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Time-stepping for WCSPH (1)

» The Lagrangian nature of SPH enhances numerical
instabilities

» One of the most important stability conditions requires the
time step to be bounded: t < 0t
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Time-stepping for WCSPH (1)

>

The Lagrangian nature of SPH enhances numerical
instabilities

One of the most important stability conditions requires the
time step to be bounded: t < 0t

The critical time step dt.,;; should depend on the numerical
parameters:

v

fluid reference density pg

fluid (or numerical) kinematic viscosity v
numerical speed of sound ¢

smoothing length h

v v v

h h
Thus, dimensional analysis gives 0t.;; = —gb(CL
Co

)

po has been removed as the only parameter depending on mass
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Time-stepping for WCSPH (2)

» Notation:
5t
» CFL number: C = 2%

ot
» Fourier number: C, = Vh—Z
Coh

» Numerical Reynolds number: Rey = — C£
v
0) or

» Thus, the stability condition reads C < ¢(Re, <y(G)

Morris, J.P., Fox, P.J., Zhu, Y. (1997), J. Comput. Phys. 136:214-226
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Time-stepping for WCSPH (2)

» Notation:
5t
» CFL number: C = 2%
vot

h2
h C
» Numerical Reynolds number: Rey = coh _ &
v C,

» Thus, the stability condition reads C < ¢(Rey) or C < 9(C,)

> e.g. Morris et al,, 1997 suggest two empirical conditions:

» Acoustic condition: C < 0.4
Viscous condition: C, < 0.125
.. or C < min(0.4;0.125Rey)

» Fourier number: C, =

v

v

Morris, J.P., Fox, P.J., Zhu, Y. (1997), J. Comput. Phys. 136:214-226
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Time-stepping for WCSPH (2)

» Notation:
» CFL number: C = CO—&
vit
h2
» Numerical Reynolds number: Rey = COTh = C£
» Thus, the stability condition reads C < ¢(Rey) or C < 9(C,)
> e.g. Morris et al,, 1997 suggest two empirical conditions:

» Acoustic condition: C < 0.4
» Viscous condition: C, < 0.125
» ... or C < min(0.4;0.125Rep)

» Fourier number: C, =

» The present work aims at deriving a theoretical time-stepping
condition for WCSPH, i.e. a theoretical function

Morris, J.P., Fox, P.J., Zhu, Y. (1997), J. Comput. Phys. 136:214-226
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SPH gradient operators

» Basic continuous SPH gradient
VA(r) = / VA ) w, (Jr = ¥']) dr
Q
= ~'/+/A(r’)V,wh(|r—r’|)dr’
Q

:/ p(r)A( )+p(r)2A(")v wi (Jr — ¥|) dv' = G {A} (r)

5/44



SPH gradient operators

» Basic continuous SPH gradient
VA(r) = / VA ) w, (Jr = ¥']) dr
Q

_ ~'/+/QA(r’)VrWh(|r— ¢l) dr

Al w

VAW = (V5045 000)
-/ (Y A+ p(r) A(F)
Q p(r)p(r)

» Discrete SPH gradient:

A, A
G: {Ab} = pa Z my (? + —;) VwWap

b a pb

Vews ([r = ¥]) dr' = GT {A}(r)
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Other SPH operators

» SPH divergence:
DAL = / 2 IA )~ A W] Vo (i — )

Dy {As} = _Zmb Ap—A,) - Vwa
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Other SPH operators

» SPH divergence:
DAL = / 2 IA )~ A W] Vo (i — )
[);_ {l\b}' = — jg:: my l\b — ‘7VVab

» SPH Laplacian:

L{A}() = /[A AT Vo (e~ o
La {l\b}' = 2 :E:: bﬁ, l\b [fé- ‘7VVab

» Other formulae exist (see later)
» Complete formulae involve boudary terms
» Discrete operators should be renormalized for consistency

6/44



Standard WCSPH model

» Discrete form of the Lagrangian Navier-Stokes equations:

. 1 1

0, = ——G; {pp} + —L.{up
267 (oo} + L1 (un)

r, = u,

pa - _paD,—: {ub}

. Pocg (P;Y )
Pa = — | 75—
Y Po

> 1 = pov: dynamic viscosity
> g is set as 10Unax to ensure weakly compressible flow
>y = 7 for water (Monaghan, 1994)

» Definitions:

» Note: a time marching scheme is also required (see later)

