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lent flows using Smoothed Particle Hydrodynamics

February 24, 2014

This thesis investigates turbulent wall-bounded flows using the Smoothed Particle Hydro-
dynamics (SPH) method. The first part focuses on the SPH method itself in the context of
the Navier-Stokes equations with a special emphasis on wall boundary conditions. After dis-
cussing classical wall boundary conditions a detailed introduction to unified semi-analytical
wall boundary conditions is given where the key parameter is a renormalization factor that
accounts for the truncated kernel support in wall-bounded flows.
In the following chapter it is shown that these boundary conditions fulfill energy conser-
vation only approximately. This leads to numerical noise which, interpreted as form of
Brownian motion, is treated using an additional volume diffusion term in the continuity
equation where it is shown to be equivalent to an approximate Riemann solver. Two exten-
sions to the boundary conditions are presented dealing with variable driving forces and a
generalization to Robin type and arbitrary-order interpolation. Two modifications for free-
surface flows are then presented, one for the volume diffusion term and the other for the
algorithm that imposes Robin boundary conditions. The variable driving force is validated
using a Poiseuille flow and the results indicate an error which is five orders of magnitude
smaller than with the previous formulation. Discretising the wave equation with Robin
boundary conditions proves that these are correctly imposed and that increasing the order
of the interpolation decreases the error. The two modifications for flows under the influence
of external forces significantly reduce the error at the free-surface. Finally, a dam break
over a wedge demonstrates the capabilities of all the proposed modifications.
With the aim of simulating turbulent flows in channels, the thesis moves on to extending
the unified semi-analytical wall-boundary conditions to three dimensions. The thesis first
presents the consistent computation of the vertex particle mass. Then, the computation of
the kernel renormalization factor is considered, which in 3-D consists of solving an integral
over a two dimensional manifold where the smoothing kernel intersects the boundary. Us-
ing a domain decomposition algorithm special integration areas are obtained for which this
integral can be solved for the 5th-order Wendland kernel. This algorithm is successfully
applied to several validation cases including a dam break with an obstacle which show a
significant improvement compared to other approximative methods and boundary condi-
tions.
The second part of this thesis investigates turbulent flows, in particular turbulent channel
flow. This test case is introduced in detail showing both the physical properties as well as
established numerical methods such as direct numerical simulation (DNS) and large eddy
simulation (LES). In the penultimate chapter several SPH simulations of the turbulent
channel flow are shown. The first section deals with a quasi DNS of the minimal-flow
unit, a channel flow with a minimal domain size to sustain turbulent flow structures. The
Eulerian statistics are compared to literature and show good agreement except for some
wall-normal quantities. Furthermore, preliminary Lagrangian statistics are shown and com-
pared to results obtained from a mesh-based DNS. The final simulation shows a LES of a
full-sized channel at Reynolds number Reτ = 1000. The Eulerian statistics are compared to
literature and the discrepancies found are explained using simulations of the Taylor-Green
vortex, indicating that the momentum is not transferred appropriately due to an unresolved
velocity-pressure-gradient tensor.
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Chapter 1

Introduction

Most fluid flows observed in nature are turbulent featuring unsteady and irregular be-
haviour. This is also true for flows related to engineering problems such as the flow of
water in a pipe. These flows feature a wide range of different length and time scales.
The interest in turbulent flows dates back over two thousand years and until the end of
the last century experiments and observations were the main method of studying these
flows. The advent of computers has given rise to the numerical simulation of such flows
and now provide an important tool in the analysis of turbulence in both engineering
applications as well as theoretical perspectives.
The methods used to solve problems in computational fluid dynamics can generally
be divided into two categories. The first is the Eulerian approach which decomposes
the fluid domain into a mesh. In general, the mesh remains the same throughout a
simulation and does not move. The most prominent of the methods belonging to this
category are Finite Volume, Finite Differences and Finite Elements which can be found
in software such as Code Saturne, OpenFOAM, Fluent, Alya and Incompact3D. These
techniques have been successfully applied to engineering problems for several decades.
However, simulating highly violent flows with large deformations is difficult with these
methods.
The second class of methods are Lagrangian techniques. Some of the methods as-
sociated with this category are also based on a mesh. One example would be the
Particle-In-Cell method by Harlow (1957). On the other hand there is a wide variety
of meshless techniques such as the Element-free Galerkin (Belytschko et al., 1994), Re-
producing Kernel Particle Method (Liu et al., 1995) and many others. In recent years,
the most popular Lagrangian method to have emerged is Smoothed Particle Hydro-
dynamics (SPH). Although turbulence has been investigated using Eulerian methods
for decades, using meshless methods has received little attention. Hence, this thesis
presents an investigation into using SPH for turbulent flows. In the following a brief
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introduction to meshless methods is given in Section 1.2. This chapter provides an
overview of state-of-the-art SPH methods and its applications.
This is followed by a brief introduction to turbulence. Besides giving an introduction
to experimental turbulent research the three main approaches to the simulation of tur-
bulent flows are discussed. Next, a literature review of turbulent simulation with SPH
is conducted in Section 1.5.
Finally, this chapter is concluded with a summary and motivation for the remainder of
this work.

1.1 The governing equations

At the beginning of this chapter the governing equations of fluid flow will be pre-
sented. A more detailed view on them will be presented in the beginning of Chapter 2.
Throughout this thesis Newtonian fluids will be considered whose behaviour is governed
by the Navier-Stokes (NS) equations given by

dv

dt
= −1

ρ
∇p + ∇ · (ν∇ · ⊗v) + fext, (1.1)

where v is the velocity, t the time, ρ the density, p the pressure, ν the kinematic viscosity
and fext an external force acting on the fluid. Furthermore, ∇ denotes the del operator.
The Navier-Stokes equations are complemented with the continuity equation given by

dρ

dt
= −ρ∇ · v. (1.2)

Finally, to close the system of equations an equation of state (EOS) is used, which
determines the pressure as function of density. In the following this equation of state
is chosen such that the fluid is weakly compressible, i.e. the density can vary by up to
1% of the reference density ρ0. More background and the details of these equations are
presented in Chapter 2.
Most theoretical analysis on fluid flows is normally performed by assuming the flow to be
incompressible, i.e. ρ = ρ0. This reduces the continuity equation (1.2) to ∇·v = 0. This
makes the theoretical analysis easier and no equation of state is required. As a result
most numerical solvers of the Navier-Stokes equations also solve the incompressible
equations. This separates the weakly compressible used throughout this thesis from
the purely incompressible results. However, due to the low density fluctuations the
weakly compressible solution of the NS equations can be seen as an approximation to
the incompressible solutions and as such comparison with those is justified.
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1.1.1 Numerical treatment

In order to simulate the Navier-Stokes equations with numerical methods two steps
need to be taken. The first one consists in calculating the derivatives on the right hand
side of Eqs. (1.1) and (1.2). Secondly, the variables need to be integrated in time.
These two problems are generally related from a numerical analysis point of view but
in practice are often regarded separately. The issue of time integration will be covered
in detail in Section 2.4. In the present section the focus will lie on discretizing space
for differentiation.
There are two approaches that can generally be differentiated. The first approach is
based on meshing the domain of interest. This consists of subdividing the domain into
certain small elements such as triangles or polyhedra. Generally, these meshes do not
move over time and one mesh element only interacts with its direct neighbours. In con-
trast to that there is the so called meshless approach. This will be considered in detail
in the following with a particular emphasis on the Smoothed Particle Hydrodynamics
method. In contrast to most mesh based methods meshfree methods allow their nodes,
i.e. the points that carry the physical information, to move with the local flow field.

