Numerical Stability of SPH for Weakly Compressible Viscous Flows: Optimal Time-Stepping

Damien Violeau

EDF R\&D - LNHE + LHSV, Chatou, France

Outline

- Brief recall of the WCSPH tools
- SPH Von Neumann stability analysis
- Validation against numerical tests
- Model variations and applications to real flows
- Conclusions and recommendations

Time-stepping for WCSPH (1)

- The Lagrangian nature of SPH enhances numerical instabilities
- One of the most important stability conditions requires the time step to be bounded: $\delta t \leq \delta t_{\text {crit }}$

Time-stepping for WCSPH (1)

- The Lagrangian nature of SPH enhances numerical instabilities
- One of the most important stability conditions requires the time step to be bounded: $\delta t \leq \delta t_{\text {crit }}$
- The critical time step $\delta t_{\text {crit }}$ should depend on the numerical parameters:
- fluid reference density ρ_{0}
- fluid (or numerical) kinematic viscosity ν
- numerical speed of sound c_{0}
- smoothing length h
- Thus, dimensional analysis gives $\delta t_{c r i t}=\frac{h}{c_{0}} \phi\left(\frac{c_{0} h}{\nu}\right)$
- ρ_{0} has been removed as the only parameter depending on mass

Time-stepping for WCSPH (2)

- Notation:
- CFL number: $C \doteqdot \frac{c_{0} \delta t}{h}$
- Fourier number: $C_{\nu} \doteqdot \frac{\nu \delta t}{h^{2}}$
- Numerical Reynolds number: $R e_{0} \doteqdot \frac{C_{0} h}{\nu}=\frac{C}{C_{\nu}}$
- Thus, the stability condition reads $C \leq \phi\left(R e_{0}\right)$ or $C \leq \psi\left(C_{\nu}\right)$

Time-stepping for WCSPH (2)

- Notation:
- CFL number: $C \doteqdot \frac{c_{0} \delta t}{h}$
- Fourier number: $C_{\nu} \doteqdot \frac{\nu \delta t}{h^{2}}$
- Numerical Reynolds number: $R e_{0} \doteqdot \frac{c_{0} h}{\nu}=\frac{C}{C_{\nu}}$
- Thus, the stability condition reads $C \leq \phi\left(R e_{0}\right)$ or $C \leq \psi\left(C_{\nu}\right)$
- e.g. Morris et al., 1997 suggest two empirical conditions:
- Acoustic condition: C ≤ 0.4
- Viscous condition: $C_{\nu} \leq 0.125$
- ... or $C \leq \min \left(0.4 ; 0.125 R e_{0}\right)$

Time-stepping for WCSPH (2)

- Notation:
- CFL number: $C \doteqdot \frac{c_{0} \delta t}{h}$
- Fourier number: $C_{\nu} \doteqdot \frac{\nu \delta t}{h^{2}}$
- Numerical Reynolds number: $R e_{0} \doteqdot \frac{c_{0} h}{\nu}=\frac{C}{C_{\nu}}$
- Thus, the stability condition reads $C \leq \phi\left(R e_{0}\right)$ or $C \leq \psi\left(C_{\nu}\right)$
- e.g. Morris et al., 1997 suggest two empirical conditions:
- Acoustic condition: $C \leq 0.4$
- Viscous condition: $C_{\nu} \leq 0.125$
- ... or $C \leq \min \left(0.4 ; 0.125 R e_{0}\right)$
- The present work aims at deriving a theoretical time-stepping condition for WCSPH, i.e. a theoretical function ψ

SPH gradient operators

- Basic continuous SPH gradient (no wall effects!):

$$
\begin{aligned}
\nabla A(\mathbf{r}) & \approx \int_{\Omega} \nabla A\left(\mathbf{r}^{\prime}\right) w_{h}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) d \mathbf{r}^{\prime} \\
& =\int_{\partial \Omega} A\left(\mathbf{r}^{\prime}\right) w_{h}\left(\left|r-\mathbf{r}^{\prime}\right|\right) n^{\prime} d \Gamma^{\prime}+\int_{\Omega} A\left(\mathbf{r}^{\prime}\right) \nabla_{\mathbf{r}} w_{h}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) d \mathbf{r}^{\prime} \\
\nabla A(\mathbf{r}) & =\rho(\mathbf{r}) \nabla \frac{A}{\rho}(\mathbf{r})+\frac{A}{\rho}(\mathbf{r}) \nabla \rho(\mathbf{r}) \\
= & \int_{\Omega} \frac{\rho\left(\mathbf{r}^{\prime}\right)^{2} A(\mathbf{r})+\rho(\mathbf{r})^{2} A\left(\mathbf{r}^{\prime}\right)}{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)} \nabla_{\mathbf{r}} w_{h}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) d \mathbf{r}^{\prime} \doteqdot \mathbf{G}^{+}\{A\}(\mathbf{r})
\end{aligned}
$$

SPH gradient operators

- Basic continuous SPH gradient (no wall effects!):

$$
\begin{aligned}
\nabla A(\mathbf{r}) & \approx \int_{\Omega} \nabla A\left(\mathbf{r}^{\prime}\right) w_{h}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) d \mathbf{r}^{\prime} \\
& =\int_{\partial \Omega} A\left(\mathbf{r}^{\prime}\right) w_{h}\left(\left|r-\mathbf{r}^{\prime}\right|\right) n^{\prime} d \Gamma^{\prime}+\int_{\Omega} A\left(\mathbf{r}^{\prime}\right) \nabla_{\mathbf{r}} w_{h}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) d \mathbf{r}^{\prime}
\end{aligned}
$$

$$
\nabla A(\mathbf{r})=\rho(\mathbf{r}) \nabla \frac{A}{\rho}(\mathbf{r})+\frac{A}{\rho}(\mathbf{r}) \nabla \rho(\mathbf{r})
$$

$$
=\int_{\Omega} \frac{\rho\left(\mathbf{r}^{\prime}\right)^{2} A(\mathbf{r})+\rho(\mathbf{r})^{2} A\left(\mathbf{r}^{\prime}\right)}{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)} \nabla_{\mathbf{r}} w_{h}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) d \mathbf{r}^{\prime} \doteqdot \mathbf{G}^{+}\{A\}(\mathbf{r})
$$

- Discrete SPH gradient:

$$
\mathbf{G}_{a}^{+}\left\{A_{b}\right\} \doteqdot \rho_{a} \sum_{b} m_{b}\left(\frac{A_{a}}{\rho_{a}^{2}}+\frac{A_{b}}{\rho_{b}^{2}}\right) \nabla w_{a b}
$$