Monaghan, J.J. (1994), J. Comput. Phys. 110:399-406
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Von Neumann stability analysis

» Principles of a von Neumann stability analysis:
» Writing the governing equations X = g (X)
» Identifying a reference state X,er satisfying X,ef = g (Xref)
» Searching a perturbated solution X = X, + 6X by linearizing:

oX = 0g (X) = (gi) 6X
X:Xref
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Von Neumann stability analysis

» Principles of a von Neumann stability analysis:

Writing the governing equations X = g (X)

Identifying a reference state X,er satisfying Xef = g (X,ef)
Searching a perturbated solution X = X,er + dX by linearizing:

oX = 0g (X) = (gi) 6X
X:Xref

—iK-r+iwt

v

v

v

v

Searching wave-like solutions: dX = Xpe
The linearized system gives a dispersion relation, i.e. a relation
between the wave vector K and the angular frequency w = w (K)

v
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Von Neumann stability analysis

» Principles of a von Neumann stability analysis:

v

Writing the governing equations X = g (X)
Identifying a reference state X,r satisfying X,er = g (X/ef)
Searching a perturbated solution X = X,er + dX by linearizing:

oX = 0g (X) = (gi) 6X
X:Xref

—iK-r+iwt

v

v

v

Searching wave-like solutions: dX = Xpe
The linearized system gives a dispersion relation, i.e. a relation
between the wave vector K and the angular frequency w = w (K)

v

» Stability criteria:
» Physical equations (continuous time): VK, Imw >0
» Numerical model (discrete time): VK, |y| < 1, where y = et
is the (numerical) wave amplification factor

8/44



Linearization of the SPH equations

» X represents the set of all particle parameters u,, r, and p,

» Possible reference state: constant velocity and density, i.e. we
search u, = U, + 5Ua, Fa = "Varef + 5I’a, Pa = Pref + 5pa :

) [paDa_ {Ub}] =9 [Z mp (ub - Ua) : vWab]

= Z me {((5ub —0u,) - Vap + (Urer — Uper) - 25 (0Fs — OFp)
b

9/44



Linearization of the SPH equations

» X represents the set of all particle parameters u,, r, and p,

» Possible reference state: constant velocity and density, i.e. we
search u, = U, + 5Ua, Fa = "Varef + 5I’a, Pa = Pref + 5pa :

) [paDa_ {Ub}] =9 [Z mp (ub - Ua) : vWab]

= Z my [(5ub - 5“3) : vWab + (uref — U, : ab \0Fa — 5rb)
b
» The last term vanishes, so:
5lba = -0 [paDa_ {ub}}

Q

po/ [ouy, — du (¥)] - Vi, wy ([ra — ¥']) d¥
Q
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Linearization of the SPH equations

» X represents the set of all particle parameters u,, r, and p,

» Possible reference state: constant velocity and density, i.e. we
search u, = U, + 5Ua, Fa = "Varef + 5I’a, Pa = Pref + 5pa :

) [paDa_ {Ub}] =9 [Z mp (ub - Ua) : vWab]

= Z my [(5ub - 5“3) : vWab + (uref — U, : ab \0Fa — 5rb)
b
» The last term vanishes, so:
5lba = -0 [paDa_ {ub}}

~ po/[5ua—5u(r’)]-V,awh(|ra—r’|)dr’
Q

Note: starting from continuous SPH would be easier!

v
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Discrete or continuous?

» The stability of SPH can be studied from two ways:

» Discrete: Cartesian grid, one neighbour in each direction
» Continuous: ignores the discrete nature of SPH

b
Space dimension n 1 arbitrary ‘ 'a
Discrete Swegle et al., 1995 De Leffe, 2011 ‘ ----- ‘ 77777 .
Morris, 1996 Dehnen & Aly, 2012 ‘
Continuous Balsara, 1995 Dehnen & Aly, 2012 y -
,/'/ "
")

Swegle, J.W., Hicks, D.L., Attaway, S.W. (1995), J. Comput. Phys. 116:123-134

Morris, J.P. (1996), Ph.D. thesis, Melbourne "
De Leffe, M. (2011), Ph.D. thesis, Ecole Centrale de Nantes (in French) ga— =
Balsara, D.S. (1995), J. Comput. Phys. 121:357-372

Dehnen, W., Aly, H. (2012), Mon. Not. R. Astron. Soc. 000:1-15
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Solutions in the Fourier space