1.2 Meshless methods

The main difference between a mesh-based method, such as the finite element method,
and meshless methods is that the domain of interest for the latter is only discretized
with nodes as opposed to geometrical shapes, e.g. triangles. Probably the most strik-
ing difference is that node connectivity does not remain constant but can change easily
over time. This is especially useful when large deformations occur as in free-surface
flows, fractures or fragmentation. Another difference is that the order of the shape
functions is higher than for most mesh-based methods which can be exploited for cer-
tain properties. While expensive mesh generation is avoided, meshless methods are
computationally more expensive as they have a very large stencil and some methods
suffer instabilities. One source of these instabilities is that the integration is not exact.
Another source is created by the fact that meshless methods shape functions do not
fulfil the Kronecker-Delta property which is problematic when it comes to the imposi-
tion of Essential Boundary Conditions.
After the development of a number of meshless methods a pattern for their construc-
tion methodologies emerges. This pattern can be used to classify these methods and
provide a framework to understand them:

• The first step is to create basis functions for the domain Ω where different ap-
proaches are available. These approaches mostly depend on the choice of a weight-
ing function with compact support and the positions of the nodes.
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• To approximate an unknown function the calculated basis functions which are
sometimes called intrinsic basis functions are used. If there is a priori knowledge
of the solution this can also be added as an extrinsic basis. To do so the approx-
imating function is defined to be a linear combination of the basis functions with
unknown coefficients.

• To determine these unknowns it is necessary to impose some conditions on the
approximating function. A weighted residual procedure is chosen which depends
on specific test functions. Depending on those, a collocation procedure such as
Bubnov-Galerkin methods is the result.

After this overview the first and third step are described in greater detail. The second
step is neglected because there is no extrinsic basis used in this thesis, so the approxi-
mation is a linear combination of the intrinsic basis functions.
This thesis is not about meshless methods in general, the interested reader is referred
to Fries and Matthies (2003) where a more detailed overview of most of the meshless
methods can be found.

1.2.1 Construction of basis functions

This section is mainly about approximation theory and its various methods. Specifically
a function

f : Ω ⊆ Rn → R (1.3)

is to be approximated by a family (Φi)i=1,...,n of basis functions. We define the approx-
imation f̃ of f as

f(x) ≈ f̃(x) =
n∑

i=1
ai Φi(x) ∀x ∈ Ω (1.4)

where ai ∈ R are the nodal parameters. Note that ai 6= f̃(xi).
The choice of the basis functions is of high importance and influences the error of the
approximation. One should note that the error depends on a specific norm which is
to be minimised and this is discussed in Section 1.2.2. One of the key ideas when
using these basis function for interpolation is that when approximating a derivative the
differentiation can be shifted from the unknown function f to the basis function. This
will be detailed in Chapter 2.2.3. In the present section several approaches to basis
functions will be presented and discussed.

1.2.1.1 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics is the oldest type of meshless method originally
introduced by Lucy (1977) and Gingold and Monaghan (1977). As such as it is also
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rather basic in terms of mathematical properties. All basis functions Φi are equal to one
function w which is commonly taken to be a radial polynomial or spline. This method
will be discussed in much greater detail in Chapter 2 and in the present section only a
few general remarks are made. Due to the particular explicit choice of basis function
the issue of inverting a global matrix to define coefficients is avoided. This is in contrast
with the other methods below, but has the downside of not ensuring consistency, not
even of zeroth order.

1.2.1.2 Radial basis functions

In 1990 Kansa (1990) was the first to introduce radial basis functions to collocated
meshless methods. Collocated here refers to the fact that all physical properties of the
system are stored at each node. Compactly supported as well as global radial basis
functions are still under active research.
An arbitrary function φ can be approximated by

φ(x) = P (x) +
n∑

i=1
λiΦi(‖x − xi‖) (1.5)

where P (x) is a polynomial of fixed degree, λi ∈ R and the Φi are radially symmetric
basis functions, i.e. Φi : R+ → R. Possible choices of Φi include the Thin-Plate
Spline, the Gaussian or other harmonic Splines. The polynomial is used to allow global
polynomial reproducibility which might be desirable in some problems as noted by
Sukumar (2009). Radially symmetric basis functions do not satisfy the Kronecker-Delta
property Φi(xj) = δij which is a significant drawback. However one of their advantages
is that the resulting system of linear equations is easily invertible under mild conditions
regarding the node positions as shown by Micchelli (1986).

1.2.1.3 Moving least squares

A desirable feature when approximating functions is consistency of a specific order n.
This means that the method is able to reproduce polynomials of order less or equal
to n exactly. For moving least squares it is very easy to determine its consistency,
since it coincides with the number of elements in the polynomial basis. Generally, a
function f is approximated by a linear combination of the polynomial basis of order
n (P (x) = (1, x, ..., xn)), where the coefficients depend on the position x. Hence, the
description “moving”. Now the distance from the approximation to the function f is
minimised in a l2 norm and this results in an equation as seen in (1.4) where

ΦT (x) = P T (x)(M(x))−1B(x) (1.6)
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using the notation of Fries and Matthies (2003). The matrices M and B depend on a
compactly supported weighting function and the polynomial basis P . Finally important
properties of moving least squares shape functions are:

• They build a partition of unity, whereas their derivatives build a partition of
Nullities.

• They are smooth but their derivatives tend to have an increasing non-polynomial
behaviour. Indeed all functions contained in the vector P can be reproduced
exactly.

• Similar to radial basis functions they do not possess the Kronecker-Delta property.

• In Eq. (1.6) it can be seen that the matrix M has to be inverted for every x

which leads to a huge computational effort. Depending on the positions of the
nodes the matrix M might be singular as shown by Nguyen et al. (2008).

• It is also possible to add non-polynomials to the vector P , which is especially
useful if a priori knowledge about the solution is available according to Sukumar
(2009).

1.2.1.4 Reproducing kernel particle method

The reproducing kernel particle method was developed by Liu et al. (1995) due to
consistency problems with several meshless methods such as SPH. The basic difference
to the continuous SPH is a correction function C(x, y) which enforces consistency. The
continuous approximation reads

f̃ =
ˆ

Ωy

C(x, y)ω(x − y)f(y)dΩy, (1.7)

where Ωy = {x ∈ Rn : ω(x − y) 6= 0}. Choosing again P as above and letting ω

be a weight function similar to the one used in SPH methods. Approximating f via
f(x) = P T (x)a yields a system of equations for a ∈ R. Solving this and transforming
the integral into a sum yields

f̃ = P T (x)(M(x))−1
n∑

i=1
P (xi)ω(x − xi)fi∆Vi. (1.8)

The full deduction can be seen in the paper by Fries and Matthies (2003). ∆Vi is a
measure for the node volume and is also present in the matrix M . It should be noted
that if ∆Vi = 1, then the reproducing kernel particle method reduces to the moving
least squares approach.
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The correction function C(x, y) allows this method to be n-th order consistent, if P is
n-th order consistent.

1.2.1.5 Natural neighbour-based interpolants

Unlike the finite element method, natural neighbour-based interpolants are not based
on the Delaunay triangulation but rather on the Voronoi diagram. Due to the unique-
ness of these diagrams the interpolants are well defined and robust. Unlike all of the
methods mentioned above these basis functions actually fulfil the Kronecker-Delta prop-
erty which makes it easy to impose essential boundary conditions. Furthermore they
build a partition of unity and have continuous first derivatives. However, to achieve
smoother functions more effort is required than in the moving least squares case. For
further details the reader is referred to Sukumar et al. (2005) and Sukumar (2009).