Other SPH operators

- SPH divergence:

$$
\begin{aligned}
D^{-}\{\mathbf{A}\}(\mathbf{r}) & \doteqdot \int_{\Omega} \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\rho(\mathbf{r})}\left[\mathbf{A}\left(\mathbf{r}^{\prime}\right)-\mathbf{A}(\mathbf{r})\right] \cdot \nabla_{\mathbf{r}} w_{h}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) d \mathbf{r}^{\prime} \\
D_{a}^{-}\left\{\mathbf{A}_{b}\right\} & \doteqdot \frac{1}{\rho_{a}} \sum_{b} m_{b}\left(\mathbf{A}_{b}-\mathbf{A}_{a}\right) \cdot \nabla w_{a b}
\end{aligned}
$$

Other SPH operators

- SPH divergence:

$$
\begin{aligned}
D^{-}\{\mathbf{A}\}(\mathbf{r}) & \doteqdot \int_{\Omega} \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\rho(\mathbf{r})}\left[\mathbf{A}\left(\mathbf{r}^{\prime}\right)-\mathbf{A}(\mathbf{r})\right] \cdot \nabla_{\mathbf{r}} w_{h}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) d \mathbf{r}^{\prime} \\
D_{a}^{-}\left\{\mathbf{A}_{b}\right\} & \doteqdot \frac{1}{\rho_{a}} \sum_{b} m_{b}\left(\mathbf{A}_{b}-\mathbf{A}_{a}\right) \cdot \nabla w_{a b}
\end{aligned}
$$

- SPH Laplacian:
$\mathbf{L}\{\mathbf{A}\}(\mathbf{r}) \doteqdot 2 \int_{\Omega}\left[\mathbf{A}(\mathbf{r})-\mathbf{A}\left(\mathbf{r}^{\prime}\right)\right] \frac{\mathbf{r}-\mathbf{r}^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}} \cdot \nabla_{\mathbf{r}} w_{h}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) d \mathbf{r}^{\prime}$
$\mathbf{L}_{a}\left\{\mathbf{A}_{b}\right\} \doteqdot 2 \sum_{b} V_{b}\left(\mathbf{A}_{a}-\mathbf{A}_{b}\right) \frac{\mathbf{r}_{a b}}{r_{a b}^{2}} \cdot \nabla w_{a b}$
- Other formulae exist (see later)
- Complete formulae involve boudary terms (no wall effects here!)
- Discrete operators should be renormalized for consistency

Standard WCSPH model

- Discrete form of the Lagrangian Navier-Stokes equations:

$$
\begin{aligned}
\dot{\mathbf{u}}_{a} & =-\frac{1}{\rho_{a}} \mathbf{G}_{a}^{+}\left\{p_{b}\right\}+\frac{\mu}{\rho_{a}} \mathbf{L}_{a}\left\{\mathbf{u}_{b}\right\} \\
\dot{\mathbf{r}}_{a} & =\mathbf{u}_{a} \\
\dot{\rho}_{a} & =-\rho_{a} D_{a}^{-}\left\{\mathbf{u}_{b}\right\} \\
p_{a} & =\frac{\rho_{0} c_{0}^{2}}{\gamma}\left(\frac{\rho_{a}^{\gamma}}{\rho_{0}^{\gamma}}-1\right)
\end{aligned}
$$

- Definitions:
- $\mu \doteqdot \rho_{0} \nu$: dynamic viscosity
- c_{0} is set as $10 U_{\max }$ to ensure weakly compressible flow
- $\gamma=7$ for water (Monaghan, 1994)
- Note: a time marching scheme is also required (see later)

Von Neumann stability analysis

- Principles of a von Neumann stability analysis:
- Writing the governing equations $\dot{\mathbf{X}}=\mathbf{g}(\mathbf{X})$
- Identifying a reference state $\mathbf{X}_{\text {ref }}$ satisfying $\dot{\mathbf{X}}_{\text {ref }}=\mathbf{g}\left(\mathbf{X}_{r e f}\right)$
- Searching a perturbated solution $\mathbf{X}=\mathbf{X}_{\text {ref }}+\delta \mathbf{X}$ by linearizing:

$$
\delta \dot{\mathbf{X}}=\delta \mathbf{g}(\mathbf{X})=\left(\frac{\partial \mathbf{g}}{\partial \mathbf{X}}\right)_{\mathbf{X}=\mathbf{x}_{\text {ref }}} \delta \mathbf{X}
$$

Von Neumann stability analysis

- Principles of a von Neumann stability analysis:
- Writing the governing equations $\dot{\mathbf{X}}=\mathbf{g}(\mathbf{X})$
- Identifying a reference state $\mathbf{X}_{r e f}$ satisfying $\dot{\mathbf{X}}_{r e f}=\mathbf{g}\left(\mathbf{X}_{r e f}\right)$
- Searching a perturbated solution $\mathbf{X}=\mathbf{X}_{\text {ref }}+\delta \mathbf{X}$ by linearizing:

$$
\delta \dot{\mathbf{X}}=\delta \mathbf{g}(\mathbf{X})=\left(\frac{\partial \mathbf{g}}{\partial \mathbf{X}}\right)_{\mathbf{X}=\mathbf{x}_{\text {ref }}} \delta \mathbf{X}
$$

- Searching wave-like solutions: $\delta \mathbf{X}=\mathbf{X}_{0} e^{-i \mathbf{K} \cdot \mathbf{r}+i \omega t}$
- The linearized system gives a dispersion relation, i.e. a relation between the wave vector \mathbf{K} and the angular frequency $\omega=\omega(\mathbf{K})$

Von Neumann stability analysis

- Principles of a von Neumann stability analysis:
- Writing the governing equations $\dot{\mathbf{X}}=\mathbf{g}(\mathbf{X})$
- Identifying a reference state $\mathbf{X}_{r e f}$ satisfying $\dot{\mathbf{X}}_{r e f}=\mathbf{g}\left(\mathbf{X}_{r e f}\right)$
- Searching a perturbated solution $\mathbf{X}=\mathbf{X}_{\text {ref }}+\delta \mathbf{X}$ by linearizing:

$$
\delta \dot{\mathbf{X}}=\delta \mathbf{g}(\mathbf{X})=\left(\frac{\partial \mathbf{g}}{\partial \mathbf{X}}\right)_{\mathbf{X}=\mathbf{x}_{r e f}} \delta \mathbf{X}
$$