» We now search solutions as du, = coU (t) e /K™

numerical wave vector:

5p'a=pocOU(t)-/

Q

, K being a

(&7 — &) Viwy (Ira — ¥])
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Solutions in the Fourier space

» We now search solutions as du, = U (t) e '™, K being a
numerical wave vector:

dpa = pocoU (t) - /

(&7 — &™) Tpywi (Jra — ) ¥
Q

» With the variable change ¥ =+ —r,, i.e. V., = —V;:

eiK-ra(sp'a = pocU (t) . / (efiK-F i 1) Viwy ('F) dv
Q

= poCoU(t)m(K)
= IpoCOVV\h(K)KU(t)
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Solutions in the Fourier space

» We now search solutions as du, = U (t) e '™, K being a
numerical wave vector:

dpa = pocoU (t) - /

(&7 — &™) Tpywi (Jra — ) ¥
Q

» With the variable change ¥ =+ —r,, i.e. V., = —V;:

eiK-ra(gp'a = pocU (t) . / (efiK-F i 1) Viwy ('F) dv
Q

= poCoU(t)m(K)
= IpoCOVV\h(K)KU(t)

» The Fourier transform of the kernel is thus important in
studying the numerical stability properties of SPH.
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Linearized WCSPH system

» Similarly to the velocity, positions and density are searched for
in the following forms:
> or, = hR(t) e 'K
> 0pa, = poR (t) e KT
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Linearized WCSPH system

» Similarly to the velocity, positions and density are searched for
in the following forms:
> or, = hR(t) e 'K
> 0pa, = poR (t) e KT

» After some algebra the linearized WCSPH system reads:

U(t) = %@(K*)R(t)w—%a (KTU (1)
R(t) = %U(t)
R(t) = 2w (KK U (1)

» K* = hK is the dimensionless wavevector, K™ = |K*| and

~

F(KT) = 2/72/Q (e7™®F—1) r—'2 - Viw, (F) dF
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Time marching scheme

» We first consider a first order semi-explicit scheme:
. . . . u(tm+t)—u(em)
» Time derivatives are approximated as U (t) = —f——
» Updated velocities are used to compute positions and densities

» We search all functions of time as U (t) = Uge'?, etc.

13/44



Time marching scheme

» We first consider a first order semi-explicit scheme:

U(tm+1)_U(tm)

» Time derivatives are approximated as U (t) = e
» Updated velocities are used to compute positions and densities
» We search all functions of time as U (t) = Uge™", etc.

» The linear system now reads:

x—1
ot
x—1
ot
y—1
ot

» Recall y = e

Uo
Ro

0

iwdt

iCo — v
TOW,, (K )RoK* = 5 F2 (K )Ug
X%Uo
IC — ()i et
XTWh (K )K -Ug

is the numerical wave amplification factor.

The stability condition reads VK™, |y| < 1.
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The eigenvalue problem

» Rearranging the system leads to an eigenvalue problem:
YA (KT @K Ug = — (x — 1+ Ay) (x — 1) KU

» New notation:
A = C’F (K*)
Ay = CF (KY)
FKY) = [k ()

> Recall C ot . wit  C
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The eigenvalue problem

» Rearranging the system leads to an eigenvalue problem:
YA (KT @K Ug = — (x — 1+ Ay) (x — 1) KU

» New notation:
A = C’F (K*)
Ay = CF (KY)
FKY) = [k ()

» Integration by parts gives:

Fy (K*) = 2K*w, (K*) = 2¢/F (KT)

> Recall _ ot . wit  C

14 /44



Stability criterion

» The tensor K™ ® K™ has two eigenvalues: 0 and K2

» Only the second is important to investigate. It gives the
following characteristic polynomial:

X2+(A1+A2—2)X+1—A2:0
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Stability criterion

» The tensor K™ ® K™ has two eigenvalues: 0 and K2

» Only the second is important to investigate. It gives the
following characteristic polynomial:

X2+(A1+A2—2)X+1—A2:0

» The roots satisfy the stability criterion VK™, |y| < 1 if and only
if A; +2A, <4 for all wavenumbers, j.e.:

2= C, R (K*)
C< \/2rp<l+n F (K =9(G)

» For comparison, recall Morris et al.'s "traditional’ empirical criteria:
C<04and C, <0.125

15/ 44



The stability functions (1)

