Numerical Stability of SPH for Weakly Compressible Viscous Flows: Optimal Time-Stepping

Damien Violeau

EDF R&D - LNHE + LHSV, Chatou, France

Outline

- Brief recall of the WCSPH tools
- SPH Von Neumann stability analysis
- Validation against numerical tests
- Model variations and applications to real flows
- Conclusions and recommendations

Time-stepping for WCSPH (1)

- The Lagrangian nature of SPH enhances numerical instabilities
- ► One of the most important stability conditions requires the time step to be bounded: δt ≤ δt_{crit}

Time-stepping for WCSPH (1)

- The Lagrangian nature of SPH enhances numerical instabilities
- ► One of the most important stability conditions requires the time step to be bounded: δt ≤ δt_{crit}
- The critical time step δt_{crit} should depend on the numerical parameters:
 - fluid reference density ρ_0
 - fluid (or numerical) kinematic viscosity ν
 - numerical speed of sound c₀
 - smoothing length h
- ► Thus, **dimensional analysis** gives $\delta t_{crit} = \frac{h}{c_0} \phi(\frac{c_0 h}{\nu})$

• ρ_0 has been removed as the only parameter depending on mass

Time-stepping for WCSPH (2)

- Notation:
 - **CFL number**: $C \doteq \frac{c_0 \delta t}{h}$
 - Fourier number: $C_{\nu} \doteq \frac{\nu \delta t}{h^2}$
 - Numerical **Reynolds number**: $Re_0 \doteq \frac{c_0 h}{v} = \frac{C}{C}$
- Thus, the stability condition reads $C \leq \phi(Re_0)$ or $C \leq \psi(C_{\nu})$

Time-stepping for WCSPH (2)

- Notation:
 - **CFL number**: $C \doteq \frac{c_0 \delta t}{h}$
 - Fourier number: $C_{\nu} \doteq \frac{\nu \delta t}{h^2}$
 - ► Numerical **Reynolds number**: $Re_0 \doteq \frac{c_0 h}{\nu} = \frac{C}{C_0}$
- Thus, the stability condition reads $C \leq \phi(Re_0)$ or $C \leq \psi(C_{\nu})$
- ► e.g. Morris et al., 1997 suggest two empirical conditions:
 - ► Acoustic condition: C ≤ 0.4
 - **Viscous** condition: $C_{\nu} \leq 0.125$
 - ... or $C \leq min(0.4; 0.125 Re_0)$

Morris, J.P., Fox, P.J., Zhu, Y. (1997), J. Comput. Phys. 136:214-226

Time-stepping for WCSPH (2)

- Notation:
 - **CFL number**: $C \doteq \frac{c_0 \delta t}{h}$
 - Fourier number: $C_{\nu} \doteq \frac{\nu \delta t}{h^2}$
 - Numerical **Reynolds number**: $Re_0 \doteq \frac{c_0 h}{\nu} = \frac{C}{C}$
- ▶ Thus, the stability condition reads $C \le \phi(Re_0)$ or $C \le \psi(C_\nu)$
- ► e.g. Morris et al., 1997 suggest two empirical conditions:
 - Acoustic condition: $C \le 0.4$
 - **Viscous** condition: $C_{\nu} \leq 0.125$
 - ... or $C \leq min(0.4; 0.125 Re_0)$
- \blacktriangleright The present work aims at deriving a **theoretical** time-stepping condition for WCSPH, *i.e.* a theoretical function ψ

Morris, J.P., Fox, P.J., Zhu, Y. (1997), J. Comput. Phys. 136:214-226

Basic continuous SPH gradient (no wall effects!):

$$\nabla A(\mathbf{r}) \approx \int_{\Omega} \nabla A(\mathbf{r}') w_h(|\mathbf{r} - \mathbf{r}'|) d\mathbf{r}'$$

= $\int_{\partial \Omega} A(\mathbf{r}') w_h(|\mathbf{r} - \mathbf{r}'|) \mathbf{n}' d\Gamma' + \int_{\Omega} A(\mathbf{r}') \nabla_{\mathbf{r}} w_h(|\mathbf{r} - \mathbf{r}'|) d\mathbf{r}'$
$$\nabla A(\mathbf{r}) = \rho(\mathbf{r}) \nabla \frac{A}{\rho}(\mathbf{r}) + \frac{A}{\rho}(\mathbf{r}) \nabla \rho(\mathbf{r})$$

= $\int_{\Omega} \frac{\rho(\mathbf{r}')^2 A(\mathbf{r}) + \rho(\mathbf{r})^2 A(\mathbf{r}')}{\rho(\mathbf{r}) \rho(\mathbf{r}')} \nabla_{\mathbf{r}} w_h(|\mathbf{r} - \mathbf{r}'|) d\mathbf{r}' \doteq \mathbf{G}^+ \{A\}(\mathbf{r})$

Basic continuous SPH gradient (no wall effects!):

$$\nabla A(\mathbf{r}) \approx \int_{\Omega} \nabla A(\mathbf{r}') w_h(|\mathbf{r} - \mathbf{r}'|) d\mathbf{r}'$$

= $\int_{\partial \Omega} A(\mathbf{r}') w_h(|\mathbf{r} - \mathbf{r}'|) \mathbf{n}' d\Gamma' + \int_{\Omega} A(\mathbf{r}') \nabla_{\mathbf{r}} w_h(|\mathbf{r} - \mathbf{r}'|) d\mathbf{r}'$
$$\nabla A(\mathbf{r}) = \rho(\mathbf{r}) \nabla \frac{A}{\rho}(\mathbf{r}) + \frac{A}{\rho}(\mathbf{r}) \nabla \rho(\mathbf{r})$$

= $\int_{\Omega} \frac{\rho(\mathbf{r}')^2 A(\mathbf{r}) + \rho(\mathbf{r})^2 A(\mathbf{r}')}{\rho(\mathbf{r}) \rho(\mathbf{r}')} \nabla_{\mathbf{r}} w_h(|\mathbf{r} - \mathbf{r}'|) d\mathbf{r}' \doteq \mathbf{G}^+ \{A\}(\mathbf{r})$