- Searching wave-like solutions: $\delta \mathbf{X}=\mathbf{X}_{0} e^{-i \mathbf{K} \cdot \mathbf{r}+i \omega t}$
- The linearized system gives a dispersion relation, i.e. a relation between the wave vector \mathbf{K} and the angular frequency $\omega=\omega(\mathbf{K})$
- Stability criteria:
- Physical equations (continuous time): $\forall \mathbf{K}, \operatorname{Im} \omega \geq 0$
- Numerical model (discrete time): $\forall \mathbf{K},|\chi| \leq 1$, where $\chi \doteqdot e^{i \omega \delta t}$ is the (numerical) wave amplification factor

Linearization of the SPH equations

- X represents the set of all particle parameters $\mathbf{u}_{a}, \mathbf{r}_{a}$ and ρ_{a}
- Possible reference state: constant velocity and density, i.e. we search $\mathbf{u}_{a}=\mathbf{u}_{r e f}+\delta \mathbf{u}_{a}, \mathbf{r}_{a}=\mathbf{r}_{a, r e f}+\delta \mathbf{r}_{a}, \rho_{a}=\rho_{r e f}+\delta \rho_{a}:$

$$
\begin{aligned}
& \delta\left[\rho_{a} D_{a}^{-}\left\{\mathbf{u}_{b}\right\}\right]=\delta\left[\sum_{b} m_{b}\left(\mathbf{u}_{b}-\mathbf{u}_{a}\right) \cdot \nabla w_{a b}\right] \\
= & \sum_{b} m_{b}\left[\left(\delta \mathbf{u}_{b}-\delta \mathbf{u}_{a}\right) \cdot \nabla w_{a b}+\left(\mathbf{u}_{r e f}-\mathbf{u}_{r e f}\right) \cdot \nabla \nabla w_{a b}\left(\delta \mathbf{r}_{a}-\delta \mathbf{r}_{b}\right)\right]
\end{aligned}
$$

Linearization of the SPH equations

- X represents the set of all particle parameters $\mathbf{u}_{a}, \mathbf{r}_{a}$ and ρ_{a}
- Possible reference state: constant velocity and density, i.e. we search $\mathbf{u}_{a}=\mathbf{u}_{r e f}+\delta \mathbf{u}_{a}, \mathbf{r}_{a}=\mathbf{r}_{a, \text { ref }}+\delta \mathbf{r}_{a}, \rho_{a}=\rho_{r e f}+\delta \rho_{a}:$

$$
\begin{aligned}
& \delta\left[\rho_{a} D_{a}^{-}\left\{\mathbf{u}_{b}\right\}\right]=\delta\left[\sum_{b} m_{b}\left(\mathbf{u}_{b}-\mathbf{u}_{a}\right) \cdot \nabla w_{a b}\right] \\
= & \sum_{b} m_{b}\left[\left(\delta \mathbf{u}_{b}-\delta \mathbf{u}_{a}\right) \cdot \nabla w_{a b}+\left(\mathbf{u}_{r e f}-\mathbf{u}_{r e f}\right) \cdot \nabla \nabla w_{a b}\left(\delta \mathbf{r}_{a}-\delta \mathbf{r}_{b}\right)\right]
\end{aligned}
$$

- The last term vanishes, so:

$$
\begin{aligned}
\delta \dot{\rho}_{a} & =-\delta\left[\rho_{a} D_{a}^{-}\left\{\mathbf{u}_{b}\right\}\right] \\
& \approx \rho_{0} \int_{\Omega}\left[\delta \mathbf{u}_{\mathbf{a}}-\delta \mathbf{u}\left(\mathbf{r}^{\prime}\right)\right] \cdot \nabla_{\mathbf{r}_{\mathbf{a}}} w_{h}\left(\left|\mathbf{r}_{\mathbf{a}}-\mathbf{r}^{\prime}\right|\right) d \mathbf{r}^{\prime}
\end{aligned}
$$

Linearization of the SPH equations

- X represents the set of all particle parameters $\mathbf{u}_{a}, \mathbf{r}_{a}$ and ρ_{a}
- Possible reference state: constant velocity and density, i.e. we search $\mathbf{u}_{a}=\mathbf{u}_{r e f}+\delta \mathbf{u}_{a}, \mathbf{r}_{a}=\mathbf{r}_{a, \text { ref }}+\delta \mathbf{r}_{a}, \rho_{a}=\rho_{r e f}+\delta \rho_{a}:$

$$
\delta\left[\rho_{a} D_{a}^{-}\left\{\mathbf{u}_{b}\right\}\right]=\delta\left[\sum_{b} m_{b}\left(\mathbf{u}_{b}-\mathbf{u}_{a}\right) \cdot \nabla w_{a b}\right]
$$

$=\sum_{b} m_{b}\left[\left(\delta \mathbf{u}_{b}-\delta \mathbf{u}_{a}\right) \cdot \nabla w_{a b}+\underline{\left.\left(\mathbf{u}_{r e f}-\mathbf{u}_{r e f}\right) \cdot \nabla \nabla w_{a b}\left(\delta \mathbf{r}_{a}-\delta \mathbf{r}_{b}\right)\right]}\right.$

- The last term vanishes, so:

$$
\begin{aligned}
\delta \dot{\rho}_{a} & =-\delta\left[\rho_{a} D_{a}^{-}\left\{\mathbf{u}_{b}\right\}\right] \\
& \approx \rho_{0} \int_{\Omega}\left[\delta \mathbf{u}_{\mathbf{a}}-\delta \mathbf{u}\left(\mathbf{r}^{\prime}\right)\right] \cdot \nabla_{\mathbf{r}_{\mathbf{a}}} w_{h}\left(\left|\mathbf{r}_{\mathbf{a}}-\mathbf{r}^{\prime}\right|\right) d \mathbf{r}^{\prime}
\end{aligned}
$$

- Note: starting from continuous SPH would be easier!

Discrete or continuous?

- The stability of SPH can be studied from two ways:
- Discrete: Cartesian grid, one neighbour in each direction
- Continuous: ignores the discrete nature of SPH

Solutions in the Fourier space

- We now search solutions as $\delta \mathbf{u}_{a}=c_{0} \mathbf{U}(t) e^{-i \mathbf{K} \cdot \mathbf{r}_{\mathbf{a}}}, \mathbf{K}$ being a numerical wave vector:

$$
\delta \dot{\rho}_{a}=\rho_{0} c_{0} \mathbf{U}(t) \cdot \int_{\Omega}\left(e^{-i \mathbf{K} \cdot \mathbf{r}_{\mathbf{a}}}-e^{-i \mathbf{K} \cdot \mathbf{r}^{\prime}}\right) \nabla_{\mathbf{r}_{\mathbf{a}}} w_{h}\left(\left|\mathbf{r}_{\mathbf{a}}-\mathbf{r}^{\prime}\right|\right) d \mathbf{r}^{\prime}
$$

