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Time-stepping for WCSPH (1)

I The Lagrangian nature of SPH enhances numerical
instabilities

I One of the most important stability conditions requires the
time step to be bounded: δt ≤ δtcrit

I The critical time step δtcrit should depend on the numerical
parameters:

I fluid reference density ρ0

I fluid (or numerical) kinematic viscosity ν
I numerical speed of sound c0

I smoothing length h

I Thus, dimensional analysis gives δtcrit =
h

c0
φ(

c0h

ν
)

I ρ0 has been removed as the only parameter depending on mass
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Time-stepping for WCSPH (2)

I Notation:

I CFL number: C +
c0δt

h

I Fourier number: Cν +
νδt

h2

I Numerical Reynolds number: Re0 +
c0h

ν
=

C

Cν

I Thus, the stability condition reads C ≤ φ(Re0) or C ≤ ψ(Cν)

I e.g. Morris et al., 1997 suggest two empirical conditions:

I Acoustic condition: C ≤ 0.4
I Viscous condition: Cν ≤ 0.125
I ... or C ≤ min(0.4; 0.125Re0)

I The present work aims at deriving a theoretical time-stepping
condition for WCSPH, i.e. a theoretical function ψ

Morris, J.P., Fox, P.J., Zhu, Y. (1997), J. Comput. Phys. 136:214–226
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SPH gradient operators

I Basic continuous SPH gradient (no wall effects!):

∇A (r) ≈
∫

Ω

∇A (r′)wh (|r − r′|) dr′

=
���

���
���

���
��∫

∂Ω

A (r′)wh (|r − r′|) n′dΓ′ +

∫
Ω

A (r′)∇rwh (|r − r′|) dr′

∇A (r) = ρ (r)∇A

ρ
(r) +

A

ρ
(r)∇ρ (r)

=

∫
Ω

ρ (r′)2 A (r) + ρ (r)2 A (r′)

ρ (r) ρ (r′)
∇rwh (|r − r′|) dr′ + G+ {A} (r)

I Discrete SPH gradient:

G+
a {Ab} + ρa

∑
b

mb

(
Aa

ρ2
a

+
Ab

ρ2
b

)
∇wab
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Other SPH operators

I SPH divergence:

D− {A} (r) +
∫

Ω

ρ (r′)

ρ (r)
[A (r′)− A (r)] · ∇rwh (|r − r′|) dr′

D−a {Ab} +
1

ρa

∑
b

mb (Ab − Aa) · ∇wab

I SPH Laplacian:

L {A} (r) + 2

∫
Ω

[A (r)− A (r′)]
r − r′

|r − r′|2
· ∇rwh (|r − r′|) dr′

La {Ab} + 2
∑
b

Vb (Aa − Ab)
rab
r 2
ab

· ∇wab

I Other formulae exist (see later)
I Complete formulae involve boudary terms (no wall effects here!)
I Discrete operators should be renormalized for consistency
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Standard WCSPH model

I Discrete form of the Lagrangian Navier-Stokes equations:

u̇a = − 1

ρa
G+

a {pb}+
µ

ρa
La {ub}

ṙa = ua

ρ̇a = −ρaD−a {ub}

pa =
ρ0c

2
0

γ

(
ργa
ργ0
− 1

)
I Definitions:

I µ + ρ0ν: dynamic viscosity
I c0 is set as 10Umax to ensure weakly compressible flow
I γ = 7 for water (Monaghan, 1994)

I Note: a time marching scheme is also required (see later)

Monaghan, J.J. (1994), J. Comput. Phys. 110:399–406
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Von Neumann stability analysis

I Principles of a von Neumann stability analysis:
I Writing the governing equations Ẋ = g (X)
I Identifying a reference state Xref satisfying Ẋref = g (Xref )
I Searching a perturbated solution X = Xref + δX by linearizing:

δẊ = δg (X) =

(
∂g

∂X

)
X=Xref

δX

I Searching wave-like solutions: δX = X0e
−iK·r+iωt

I The linearized system gives a dispersion relation, i.e. a relation
between the wave vector K and the angular frequency ω = ω (K)