Discrete SPH gradient:

$$\mathbf{G}_{a}^{+}\left\{A_{b}\right\} \doteq \rho_{a} \sum_{b} m_{b} \left(\frac{A_{a}}{\rho_{a}^{2}} + \frac{A_{b}}{\rho_{b}^{2}}\right) \nabla w_{ab}$$

Other SPH operators

SPH divergence:

$$D^{-} \{\mathbf{A}\} (\mathbf{r}) \doteq \int_{\Omega} \frac{\rho(\mathbf{r}')}{\rho(\mathbf{r})} [\mathbf{A}(\mathbf{r}') - \mathbf{A}(\mathbf{r})] \cdot \nabla_{\mathbf{r}} w_{h} (|\mathbf{r} - \mathbf{r}'|) d\mathbf{r}'$$
$$D_{a}^{-} \{\mathbf{A}_{b}\} \doteq \frac{1}{\rho_{a}} \sum_{b} m_{b} (\mathbf{A}_{b} - \mathbf{A}_{a}) \cdot \nabla w_{ab}$$

SPH divergence:

$$D^{-} \{\mathbf{A}\} (\mathbf{r}) \doteq \int_{\Omega} \frac{\rho(\mathbf{r}')}{\rho(\mathbf{r})} [\mathbf{A}(\mathbf{r}') - \mathbf{A}(\mathbf{r})] \cdot \nabla_{\mathbf{r}} w_{h} (|\mathbf{r} - \mathbf{r}'|) d\mathbf{r}'$$
$$D_{a}^{-} \{\mathbf{A}_{b}\} \doteq \frac{1}{\rho_{a}} \sum_{b} m_{b} (\mathbf{A}_{b} - \mathbf{A}_{a}) \cdot \nabla w_{ab}$$

► SPH Laplacian:

$$\mathbf{L} \{ \mathbf{A} \} (\mathbf{r}) \doteq 2 \int_{\Omega} \left[\mathbf{A} (\mathbf{r}) - \mathbf{A} (\mathbf{r}') \right] \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^2} \cdot \nabla_{\mathbf{r}} w_h (|\mathbf{r} - \mathbf{r}'|) d\mathbf{r}'$$

$$\mathbf{L}_a \{ \mathbf{A}_b \} \doteq 2 \sum_b V_b (\mathbf{A}_a - \mathbf{A}_b) \frac{\mathbf{r}_{ab}}{r_{ab}^2} \cdot \nabla w_{ab}$$

- Other formulae exist (see later)
- Complete formulae involve boudary terms (no wall effects here!)
- Discrete operators should be renormalized for consistency

Standard WCSPH model

Discrete form of the Lagrangian Navier-Stokes equations:

$$\dot{\mathbf{u}}_{a} = -\frac{1}{\rho_{a}} \mathbf{G}_{a}^{+} \{ p_{b} \} + \frac{\mu}{\rho_{a}} \mathbf{L}_{a} \{ \mathbf{u}_{b} \}$$

$$\dot{\mathbf{r}}_{a} = \mathbf{u}_{a}$$

$$\dot{\rho}_{a} = -\rho_{a} D_{a}^{-} \{ \mathbf{u}_{b} \}$$

$$\rho_{a} = \frac{\rho_{0} c_{0}^{2}}{\gamma} \left(\frac{\rho_{a}^{\gamma}}{\rho_{0}^{\gamma}} - 1 \right)$$

Definitions:

- $\mu \doteq \rho_0 \nu$: dynamic viscosity
- c_0 is set as $10U_{max}$ to ensure weakly compressible flow
- $\gamma = 7$ for water (Monaghan, 1994)

Note: a time marching scheme is also required (see later)

Monaghan, J.J. (1994), J. Comput. Phys. 110:399-406

Von Neumann stability analysis

- Principles of a von Neumann stability analysis:
 - Writing the governing equations $\dot{\mathbf{X}} = \mathbf{g}(\mathbf{X})$
 - Identifying a reference state \mathbf{X}_{ref} satisfying $\dot{\mathbf{X}}_{ref} = \mathbf{g}(\mathbf{X}_{ref})$
 - Searching a perturbated solution $\mathbf{X} = \mathbf{X}_{ref} + \delta \mathbf{X}$ by linearizing:

$$\delta \dot{\mathbf{X}} = \delta \mathbf{g} \left(\mathbf{X} \right) = \left(\frac{\partial \mathbf{g}}{\partial \mathbf{X}} \right)_{\mathbf{X} = \mathbf{X}_{ref}} \delta \mathbf{X}$$

Von Neumann stability analysis

- Principles of a von Neumann stability analysis:
 - Writing the governing equations $\dot{\mathbf{X}} = \mathbf{g}(\mathbf{X})$
 - ► Identifying a reference state \mathbf{X}_{ref} satisfying $\dot{\mathbf{X}}_{ref} = \mathbf{g}(\mathbf{X}_{ref})$
 - Searching a perturbated solution $\mathbf{X} = \mathbf{X}_{ref} + \delta \mathbf{X}$ by linearizing:

$$\delta \dot{\mathbf{X}} = \delta \mathbf{g} \left(\mathbf{X}
ight) = \left(rac{\partial \mathbf{g}}{\partial \mathbf{X}}
ight)_{\mathbf{X} = \mathbf{X}_{ref}} \delta \mathbf{X}$$

- Searching wave-like solutions: $\delta \mathbf{X} = \mathbf{X}_0 e^{-i\mathbf{K}\cdot\mathbf{r}+i\omega t}$
- The linearized system gives a dispersion relation, *i.e.* a relation between the wave vector K and the angular frequency ω = ω (K)

Von Neumann stability analysis

- Principles of a von Neumann stability analysis:
 - Writing the governing equations $\dot{\mathbf{X}} = \mathbf{g}(\mathbf{X})$
 - ► Identifying a reference state \mathbf{X}_{ref} satisfying $\dot{\mathbf{X}}_{ref} = \mathbf{g}(\mathbf{X}_{ref})$
 - Searching a perturbated solution $\mathbf{X} = \mathbf{X}_{ref} + \delta \mathbf{X}$ by linearizing:

$$\delta \dot{\mathbf{X}} = \delta \mathbf{g} \left(\mathbf{X}
ight) = \left(rac{\partial \mathbf{g}}{\partial \mathbf{X}}
ight)_{\mathbf{X} = \mathbf{X}_{ref}} \delta \mathbf{X}$$