Solutions in the Fourier space

- We now search solutions as $\delta \mathbf{u}_{a}=c_{0} \mathbf{U}(t) e^{-i \mathbf{K} \cdot \mathbf{r}_{\mathbf{a}}}, \mathbf{K}$ being a numerical wave vector:

$$
\delta \dot{\rho}_{a}=\rho_{0} c_{0} \mathbf{U}(t) \cdot \int_{\Omega}\left(e^{-i \mathbf{K} \cdot \mathbf{r}_{\mathbf{a}}}-e^{-i \mathbf{K} \cdot \mathbf{r}^{\prime}}\right) \nabla_{\mathbf{r}_{\mathbf{a}}} w_{h}\left(\left|\mathbf{r}_{\mathbf{a}}-\mathbf{r}^{\prime}\right|\right) d \mathbf{r}^{\prime}
$$

- With the variable change $\tilde{\mathbf{r}} \doteqdot \mathbf{r}^{\prime}-\mathbf{r}_{\mathrm{a}}$, i.e. $\nabla_{\mathbf{r}_{\mathbf{a}}}=-\nabla_{\tilde{\mathbf{r}}}$:

$$
\begin{aligned}
e^{i \mathbf{K} \cdot \mathbf{r}_{\mathbf{a}}} \delta \dot{\rho}_{a} & =\rho_{0} c_{0} \mathbf{U}(t) \cdot \int_{\Omega}\left(e^{-i \mathbf{K} \cdot \tilde{\mathbf{r}}}-1\right) \nabla_{\tilde{\mathbf{r}}} w_{h}(\tilde{r}) d \tilde{\mathbf{r}} \\
& =\rho_{0} c_{0} \mathbf{U}(t) \cdot \widehat{\nabla_{\tilde{\mathbf{r}}} W_{h}}(K) \\
& =i \rho_{0} c_{0} \widehat{W_{h}}(K) \mathbf{K} \cdot \mathbf{U}(t)
\end{aligned}
$$

Solutions in the Fourier space

- We now search solutions as $\delta \mathbf{u}_{a}=c_{0} \mathbf{U}(t) e^{-i \mathbf{K} \cdot \mathbf{r}_{\mathbf{a}}}, \mathbf{K}$ being a numerical wave vector:

$$
\delta \dot{\rho}_{a}=\rho_{0} c_{0} \mathbf{U}(t) \cdot \int_{\Omega}\left(e^{-i \mathbf{K} \cdot \mathbf{r}_{\mathbf{a}}}-e^{-i \mathbf{K} \cdot \mathbf{r}^{\prime}}\right) \nabla_{\mathbf{r}_{\mathbf{a}}} w_{h}\left(\left|\mathbf{r}_{\mathbf{a}}-\mathbf{r}^{\prime}\right|\right) d \mathbf{r}^{\prime}
$$

- With the variable change $\tilde{\mathbf{r}} \doteqdot \mathbf{r}^{\prime}-\mathbf{r}_{\mathrm{a}}$, i.e. $\nabla_{\mathbf{r}_{\mathbf{a}}}=-\nabla_{\tilde{\mathbf{r}}}$:

$$
\begin{aligned}
e^{i \mathbf{K} \cdot \mathbf{r}_{\mathbf{a}}} \delta \dot{\rho}_{a} & =\rho_{0} c_{0} \mathbf{U}(t) \cdot \int_{\Omega}\left(e^{-i \mathbf{K} \cdot \tilde{\mathbf{r}}}-1\right) \nabla_{\tilde{\mathbf{r}}} w_{h}(\tilde{r}) d \tilde{\mathbf{r}} \\
& =\rho_{0} c_{0} \mathbf{U}(t) \cdot \widehat{\nabla_{\tilde{\mathbf{r}}} W_{h}}(K) \\
& =i \rho_{0} c_{0} \widehat{W_{h}}(K) \mathbf{K} \cdot \mathbf{U}(t)
\end{aligned}
$$

- The Fourier transform of the kernel is thus important in studying the numerical stability properties of SPH.

Linearized WCSPH system

- Similarly to the velocity, positions and density are searched for in the following forms:
- $\delta \mathbf{r}_{a}=h \mathbf{R}(t) e^{-i \mathbf{K} \cdot \mathbf{r}_{\mathbf{a}}}$
- $\delta \rho_{a}=\rho_{0} R(t) e^{-i \mathbf{K} \cdot \mathbf{r}_{\mathbf{a}}}$

Linearized WCSPH system

- Similarly to the velocity, positions and density are searched for in the following forms:
- $\delta \mathbf{r}_{a}=h \mathbf{R}(t) e^{-i \mathbf{K} \cdot \mathbf{r}_{\mathbf{a}}}$
- $\delta \rho_{a}=\rho_{0} R(t) e^{-i \mathbf{K} \cdot \mathbf{r}_{\mathbf{a}}}$
- After some algebra the linearized WCSPH system reads:

$$
\begin{aligned}
\dot{\mathbf{U}}(t) & =\frac{i c_{0}}{h} \widehat{w_{h}}\left(K^{+}\right) R(t) \mathbf{K}^{+}-\frac{\nu}{h^{2}} F_{2}\left(K^{+}\right) \mathbf{U}(t) \\
\dot{\mathbf{R}}(t) & =\frac{c_{0}}{h} \mathbf{U}(t) \\
\dot{R}(t) & =\frac{i c_{0}}{h} \widehat{w_{h}}\left(K^{+}\right) \mathbf{K}^{+} \cdot \mathbf{U}(t)
\end{aligned}
$$

- $\mathbf{K}^{+} \doteqdot h \mathbf{K}$ is the dimensionless wavevector, $K^{+} \doteqdot\left|\mathbf{K}^{+}\right|$and

$$
F_{2}\left(K^{+}\right) \doteqdot 2 h^{2} \int_{\Omega}\left(e^{-i \mathbf{K} \cdot \tilde{\mathbf{r}}}-1\right) \frac{\tilde{\mathbf{r}}}{\tilde{r}^{2}} \cdot \nabla_{\tilde{\mathbf{r}}} w_{h}(\tilde{r}) d \tilde{\mathbf{r}}
$$

Time marching scheme

- We first consider a first order semi-explicit scheme:
- Time derivatives are approximated as $\dot{\mathbf{U}}(t)=\frac{\mathbf{U}\left(t^{m+1}\right)-\mathbf{U}\left(t^{m}\right)}{\delta t}$
- Updated velocities are used to compute positions and densities
- We search all functions of time as $\mathbf{U}(t)=\mathbf{U}_{0} e^{i \omega t}$, etc.