1.2.1.6 Maximum entropy approximants

The discussion so far has concentrated upon the differences between meshless methods
and the finite element method but with the development of maximum entropy approx-
imants, a continuous link between a meshless method and the finite element method
could be established. The underlying idea is simple: there is an unknown function
which should be approximated, so basis functions that are least biased are preferred.
The Shannon Entropy functional was used as a starting point (Shannon, 1948). This
method was transformed by Arroyo and Ortiz (2006) to obtain local maximum entropy
basis functions. They also pointed out the link to convex analysis since this method
belongs to the group of convex approximation schemes. This method also makes the
imposition of essential boundary conditions relatively easy since it possesses a weak
Kronecker-Delta property, i.e. every basis function associated with a node not belong-
ing to the boundary is zero at the boundary. However, this is only true for convex
domains. Another problem (similar to the natural neighbour-based interpolants) is
that approximation orders higher than one are difficult to achieve according to Cyron
et al. (2008).
Problems with Kronecker-Delta properties led to mixing finite element methods with
meshless methods where the finite element method was used for the boundaries whereas
the meshless method was used for the interior (Krongauz and Belytschko, 1996). How-
ever these two methods have to be connected which might cause serious difficulties.
Again maximum entropy approximation allows a smooth transition between those two.
Another advantage of maximum entropy approximants is their stability with respect
to integration in Galerkin methods (see below).
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1.2.2 The weighted residual procedure

Like the finite element method, the finite volume method or the finite difference method,
meshless methods are based on the weighted residual procedure.
Let the differential operator L belong to a partial differential equation Lf = g. Since
in general there is no exact solution f it can be replaced with its approximation f̃ .
This of course leads to an error ε in the partial differential equation, which can now be
rewritten as Lf̃ − g = ε.
The next step is to impose certain conditions on that error to determine the nodal
parameters in Eq. (1.4). Consider the standard scalar product in L2

(f, g) =
ˆ

Ω
fg dΩ (1.9)

and choose a set of test functions T = {Ψi : i = 1, ..., n}. Requiring that the error ε is
orthogonal to the set T yields

0 = (Ψi, ε) =
ˆ

Ω
Ψi(Lf̃ − g) dΩ ∀i = 1, ..., n. (1.10)

The choice of the test functions is again essential. When T is chosen to consist of Dirac
delta distributions the integral equations in Eq. (1.10) become a discrete equation. In
this case the procedure is called a collocation method. Another possible choice is the set
of shape functions itself, i.e. T = {Φi} which results in the Bubnov-Galerkin method
(Atluri and Zhu, 1998). For any other choice of test functions one usually speaks of
Petrov-Galerkin methods. In the last two methods it is sometimes possible to shift
differentiation from the shape to the test functions, via the divergence theorem, which
might be useful for solving the equations.
As the thesis in the following will only consider the SPH method, it should be noted
that this particular method uses Ψ ≡ δ, i.e. the delta function. As stated before this
results in a collocation method which is known to result in numerical instabilities. On
the other hand, having an explicit system of linear equations simplifies the numerical
tools required to solve the system.

1.2.3 Disadvantages of meshless methods

After the beginning of intensive research regarding meshless methods they showed
promising results for some specific problems, and especially for problems with variable
geometries and discontinuities. However, there are still problems associated with them
that need to be resolved in order to make them applicable to a wider range of problems.
In the following three major disadvantages are discussed.
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1.2.3.1 Computational effort

When compared to mesh-based methods, meshless methods usually need more com-
putation power, a fact that is often claimed but no side-by-side comparison could be
found in the literature. Consider, for example, the moving least squares approximation
in Eq. (1.6); there the inversion of a matrix is required every time the shape function
is evaluated. Furthermore, meshless methods are usually used for changing geometries
and since the shape functions depend on the nodal position, recalculation is required
each time these change. However, compared to the mesh generation in mesh-based
methods this happens fully automatically, while the most time consuming operation is
the numerical integration in Eq. (1.10).

1.2.3.2 Numerical integration

The fact that most shape functions for meshless methods are rational implies that for
accurate integration it is necessary to use high order quadrature rules.
One method around the difficulties associated with integration is the use of collocation
methods but this results in decreased accuracy and stability. One reason, amongst
others, is that the divergence theorem cannot be applied, which results in the need to
calculate high order derivatives of the shape functions.
For Galerkin methods the highly non-polynomial form of meshless basis functions makes
exact integration very difficult. Various approaches have been applied to tackle this
problem, but according to Sukumar (2009) it seems that for true meshless methods
only nodal integration seems to be fruitful. Direct nodal integration is very similar to
the collocation methods where it has already been shown that problems arise. Thus
stabilised nodal integration is of current research interest and shows significantly better
results than direct nodal integration or Gaussian quadrature rules, according to Chen
et al. (2002). Direct nodal integration exhibits oscillations which result from rank
deficiency of the stiffness matrix. To avoid this a stabilisation technique is introduced
which enforces local conservation properties, see Li and Liu (2004).
There are also integration rules which make use of background meshes, and this results
in pseudo-meshless methods. A small overview can be found in the paper by Fries and
Matthies (2003).
Another problem with the aforementioned divergence theorem is that it is not exactly
fulfilled if the integration is not exact, which again gives rise to inaccuracies.

1.2.3.3 Boundary conditions

Since most meshless shape functions do not posses the Kronecker Delta property, it is
not possible to impose essential boundary conditions as easily as for the finite element
method. There are numerous algorithms to address this problem, amongst the earliest
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are Lagrangian multipliers, the penalty approach or Nietzsche’s method, which all
modify the weak form in Eq. (1.10). Another way to deal with essential boundary
conditions is to use shape functions with Kronecker Delta property at the boundaries.
One possibility of achieving this is the use of finite element method shape functions in
a coupling approach.
However, as noted earlier, maximum entropy approximants have the weak Kronecker
Delta property which allows direct imposition of essential boundary condition. The
only requirement to be met is the convexity of Ω.

After reviewing some of these meshless methods the next section focuses on Smoothed
Particle Hydrodynamics. Compared to some of the methods above it does not possess
as many mathematical properties. However, being derived from conservation principles
of physical quantities it has been successful for a wide range of applications. After
reviewing some of the disadvantages of meshless methods, including SPH, the following
section will focus on some areas of application where the strengths of SPH are shown.

1.3 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) was introduced by Lucy (1977) and Gin-
gold and Monaghan (1977). Both papers use SPH to simulate astrophysical systems.
The problems considered in the early days of SPH often feature unbounded domains
thereby avoiding the treatment of boundary conditions. Throughout the 1980s SPH
gained popularity in the astrophysical community and was applied to many problems
in this area. In the 1990s SPH was first used for weakly compressible fluid flow by Mon-
aghan (1992). Since then many authors have modified the SPH method to simulate
a very broad range of compressible and incompressible applications including strongly
compressible flows by Sigalotti et al. (2009) and incompressible flows which were first
simulated by Cummins and Rudman (1999). It has also gained considerable interest in
the field of solid mechanics starting with the work of Swegle (1992).
As mentioned in the beginning of this chapter, SPH does not need an underlying grid
for the discretization of the governing equations. Instead the physical values at a spe-
cific node are given as a weighted average of computation nodes called particles that
are more or less randomly distributed throughout the domain. These particles move
according to the forces calculated from the governing equations of the problem under
consideration. The interaction between particles is only determined by a weighting
function which depends on its compact support size. The connectivity between parti-
cles is not fixed and interacting particles are usually referred to as neighbours.
The comparably large number of neighbours (typically up to 200 in 3-D) causes SPH
to be slower than Cartesian mesh-based methods, as shown by Crespo et al. (2011)
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Figure 1.1: Simulation of two colliding galaxies (Springel, 2011).