- Searching wave-like solutions: $\delta \mathbf{X} = \mathbf{X}_0 e^{-i\mathbf{K}\cdot\mathbf{r} + i\omega t}$
- The linearized system gives a dispersion relation, *i.e.* a relation between the wave vector K and the angular frequency ω = ω (K)
- Stability criteria:
 - Physical equations (continuous time): $\forall \mathbf{K}, \operatorname{Im} \omega \geq 0$
 - Numerical model (discrete time): ∀K, |χ| ≤ 1, where χ ≑ e^{iωδt} is the (numerical) wave amplification factor

Linearization of the SPH equations

- X represents the set of all particle parameters \mathbf{u}_a , \mathbf{r}_a and ρ_a
- ► Possible reference state: constant velocity and density, *i.e.* we search $\mathbf{u}_{a} = \mathbf{u}_{ref} + \delta \mathbf{u}_{a}$, $\mathbf{r}_{a} = \mathbf{r}_{a,ref} + \delta \mathbf{r}_{a}$, $\rho_{a} = \rho_{ref} + \delta \rho_{a}$:

$$\delta \left[\rho_a D_a^- \left\{ \mathbf{u}_b \right\} \right] = \delta \left[\sum_b m_b \left(\mathbf{u}_b - \mathbf{u}_a \right) \cdot \nabla w_{ab} \right]$$
$$= \sum_b m_b \left[\left(\delta \mathbf{u}_b - \delta \mathbf{u}_a \right) \cdot \nabla w_{ab} + \underbrace{\left(\mathbf{u}_{ref} - \mathbf{u}_{ref} \right) \cdot \nabla \nabla w_{ab} \left(\delta \mathbf{r}_a - \delta \mathbf{r}_b \right)}_{\mathbf{v} \mathbf{v}_{ab} \mathbf$$

Linearization of the SPH equations

- X represents the set of all particle parameters \mathbf{u}_a , \mathbf{r}_a and ρ_a
- Possible reference state: constant velocity and density, *i.e.* we search u_a = u_{ref} + δu_a, r_a = r_{a,ref} + δr_a, ρ_a = ρ_{ref} + δρ_a:

$$\delta \left[\rho_a D_a^- \left\{ \mathbf{u}_b \right\} \right] = \delta \left[\sum_b m_b \left(\mathbf{u}_b - \mathbf{u}_a \right) \cdot \nabla w_{ab} \right]$$
$$= \sum_b m_b \left[\left(\delta \mathbf{u}_b - \delta \mathbf{u}_a \right) \cdot \nabla w_{ab} + \underbrace{\left(\mathbf{u}_{ref} - \mathbf{u}_{ref} \right) \cdot \nabla \nabla w_{ab} \left(\delta \mathbf{r}_a - \delta \mathbf{r}_b \right)}_{\mathbf{v}_{ab}} \right]$$

The last term vanishes, so:

$$\begin{split} \delta \dot{\rho}_{a} &= -\delta \left[\rho_{a} D_{a}^{-} \left\{ \mathbf{u}_{b} \right\} \right] \\ &\approx \rho_{0} \int_{\Omega} \left[\delta \mathbf{u}_{a} - \delta \mathbf{u} \left(\mathbf{r}^{\prime} \right) \right] \cdot \nabla_{\mathbf{r}_{a}} w_{h} \left(|\mathbf{r}_{a} - \mathbf{r}^{\prime}| \right) d\mathbf{r}^{\prime} \end{split}$$

Linearization of the SPH equations

- X represents the set of all particle parameters \mathbf{u}_a , \mathbf{r}_a and ρ_a
- Possible reference state: constant velocity and density, *i.e.* we search u_a = u_{ref} + δu_a, r_a = r_{a,ref} + δr_a, ρ_a = ρ_{ref} + δρ_a:

$$\delta \left[\rho_a D_a^- \left\{ \mathbf{u}_b \right\} \right] = \delta \left[\sum_b m_b \left(\mathbf{u}_b - \mathbf{u}_a \right) \cdot \nabla w_{ab} \right]$$
$$= \sum_b m_b \left[\left(\delta \mathbf{u}_b - \delta \mathbf{u}_a \right) \cdot \nabla w_{ab} + \underbrace{\left(\mathbf{u}_{ref} - \mathbf{u}_{ref} \right) \cdot \nabla \nabla w_{ab} \left(\delta \mathbf{r}_a - \delta \mathbf{r}_b \right)}_{\mathbf{v} \mathbf{v}_{ab} \mathbf$$

The last term vanishes, so:

$$\begin{aligned} \delta \dot{\rho}_{a} &= -\delta \left[\rho_{a} D_{a}^{-} \left\{ \mathbf{u}_{b} \right\} \right] \\ &\approx \rho_{0} \int_{\Omega} \left[\delta \mathbf{u}_{a} - \delta \mathbf{u} \left(\mathbf{r}' \right) \right] \cdot \nabla_{\mathbf{r}_{a}} w_{h} \left(|\mathbf{r}_{a} - \mathbf{r}'| \right) d\mathbf{r}' \end{aligned}$$

► Note: starting from continuous SPH would be easier!

Discrete or continuous?