I Stability criteria:
I Physical equations (continuous time): ∀K, Imω ≥ 0
I Numerical model (discrete time): ∀K, |χ| ≤ 1, where χ + e iωδt

is the (numerical) wave amplification factor
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Linearization of the SPH equations

I X represents the set of all particle parameters ua, ra and ρa
I Possible reference state: constant velocity and density, i.e. we

search ua = uref + δua, ra = ra,ref + δra, ρa = ρref + δρa :

δ
[
ρaD

−
a {ub}

]
= δ

[∑
b

mb (ub − ua) · ∇wab

]

=
∑
b

mb

[
(δub − δua) · ∇wab +

((((
(((

((((
(((

(((

(uref − uref ) · ∇∇wab (δra − δrb)

]

I The last term vanishes, so:

δρ̇a = −δ
[
ρaD

−
a {ub}

]
≈ ρ0

∫
Ω

[δua − δu (r′)] · ∇rawh (|ra − r′|) dr′

I Note: starting from continuous SPH would be easier!
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Discrete or continuous?

I The stability of SPH can be studied from two ways:
I Discrete: Cartesian grid, one neighbour in each direction
I Continuous: ignores the discrete nature of SPH

Space dimension n 1 arbitrary

Discrete Swegle et al., 1995 De Leffe, 2011

Morris, 1996 Dehnen & Aly, 2012

Continuous Balsara, 1995 Dehnen & Aly, 2012

Present work

a

b

r

r'

a

Swegle, J.W., Hicks, D.L., Attaway, S.W. (1995), J. Comput. Phys. 116:123–134

Morris, J.P. (1996), Ph.D. thesis, Melbourne

De Leffe, M. (2011), Ph.D. thesis, Ecole Centrale de Nantes (in French)

Balsara, D.S. (1995), J. Comput. Phys. 121:357–372

Dehnen, W., Aly, H. (2012), Mon. Not. R. Astron. Soc. 000:1–15
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Solutions in the Fourier space

I We now search solutions as δua = c0U (t) e−iK·ra , K being a
numerical wave vector:

δρ̇a = ρ0c0U (t) ·
∫

Ω

(
e−iK·ra − e−iK·r

′
)
∇rawh (|ra − r′|) dr′

I With the variable change r̃ + r′ − ra, i.e. ∇ra = −∇r̃ :

e iK·raδρ̇a = ρ0c0U (t) ·
∫

Ω

(
e−iK·̃r − 1

)
∇r̃wh (r̃) d r̃

= ρ0c0U (t) · ∇̂r̃wh (K )

= iρ0c0ŵh (K )K ·U (t)

I The Fourier transform of the kernel is thus important in
studying the numerical stability properties of SPH.
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Linearized WCSPH system

I Similarly to the velocity, positions and density are searched for
in the following forms:
I δra = hR (t) e−iK·ra

I δρa = ρ0R (t) e−iK·ra

I After some algebra the linearized WCSPH system reads:

U̇ (t) =
ic0

h
ŵh

(
K+
)
R (t) K+ − ν

h2
F2

(
K+
)
U (t)

Ṙ (t) =
c0

h
U (t)

Ṙ (t) =
ic0

h
ŵh

(
K+
)
K+ ·U (t)

I K+ + hK is the dimensionless wavevector, K+ + |K+| and

F2

(
K+
)
+ 2h2

∫
Ω

(
e−iK·̃r − 1

) r̃

r̃ 2
· ∇r̃wh (r̃) d r̃
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Time marching scheme

I We first consider a first order semi-explicit scheme:

I Time derivatives are approximated as U̇ (t) =
U(tm+1)−U(tm)

δt
I Updated velocities are used to compute positions and densities
I We search all functions of time as U (t) = U0e

iωt , etc.