Time marching scheme

- We first consider a first order semi-explicit scheme:
- Time derivatives are approximated as $\dot{\mathbf{U}}(t)=\frac{\mathbf{U}\left(t^{m+1}\right)-\mathbf{U}\left(t^{m}\right)}{\delta t}$
- Updated velocities are used to compute positions and densities
- We search all functions of time as $\mathbf{U}(t)=\mathbf{U}_{0} e^{i \omega t}$, etc.
- The linear system now reads:

$$
\begin{aligned}
\frac{\chi-1}{\delta t} \mathbf{U}_{0} & =\frac{i c_{0}}{h} \widehat{w_{h}}\left(K^{+}\right) R_{0} \mathbf{K}^{+}-\frac{\nu}{h^{2}} F_{2}\left(K^{+}\right) \mathbf{U}_{0} \\
\frac{\chi-1}{\delta t} \mathbf{R}_{0} & =\chi \frac{c_{0}}{h} \mathbf{U}_{0} \\
\frac{\chi-1}{\delta t} R_{0} & =\chi \frac{i c_{0}}{h} \widehat{w_{h}}\left(K^{+}\right) \mathbf{K}^{+} \cdot \mathbf{U}_{0}
\end{aligned}
$$

- Recall $\chi \doteqdot e^{i \omega \delta t}$ is the numerical wave amplification factor. The stability condition reads $\forall \mathbf{K}^{+},|\chi| \leq 1$.

The eigenvalue problem

- Rearranging the system leads to an eigenvalue problem:

$$
\chi A_{1}\left(\mathbf{K}^{+} \otimes \mathbf{K}^{+}\right) \mathbf{U}_{0}=-\left(\chi-1+A_{2}\right)(\chi-1) K^{+2} \mathbf{U}_{0}
$$

- New notation:

$$
\begin{aligned}
A_{1} & \doteqdot C^{2} F_{1}\left(K^{+}\right) \\
A_{2} & \doteqdot C_{\nu} F_{2}\left(K^{+}\right) \\
F_{1}\left(K^{+}\right) & \doteqdot\left[K^{+} \widehat{w_{h}}\left(K^{+}\right)\right]^{2}
\end{aligned}
$$

- Recall:

$$
C \doteqdot \frac{c_{0} \delta t}{h} \quad C_{\nu} \doteqdot \frac{\nu \delta t}{h^{2}}=\frac{C}{R e_{0}}
$$

The eigenvalue problem

- Rearranging the system leads to an eigenvalue problem:

$$
\chi A_{1}\left(\mathbf{K}^{+} \otimes \mathbf{K}^{+}\right) \mathbf{U}_{0}=-\left(\chi-1+A_{2}\right)(\chi-1) K^{+2} \mathbf{U}_{0}
$$

- New notation:

$$
\begin{aligned}
A_{1} & \doteqdot C^{2} F_{1}\left(K^{+}\right) \\
A_{2} & \doteqdot C_{\nu} F_{2}\left(K^{+}\right) \\
F_{1}\left(K^{+}\right) & \doteqdot\left[K^{+} \widehat{w_{h}}\left(K^{+}\right)\right]^{2}
\end{aligned}
$$

- Integration by parts (no wall effect!) gives:

$$
F_{2}^{\prime}\left(K^{+}\right)=2 K^{+} \widehat{w_{h}}\left(K^{+}\right)=2 \sqrt{F_{1}\left(K^{+}\right)}
$$

- Recall:

$$
C \doteqdot \frac{c_{0} \delta t}{h} \quad C_{\nu} \doteqdot \frac{\nu \delta t}{h^{2}}=\frac{C}{R e_{0}}
$$

Stability criterion

- The tensor $\mathbf{K}^{+} \otimes \mathbf{K}^{+}$has two eigenvalues: 0 and K^{+2}
- Only the second is important to investigate. It gives the following characteristic polynomial:

$$
\chi^{2}+\left(A_{1}+A_{2}-2\right) \chi+1-A_{2}=0
$$

Stability criterion

- The tensor $\mathbf{K}^{+} \otimes \mathbf{K}^{+}$has two eigenvalues: 0 and K^{+2}
- Only the second is important to investigate. It gives the following characteristic polynomial:

$$
\chi^{2}+\left(A_{1}+A_{2}-2\right) \chi+1-A_{2}=0
$$

- The roots satisfy the stability criterion $\forall \mathbf{K}^{+},|\chi| \leq 1$ if and only if $A_{1}+2 A_{2} \leq 4$ for all wavenumbers, i.e.:

$$
C \leq \sqrt{2 \min _{K^{+}} \frac{2-C_{\nu} F_{2}\left(K^{+}\right)}{F_{1}\left(K^{+}\right)}}=\psi\left(C_{\nu}\right)
$$

- For comparison, recall Morris et al.'s 'traditional' empirical criteria: $C \leq 0.4$ and $C_{\nu} \leq 0.125$

The stability functions (1)

- Note: $\widehat{w_{h}}, F_{1}$ and F_{2} depend on $K^{+} \doteqdot\left|\mathbf{K}^{+}\right|$only for isotropy reasons (no wall effect here!)
- Kernel notation:

$$
w_{h}(\tilde{r})=\frac{\alpha_{n}}{h^{n}} f(q) \quad q \doteqdot \frac{\tilde{r}}{h}
$$

α_{n} being a normalizing constant and n the space dimension.

The stability functions (1)

- Note: $\widehat{w_{h}}, F_{1}$ and F_{2} depend on $K^{+} \doteqdot\left|\mathbf{K}^{+}\right|$only for isotropy reasons (no wall effect here!)
- Kernel notation:

$$
w_{h}(\tilde{r})=\frac{\alpha_{n}}{h^{n}} f(q) \quad q \doteqdot \frac{\tilde{r}}{h}
$$

α_{n} being a normalizing constant and n the space dimension.