making it very computationally demanding. On the other hand it is usually straight-
forward to capture complex, violent free-surface behaviour with SPH, an open problem
in mesh-based methods. Another advantage of the meshless formulation is that there is
no diffusion of interfaces and a discretization of the convection term is not needed. As
SPH did not originate from a mathematical background fundamental theoretical anal-
ysis is scarce and, until recently, little emphasis was laid on accuracy issues. However,
despite these downsides SPH has proven to be successful in numerical simulations for
a wide range of application fields.
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Figure 1.2: Bullet impact with SPH (Parshikov et al., 2000).
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1.3.1 Applications of SPH

1.3.1.1 SPH in astrophysics

SPH is still widely used in the field in which it was initially introduced. Applications
include the collision of celestial bodies, e.g. Cameron (1997), or entire galaxies as
shown in Figure 1.1 and e.g. Struck (1997). Large-scale galaxy formation simulations,
e.g. Springel and Hernquist (2003), can also be simulated via SPH. Due to the in-
herent unboundedness of such problems SPH is highly suitable. The simulations in
astrophysics often feature large density fluctuations for which SPH formulations with
a variable smoothing length are used. An open-source code named GADGET, e.g.
Springel (2005), is available for such types of problems. The code has been successfully
used to conduct large simulations with up to 10 billion particles according to Springel
et al. (2005).

1.3.1.2 SPH in solid mechanics

Although not as popular as in other fields SPH is also applied in various areas of
solid mechanics. One reason for this is that discontinuities and fragmentation can
easily be modelled with SPH which makes the method applicable to the simulation of
bullet impacts (see Figure 1.2) and crack propagation, e.g. Batra and Zhang (2006).
Groenenboom and Lobovsky (2009) used SPH to simulate the elasto-plastic necking
phenomena in 3-D. It is also possible to model phase changes of a material which occurs
in arc welding, e.g. Das and Cleary (2010), and die casting, e.g. Cleary et al. (2000).
SPH also allows the simulation of different cutting techniques due to the aforementioned
advantages. Examples include laser cutting, e.g. Gross (2008) and conventional metal
cutting, e.g. Villumsen and Fauerholdt (2008).

1.3.1.3 SPH in fluid mechanics

A wide variety of fluid flows exhibit a free surface which can be difficult to treat with
mesh-based methods. Due to this deficiency of grid-based solvers, SPH gained signifi-
cant interest from engineering communities dealing with complex fluid flows. There
are a few examples where SPH is used for the simulation of non-Newtonian fluids.
Examples include the simulation of lava by Prakash and Cleary (2011) illustrated in
Figure 1.3 and the simulation of microscopic flows by Ellero and Tanner (2005). How-
ever, most effort has been put into the simulation of Newtonian fluids, especially water
where the focus was on the solution of weakly-compressible or incompressible formu-
lations of the Navier-Stokes equations. SPH has been applied to various problems in
coastal engineering with one example being the simulation of a caisson breakwater by
Rogers et al. (2010). Marongiu et al. (2007) applied the method to simulating Pelton
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Figure 1.3: Simulation of lava flow (Prakash and Cleary, 2011).
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Figure 1.4: Flooding of a town with shallow water SPH (Vacondio et al., 2010).

turbines and this specific code is now used in a industrial environment. Due to the high
computational cost it is not straightforward to simulate large areas with comparatively
shallow depth with a fully three-dimensional approach. Thus, SPH has been adapted
by Vacondio et al. (2010) to solve the shallow water equations to simulate flooding
scenarios (see Figure 1.4). Another advantage of the method is that it allows the sim-
ulation of multi-phase flows. The most prominent examples are the simulation of air
and water such as by Colagrossi and Landrini (2003) or the simulation of sediments
and water, see Bui et al. (2007).

1.3.1.4 SPH in other areas

To conclude the SPH application overview another application shall be mentioned.
Vetter et al. (2011) used the SPH method to simulate the behaviour of pedestrian
crowds with specific application to evacuation scenarios as shown in Figure 1.5. The
simulations were conducted with a modified version of the aforementioned astrophysical
code GADGET.

1.3.2 State-of-the-art SPH techniques

There are several advanced methods that have extended the standard SPH formulation.
In this section a brief overview over a few of them are given including references to the
respective literature.
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Figure 1.5: Simulation of pedestrian crowds (Vetter et al., 2011).
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1.3.2.1 Riemann solvers

As shown later one of the biggest disadvantages of the weakly compressible SPH method
is the relatively noisy pressure field. Besides the use of numerical diffusion terms such
as in δ-SPH (Antuono et al., 2010) one of the main methods used to tackle this issue
is based on Riemann solvers. They are widely used in mesh-based methods and an in
depth description of these methods can be found in the book by (Toro, 1999).
Monaghan (1997) first suggested their use in SPH. In classical SPH the gradient can
be viewed as a sum of interaction between two particles where the flux between these
two particles is calculated by an arithmetic average. Starting from this viewpoint Vila
(1999) proposed to substitute this simple flux calculation by a more sophisticated Rie-
mann solver. That means that a one dimensional Riemann problem is solved between
two interacting particles in order to calculate the flux between them. As there exist
no closed-form solutions for the Riemann problem for ideal gases it is necessary to uti-
lize approximative solvers. As the theory is identical to mesh-based Riemann solvers,
a vast array of them are readily available, Toro (1999). One common choice is the
Harten-Lax-van Leer contact solver as used by Rogers et al. (2010). Vila (1999) also
proposed the use of a MUSCL upwind scheme in order to obtain second order scheme
which reduces numerical dissipation significantly as shown by Omidvar (2010).
There are two similar SPH approaches. The first one stems from Parshikov et al. (2000)
who also used an approximate Riemann solver and showed that the, still popular, arti-
ficial viscosity is not required in order to stabilize SPH simulations. Finally, there are
several variants of Godunov Particle Hydrodynamics which shares similarities with the
approach by Vila (1999). One of the initial papers on this topic is by Inutsuka (1999)
who later proposed improvements to satisfy conservations (Inutsuka, 2002). Cha and
Whitworth (2003) analyze the stability of their Godunov particle method by means of
a von Neumann analysis and show that it is stable regardless of the wavelength which
is not true for classical SPH with artificial viscosity.

1.3.2.2 Arbitrary Lagrange Euler SPH

This formulation allows the fluid particles to be moved with a velocity that is different
from that of the local fluid flow. When this arbitrary velocity is reduced to zero,
the Eulerian framework NS equations are recovered. The idea was pioneered by Vila
(1999) and allows the linking of SPH to Eulerian mesh-based methods. One significant
difference is that the calculation nodes can no longer be seen as particles but as moving
control volumes. Marongiu et al. (2009) showed that the Arbitrary Lagrange Euler
formulation provides increased stability and improved pressure fields when used in
combination with pre-conditioned Riemann solvers as discussed in Section 1.3.2.1 above.
This approach is not feasible in the context of the present work as the Lagrangian nature
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of SPH is of central importance in the extraction of Lagrangian statistics.