- The stability of SPH can be studied from two ways:
 - Discrete: Cartesian grid, one neighbour in each direction
 - Continuous: ignores the discrete nature of SPH

Space dimension <i>n</i>	1	arbitrary
Discrete	Swegle <i>et al.</i> , 1995	De Leffe, 2011
	Morris, 1996	Dehnen & Aly, 2012
Continuous	Balsara, 1995	Dehnen & Aly, 2012
		Present work

Solutions in the Fourier space

• We now search solutions as $\delta \mathbf{u}_a = c_0 \mathbf{U}(t) e^{-i\mathbf{K}\cdot\mathbf{r}_a}$, **K** being a numerical wave vector:

$$\delta \dot{\rho}_{a} = \rho_{0} c_{0} \mathbf{U}(t) \cdot \int_{\Omega} \left(e^{-i\mathbf{K}\cdot\mathbf{r}_{a}} - e^{-i\mathbf{K}\cdot\mathbf{r}'} \right) \nabla_{\mathbf{r}_{a}} w_{h} \left(|\mathbf{r}_{a} - \mathbf{r}'| \right) d\mathbf{r}'$$

Solutions in the Fourier space

• We now search solutions as $\delta \mathbf{u}_a = c_0 \mathbf{U}(t) e^{-i\mathbf{K}\cdot\mathbf{r}_a}$, **K** being a numerical wave vector:

$$\delta \dot{\rho}_{a} = \rho_{0} c_{0} \mathbf{U}(t) \cdot \int_{\Omega} \left(e^{-i\mathbf{K} \cdot \mathbf{r}_{a}} - e^{-i\mathbf{K} \cdot \mathbf{r}'} \right) \nabla_{\mathbf{r}_{a}} w_{h} \left(|\mathbf{r}_{a} - \mathbf{r}'| \right) d\mathbf{r}'$$

▶ With the variable change $\mathbf{\tilde{r}} \doteq \mathbf{r}' - \mathbf{r}_a$, *i.e.* $\nabla_{\mathbf{r}_a} = -\nabla_{\mathbf{\tilde{r}}}$:

$$e^{i\mathbf{K}\cdot\mathbf{r}_{a}}\delta\dot{\rho}_{a} = \rho_{0}c_{0}\mathbf{U}(t)\cdot\int_{\Omega}\left(e^{-i\mathbf{K}\cdot\tilde{\mathbf{r}}}-1\right)\nabla_{\tilde{\mathbf{r}}}w_{h}(\tilde{\mathbf{r}})\,d\tilde{\mathbf{r}}$$
$$= \rho_{0}c_{0}\mathbf{U}(t)\cdot\widehat{\nabla_{\tilde{\mathbf{r}}}w_{h}}(K)$$
$$= i\rho_{0}c_{0}\widehat{w_{h}}(K)\mathbf{K}\cdot\mathbf{U}(t)$$

Solutions in the Fourier space

• We now search solutions as $\delta \mathbf{u}_a = c_0 \mathbf{U}(t) e^{-i\mathbf{K}\cdot\mathbf{r}_a}$, **K** being a numerical wave vector:

$$\delta \dot{\rho}_{a} = \rho_{0} c_{0} \mathbf{U}(t) \cdot \int_{\Omega} \left(e^{-i\mathbf{K} \cdot \mathbf{r}_{a}} - e^{-i\mathbf{K} \cdot \mathbf{r}'} \right) \nabla_{\mathbf{r}_{a}} w_{h} \left(|\mathbf{r}_{a} - \mathbf{r}'| \right) d\mathbf{r}'$$

▶ With the variable change $\mathbf{\tilde{r}} \doteq \mathbf{r}' - \mathbf{r}_a$, *i.e.* $\nabla_{\mathbf{r}_a} = -\nabla_{\mathbf{\tilde{r}}}$:

$$e^{i\mathbf{K}\cdot\mathbf{r}_{a}}\delta\dot{\rho}_{a} = \rho_{0}c_{0}\mathbf{U}(t)\cdot\int_{\Omega}\left(e^{-i\mathbf{K}\cdot\tilde{\mathbf{r}}}-1\right)\nabla_{\tilde{\mathbf{r}}}w_{h}(\tilde{\mathbf{r}})\,d\tilde{\mathbf{r}}$$
$$= \rho_{0}c_{0}\mathbf{U}(t)\cdot\widehat{\nabla_{\tilde{\mathbf{r}}}w_{h}}(K)$$
$$= i\rho_{0}c_{0}\widehat{w_{h}}(K)\mathbf{K}\cdot\mathbf{U}(t)$$

The Fourier transform of the kernel is thus important in studying the numerical stability properties of SPH.

Linearized WCSPH system

Similarly to the velocity, positions and density are searched for in the following forms:

$$\bullet \ \delta \mathbf{r}_{a} = h \mathbf{R} \left(t \right) e^{-i \mathbf{K} \cdot \mathbf{r}_{a}}$$

•
$$\delta \rho_a = \rho_0 R(t) e^{-i\mathbf{K}\cdot\mathbf{r}_a}$$

Similarly to the velocity, positions and density are searched for in the following forms:

$$\bullet \ \delta \mathbf{r}_{a} = h \mathbf{R}(t) e^{-i\mathbf{K}\cdot\mathbf{r}_{a}}$$

$$\bullet \ \delta \rho_{a} = \rho_{0} R(t) e^{-i\mathbf{K} \cdot \mathbf{r}_{a}}$$

After some algebra the linearized WCSPH system reads:

$$\begin{split} \dot{\mathbf{U}}(t) &= \frac{ic_0}{h}\widehat{w_h}\left(K^+\right)R\left(t\right)\mathbf{K}^+ - \frac{\nu}{h^2}F_2\left(K^+\right)\mathbf{U}\left(t\right) \\ \dot{\mathbf{R}}(t) &= \frac{c_0}{h}\mathbf{U}\left(t\right) \\ \dot{R}(t) &= \frac{ic_0}{h}\widehat{w_h}\left(K^+\right)\mathbf{K}^+ \cdot \mathbf{U}\left(t\right) \end{split}$$

► $\mathbf{K}^+ \doteq h\mathbf{K}$ is the dimensionless wavevector, $K^+ \doteq |\mathbf{K}^+|$ and $F_2(K^+) \doteq 2h^2 \int_{\Omega} \left(e^{-i\mathbf{K}\cdot\tilde{\mathbf{r}}} - 1\right) \frac{\tilde{\mathbf{r}}}{\tilde{\mathbf{r}}^2} \cdot \nabla_{\tilde{\mathbf{r}}} w_h(\tilde{\mathbf{r}}) d\tilde{\mathbf{r}}$

Time marching scheme

- We first consider a first order **semi-explicit scheme**:
 - Time derivatives are approximated as $\dot{\mathbf{U}}(t) = \frac{\mathbf{U}(t^{m+1}) \mathbf{U}(t^m)}{\delta t}$
 - Updated velocities are used to compute positions and densities
 - We search all functions of time as $\mathbf{U}(t) = \mathbf{U}_0 e^{i\omega t}$, etc.