» Note: wj,, F; and F, depend on K™ = |K™| only for isotropy
reasons

» Kernel notation:

F

h

«, being a normalizing constant and n the space dimension.

wy (F) = —f(q) q=
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The stability functions (1)

» Note: wj,, F; and F, depend on K™ = |K™| only for isotropy
reasons

» Kernel notation:

¥

wy (F)=-"f(q)  a=
«, being a normalizing constant and n the space dimension.
» Example 1: the Gaussian kernel:

flg)=e

with a, = 7 "/2,
K+2

wh (K+) —=e @
K2

+ 4o K22 + K
Fi(KY) = K2 F(k')=4(1-e ")

16 /44



The stability functions (2)

» Example 2: the Wendland kernel or order 5:

f(q)= (1—3>4(1+2q) if 0<q<?2

2

with a; = 3/4, a, = 7/4n, as = 21/167.

n=1:
n=2:
n=3:

Wi (KT) = 525 (K™ + 1Kt sin2K™ — 2sin® KT)
i (K*) = A58, 6K+ 0y (2K*) — K*Jp (2K™)
TR TAKE | 43 (K12 - 8) Y (2KY)
W (K = 318 (12 — 2K*?) cos 2K™

! BKTE | +OK*sin2K* + 8K*2 — 12

Y (x) = Ji (x) Ho (x) — Jo (x) H1 (x)

where Jy, J; are Bessel functions and Hy, H; Struve functions
(Abramovic and Stegun, 1972).

17 /44



Function w, (K*)

Gaussian ———
Wendland order 5, n=1 ---------
Wendland order 5, n=2 ——
Wendland order 5, n=3 ——— 4
B-Spline order 3, n=1 ---------
B-Spline order 3, n=2 ———
B-Spline order 3, n=3 ———
B-Spline order 4, n=1 --------- g
B-Spline order 4, n=2 ——
B-Spline order 4, n=3 ———
B-Spline order 5, n=1

B-Spline order 5, n=2 E
B-Spline order 5, n=3

0.6

WK

04

02

0.0 ; ;
0.0 1.0 2.0 3.0 4.0 5.0 6.0
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Function (K*)

Fy(K")

2.0 3.0 4.0 5.0 6.0
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Function £, (K*)

8.0

7.0 | 1

6.0

Fy(kh
~
(=)
T

30

20

1.0 |

00— ; ; ; ;
0.0 1.0 2.0 3.0 4.0 5.0 6.0

K+
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Stability domains

+
C< 2min2_C”F2(K )
- +
K+ Fl (K )
0.6
0.5 4
— Gaussian
04 r 4
— Wendland order 5
J 03 -4 — B-Spline order 3
— B-Spline order 4
0.2 4
01k | — Morris et al. (1997)
0.0 L L
0.0 0.5 1.0 2.5
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Numerical validation

» The 'infinite flow’' test case

» n =2, square of 40 x 40 particles
» Double periodicity ('infinite flow")
> u,er = 0 by Galilean invariance
» 1 % initial density discontinuity

p=p, |p=101p,

0.6

" C=1.646:stable..._
0a t C=1.648: unstable:.
< 03 L s N
0.2
0.1
0.0 : : : e
0.0 0.5 1.0 1.5 2.0 2.5

22/44



Stability domains: validation

» ’'Infinite flow’ test case in dimension n = 2

0.6 T T T T
Re =0.1 1 2 3
0.5
— Gaussian
04 - — Wendland order 5
— B-Spline order 3
D> 03 9. 9. ()
— B-Spline order 4
02
— Morris et al. (1997)
0.1 | o Numerical
0.0 : :
0.0 0.5 1.0
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Maximum Reynolds number Rey

» Numerically, Reyg = %” could not exceed a critical value
Rec.ir ~ 100. This may be due to:
» The discrete nature of SPH (tensile instability, see Swegle et al.,
1995), not explained by the present theory
» Non-linear effects (|x| — 1 when Rey is increased)
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Maximum Reynolds number Rey

» Numerically, Reyg = %” could not exceed a critical value
Rec.ir ~ 100. This may be due to:
» The discrete nature of SPH (tensile instability, see Swegle et al.,
1995), not explained by the present theory
» Non-linear effects (|x| — 1 when Rey is increased)

» Physically, instabilities (turbulence) occur in fluids when
Re = % exceeds ~ 100 to 2000