- Example 1: the Gaussian kernel:

$$
f(q)=e^{-q^{2}}
$$

with $\alpha_{n}=\pi^{-n / 2}$.

$$
\begin{gathered}
\widehat{W_{h}}\left(K^{+}\right)=e^{-\frac{K^{+2}}{4}} \\
F_{1}\left(K^{+}\right)=K^{+2} e^{-\frac{K^{+2}}{2}} \quad F_{2}\left(K^{+}\right)=4\left(1-e^{-\frac{K^{+2}}{4}}\right)
\end{gathered}
$$

The stability functions (2)

- Example 2: the Wendland kernel or order 5:

$$
f(q)=\left(1-\frac{q}{2}\right)^{4}(1+2 q) \quad \text { if } 0 \leq q \leq 2
$$

with $\alpha_{1}=3 / 4, \alpha_{2}=7 / 4 \pi, \alpha_{3}=21 / 16 \pi$.

$$
\begin{gathered}
n=1: \widehat{w_{h}}\left(K^{+}\right)=\frac{45}{2 K^{+6}}\left(K^{+2}+\frac{1}{2} K^{+} \sin 2 K^{+}-2 \sin ^{2} K^{+}\right) \\
n=2: \widehat{w_{h}}\left(K^{+}\right)=\frac{105}{4 K^{+6}}\left[\begin{array}{c}
6 K^{+2} J_{0}\left(2 K^{+}\right)-K^{+} J_{1}\left(2 K^{+}\right) \\
+3 \pi\left(K^{+2}-\frac{5}{4}\right) Y\left(2 K^{+}\right)
\end{array}\right] \\
n=3: \widehat{w_{h}}\left(K^{+}\right)=\frac{315}{8 K^{+8}}\left[\begin{array}{c}
\left(12-2 K^{+2}\right) \cos 2 K^{+} \\
+9 K^{+} \sin 2 K^{+}+8 K^{+2}-12
\end{array}\right] \\
Y(x) \doteqdot J_{1}(x) H_{0}(x)-J_{0}(x) H_{1}(x)
\end{gathered}
$$

where J_{0}, J_{1} are Bessel functions and H_{0}, H_{1} Struve functions (Abramovic and Stegun, 1972).

Function $\widehat{w_{h}}\left(K^{+}\right)$

Function $F_{1}\left(K^{+}\right)$

Function $F_{2}\left(K^{+}\right)$

Stability domains

$$
C \leq \sqrt{2 \min _{K^{+}} \frac{2-C_{\nu} F_{2}\left(K^{+}\right)}{F_{1}\left(K^{+}\right)}}
$$

- Gaussian
- Wendland order 5
- B-Spline order 3
- B-Spline order 4
- B-Spline order 5
- Morris et al. (1997)

Numerical validation

- The 'infinite flow' test case
- $n=2$, square of 40×40 particles
- Double periodicity ('infinite flow')
- $\mathbf{u}_{\text {ref }}=\mathbf{0}$ by Galilean invariance
- 1 \% initial density discontinuity

Stability domains: validation

- 'Infinite flow' test case in dimension $n=2$

- Gaussian
- Wendland order 5
- B-Spline order 3
- B-Spline order 4
- B-Spline order 5
- Morris et al. (1997)
- Numerical

Maximum Reynolds number $R e_{0}$

- Numerically, $R e_{0} \doteqdot \frac{c_{0} h}{\nu}$ could not exceed a critical value $R e_{\text {crit }} \sim 100$. This may be due to:
- The discrete nature of SPH (tensile instability, see Swegle et al., 1995), not explained by the present theory
- Non-linear effects $\left(|\chi| \longrightarrow 1\right.$ when $R e_{0}$ is increased)

Maximum Reynolds number $R e_{0}$

- Numerically, $R e_{0} \doteqdot \frac{c_{0} h}{\nu}$ could not exceed a critical value $R e_{\text {crit }} \sim 100$. This may be due to:
- The discrete nature of SPH (tensile instability, see Swegle et al., 1995), not explained by the present theory
- Non-linear effects $\left(|\chi| \longrightarrow 1\right.$ when Re_{0} is increased)
- Physically, instabilities (turbulence) occur in fluids when $\operatorname{Re} \doteqdot \frac{U L}{\nu}$ exceeds ~ 100 to 2000
- By chance, with $c_{0} \sim 10 U_{\max }, R e_{0} \sim 100 \Longleftrightarrow \operatorname{Re} \sim 100$ to 1000 (according to the space resolution $\frac{L}{h}$)
- However, the SPH instability at large $R e_{0}$ is not representative of physical turbulence growth

Maximum Reynolds number $R e_{0}$

- Numerically, $R e_{0} \doteqdot \frac{c_{0} h}{\nu}$ could not exceed a critical value $R e_{\text {crit }} \sim 100$. This may be due to:
- The discrete nature of SPH (tensile instability, see Swegle et al., 1995), not explained by the present theory
- Non-linear effects $\left(|\chi| \longrightarrow 1\right.$ when Re_{0} is increased)
- Physically, instabilities (turbulence) occur in fluids when $R e \doteqdot \frac{U L}{\nu}$ exceeds ~ 100 to 2000
- By chance, with $c_{0} \sim 10 U_{\text {max }}, R e_{0} \sim 100 \Longleftrightarrow \operatorname{Re} \sim 100$ to 1000 (according to the space resolution $\frac{L}{h}$)
- However, the SPH instability at large $R e_{0}$ is not representative of physical turbulence growth
- Solutions to keep $R e_{0}$ below ~ 100 (c_{0} cannot be decreased)
- Decreasing h (finer space resolution): DNS
- Increasing ν : RANS model with eddy viscosity closure

Re-scaling the kernels (1)

- The size of the kernel support is not only determined by h
- Dehnen and Aly, 2012 suggest to use as a measure of space resolution the kernel standard deviation σ in place of h :

$$
\sigma^{2} \doteqdot \frac{1}{n} \int_{\Omega} \tilde{r}^{2} w_{h}(\tilde{r}) d \tilde{\mathbf{r}}
$$

Re-scaling the kernels (2)

- $K^{*} \doteqdot \sigma K$ should now be used in place of $K^{+} \doteqdot h K$
- The re-scaled kernel Fourier transforms $\widehat{w_{h}}\left(K^{*}\right)$ come much closer together, as well as $F_{1}\left(K^{*}\right)$ and $F_{2}\left(K^{*}\right)$
- As a consequence, so do the stability domains, with the new definitions:

$$
C^{*} \doteqdot \frac{c_{0} \delta t}{\sigma} \quad C_{\nu}^{*} \doteqdot \frac{\nu \delta t}{\sigma^{2}}
$$

Model variations (1)

- Density interpolation instead of continuity equation:

$$
\rho_{a}=\sum_{b} m_{b} w_{a b}
$$

- The theoretical stability domain is unchanged
- This is confirmed by numerical tests

Model variations (1)

- Density interpolation instead of continuity equation:

$$
\rho_{a}=\sum_{b} m_{b} w_{a b}
$$

- The theoretical stability domain is unchanged
- This is confirmed by numerical tests
- Modified gradient and divergence operators:

$$
\begin{aligned}
& \mathbf{G}_{a}^{k}\left\{A_{b}\right\} \doteqdot \sum_{b} V_{b} \frac{\rho_{b}^{2 k} A_{a}+\rho_{a}^{2 k} A_{b}}{\left(\rho_{a} \rho_{b}\right)^{k}} \nabla w_{a b} \\
& D_{a}^{k}\left\{\mathbf{A}_{b}\right\} \doteqdot-\frac{1}{\rho_{a}^{2 k}} \sum_{b} V_{b}\left(\rho_{a} \rho_{b}\right)^{k}\left(\mathbf{A}_{a}-\mathbf{A}_{b}\right) \cdot \nabla w_{a b}
\end{aligned}
$$

- Same conclusions as above
- Same thing with a 'minus' sign in the gradient, called \mathbf{G}_{a}^{-}

Effect of background pressure

- The backround pressure modifies the state equation:

$$
p_{a}=\frac{\rho_{0} c_{0}^{2}}{\gamma}\left(\frac{\rho_{a}^{\gamma}}{\rho_{0}^{\gamma}}-1+D\right)
$$

- Note: this is only relevant with the $\mathbf{G}_{a}^{+}\left(\operatorname{or} \mathbf{G}_{a}^{k}\right) \mathrm{SPH}$ gradient operators, not with \mathbf{G}_{a}^{-}.