Time marching scheme

- We first consider a first order **semi-explicit scheme**:
 - Time derivatives are approximated as $\dot{\mathbf{U}}(t) = \frac{\mathbf{U}(t^{m+1}) \mathbf{U}(t^m)}{\delta t}$
 - Updated velocities are used to compute positions and densities
 - We search all functions of time as $\mathbf{U}(t) = \mathbf{U}_0 e^{i\omega t}$, etc.
- The linear system now reads:

$$\frac{\chi - 1}{\delta t} \mathbf{U}_{0} = \frac{ic_{0}}{h} \widehat{w}_{h} (K^{+}) R_{0} \mathbf{K}^{+} - \frac{\nu}{h^{2}} F_{2} (K^{+}) \mathbf{U}_{0}$$
$$\frac{\chi - 1}{\delta t} \mathbf{R}_{0} = \chi \frac{c_{0}}{h} \mathbf{U}_{0}$$
$$\frac{\chi - 1}{\delta t} R_{0} = \chi \frac{ic_{0}}{h} \widehat{w}_{h} (K^{+}) \mathbf{K}^{+} \cdot \mathbf{U}_{0}$$

 Recall χ ≑ e^{iωδt} is the numerical wave amplification factor. The stability condition reads ∀K⁺, |χ| ≤ 1.

The eigenvalue problem

Rearranging the system leads to an eigenvalue problem:

$$oldsymbol{\chi} \mathcal{A}_1\left(\mathsf{K}^+\otimes\mathsf{K}^+
ight)\mathsf{U}_0=-\left(oldsymbol{\chi}-1+\mathcal{A}_2
ight)\left(oldsymbol{\chi}-1
ight)\mathcal{K}^{+2}\mathsf{U}_0$$

New notation:

$$\begin{array}{rcl} A_{1} & \doteqdot & C^{2}F_{1}\left(K^{+}\right) \\ A_{2} & \rightleftharpoons & C_{\nu}F_{2}\left(K^{+}\right) \\ F_{1}\left(K^{+}\right) & \doteqdot & \left[K^{+}\widehat{w_{h}}\left(K^{+}\right)\right]^{2} \end{array}$$

The eigenvalue problem

Rearranging the system leads to an eigenvalue problem:

$$oldsymbol{\chi} A_1 \left({f K}^+ \otimes {f K}^+
ight) {f U}_0 = - \left(oldsymbol{\chi} - 1 + A_2
ight) \left(oldsymbol{\chi} - 1
ight) {f K}^{+2} {f U}_0$$

New notation:

$$\begin{array}{rcl} A_{1} & \doteqdot & \boldsymbol{C}^{2}F_{1}\left(\boldsymbol{K}^{+}\right) \\ A_{2} & \rightleftharpoons & \boldsymbol{C}_{\nu}F_{2}\left(\boldsymbol{K}^{+}\right) \\ F_{1}\left(\boldsymbol{K}^{+}\right) & \doteqdot & \left[\boldsymbol{K}^{+}\widehat{w_{h}}\left(\boldsymbol{K}^{+}\right)\right]^{2} \end{array}$$

Integration by parts (no wall effect!) gives:

$$F_{2}^{\prime}\left(K^{+}
ight)=2K^{+}\widehat{w_{h}}\left(K^{+}
ight)=2\sqrt{F_{1}\left(K^{+}
ight)}$$

► Recall: $C \doteq \frac{c_0 \delta t}{h} \quad C_{\nu} \doteq \frac{\nu \delta t}{h^2} = \frac{C}{Re_0}$

Stability criterion

- The tensor $\mathbf{K}^+ \otimes \mathbf{K}^+$ has two eigenvalues: 0 and K^{+2}
- Only the second is important to investigate. It gives the following characteristic polynomial:

$$\chi^2 + (A_1 + A_2 - 2) \chi + 1 - A_2 = 0$$

Stability criterion

- The tensor $\mathbf{K}^+ \otimes \mathbf{K}^+$ has two eigenvalues: 0 and \mathcal{K}^{+2}
- Only the second is important to investigate. It gives the following characteristic polynomial:

$$\chi^2 + (A_1 + A_2 - 2)\chi + 1 - A_2 = 0$$

The roots satisfy the stability criterion ∀K⁺, |χ| ≤ 1 if and only if A₁ + 2A₂ ≤ 4 for all wavenumbers, *i.e.*:

$$\mathcal{C} \leq \sqrt{2 \min_{\mathcal{K}^+} rac{2 - \mathcal{C}_{
u} \mathcal{F}_2\left(\mathcal{K}^+
ight)}{\mathcal{F}_1\left(\mathcal{K}^+
ight)}} = \psi(\mathcal{C}_{
u})$$

► For comparison, recall Morris *et al.*'s 'traditional' empirical criteria: $C \le 0.4$ and $C_{\nu} \le 0.125$

The stability functions (1)

- Note: ŵ_h, F₁ and F₂ depend on K⁺ ÷ |K⁺| only for isotropy reasons (no wall effect here!)
- Kernel notation:

$$w_h(\tilde{r}) = \frac{\alpha_n}{h^n} f(q) \qquad q \doteqdot \frac{\tilde{r}}{h}$$

 α_n being a normalizing constant and *n* the space dimension.

The stability functions (1)

- Note: ŵ_h, F₁ and F₂ depend on K⁺ ÷ |K⁺| only for isotropy reasons (no wall effect here!)
- Kernel notation:

$$w_h(\tilde{r}) = rac{lpha_n}{h^n} f(q) \qquad q \doteqdot rac{r}{h}$$

 α_n being a normalizing constant and *n* the space dimension.