» By chance, with ¢g ~ 10Upax, Rep ~ 100 <= Re ~ 100 to 1000
(according to the space resolution %)
» However, the SPH instability at large Rey is not representative of

physical turbulence growth
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Maximum Reynolds number Rey

» Numerically, Reyg = %” could not exceed a critical value
Rec.ir ~ 100. This may be due to:
» The discrete nature of SPH (tensile instability, see Swegle et al.,
1995), not explained by the present theory
» Non-linear effects (|x| — 1 when Rey is increased)

» Physically, instabilities (turbulence) occur in fluids when

Re = % exceeds ~ 100 to 2000

» By chance, with ¢g ~ 10Upax, Rep ~ 100 <= Re ~ 100 to 1000
(according to the space resolution %)

» However, the SPH instability at large Rey is not representative of

physical turbulence growth

» Solutions to keep Rey below ~ 100 (¢y cannot be decreased)

» Decreasing h (finer space resolution): DNS
» Increasing v: RANS model with eddy viscosity closure
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Re-scaling the kernels (1)

» The size of the kernel support is not only determined by h

> Dehnen and Aly, 2012 suggest to use as a measure of space
resolution the kernel standard deviation o in place of h:

Dehnen, W., Aly, H. (2012), Mon. Not. R. Astron. Soc. 000:1-15
25 /44



Re-scaling the kernels (2)

» K* = oK should now be used in place of K™ = hK

» The re-scaled kernel Fourier transforms wj, (K*) come much
closer together, as well as F; (K*) and F, (K™)

» As a consequence, so do the stability domains, with the new

definitions:
C*; Coét C*— V(st'
o v g2
1.0 - 12
N Gaussian
Wendland order 5, n=1 ===~
Wendland order 5, n=2 —— 10
0.8 F Wendland order 5, n=3 -
\ B-Spline order 3, n=1 ---------
B-Spline order 3, n=2 ——
B-Spline order 3, n=3 —— 08 -
0.6 N\ B-Spline order 4, n=1 ===
- \ B-Spline order 4, n=2 —— .
f,» \ B-Spline order 4, n=3 ~.:) 0.6
= \ B-Spline order 5, n=1
04 \ B-Spline order 5, n=2
B-Spline order 5, n=3 04 L
,
02 02+
0.0 : : : 0.0
0.0 0.5 1.0 1.5 3.0 35 4.0 0.0 0.5 1.0 1.5 2.0 4.0
K C



Model variations (1)

» Density interpolation instead of continuity equation:
Pa = Z mpWayp
b

» The theoretical stability domain is unchanged
» This is confirmed by numerical tests
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Model variations (1)

» Density interpolation instead of continuity equation:
Pa = Z mpWayp
b

» The theoretical stability domain is unchanged
» This is confirmed by numerical tests

» Modified gradient and divergence operators:

kA + kA
Gi{A,} = Z v,le 2o Tl gy,
(paps)”

Di{Ay} = va papp) (As — Ap) - Vs

» Same conclusions as above
» Same thing with a 'minus’ sign in the gradient, called G

27 /44



Effect of background pressure

» The backround pressure modifies the state equation:

c [ p?
Pa:po_o(p—?y—l‘i'D)
Y Po

» Note: this is only relevant with the GI (or G¥) SPH gradient
operators, not with G} .
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Effect of background pressure

» The backround pressure modifies the state equation:

c [ p?
Pa:po_o(p—?y—l‘i'D)
Y Po

» Note: this is only relevant with the GI (or G¥) SPH gradient
operators, not with G} .

» The theory remains unchanged except Fi:
F (K p') = K% (K*) [0 + (1 p) 3 (K)]

where 2D 200

pr=—=—"
v Poco
is a dimensionless background pressure.