Effect of background pressure

- The backround pressure modifies the state equation:

$$
p_{a}=\frac{\rho_{0} c_{0}^{2}}{\gamma}\left(\frac{\rho_{a}^{\gamma}}{\rho_{0}^{\gamma}}-1+D\right)
$$

- Note: this is only relevant with the $\mathbf{G}_{a}^{+}\left(\operatorname{or} \mathbf{G}_{a}^{k}\right) \mathrm{SPH}$ gradient operators, not with \mathbf{G}_{a}^{-}.
- The theory remains unchanged except F_{1} :

$$
F_{1}\left(K^{+}, p^{+}\right) \doteqdot K^{+2} \widehat{w_{h}}\left(K^{+}\right)\left[p^{+}+\left(1-p^{+}\right) \widehat{w_{h}}\left(K^{+}\right)\right]
$$

where

$$
p^{+} \doteqdot \frac{2 D}{\gamma}=\frac{2 p_{0}}{\rho_{0} c_{0}^{2}}
$$

is a dimensionless background pressure.

Effect of background pressure: validation

- 'Infinite flow' test case, $n=2$, Wendland kernel with \mathbf{G}_{a}^{+}

Model variations (2)

- Using Monaghan and Gingold (1983)'s SPH Laplacian:

$$
\begin{aligned}
\mathbf{L}^{M G}\{\mathbf{A}\} & \doteqdot 2(n+2) \int_{\Omega}\left[\mathbf{A}(\mathbf{r})-\mathbf{A}\left(\mathbf{r}^{\prime}\right)\right] \cdot \frac{\mathbf{r}-\mathbf{r}^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}} \nabla_{\mathbf{r}} w_{h}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) d \mathbf{r}^{\prime} \\
\mathbf{L}_{a}^{M G}\left\{\mathbf{A}_{b}\right\} & \doteqdot 2(n+2) \sum_{b} V_{b}\left(\mathbf{A}_{a}-\mathbf{A}_{b}\right) \cdot \frac{\mathbf{r}_{a b}}{r_{a b}^{2}} \nabla w_{a b}
\end{aligned}
$$

Model variations (2)

- Using Monaghan and Gingold (1983)'s SPH Laplacian:

$$
\begin{aligned}
\mathbf{L}^{M G}\{\mathbf{A}\} & \doteqdot 2(n+2) \int_{\Omega}\left[\mathbf{A}(\mathbf{r})-\mathbf{A}\left(\mathbf{r}^{\prime}\right)\right] \cdot \frac{\mathbf{r}-\mathbf{r}^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}} \nabla_{\mathbf{r}} w_{h}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) d \mathbf{r}^{\prime} \\
\mathbf{L}_{a}^{M G}\left\{\mathbf{A}_{b}\right\} & \doteqdot 2(n+2) \sum_{b} V_{b}\left(\mathbf{A}_{a}-\mathbf{A}_{b}\right) \cdot \frac{\mathbf{r}_{a b}}{r_{a b}^{2}} \nabla w_{a b}
\end{aligned}
$$

- The function F_{2} should then be modified as follows:

$$
F_{2}^{M G}\left(K^{+}\right) \doteqdot \frac{n+2}{n}\left[F_{2}\left(K^{+}\right)+(n-1) b\left(K^{+}\right)\right]
$$

where

$$
b\left(K^{+}\right) \doteqdot \frac{2}{K^{+n}} \int_{0}^{K^{+}} \kappa^{n+1} \widehat{W_{h}}(\kappa) d \kappa
$$

Model variations (3)

- 'Infinite flow' case, Gaussian kernel with both Laplacians

Effect of the time marching scheme

- Using old velocities to update positions and densities (fully explicit scheme), there is no more χ in the r-h-s:

$$
\begin{aligned}
\frac{\chi-1}{\delta t} \mathbf{U}_{0} & =\frac{i c_{0}}{h} \widehat{w_{h}}\left(K^{+}\right) R_{0} \mathbf{K}^{+}-\frac{\nu}{h^{2}} F_{2}\left(K^{+}\right) \mathbf{U}_{0} \\
\frac{\chi-1}{\delta t} \mathbf{R}_{0} & =\frac{c_{0}}{h} \mathbf{U}_{0} \\
\frac{\chi-1}{\delta t} R_{0} & =\frac{i c_{0}}{h} \widehat{w_{h}}\left(K^{+}\right) \mathbf{K}^{+} \cdot \mathbf{U}_{0}
\end{aligned}
$$

Effect of the time marching scheme

- Using old velocities to update positions and densities (fully explicit scheme), there is no more χ in the r-h-s:

$$
\begin{aligned}
\frac{\chi-1}{\delta t} \mathbf{U}_{0} & =\frac{i c_{0}}{h} \widehat{w_{h}}\left(K^{+}\right) R_{0} \mathbf{K}^{+}-\frac{\nu}{h^{2}} F_{2}\left(K^{+}\right) \mathbf{U}_{0} \\
\frac{\chi-1}{\delta t} \mathbf{R}_{0} & =\frac{c_{0}}{h} \mathbf{U}_{0} \\
\frac{\chi-1}{\delta t} R_{0} & =\frac{i c_{0}}{h} \widehat{w_{h}}\left(K^{+}\right) \mathbf{K}^{+} \cdot \mathbf{U}_{0}
\end{aligned}
$$

- The characteristic polynomial now reads:

$$
\chi^{2}+\left(A_{2}-2\right) \chi+1+A_{1}-A_{2}=0
$$

- The stability criterion $\forall \mathbf{K}^{+},|\chi| \leq 1$ is modified:

$$
C^{2} \leqslant C_{\nu} \leqslant \frac{2}{\lim _{K^{+} \longrightarrow+\infty} F_{2}\left(K^{+}\right)}
$$

