workshop, Nantes, France, 2009.

R. Xu, C. Moulinec, P. K. Stansby, B. D. Rogers, D. Laurence, Simulations

of vortex spin-down and Taylor-Green Vortices with Incompressible SPH

method, ERCOFTAC SIG SPHERIC III international workshop, Lausanne,

Switzerland, 2008.

P. K. Stansby, R. Xu, B. D. Rogers, et al., Modeling tsunami overtopping of

a sea defense by shallow-water Boussinesq, VOF and SPH methods, Flood

Risk Management Conference, Oxford, 2008 .

P.K. Stansby, A.C. Hunt, R. Xu, P.H. Taylor, A.G.L. Borthwick, T. Feng, D.R.

Laurence, Wave overtopping from focused wave groups: experiments and

modeling, Flood Risk Management Conference, Plymouth, 2007.
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