28 /44



Effect of background pressure: validation

'Infinite flow’ test case, n = 2, Wendland kernel with G

a
0.4
Theoryp —00 I
| : Theory p*=2/7 ——
0.3 [ Theoryp+—05 —
° Theory p'=1.0 ——
o388 . &§ ° o Theoryp+—20 i
Numerical p+—0 0o @
\ Numencalp =2/7 ©
02 A Numerical p*=0.5  © h
: : Numerical p:—l 0 °
> Lo A AN Numerical p"=2.0 |
o0z Traditionnal ——
02 F e A
0.1 i .
0.1 + .
0.0 :
0.0 2.0 2.5
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Model variations (2)

» Using Monaghan and Gingold (1983)'s SPH Laplacian:

_
LY (A} = 2(+2) [ [A() - A vl a
r—r
LMC (A} = 2(n+2) va s—A)- @vWab
ab

Monaghan, J.J. and Gingold, R.A. (1983), J. Comput. Phys. 52(2):374-389
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Model variations (2)

» Using Monaghan and Gingold (1983)'s SPH Laplacian:

_/

LY (A} = 2(+2) [ [A() - A ALY
r—r

LMC (A} = 2(n+2) va s—A)- @vWab
ab

» The function F, should then be modified as follows:

e (k) + 22

[Fo (KY)+(n=1)b(K")]

where

2 K
b<K+) = K+n/0 "in+1VV\h (H')d/f

Monaghan, J.J. and Gingold, R.A. (1983), J. Comput. Phys. 52(2):374-389
30/44



Model variations (3)

» 'Infinite flow' case, Gaussian kernel with both Laplacians

0.8 T T T T
Theory, Morris et al. viscous term
Numerical, Morris et al. viscous term °
0.7 Theory, Monaghan and Gingold viscous term, n=1 --------- T
Theory, Monaghan and Gingold viscous term, n=2 ———
0.6 - Theory, Monaghan and Gingold viscous term, n=3 i
. Numerical, Monaghan and Gingold viscous term, n=2 °
Traditionnal
0.5 o .
U> 04, 4
02 o9 06 o© o I .
0.1 i .
0.0 :
0.0 3.0 3.5
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Effect of the time marching scheme

» Using old velocities to update positions and densities (fully
explicit scheme), there is no more x in the r-h-s:

x—1 ico — v
U0 = TOW,, (K )RoK" = 5 (K )Uo

=l @

5 R0 = o

-1 ico —

X(St R() = TOW/,<K+>K+'U0
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Effect of the time marching scheme

» Using old velocities to update positions and densities (fully
explicit scheme), there is no more x in the r-h-s:

X1y, %Wh (K*)RoK* = 5 F2 (K*)Uo

ot
x—1 _ @

5t Ro = 3l

-1 ico —

X(St R() = TOW/,<K+>K+'U0

» The characteristic polynomial now reads:
A (A =2 x+1+A—A =0
» The stability criterion VK™, || < 1 is modified:

2
<G < —
lim  F(KT)

K+ —+4o00

32/44



Stability domains: fully explicit scheme

: Similar to De Leffe, 2011
lim  F(KT)

K+ —400
0.6
05 (o]
- - Gaussian, semi-expl.
04 |- - - S - B - - N - - ‘\‘ . - 4
________________________ — Gaussian
J 03 b . -4 — Wendland order 5

— B-Spline order 3

ol b / N T | — Morris et al. (1997)

00 ~ L L L L :
0.0 0.5 1.0 1.5 2.0 2.5
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Fully explicit scheme: validation

» 'Infinite flow’ case in dimension n = 2, B-spline order 5 with
fully explicit scheme

0.6 T T T T
Theory
Rep=0.1 1 Numerical

0.5

0.4

02

0.0 L8 ‘ ‘ ‘ ‘
0.0 0.5 1.0 1.5 2.0 2.5
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Maximum CFL number

» Plotting the maximum value of C vs Rey (n = 2)

2.5
— Gaussian
20 — Wendland order 5
— B-Spline order 3
L5 - — B-Spline order 4
o)
1o — Morris et al. (1997)
Dotted: semi-explicit
il Solid: fully explicit
00 ‘ o Num., semi-explicit
1.0e-02 1.0e-01 1.0e+00 1.0e+01 1.0e+02 1.0e+03

Re
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Sensitivity to various parameters

» Some model options may be modified without modifications
on the numerical results:
» h/6r = 1.2 instead of 1.5
» Random initial density noise instead of vertical discontinuity
» Initial particle distribution: Cartesian or triangular packaging
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Sensitivity to various parameters

» Some model options may be modified without modifications
on the numerical results:
» h/6r = 1.2 instead of 1.5
» Random initial density noise instead of vertical discontinuity
» Initial particle distribution: Cartesian or triangular packaging

» Effect of a velocity gradient:

» Linearizing around a reference state with a uniform velocity
gradient u,er = Fey (T’1 = rate of strain) gives a more
complex eigenvalue problem