Stability domains: fully explicit scheme

$$
C^{2} \leqslant C_{\nu} \leqslant \frac{2}{\lim _{K^{+} \longrightarrow+\infty} F_{2}\left(K^{+}\right)}
$$

Similar to De Leffe, 2011

- - Gaussian, semi-expl.
- Gaussian
- Wendland order 5
- B-Spline order 3
- B-Spline order 5
— Morris et al. (1997)

Fully explicit scheme: validation

- 'Infinite flow' case in dimension $n=2$, B-spline order 5 with fully explicit scheme

- Theory
- Numerical

Maximum CFL number

- Plotting the maximum value of C vs $R e_{0}(n=2)$

Sensitivity to various parameters

- Some model options may be modified without modifications on the numerical results:
- $h / \delta r=1.2$ instead of 1.5
- Random initial density noise instead of vertical discontinuity
- Initial particle distribution: Cartesian or triangular packaging

Sensitivity to various parameters

- Some model options may be modified without modifications on the numerical results:
- $h / \delta r=1.2$ instead of 1.5
- Random initial density noise instead of vertical discontinuity
- Initial particle distribution: Cartesian or triangular packaging
- Effect of a velocity gradient:
- Linearizing around a reference state with a uniform velocity gradient $\mathbf{u}_{\text {ref }}=\frac{z}{T} \mathbf{e}_{x}\left(T^{-1}=\right.$ rate of strain) gives a more complex eigenvalue problem
- A polynomial of order 5 is obtained for χ, involving $C_{T} \doteqdot \frac{\delta t}{T}$
- However, in practice C_{T} is so small that velocity gradients have almost no effect on the stability domain
- This is confirmed by numerical experiments
- Same conclusions for pressure gradients

Wall effect

- Including wall effects in the theory is not that easy:
- Boundary integrals occur
- Numerical waves are reflected onto the wall so that the resulting wave should fulfill the wall acoustic boundary condition
- Tests on a Poiseuille flow (with background pressure):

Application to 'real' flows (1)

- Experimental stability domain for:
- The lid-driven cavity (steady, no free surface)
- A water collapse on a wedge (unsteady, free surface)
- Simulations done by Agnès Leroy

Application to 'real' flows (2)

- 'Real' 2-D flows, Wendland kernel

Conclusions (1)

- The present approach used two approximations:
- Continuous SPH differential operators
- Linearized forms of the governing equations
- The theory provides stability domains for the time step including the effects of various model options:
- Arbitrary space dimension n
- Kernel choice (through the $\widehat{w_{h}}, F_{1}$ and F_{2} functions)
- Continuity equation or density interpolation
- Various gradient, divergence and laplacian forms
- Background pressure
- Various time marching schemes
- Experimental tests are in excellent agreement with the theory
- The numerical Reynolds number could nor exceed ~ 100
- Wall effects remain difficult to treat

Conclusions (2)

- The following recommendations follow:
- The time step can be larger than in Morris et al.'s work
- The stability domain is almost independent on the kernel for a given resolution σ
- No matter the way the density is computed
- No matter the forms of gradient or divergence operators
- Morris et al.'s Laplacian is better than Monaghan and Gingold's
- Do not use fully explicit time integration schemes

Conclusions (2)

- The following recommendations follow:
- The time step can be larger than in Morris et al.'s work
- The stability domain is almost independent on the kernel for a given resolution σ
- No matter the way the density is computed
- No matter the forms of gradient or divergence operators
- Morris et al.'s Laplacian is better than Monaghan and Gingold's
- Do not use fully explicit time integration schemes
- Other features can be treated the same way:
- Surface tension: $C \leq f\left(C_{\nu}, C_{\beta}\right), C_{\beta} \doteqdot \frac{\beta \delta t^{2}}{\rho_{0} h^{3}}=\frac{C^{2}}{W e_{0}}$
- Density smoothing, Incompressible SPH
- Solids, MHD and other kinds of Physics
- Higher order time marching schemes (Leapfrog, etc.), but they lead to higher degree polynomials for χ
- Similar methods: MPS, FVPM, DPD, etc.

Further references

- Violeau, D., Fluid Mechanics and the SPH Method. Theory and Applications, Oxford Univ. Press, 2012.
- Violeau, D. and Leroy, A., Maximum time step for keeping numerical stability of viscous weakly compressible SPH, submitted to the J. Comput. Phys.

Merci de votre attention.

Contact: damien.violeau@edf.fr

Velocity gradient: validation

- 'Infinite flow' case, $n=2$, with sinusoidal velocity field (note: background pressure was necessary in this case)

$$
\begin{array}{r}
u_{x}(z)=\alpha c_{0} \sin \frac{2 \pi z}{L} \\
T \sim \frac{L}{2 \pi \alpha c_{0}}
\end{array}
$$

... with a continuous time

- If we consider the time as continuous (no time scheme):

$$
\begin{aligned}
i \omega \mathbf{U}_{0} & =\frac{i c_{0}}{h} \widehat{w_{h}}\left(K^{+}\right) R_{0} \mathbf{K}^{+}-\frac{\nu}{h^{2}} F_{2}\left(K^{+}\right) \mathbf{U}_{0} \\
i \omega \mathbf{R}_{0} & =\frac{c_{0}}{h} \mathbf{U}_{0} \\
i \omega R_{0} & =\frac{i c_{0}}{h} \widehat{w_{h}}\left(K^{+}\right) \mathbf{K}^{+} \cdot \mathbf{U}_{0}
\end{aligned}
$$

- If we consider the time as continuous (no time scheme):

$$
\begin{aligned}
i \omega \mathbf{U}_{0} & =\frac{i c_{0}}{h} \widehat{w_{h}}\left(K^{+}\right) R_{0} \mathbf{K}^{+}-\frac{\nu}{h^{2}} F_{2}\left(K^{+}\right) \mathbf{U}_{0} \\
i \omega \mathbf{R}_{0} & =\frac{c_{0}}{h} \mathbf{U}_{0} \\
i \omega R_{0} & =\frac{i c_{0}}{h} \widehat{w_{h}}\left(K^{+}\right) \mathbf{K}^{+} \cdot \mathbf{U}_{0}
\end{aligned}
$$

- The dispersion relation reads

$$
\omega=\frac{\nu}{2 h^{2}} F_{2}\left(K^{+}\right)\left[i \pm \sqrt{4 R e_{0}^{2} \frac{F_{1}\left(K^{+}\right)}{F_{2}\left(K^{+}\right)^{2}}-1}\right]
$$

- Im $\omega \geq 0$ for all K^{+}: the system is always stable!