I The linear system now reads:

χ− 1

δt
U0 =

ic0

h
ŵh

(
K+
)
R0K+ − ν

h2
F2

(
K+
)
U0

χ− 1

δt
R0 = χ

c0

h
U0

χ− 1

δt
R0 = χ

ic0

h
ŵh

(
K+
)
K+ ·U0

I Recall χ + e iωδt is the numerical wave amplification factor.
The stability condition reads ∀K+, |χ| ≤ 1.
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The eigenvalue problem

I Rearranging the system leads to an eigenvalue problem:

χA1

(
K+ ⊗K+

)
U0 = − (χ− 1 + A2) (χ− 1)K+2U0

I New notation:
A1 + C 2F1

(
K+
)

A2 + CνF2

(
K+
)

F1

(
K+
)

+
[
K+ŵh

(
K+
)]2

I Integration by parts (no wall effect!) gives:

F ′2
(
K+
)

= 2K+ŵh

(
K+
)

= 2
√

F1 (K+)

I Recall:
C +

c0δt

h
Cν +

νδt

h2
=

C

Re0
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Stability criterion

I The tensor K+ ⊗K+ has two eigenvalues: 0 and K+2

I Only the second is important to investigate. It gives the
following characteristic polynomial:

χ2 + (A1 + A2 − 2)χ + 1− A2 = 0

I The roots satisfy the stability criterion ∀K+, |χ| ≤ 1 if and only
if A1 + 2A2 ≤ 4 for all wavenumbers, i.e.:

C ≤

√
2min

K+

2− CνF2 (K+)

F1 (K+)
= ψ(Cν)

I For comparison, recall Morris et al.’s ’traditional’ empirical criteria:
C ≤ 0.4 and Cν ≤ 0.125
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The stability functions (1)

I Note: ŵh, F1 and F2 depend on K+ + |K+| only for isotropy
reasons (no wall effect here!)

I Kernel notation:

wh (r̃) =
αn

hn
f (q) aaaq +

r̃

h

αn being a normalizing constant and n the space dimension.

I Example 1: the Gaussian kernel:

f (q) = e−q
2

with αn = π−n/2.

ŵh

(
K+
)

= e−
K+2

4

F1

(
K+
)

= K+2e−
K+2

2 aaaF2

(
K+
)

= 4
(

1− e−
K+2

4

)
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The stability functions (2)

I Example 2: the Wendland kernel or order 5:

f (q) =
(

1− q

2

)4

(1 + 2q) if 0 ≤ q ≤ 2

with α1 = 3/4, α2 = 7/4π, α3 = 21/16π.

n = 1 : ŵh

(
K+
)

= 45
2K+6

(
K+2 + 1

2
K+ sin 2K+ − 2 sin2 K+

)
n = 2 : ŵh

(
K+
)

= 105
4K+6

[
6K+2J0 (2K+)− K+J1 (2K+)

+3π
(
K+2 − 5

4

)
Y (2K+)

]
n = 3 : ŵh

(
K+
)

= 315
8K+8

[
(12− 2K+2) cos 2K+

+9K+ sin 2K+ + 8K+2 − 12

]
Y (x) + J1 (x)H0 (x)− J0 (x)H1 (x)

where J0, J1 are Bessel functions and H0, H1 Struve functions
(Abramovic and Stegun, 1972).
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Function ŵh

(
K+
)

0.0

0.2

0.4

0.6

0.8

1.0
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w
h(
K

+
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K+

Gaussian
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B-Spline order 3, n=2
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B-Spline order 4, n=1
B-Spline order 4, n=2
B-Spline order 4, n=3
B-Spline order 5, n=1
B-Spline order 5, n=2
B-Spline order 5, n=3

18 / 44



Function F1
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Function F2
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Stability domains

C ≤

√
2min

K+

2− CνF2 (K+)

F1 (K+)
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Numerical validation

I The ’infinite flow’ test case
I n = 2, square of 40 × 40 particles
I Double periodicity (’infinite flow’)
I uref = 0 by Galilean invariance
I 1 % initial density discontinuity
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Stability domains: validation

I ’Infinite flow’ test case in dimension n = 2
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Maximum Reynolds number Re0

I Numerically, Re0 + c0h
ν

could not exceed a critical value
Recrit ∼ 100. This may be due to:
I The discrete nature of SPH (tensile instability, see Swegle et al.,

1995), not explained by the present theory
I Non-linear effects (|χ| −→ 1 when Re0 is increased)