» A polynomial of order 5 is obtained for v, involving Ct = ‘5—.,5

» However, in practice Ct is so small that velocity gradients have
almost no effect on the stability domain

» This is confirmed by numerical experiments

» Same conclusions for pressure gradients
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Wall effect

Including wall effects in the theory is not that easy:

» Boundary integrals occur

» Numerical waves are reflected onto the wall so that the resulting
wave should fulfill the wall acoustic boundary condition

» Tests on a Poiseuille flow (with background pressure):
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0.0

Numerical, Poiseuille flow, vertical discontinuity p+—0 14
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Theory, 1nf1mle flow Py —0
Numerical, infinite ﬂowp =0 °
Theory, infinite flow p'=0.14 ===

Traditionnal

0.0

2.0 2.5
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Application to ’real’ flows (1)

» Experimental stability domain for:

» The lid-driven cavity (steady, no free surface)
» A water collapse on a wedge (unsteady, free surface)

» Simulations done by Agnes Leroy
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Application to 'real’ flows (2)

» 'Real’ 2-D flows, Wendland kernel

0.6 T T
Theory, infinite flow p =0
Numerical, infinite flow p*=0 ©
o5k Numerical, lid-driven cavity, p_=1/7 |
- Numerical, lid-driven cavity, p”=2/7
Numerical, water collapse a
Traditionnal
04 .
U> 03 |2 Q 0. o. 4
B o]
02 %4 - .
a B g !
: . : :
L O I - i N
a .
0.0 i = i i
0.0 0.5 1.0 2.0 2.5
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Conclusions (1)

» The present approach used two approximations:
» Continuous SPH differential operators
» Linearized forms of the governing equations

» The theory provides stability domains for the time step
including the effects of various model options:

v

Arbitrary space dimension n

Kernel choice (through the wj,, F; and F; functions)
Continuity equation or density interpolation

Various gradient, divergence and laplacian forms
Background pressure

Various time marching schemes

v

>
>
>
>

» Experimental tests are in excellent agreement with the theory
» The numerical Reynolds number could nor exceed ~ 100
» Wall effects remain difficult to treat
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Conclusions (2)

» The following recommendations follow:

» The time step can be larger than in Morris et al.'s work

» The stability domain is almost independent on the kernel for a
given resolution o

» No matter the way the density is computed

» No matter the forms of gradient or divergence operators

> Morris et al.'s Laplacian is better than Monaghan and Gingold's

» Do not use fully explicit time integration schemes
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Conclusions (2)

» The following recommendations follow:

>

>

The time step can be larger than in Morris et al.'s work

The stability domain is almost independent on the kernel for a
given resolution o

No matter the way the density is computed

No matter the forms of gradient or divergence operators

Morris et al.'s Laplacian is better than Monaghan and Gingold's

Do not use fully explicit time integration schemes

» Other features can be treated the same way:

vV vV VvV vV

v

Surface tension: C < f(C,, Cg), Cg = ﬁjﬁi = VCT;

Density smoothing, Incompressible SPH

Solids, MHD and other kinds of Physics

Higher order time marching schemes (Leapfrog, etc.), but they
lead to higher degree polynomials for y

Similar methods: MPS, FVPM, DPD, etc.
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Further references
>

Violeau, D., Fluid Mechanics and the SPH Method. Theory and Applications, Oxford
Univ. Press, 2012.

» Violeau, D. and Leroy, A., Maximum time step for keeping numerical stability of viscous

weakly compressible SPH, submitted to the J. Comput. Phys.

Merci de votre attention.

Contact: damien.violeau®@edf.fr
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Velocity gradient: validation

» 'Infinite flow’ case, n = 2, with sinusoidal velocity field (note:
background pressure was necessary in this case)
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... with a continuous time

» If we consider the time as continuous (no time scheme):
i(,UUO = %Vv\h (K+)ROK+ — %FQ (K+>U0

. Co
R = =
1WRo Uo

iwRy = 2, (K*)K™ - Uo
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... with a continuous time

» If we consider the time as continuous (no time scheme):

iCUUO
ino

ino

G (K ) RoK* — 2 F (K)o

(o))
7 Yo

0 (K7)K™ - U

» The dispersion relation reads

w =

14

T oop2 Fa (K+)

. L Fi(KY)
== \/4R60 m — 1]

» Imw > 0 for all KT: the system is always stable!
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