1.3.2.3 Incompressible SPH

Instead of using an equation of state to calculate the pressure a Poisson equation equa-
tion is solved. The physical meaning behind this is that the fluid is no longer considered
weakly compressible but incompressible.
There are three main techniques that are used to enforce incompressibility. The oldest
is the divergence-free SPH by Cummins and Rudman (1999). This method consists of
solving a pressure Poisson equation that enforces that the divergence of the velocity
vanishes. This method was also used in an alternative formulation by Lee et al. (2008)
and it was extended by Xu et al. (2009) who added a shifting technique to increase
stability. Recently Lind et al. (2011) extended this technique to free-surface flows.
The second technique that is used stems from the work of Shao and Lo (2003), who
propose an incompressible solver that employs a variable density. Again a Poisson
equation is used to calculate the pressure. However, Xu et al. (2009) has shown that
this formulation exhibits spurious noise just as the weakly compressible SPH does.
Finally the two methods above were combined by Hu and Adams (2007). Although
this approach improves the results, it requires two Poisson equations to be solved. As
this means solving a global system of equations (twice) the computational cost is sig-
nificantly larger.
The methods described above were compared side-by-side in the work of Xu et al.
(2009).
As with Riemann solvers the pressure field obtained by incompressible SPH methods
is generally smoother and promising results are obtained. On the other hand, solving
the Poisson equation requires solving a global system of linear equations which is time
consuming. This is balanced to a certain extent by the fact that higher Courant num-
bers can be used. The prediction of pressure is much improved in comparison to the
use of a state equation as shown by Lee et al. (2008).
Several of the above mentioned methods make use of a shifting algorithm which means
that they are not truly Lagrangian methods. Additionally, the shifting requires a free-
surface detection algorithm, which removes one of the biggest advantages of the SPH
method.

1.3.2.4 Chequerboard-free SPH

Recently Fatehi and Manzari (2010) showed that by modifying the gradient and di-
vergence operators in such a way that they are slightly different from each other, the
numerical oscillations can be significantly reduced. In their paper they use ideas from
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mesh-based collocated methods that show the same type of artefacts and with a com-
bination of traditional differential operators of first and second order they construct
a scheme which shows good results for low Reynolds number flows. However, numer-
ical experiments show that this method cannot, without modifications, be used for
turbulent free-surface flows.

1.3.2.5 Dual particle dynamics

The above mentioned issue of noisy pressure fields was also observed in mesh-based
methods that use a collocated grid. One possibility to avoid these numerical artefacts
is the use of staggered grids. Dyka et al. (1997) proposed an SPH method that also
stores pressure and velocity values on particles at different locations in space. Although
this approach, commonly referred to as Dual Particle Dynamics, provided good results
in one-dimensional simulations extension to higher dimensions is still an open problem.

1.3.2.6 Variable resolution

Most SPH formulations consider particles with approximately the same volume through-
out the domain. In contrast, most mesh-based methods make use of grids with variable
resolution or adaptive mesh refinement, making it possible to obtain higher accuracy
where needed while reducing the computational load on areas which do not require high
resolution. Monaghan (2005) describes one form of variable resolution that uses a vari-
able smoothing length that is linked to the volume of a particle. Omidvar et al. (2012)
used nested regions of particles with variable mass. Ulrich et al. (2011) demonstrated a
variable mass SPH algorithm that features a geometrically fixed region where particle
mass varies linearly. More recently Vacondio et al. (2012) presented an SPH scheme
which allows for dynamic coalescing and splitting of particles in 2-D. The formulation
conserves both momentum and total energy while minimizing the error in the density
field. The two formulations with variable mass also employ variable smoothing lengths
which was also discussed by Vila (1999).

1.4 Turbulence

An area of research and application for meshless methods that has received little at-
tention to date is turbulence which is a flow regime where the motion of the fluid flow
is generally chaotic. The most significant number related to any flow is the Reynolds
number which is defined as

Re = L U

ν
, (1.11)

where L is a characteristic length-scale, U a characteristic velocity and ν the kinematic
viscosity of the flow. Flows with a Reynolds number lower than 1000 are generally
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(a) Laminar flow

(b) Transient flow

(c) Turbulent flow

Figure 1.6: Different flow regimes of a flow around a cylinder (Van Dyke, 1982).
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laminar, i.e. the streamlines of the flow are nearly parallel and no lateral mixing
occurs. This can be seen in Figure 1.6(a) where the flow past a cylinder is shown,
taken from the book by Van Dyke (1982). At higher Reynolds numbers the flow enters
the transition region in which flow symmetries are spontaneously broken as observed
by Figure 1.6(b). Reynolds numbers of 5000 or higher usually indicate a fully turbulent
flow in which the flow symmetries are no longer present instantaneously as the flow is
fully chaotic (1.6(c)). Still, several symmetries can be recovered in a statistical sense.
Turbulence is a non-linear aspect of the Navier-Stokes equations and although these
equations are well known there exists no theoretical model to describe turbulent flow.
This is despite the fact that turbulence has been studied for centuries by means of
experimental and theoretical research. Herein, several approaches to study turbulent
effects are shown. The first section deals with experimental research which is followed
by three sections on computational fluid dynamics. These three sections provide an
overview of the main turbulence modelling frameworks: Direct Numerical Simulation
(DNS), Reynolds averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES).
Equations are not presented in the following sections which concern incompressible flow,
but equations are presented in Section 5.2 before turbulence simulations are presented.
Finally, for a complete review of turbulent flows the interested reader is referred to the
book by Pope (2001).

1.4.1 Turbulence experiments

When Lucretius described eddy motion in his book De rerum natura more than two
thousand years ago he had to resort to observing nature to study turbulence. Similarly
Leonardo da Vinci, who observed the vortices behind a pillar of a bridge over the river
Arno. Despite the advent of computers, experiments still give important insights into
the nature of fluid flow and are widely used to study engineering applications.
Besides purely qualitative observation the 20th century saw the introduction of several
techniques to quantitatively characterize the flow. Historically, the first method to mea-
sure fluctuating quantities was the hot-wire introduced by King (1915). The hot-wire
is a heated wire which, due to flow convection, experiences changes in temperature and
thus resistance. This change in resistance can be used to reveal a continuous signal of
the velocity at the position of the wire. This method has several disadvantages such as
being intrusive and in order to obtain two-point correlations two probes are required.
Some of the downsides have been alleviated by Laser-Doppler anemometry introduced
by Yeh and Cummins (1964).
Particle image velocimetry (PIV) (see e.g. Westerweel (1993)) is a method that man-
ages to capture flow quantities of tracer particles contained in a thin slice which is
illuminated with a laser. This non-intrusive method saw its advent in the 1980s and
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enables the capture of instantaneous flow fields. This method is still widely used as its
setup is rather simple.

Figure 1.7: Vorticity iso-surfaces from tomographic image velocimetry by Elsinga et al.
(2006).

At the beginning of the 21st century several three-dimensional methods were invented in
order to overcome the restrictions of the classical particle image velocimetry. Amongst
the earliest is the holographic image velocimetry by Blackshire and Humphreys (1994).
More recently three-dimensional tomographic PIV was introduced by Elsinga et al.
(2006) which is also able to reconstruct the three-dimensional particle distribution and
the associated quantities, however, it can also be used on high-Reynolds number flows.
An example of a dataset obtained with the latter method can be seen in Figure 1.7.
The measurement methods discussed all provide Eulerian measurements. In contrast,
there exist several techniques to study Lagrangian properties of a fluid flow. One of
the earliest methods allowed to calculate the Lagrangian velocity correlation based on
scalar dispersion (Shlien and Corrsin, 1974). More popular is the use of particle track-
ing methods which employ (passive) tracer particles which are tracked optically. First
measurements of this type were conducted by Snyder and Lumley (1971). This tech-
nique has since been refined and with the miniaturization of electronics instrumented
particles currently being developed, e.g. Gasteuil et al. (2007). However, until now
these instrumented particles are still too large and thus they cannot be considered
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passive. In order to extract meaningful information from a flow the interrogation do-
main and time-scale must be of the length and time-scale of the largest eddies and
in turn the resolution must be smaller than the Kolmogorov length and time. As the
ratio between the two grows super-linearly as a function of the Reynolds number this
causes Lagrangian measurements to only be feasible for flows with moderate Reynolds
numbers. A more detailed overview can be found in the review paper by Toschi and
Bodenschatz (2009).