I Physically, instabilities (turbulence) occur in fluids when
Re + UL

ν
exceeds ∼ 100 to 2000

I By chance, with c0 ∼ 10Umax , Re0 ∼ 100⇐⇒ Re ∼ 100 to 1000
(according to the space resolution L

h )
I However, the SPH instability at large Re0 is not representative of

physical turbulence growth

I Solutions to keep Re0 below ∼ 100 (c0 cannot be decreased)
I Decreasing h (finer space resolution): DNS
I Increasing ν: RANS model with eddy viscosity closure
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Re-scaling the kernels (1)

I The size of the kernel support is not only determined by h
I Dehnen and Aly, 2012 suggest to use as a measure of space

resolution the kernel standard deviation σ in place of h:

σ2 +
1

n

∫
Ω

r̃ 2wh (r̃) d r̃

H=2h

wh(q)

H=3h

Wendland

B-Spline 5

Dehnen, W., Aly, H. (2012), Mon. Not. R. Astron. Soc. 000:1–15
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Re-scaling the kernels (2)

I K ∗ + σK should now be used in place of K+ + hK

I The re-scaled kernel Fourier transforms ŵh (K ∗) come much
closer together, as well as F1 (K ∗) and F2 (K ∗)

I As a consequence, so do the stability domains, with the new
definitions:

C ∗ +
c0δt

σ
C ∗ν +

νδt
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Model variations (1)

I Density interpolation instead of continuity equation:

ρa =
∑
b

mbwab

I The theoretical stability domain is unchanged
I This is confirmed by numerical tests

I Modified gradient and divergence operators:

Gk
a {Ab} +

∑
b

Vb
ρ2k
b Aa + ρ2k

a Ab

(ρaρb)k
∇wab

Dk
a {Ab} + − 1

ρ2k
a

∑
b

Vb (ρaρb)k (Aa − Ab) · ∇wab

I Same conclusions as above
I Same thing with a ’minus’ sign in the gradient, called G−a
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Effect of background pressure

I The backround pressure modifies the state equation:

pa =
ρ0c

2
0

γ

(
ργa
ργ0
− 1 + D

)
I Note: this is only relevant with the G+

a (or Gk
a) SPH gradient

operators, not with G−a .

I The theory remains unchanged except F1:

F1

(
K+, p+

)
+ K+2ŵh

(
K+
) [

p+ +
(
1− p+

)
ŵh

(
K+
)]

where
p+ +

2D

γ
=

2p0

ρ0c2
0

is a dimensionless background pressure.
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Effect of background pressure: validation

I ’Infinite flow’ test case, n = 2, Wendland kernel with G+
a
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Model variations (2)

I Using Monaghan and Gingold (1983)’s SPH Laplacian:

LMG {A} + 2 (n + 2)

∫
Ω

[A (r)− A (r′)] · r − r′

|r − r′|2
∇rwh (|r − r′|) dr′

LMG
a {Ab} + 2 (n + 2)

∑
b

Vb (Aa − Ab) · rab
r 2
ab

∇wab

I The function F2 should then be modified as follows:

FMG
2

(
K+
)
+

n + 2

n

[
F2

(
K+
)

+ (n − 1) b
(
K+
)]

where
b
(
K+
)
+

2

K+n

∫ K+

0

κn+1ŵh (κ)dκ

Monaghan, J.J. and Gingold, R.A. (1983), J. Comput. Phys. 52(2):374–389
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Model variations (3)

I ’Infinite flow’ case, Gaussian kernel with both Laplacians
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Effect of the time marching scheme

I Using old velocities to update positions and densities (fully
explicit scheme), there is no more χ in the r-h-s:

χ− 1

δt
U0 =

ic0

h
ŵh

(
K+
)
R0K+ − ν

h2
F2

(
K+
)
U0

χ− 1

δt
R0 =

c0

h
U0

χ− 1

δt
R0 =

ic0

h
ŵh

(
K+
)
K+ ·U0

I The characteristic polynomial now reads:

χ2 + (A2 − 2)χ + 1 + A1 − A2 = 0

I The stability criterion ∀K+, |χ| ≤ 1 is modified:

C 2 6 Cν 6
2

lim
K+−→+∞

F2 (K+)
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Stability domains: fully explicit scheme