• Example 1: the **Gaussian** kernel:

$$f\left(q\right)=e^{-q^{2}}$$

with $\alpha_n = \pi^{-n/2}$. $\widehat{w_h}(K^+) = e^{-\frac{K^{+2}}{4}}$ $F_1(K^+) = K^{+2}e^{-\frac{K^{+2}}{2}}$ $F_2(K^+) = 4\left(1 - e^{-\frac{K^{+2}}{4}}\right)$

The stability functions (2)

• Example 2: the Wendland kernel or order 5:

$$f\left(q
ight)=~\left(1-rac{q}{2}
ight)^4\left(1+2q
ight) \qquad ext{if}~~0\leq q\leq 2$$

with $\alpha_1 = 3/4$, $\alpha_2 = 7/4\pi$, $\alpha_3 = 21/16\pi$.

$$n = 1 : \widehat{w_h} \left(K^+ \right) = \frac{45}{2K^{+6}} \left(K^{+2} + \frac{1}{2} K^+ \sin 2K^+ - 2\sin^2 K^+ \right)$$

$$n = 2 : \widehat{w_h} \left(K^+ \right) = \frac{105}{4K^{+6}} \left[\begin{array}{c} 6K^{+2} J_0 \left(2K^+ \right) - K^+ J_1 \left(2K^+ \right) \\ + 3\pi \left(K^{+2} - \frac{5}{4} \right) Y \left(2K^+ \right) \end{array} \right]$$

$$n = 3 : \widehat{w_h} \left(K^+ \right) = \frac{315}{8K^{+8}} \left[\begin{array}{c} (12 - 2K^{+2}) \cos 2K^+ \\ + 9K^+ \sin 2K^+ + 8K^{+2} - 12 \end{array} \right]$$

 $Y(x) \doteqdot J_{1}(x) H_{0}(x) - J_{0}(x) H_{1}(x)$

where J_0 , J_1 are Bessel functions and H_0 , H_1 Struve functions (Abramovic and Stegun, 1972).

Function $F_1(K^+)$

Function $F_2(K^+)$

Stability domains

Numerical validation

- The 'infinite flow' test case
 - n = 2, square of 40 \times 40 particles
 - Double periodicity ('infinite flow')
 - ▶ **u**_{ref} = **0** by Galilean invariance
 - ▶ 1 % initial density discontinuity

$\rho = \rho_0$	$\rho = 1.01 \rho_0$
-----------------	----------------------

Stability domains: validation

• 'Infinite flow' test case in dimension n = 2

Maximum Reynolds number Re₀

- ▶ Numerically, $Re_0 \Rightarrow \frac{c_0 h}{\nu}$ could not exceed a **critical value** $Re_{crit} \sim 100$. This may be due to:
 - ► The discrete nature of SPH (tensile instability, see Swegle *et al.*, 1995), not explained by the present theory
 - Non-linear effects ($|\chi| \rightarrow 1$ when Re_0 is increased)

Maximum Reynolds number Re₀

- Numerically, $Re_0 \doteq \frac{c_0 h}{\nu}$ could not exceed a **critical value** $Re_{crit} \sim 100$. This may be due to:
 - ► The discrete nature of SPH (tensile instability, see Swegle *et al.*, 1995), not explained by the present theory
 - Non-linear effects ($|\chi| \rightarrow 1$ when Re_0 is increased)
- ► Physically, instabilities (**turbulence**) occur in fluids when $Re \doteq \frac{UL}{U}$ exceeds ~ 100 to 2000
 - ► By chance, with $c_0 \sim 10 U_{max}$, $Re_0 \sim 100 \iff Re \sim 100$ to 1000 (according to the space resolution $\frac{L}{h}$)
 - However, the SPH instability at large Re₀ is not representative of physical turbulence growth

Maximum Reynolds number Re₀

- Numerically, $Re_0 \doteq \frac{c_0 h}{\nu}$ could not exceed a **critical value** $Re_{crit} \sim 100$. This may be due to:
 - ► The discrete nature of SPH (tensile instability, see Swegle *et al.*, 1995), not explained by the present theory
 - Non-linear effects ($|\chi| \rightarrow 1$ when Re_0 is increased)
- ► Physically, instabilities (**turbulence**) occur in fluids when $Re \doteq \frac{UL}{u}$ exceeds ~ 100 to 2000
 - By chance, with $c_0 \sim 10 U_{max}$, $Re_0 \sim 100 \iff Re \sim 100$ to 1000 (according to the space resolution $\frac{L}{h}$)
 - However, the SPH instability at large Re₀ is not representative of physical turbulence growth
- **Solutions** to keep Re_0 below ~ 100 (c_0 cannot be decreased)
 - Decreasing h (finer space resolution): DNS
 - Increasing ν : RANS model with eddy viscosity closure

Re-scaling the kernels (1)

- The size of the **kernel support** is not only determined by h
- Dehnen and Aly, 2012 suggest to use as a measure of space resolution the kernel standard deviation σ in place of h:

$$\sigma^2 \doteq \frac{1}{n} \int_{\Omega} \tilde{r}^2 w_h(\tilde{r}) \, d\tilde{\mathbf{r}}$$

Dehnen, W., Aly, H. (2012), Mon. Not. R. Astron. Soc. 000:1-15

Re-scaling the kernels (2)

- $K^* \doteq \sigma K$ should now be used in place of $K^+ \doteq hK$
- ► The re-scaled kernel Fourier transforms ŵ_h (K^{*}) come much closer together, as well as F₁ (K^{*}) and F₂ (K^{*})
- As a consequence, so do the stability domains, with the new definitions:

Model variations (1)

• **Density interpolation** instead of continuity equation:

$$\rho_{\mathsf{a}} = \sum_{b} m_{b} w_{\mathsf{a}b}$$

- The theoretical stability domain is unchanged
- This is confirmed by numerical tests

Model variations (1)

• **Density interpolation** instead of continuity equation:

$$\rho_{\mathsf{a}} = \sum_{b} m_{b} w_{\mathsf{a}b}$$

- The theoretical stability domain is unchanged
- This is confirmed by numerical tests
- Modified gradient and divergence operators:

$$\mathbf{G}_{a}^{k} \{A_{b}\} \doteq \sum_{b} V_{b} \frac{\rho_{b}^{2k} A_{a} + \rho_{a}^{2k} A_{b}}{\left(\rho_{a} \rho_{b}\right)^{k}} \nabla w_{ab}$$
$$D_{a}^{k} \{\mathbf{A}_{b}\} \doteq -\frac{1}{\rho_{a}^{2k}} \sum_{b} V_{b} \left(\rho_{a} \rho_{b}\right)^{k} \left(\mathbf{A}_{a} - \mathbf{A}_{b}\right) \cdot \nabla w_{ab}$$

- Same conclusions as above
- ► Same thing with a 'minus' sign in the gradient, called **G**⁻_a

Effect of background pressure

• The **backround pressure** modifies the state equation:

$$p_{a} = rac{
ho_{0}c_{0}^{2}}{\gamma}\left(rac{
ho_{a}^{\gamma}}{
ho_{0}^{\gamma}} - 1 + D
ight)$$

► Note: this is only relevant with the G⁺_a (or G^k_a) SPH gradient operators, not with G⁻_a.