1.4.2 Direct Numerical Simulation

Direct Numerical Simulation (DNS) deals with the simulation of turbulent flows by
solving the Navier-Stokes equations without any additional modelling. In order to cap-
ture all the eddies it is necessary that the simulation resolves the Kolmogorov scales
η. As the size of these scales is related to the Reynolds number via η/L ∝ Re−3/4 it
is clear that high Reynolds number flow requires significant computing resources. The
first DNS was performed by Kim et al. (1987) for a Reynolds number of 5300 with a
supercomputer capable of several gigaFLOPs. Morishita et al. (2011) presented a DNS
of a channel flow with a Reynolds number of approximately 38000 using the Earth
Simulator which is capable of 131 teraFLOPs. Finally, the first pipe flow DNS was
conducted by Eggels et al. (1994) with a Reynolds number of 5300.
The methods which are generally used in direct numerical simulations are high order
finite difference methods or spectral methods (Pope, 2001). The first are generally
problematic when it comes to the resolution of small scales as they tend to oscillate.
Spectral methods are in general very accurate but are restricted to simple geometries,
often with periodic boundary conditions.
Extracting Eulerian statistics is mostly straight-forward using the methods mentioned
above. In contrast, Lagrangian statistics need to be extracted with means of interpo-
lation (Toschi and Bodenschatz, 2009). This must be done at run-time as otherwise
prohibitive data storage would be required. A discussion of different interpolation ap-
proaches can be found in the paper by Choi et al. (2004) which deals with Lagrangian
statics in a turbulent channel flow.

1.4.3 Reynolds averaged Navier-Stokes

As mentioned Direct Numerical Simulation is computationally very expensive, thus
the first simulations used models in order to lower the computational load. The first
type of modelling approach is based on the averaged Navier-Stokes equations, more
widely known as Reynolds averaged Navier-Stokes (RANS) equations (Pope, 2001). If
the averaging is applied over an infinite time only statistically stationary flows can be
solved with this approach. In contrast, the averaging in unsteady RANS is only over
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a certain time allowing the simulation of flows which are not stationary. When the
velocity is split into mean and fluctuating parts, the momentum equation for the mean
velocity contains an additional term because of the non-linearity, the Reynolds stresses,
which depends only on fluctuating quantities. In order to solve the equation it is thus
necessary to find a closure for this term. This is achieved via the turbulent viscosity
hypothesis, introduced by Boussinesq, which relates the Reynolds stresses to the mean
rate of strain via a turbulent viscosity.
The latter can be modelled via several approaches, the simplest being the mixing length
model developed by Prandtl (1925) which is an algebraic model. It is also possible to
use one additional partial differential equation to calculate the turbulent kinetic energy
k which in turn is used in the k − lm model by Kolmogorov (1942). In most industrial
applications two equation models like the k − ε model devised by Jones and Launder
(1972) and the k − ω model (Wilcox, 1988) are used where, two additional partial
differential equations are solved to model the turbulent viscosity. All of these models
contain constants which are tuned towards certain basic turbulent flows even though
they are flow-dependent.
Finally, it shall be noted that the turbulent viscosity hypothesis is an approximation
and is violated even in simple shear flows. To overcome this deficiency several other
models have been proposed. Amongst them are Reynolds-stress models, algebraic stress
models and non-linear eddy viscosity models. For a more detailed discussion refer again
to the book by Pope (2001).

1.4.4 Large Eddy Simulation

Between the two extremes of DNS and RANS lies Large Eddy Simulation (LES) which
resolves the large eddies of a flow but models the small ones with subgrid scale schemes.
Hence, both a coarser grid and a larger time-step is possible significantly lowering the
computational cost compared to DNS. This also implies that higher Reynolds number
flows can be simulated and often in engineering applications it is not necessary to know
all the flow details. Compared to RANS models, LES allows the study of flows which
are not statistically stationary. Similarly to RANS, the velocity is split into two, but
with a filtered velocity using a spatial average and the residual fluctuating velocity.
This again yields a momentum equation containing a residual stress tensor, similar to
the Reynolds stresses in RANS. Thus a closure model is required for this tensor, which
is often an eddy-viscosity model. Finally these filtered equations are solved to compute
the filtered velocity.
The first LES model was proposed by Smagorinsky (1963) which, analogous to the
mixing length model, determines the eddy viscosity via a length-scale, which in turn
is given as the filter width times the Smagorinsky constant Cs. The solution often
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depends on the choice of the Smagorinsky constant. However, Germano et al. (1991)
introduced a model which enables the determination of constant from the flow itself. In
order to achieve this two filters need to be applied with varying filter width. The gain
in accuracy is overshadowed by a higher computational cost. During the last decades
several LES models have been developed and as such there is no standard model. The
interested reader is referred to the books by Pope (2001) or Sagaut (2001) for further
models and references.
In turbulent flows the smallest eddies have the largest influence close to the wall. As
these small eddies are modelled in LES it is often necessary to apply special models close
to the wall. One of the earliest such models is due to Schumann (1975). An alternative
approach to avoid the issue of modelling the wall is to use hybrid RANS/LES schemes
(Spalart et al., 1997) where the wall region is simulated using RANS and the remaining
flow via LES. Further information on this topic can be found in the book by Sagaut
(2006).

1.5 Turbulence simulation with SPH

Although SPH is commonly used to study non-linear flow phenomena, turbulence has
been studied systematically only by very few researchers. This is even more true for
three-dimensional turbulence which, due to the high computational demand, has be-
come feasible only in recent years. In the following several contributions towards tur-
bulent research via SPH simulations are highlighted.
The models discussed in Section 1.3 were also implemented in SPH. The RANS ap-
proach was pursued by Violeau (2004) and the LES approach was first applied by Issa
(2004) who used the basic Smagorinsky model. Alternatively to that Monaghan (2002)
implemented the α turbulence model by Holm (1999), which was later revised by him-
self (Monaghan, 2011) as the implicit smoothing caused exceedingly high computational
demand.
There are two PhD thesis on the topic of SPH and turbulence, the first one by Man-
sour (2007) which also deals with the α turbulence model looking at two-dimensional
turbulence with random forcing. The second one is by Robinson (2009) who was inves-
tigating two-dimensional turbulence as well in the context of turbulent mixing.
Dedicated two-dimensional turbulence simulations were also conducted by Rafiee et al.
(2011) and Valizadeh and Monaghan (2012) who both focus on decaying turbulence
in a box. Arena et al. (2010) published a paper characterizing the noise inherent in
the SPH method and compared it to turbulence models. Similarly, Shi et al. (2011)
used the numerical diffusivity of SPH to simulate the decay of isotropic turbulence
in a three-dimensional periodic box. They also investigated different mechanisms of
interpolation of SPH data to a grid. Decay of isotropic turbulence as well as the three
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dimensional Taylor-Green vortex was also simulated by Adami et al. (2013) using a
modified SPH formulation based on an Arbitrary Lagrange Euler formulation. An-
other three-dimensional simulation was conducted by Dalrymple and Rogers (2006)
who simulated turbulent water waves using a LES model.
All the papers presented above use the weakly compressible SPH model. To the best
of the author’s knowledge Hu and Adams (2012) is the only paper on incompressible
turbulence with SPH. Besides the above mentioned papers, there are several which
use turbulence models in order to compare them against each other in more applied
simulations, such as the simulation of a hydraulic jump by De Padova et al. (2010).
From this it is evident that turbulence in SPH has not been thoroughly investigated in
three dimensions and is therefore a particular aim for this thesis.