C 2 6 Cν 6
2

lim
K+−→+∞

F2 (K+)
Similar to De Leffe, 2011
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Fully explicit scheme: validation

I ’Infinite flow’ case in dimension n = 2, B-spline order 5 with
fully explicit scheme

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.5 1.0 1.5 2.0 2.5

C
ν

C

Theory
NumericalRe  = 0.1         1 0

1.41

1.5

1.7

2

2.5

3

4
5

8

— Theory

◦ Numerical

34 / 44



Maximum CFL number

I Plotting the maximum value of C vs Re0 (n = 2)
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Sensitivity to various parameters

I Some model options may be modified without modifications
on the numerical results:
I h/δr = 1.2 instead of 1.5
I Random initial density noise instead of vertical discontinuity
I Initial particle distribution: Cartesian or triangular packaging

I Effect of a velocity gradient:
I Linearizing around a reference state with a uniform velocity

gradient uref = z
T ex (T−1 = rate of strain) gives a more

complex eigenvalue problem
I A polynomial of order 5 is obtained for χ, involving CT + δt

T
I However, in practice CT is so small that velocity gradients have

almost no effect on the stability domain
I This is confirmed by numerical experiments
I Same conclusions for pressure gradients
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Wall effect

I Including wall effects in the theory is not that easy:
I Boundary integrals occur
I Numerical waves are reflected onto the wall so that the resulting

wave should fulfill the wall acoustic boundary condition

I Tests on a Poiseuille flow (with background pressure):
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Application to ’real’ flows (1)

I Experimental stability domain for:
I The lid-driven cavity (steady, no free surface)
I A water collapse on a wedge (unsteady, free surface)

I Simulations done by Agnès Leroy
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Application to ’real’ flows (2)

I ’Real’ 2-D flows, Wendland kernel
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Conclusions (1)

I The present approach used two approximations:
I Continuous SPH differential operators
I Linearized forms of the governing equations

I The theory provides stability domains for the time step
including the effects of various model options:
I Arbitrary space dimension n
I Kernel choice (through the ŵh, F1 and F2 functions)
I Continuity equation or density interpolation
I Various gradient, divergence and laplacian forms
I Background pressure
I Various time marching schemes

I Experimental tests are in excellent agreement with the theory

I The numerical Reynolds number could nor exceed ∼ 100

I Wall effects remain difficult to treat
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Conclusions (2)

I The following recommendations follow:
I The time step can be larger than in Morris et al.’s work
I The stability domain is almost independent on the kernel for a

given resolution σ
I No matter the way the density is computed
I No matter the forms of gradient or divergence operators
I Morris et al.’s Laplacian is better than Monaghan and Gingold’s
I Do not use fully explicit time integration schemes

I Other features can be treated the same way:

I Surface tension: C ≤ f (Cν ,Cβ), Cβ + βδt2

ρ0h3 = C2

We0
I Density smoothing, Incompressible SPH
I Solids, MHD and other kinds of Physics
I Higher order time marching schemes (Leapfrog, etc.), but they

lead to higher degree polynomials for χ
I Similar methods: MPS, FVPM, DPD, etc.
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Further references
I Violeau, D., Fluid Mechanics and the SPH Method. Theory and Applications, Oxford

Univ. Press, 2012.

I Violeau, D. and Leroy, A., Maximum time step for keeping numerical stability of viscous
weakly compressible SPH, submitted to the J. Comput. Phys.

a Merci de votre attention.
aa Contact: damien.violeau@edf.fr
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Velocity gradient: validation

I ’Infinite flow’ case, n = 2, with sinusoidal velocity field (note:
background pressure was necessary in this case)
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... with a continuous time

I If we consider the time as continuous (no time scheme):

iωU0 =
ic0

h
ŵh

(
K+
)
R0K+ − ν

h2
F2

(
K+
)
U0

iωR0 =
c0

h
U0

iωR0 =
ic0

h
ŵh

(
K+
)
K+ ·U0

I The dispersion relation reads

ω =
ν

2h2
F2

(
K+
) [

i ±

√
4Re0

2
F1 (K+)

F2 (K+)2
− 1

]

I Imω ≥ 0 for all K+: the system is always stable!
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