Effect of background pressure

The backround pressure modifies the state equation:

$$p_{a}=rac{
ho_{0}c_{0}^{2}}{\gamma}\left(rac{
ho_{a}^{\gamma}}{
ho_{0}^{\gamma}}-1+D
ight)$$

- ► Note: this is only relevant with the G⁺_a (or G^k_a) SPH gradient operators, not with G⁻_a.
- ► The theory remains unchanged except *F*₁:

$$F_{1}\left(K^{+}, \mathbf{p}^{+}
ight) \doteqdot K^{+2}\widehat{w_{h}}\left(K^{+}
ight)\left[\mathbf{p}^{+}+\left(1-\mathbf{p}^{+}
ight)\widehat{w_{h}}\left(K^{+}
ight)
ight]$$

where

$$p^+ \doteq \frac{2D}{\gamma} = \frac{2p_0}{\rho_0 c_0^2}$$

is a dimensionless background pressure.

Effect of background pressure: validation

▶ 'Infinite flow' test case, n = 2, Wendland kernel with \mathbf{G}_{a}^{+}

Model variations (2)

► Using Monaghan and Gingold (1983)'s SPH Laplacian:

$$\mathbf{L}^{MG} \{ \mathbf{A} \} \stackrel{:}{=} 2(n+2) \int_{\Omega} [\mathbf{A}(\mathbf{r}) - \mathbf{A}(\mathbf{r}')] \cdot \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^2} \nabla_{\mathbf{r}} w_h (|\mathbf{r} - \mathbf{r}'|) d\mathbf{r}'$$

$$\mathbf{L}^{MG}_a \{ \mathbf{A}_b \} \stackrel{:}{=} 2(n+2) \sum_b V_b (\mathbf{A}_a - \mathbf{A}_b) \cdot \frac{\mathbf{r}_{ab}}{r_{ab}^2} \nabla w_{ab}$$

Monaghan, J.J. and Gingold, R.A. (1983), J. Comput. Phys. 52(2):374-389

Model variations (2)

► Using Monaghan and Gingold (1983)'s SPH Laplacian:

$$\mathbf{L}^{MG} \{ \mathbf{A} \} \stackrel{:}{\Rightarrow} 2(n+2) \int_{\Omega} [\mathbf{A}(\mathbf{r}) - \mathbf{A}(\mathbf{r}')] \cdot \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^2} \nabla_{\mathbf{r}} w_h (|\mathbf{r} - \mathbf{r}'|) d\mathbf{r}'$$

$$\mathbf{L}^{MG}_{a} \{ \mathbf{A}_{b} \} \stackrel{:}{\Rightarrow} 2(n+2) \sum_{b} V_b (\mathbf{A}_{a} - \mathbf{A}_{b}) \cdot \frac{\mathbf{r}_{ab}}{r_{ab}^2} \nabla w_{ab}$$

► The function *F*² should then be modified as follows:

$$F_{2}^{MG}\left(K^{+}\right) \doteq \frac{n+2}{n} \left[F_{2}\left(K^{+}\right) + \left(n-1\right)b\left(K^{+}\right)\right]$$

where

$$b\left(K^{+}\right) \doteq \frac{2}{K^{+n}} \int_{0}^{K^{+}} \kappa^{n+1} \widehat{w_{h}}\left(\kappa\right) d\kappa$$

Monaghan, J.J. and Gingold, R.A. (1983), J. Comput. Phys. 52(2):374-389

Model variations (3)

'Infinite flow' case, Gaussian kernel with both Laplacians

Effect of the time marching scheme

Using old velocities to update positions and densities (fully explicit scheme), there is no more χ in the r-h-s:

$$\frac{\chi - 1}{\delta t} \mathbf{U}_{0} = \frac{ic_{0}}{h} \widehat{w_{h}} \left(K^{+} \right) R_{0} \mathbf{K}^{+} - \frac{\nu}{h^{2}} F_{2} \left(K^{+} \right) \mathbf{U}_{0}$$
$$\frac{\chi - 1}{\delta t} \mathbf{R}_{0} = \frac{c_{0}}{h} \mathbf{U}_{0}$$
$$\frac{\chi - 1}{\delta t} R_{0} = \frac{ic_{0}}{h} \widehat{w_{h}} \left(K^{+} \right) \mathbf{K}^{+} \cdot \mathbf{U}_{0}$$

Effect of the time marching scheme

Using old velocities to update positions and densities (fully explicit scheme), there is no more χ in the r-h-s:

$$\frac{\chi - 1}{\delta t} \mathbf{U}_{0} = \frac{ic_{0}}{h} \widehat{w_{h}} \left(K^{+} \right) R_{0} \mathbf{K}^{+} - \frac{\nu}{h^{2}} F_{2} \left(K^{+} \right) \mathbf{U}_{0}$$
$$\frac{\chi - 1}{\delta t} \mathbf{R}_{0} = \frac{c_{0}}{h} \mathbf{U}_{0}$$
$$\frac{\chi - 1}{\delta t} R_{0} = \frac{ic_{0}}{h} \widehat{w_{h}} \left(K^{+} \right) \mathbf{K}^{+} \cdot \mathbf{U}_{0}$$