1.6 Summary

On the preceding pages a literature review was given spanning certain meshless methods
as well as the SPH method in detail. This was followed by an overview of methods
used in turbulent research and specifically the use of SPH in turbulent flow simulation.
In this final section of this chapter, a motivation for the remaining part of this work is
given.
Although SPH has been used for the simulation of turbulent flows, research into the
properties of SPH in turbulent flows is surprisingly scarce. Additionally to that, nearly
all the quantitative investigations were limited to two-dimensional flows which behave
significantly different to their three-dimensional counterparts. The three-dimensional
simulation of turbulent flows demands high performance codes capable of running on
supercomputers in a parallel fashion and due to the high computational cost of SPH this
has only recently become feasible. In turbulent flows the most critical area is the wall
region, requiring correct imposition of wall boundary conditions. This has long been
a difficult issue with SPH methods, especially when it comes to complex geometries.
In the following the focus lies thus initially on improving wall boundary conditions for
a specific SPH method proposed by Ferrand et al. (2012). This method was already
applied to turbulent flows, however, it is only available for two-dimensional geometries,
requiring an extension to 3-D. After that, this method is validated with laminar flows
before attempting to conduct direct numerical simulations and large eddy simulations
of turbulent flows.
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SPH in fluid dynamics

This chapter starts with a short introduction to the Navier-Stokes equations. Following
the introduction in the previous chapter a more detailed overview of SPH is given for
both the unbounded and bounded case. Although both sections on SPH are as general
as possible the main focus lies on the weakly-compressible SPH variant devised by
Ferrand (2010). Finally this chapter is concluded by describing the time-integration
techniques used in combination with SPH.

2.1 Navier-Stokes equations

The following definitions are used throughout this work. The domain of computation is
denoted by Ω ⊆ Rn. Any underlined variable such as v and a twice underlined quantity
such as M denotes a vector or matrix in Rn, respectively. u · v denotes the standard
scalar product and u ⊗ v the tensor product in Rn between the vectors u and v. A
particle a is a set containing the position r, a volume V and the physical state variables
Φ, i.e.

a := {ra(t), Va(t), Φa(t)}, (2.1)

where t is the time. The set of all particles a is denoted by P. Let f be any regular
scalar or vector field in Rn then fa denotes the value of f at ra. Finally, ∇ is the nabla,
or del, operator defined as

∇ =
n∑

i=1
ei

∂

∂xi
, (2.2)

where ei : 1 ≤ i ≤ n is the standard basis in Rn.

2.1.1 Governing equations

The Navier-Stokes (NS) equations (for a more detailed introduction see e.g. Batchelor
(2000)) relate the acceleration a = dv/dt of a fluid particle to the internal and external

46
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forces F that a fluid experiences where v is the velocity. The internal forces are based
on molecular interactions which are described by the stress tensor τ . The external force
that is of interest in the following is gravity. If the gravity is given by a force per unit
mass g then the gravitational potential Ψ is defined according to

g =: −∇Ψ. (2.3)

In the following Ψ = gy where g is the gravitational constant and y the vertical coor-
dinate. The NS equations are then given by

ρ
dv

dt
= ∇ τ − ρ∇Ψ, (2.4)

where ρ denotes the density of the fluid. For the remaining part of this work only
compressible constant-property Newtonian fluids are considered which results in the
stress tensor being expressed as

τ = −pI + µ
(
∇ ⊗ v + (∇ ⊗ v)T

)
− 2µ

3 ∇ · v, (2.5)

where p is the pressure and µ the dynamic viscosity. In the following it is assumed that
the fluid is weakly compresible, i.e. the density ρ only varies by about 1%. Thus the
incompressible Navier-Stokes equations are used as a close approximation, which are
given by

dv

dt
= −1

ρ
∇p + ∇ · [ν (∇ ⊗ v)] + g, (2.6)

with ν = µ/ρ the dynamic viscosity. The Euler equations are the NS equations with
ν = 0, i.e.

dv

dt
= −1

ρ
∇p + g. (2.7)

They are sometimes also referred to as inviscid Navier-Stokes equations.
Furthermore in the Lagrangian formulation the velocity is given by

v = dr

dt
. (2.8)

The density of a fluid is given due to the conservation of mass which is summarized in
the continuity equation

dρ

dt
= −ρ∇ · v. (2.9)

To close the system of equations represented by the NS and continuity equation the
pressure needs to be determined. In general the pressure depends on the internal energy
of the system as well as its density. Based on thermodynamic principles of an adiabatic
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reversible process the following holds

p = ρ2 deint

dρ
, (2.10)

where eint is the internal energy per unit mass. An approximation to the above is given
in the form of the Tait (1888) equation of state which reads

p = ρ0c2
0

ζ

[(
ρ

ρ0

)ζ

− 1
]

, (2.11)

where ρ0 is the reference density, c0 the speed of sound and ζ is a coefficient taken to
be equal to 7 in the case of the fluid being water. Note that the particular choice of
equation of state ensures that the density variation is at most 1% which is necessary to
justify the incompressible approximation of the NS equations. This effect is achieved
by choosing the speed of sound appropriately as discussed in the following.

2.1.2 Boundary conditions

With the equation of state (EOS) the system of equations is closed and all that remains
is to specify boundary conditions. The boundary of the computation domain Ω is
denoted by ∂Ω. Two specific boundary conditions are important in the following.
The first one being the boundary conditions on a solid wall (∂Ωs) and the second
the boundary conditions along the free-surface (∂Ωf ). For a solid wall the inviscid
boundary conditions are approximated as

v · n
∣∣
∂Ωs

= 0, (2.12)
∂p

∂n

∣∣∣∣
∂Ωs

= 0, (2.13)

where n is the inward normal. In case of a viscous fluid the boundary conditions are
approximated as

v · n
∣∣
∂Ωs

= 0, (2.14)

µ (∇ ⊗ v) · n
∣∣
∂Ωs

= ρvτ ‖vτ ‖, (2.15)
∂p

∂n

∣∣∣∣
∂Ωs

= 0, (2.16)

where vτ is the friction velocity. As can be seen the velocity at a solid boundary is
given by a Dirichlet boundary condition, whereas the pressure is determined via a von
Neumann condition. In contrast to that, on the free-surface the boundary conditions
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are all of Dirichlet type and read

v
∣∣
∂Ωf

= vη, (2.17)

p
∣∣
∂Ωf

= patm, (2.18)

where vη is the velocity of the interface and patm the atmospheric pressure. As the
latter is generally taken to be constant it can be set to zero.