The characteristic polynomial now reads:

$$\chi^2 + (A_2 - 2)\chi + 1 + A_1 - A_2 = 0$$

• The stability criterion $\forall \mathbf{K}^+, |\chi| \leq 1$ is modified:

$$C^2 \leqslant C_{\nu} \leqslant rac{2}{\lim_{K^+ \longrightarrow +\infty} F_2(K^+)}$$

Stability domains: fully explicit scheme

Fully explicit scheme: validation

 'Infinite flow' case in dimension n = 2, B-spline order 5 with fully explicit scheme

Maximum CFL number

• Plotting the maximum value of C vs Re_0 (n = 2)

Sensitivity to various parameters

- Some model options may be modified without modifications on the numerical results:
 - $h/\delta r = 1.2$ instead of 1.5
 - ► Random initial density noise instead of vertical discontinuity
 - Initial particle distribution: Cartesian or triangular packaging

- Some model options may be modified without modifications on the numerical results:
 - $h/\delta r = 1.2$ instead of 1.5
 - Random initial density noise instead of vertical discontinuity
 - Initial particle distribution: Cartesian or triangular packaging
- Effect of a velocity gradient:
 - ► Linearizing around a reference state with a uniform velocity gradient u_{ref} = ^z/_Te_x (T⁻¹ = rate of strain) gives a more complex eigenvalue problem
 - A polynomial of order 5 is obtained for χ , involving $C_T \doteq \frac{\delta t}{T}$
 - ► However, in practice C_T is so small that velocity gradients have almost no effect on the stability domain
 - This is confirmed by numerical experiments
 - Same conclusions for pressure gradients

Wall effect

- Including wall effects in the theory is not that easy:
 - Boundary integrals occur
 - Numerical waves are reflected onto the wall so that the resulting wave should fulfill the wall acoustic boundary condition
- ► Tests on a **Poiseuille flow** (with background pressure):

Application to 'real' flows (1)

- Experimental stability domain for:
 - The lid-driven cavity (steady, no free surface)
 - A water collapse on a wedge (unsteady, free surface)
- Simulations done by Agnès Leroy

'Real' 2-D flows, Wendland kernel

Conclusions (1)

- The present approach used two approximations:
 - Continuous SPH differential operators
 - Linearized forms of the governing equations
- The theory provides stability domains for the time step including the effects of various model options:
 - Arbitrary space dimension n
 - Kernel choice (through the $\widehat{w_h}$, F_1 and F_2 functions)
 - Continuity equation or density interpolation
 - Various gradient, divergence and laplacian forms
 - Background pressure
 - Various time marching schemes
- **Experimental tests** are in excellent agreement with the theory
- \blacktriangleright The numerical **Reynolds number** could nor exceed ~ 100
- Wall effects remain difficult to treat

Conclusions (2)

- The following recommendations follow:
 - ► The time step can be larger than in Morris et al.'s work
 - \blacktriangleright The stability domain is almost independent on the kernel for a given resolution σ
 - No matter the way the density is computed
 - No matter the forms of gradient or divergence operators
 - ► Morris et al.'s Laplacian is better than Monaghan and Gingold's
 - Do not use fully explicit time integration schemes

Conclusions (2)

- The following recommendations follow:
 - The time step can be larger than in Morris et al.'s work
 - The stability domain is almost independent on the kernel for a given resolution σ
 - No matter the way the density is computed
 - No matter the forms of gradient or divergence operators
 - Morris et al.'s Laplacian is better than Monaghan and Gingold's
 - Do not use fully explicit time integration schemes
- Other features can be treated the same way:
 - ► Surface tension: $C \leq f(C_{\nu}, C_{\beta}), C_{\beta} \doteqdot \frac{\beta \delta t^2}{\rho_0 h^3} = \frac{C^2}{We_0}$ ► Density smoothing, Incompressible SPH

 - Solids, MHD and other kinds of Physics
 - Higher order time marching schemes (Leapfrog, etc.), but they lead to higher degree polynomials for χ
 - Similar methods: MPS, FVPM, DPD, etc.

Further references

- Violeau, D., Fluid Mechanics and the SPH Method. Theory and Applications, Oxford Univ. Press, 2012.
- Violeau, D. and Leroy, A., Maximum time step for keeping numerical stability of viscous weakly compressible SPH, submitted to the J. Comput. Phys.

Merci de votre attention.

Contact: damien.violeau@edf.fr

Velocity gradient: validation

 'Infinite flow' case, n = 2, with sinusoidal velocity field (note: background pressure was necessary in this case)

... with a continuous time

• If we consider the **time** as **continuous** (no time scheme):

$$i\omega \mathbf{U}_{0} = \frac{ic_{0}}{h}\widehat{w}_{h}(K^{+})R_{0}\mathbf{K}^{+} - \frac{\nu}{h^{2}}F_{2}(K^{+})\mathbf{U}_{0}$$

$$i\omega \mathbf{R}_{0} = \frac{c_{0}}{h}\mathbf{U}_{0}$$

$$i\omega R_{0} = \frac{ic_{0}}{h}\widehat{w}_{h}(K^{+})\mathbf{K}^{+}\cdot\mathbf{U}_{0}$$

... with a continuous time

If we consider the time as continuous (no time scheme):

$$i\omega \mathbf{U}_{0} = \frac{ic_{0}}{h}\widehat{w_{h}}(K^{+})R_{0}\mathbf{K}^{+} - \frac{\nu}{h^{2}}F_{2}(K^{+})\mathbf{U}_{0}$$
$$i\omega \mathbf{R}_{0} = \frac{c_{0}}{h}\mathbf{U}_{0}$$
$$i\omega R_{0} = \frac{ic_{0}}{h}\widehat{w_{h}}(K^{+})\mathbf{K}^{+}\cdot\mathbf{U}_{0}$$

The dispersion relation reads

$$\omega = \frac{\nu}{2h^{2}}F_{2}\left(K^{+}\right)\left[i \pm \sqrt{4Re_{0}^{2}\frac{F_{1}\left(K^{+}\right)}{F_{2}\left(K^{+}\right)^{2}}-1}\right]$$

• Im $\omega \ge 0$ for all K^+ : the system is **always stable**!