2.1.3 Calculus of variations

A physical system can be described by means of the Lagrange formalism (see e.g.
Violeau (2012)). Let r and v be the sets (discrete vector fields) that contain all ra

and va respectively. The Lagrangian represents the mechanical state of a system at a
specified time. For a system of particles P it is defined by

L(r, v) = Ekin(v) − Eint(r) − Eext(r), (2.19)

where Ekin, Eint and Eext are the kinetic, internal and external energy respectively.
They are given as

Ekin = 1
2
∑
b∈P

mb v2
b , (2.20)

Eint =
∑
b∈P

mb eint(ρb), (2.21)

Eext =
∑
b∈P

mb rb · g, (2.22)

where b represents a particle. The motion of a particle a ∈ P is then governed by the
Euler-Lagrange equations

d
dt

(
∂L

∂va

)
− ∂L

∂ra

= 0. (2.23)

The equations are based on the least action principle. Inserting the definition of L and
the energies into the Lagrange equations yields

ma
dva

dt
= −∂Eint

∂ra

+ ma g. (2.24)

Before the derivation is continued an observation needs to be made for which the
definition of a scalar product is necessary. Let f, g be two scalar fields and B, C be two
vector fields defined on a set Ω ⊆ Rn, then the continuous scalar products are defined
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as

〈f, g〉c :=
ˆ

Ω
f(r) g(r)dr, (2.25)

〈B, C〉c :=
ˆ

Ω
B(r) · C(r)dr. (2.26)

The discrete analogue is given by approximating the above with a quadrature rule and
reads

〈f, g〉 :=
∑
a∈P

Va fa ga, (2.27)

〈B, C〉 :=
∑
a∈P

VaBa · Ca, (2.28)

where Va approximates dr.
Recalling the Navier-Stokes equations the following holds

〈p, ∇ · v〉c =
ˆ

Ω
p∇ · v dr (2.29)

=
ˆ

Ω
∇ · (pv)dr −

ˆ
Ω

∇p v dr (2.30)

=
ˆ

∂Ω
p v · n dr −

ˆ
Ω

∇p v dr. (2.31)

Finally, using the boundary conditions discussed in the previous section one can see
that either p = patm or v · n is equal to zero and thus the first term on the right hand
side vanishes. This yields

〈p, ∇ · v〉c = − 〈∇p, v〉c . (2.32)

This relation is in the following referred to as skew-adjoint divergence and gradient and
should hold similarly in the discrete scalar product. When using skew-adjoint operators
the boundary conditions p = 0 and v · n = 0 are automatically satisfied and thus need
not be imposed explicitly.
Returning to Eq. (2.24) and considering the work induced by a small displacement field
drs under the influence of the force Fint resulting from the internal energy one obtains〈

ρ

m
Fint, dr

〉
=

∑
a∈P

Fint,a · dra (2.33)

= −
∑
a∈P

∂Eint

∂ra

· dra (2.34)

using Eq.(2.21)= −
∑

a,b∈P
mb

∂eint(ρb)
∂ra

· dra (2.35)
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= −
∑

a,b∈P
mb

deint(ρb)
dρb

∂ρb

∂ra

· dra (2.36)

(2.10)= −
∑
a∈P

mb
pb

ρ2
b

∂ρb (2.37)

= −
∑
a∈P

Vb pb

( 1
ρb

dρb

dt

)
dt (2.38)

(2.9)=
∑
a∈P

Vb pb ∇ · vbdt (2.39)

= 〈p, ∇ · v〉 dt (2.40)
(2.32)= − 〈∇p, v〉 dt (2.41)
(2.8)= − 〈∇p, dr〉 . (2.42)

As this holds for every displacement field it can be concluded that

1
ma

∂Eint

∂ra

= 1
ρa

∇p. (2.43)

Inserting this into Eq. (2.24) the Euler equations (2.7) are retrieved

dva

dt
= − 1

ρa
∇p + g. (2.44)

The calculation presented in this section highlights the importance of the skew-adjoint
property of gradient and divergence as it is equivalent to the conservation of the mo-
mentum represented by the Lagrange equation.

2.2 Unbounded weakly compressible SPH

2.2.1 Approximating a value

In the following section the SPH method is introduced on a infinite domain in an
n-dimensional Euclidean space, i.e. Ω = Rn. Let f be a scalar field. Then fa can be
represented by

fa = f(ra) =
ˆ

Ω
f(r)δ(r − ra)dr, (2.45)

where δ is the Dirac delta function. The main idea of the continuous SPH approxima-
tion then is to approximate the δ function by a so-called weighting or kernel function
w. This gives rise to the definition of the SPH continuous smoothing interpolant

< f >c
a:=
ˆ

Ω
f(r)w(r − ra, h)dr, (2.46)
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where the superscript c indicates the continuous approximation and the subscript a the
particle at which position f is approximated. The smoothing length h is defined such
that w can be written as

w(r − ra, h) = αn

hn
ω

(‖r − ra‖
h

)
, (2.47)

with a dimensionless function ω and such that w(·, h) → δ(·) for h → 0. So far, there
are no additional requirements on the kernel function w. However, considering the
Taylor expansion of a function

f(r) = f(ra) −
(

∂f

∂r

)
a

· (ra − r) + O
(
‖ra − r‖2

)
, (2.48)

and inserting it into Eq. (2.46) yields

< f >c
a= fa

ˆ
Ω

w(r − ra, h)dr −
(

∂f

∂r

)
a

·
ˆ

Ω
(ra − r)w(r − ra, h)dr + O

(
‖ra − r‖2

)
.

(2.49)
This implies that to obtain a first-order consistent approximation the following needs
to hold

ˆ
Ω

w(r − ra, h)dr = 1, (2.50)
ˆ

Ω
(ra − r)w(r − ra, h)dr = 0. (2.51)

The first equation can be satisfied by choosing the parameter αn > 0 in Eq. (2.47)
appropriately. To satisfy the second equation observe that it is true if

∇w(r − ra, h) = −∇w(−r + ra, h). (2.52)

It is standard in the SPH literature to fulfil this criterion by letting ω in Eq. (2.47)
depend only on the distance, i.e.

w(r − ra, h) = αn

hn
ω

(‖r − ra‖
h

)
. (2.53)

As the kernel only depends on the radius its derivative is given by

∂

∂r
w(r − ra, h) = ∂

∂r

αn

hn
ω

(‖r − ra‖
h

)
(2.54)

= αn

hn

∂ω(q)
∂q

∂q

∂r
(2.55)

= αn

hn

∂ω(q)
∂q

1
h

r − ra

‖r − ra‖
, (2.56)
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where q = ‖r − ra‖
h

. Thus, w′(q) can be defined as

w′(q) = αn

hn+1
∂ω(q)

∂q
. (2.57)

Thus,
∂

∂r
w(r − ra, h) = w′(q) r − ra

‖r − ra‖
, (2.58)

which shows that the orientation of the kernel gradient only depends on the relative
position vector of two particles. Note that due to this fact the kernel gradient is subject
to the following antisymmetry property

∇w(r − ra, h) = −∇aw(r − ra, h). (2.59)

where ∇a denotes the derivative with respect to ra.
Lastly, due to numerical stability issues (see e.g. Violeau (2012)) it is advantageous
to demand that the kernel function w is monotonic and positive, which is equivalent
to sgn(q)dω/dq < 0(q 6= 0) and ω ≥ 0 respectively, where sgn is the sign function. In
most cases the support of the kernel is compact in order to reduce computational cost.
The support of a kernel function centered around a particle a is denoted by Ωa. Due to
these constraints the continuous approximation can also be seen as a weighted average,
thus the name weighting function for w. Note that these conditions do not imply that

fa =< f >c
a . (2.60)

the error being of the order h2 according to Eq. (2.49).
As the domain needs to be discretised into a finite set of particles, the integral in the
continuous approximation needs to be replaced by a sum. A straightforward quadrature
rule gives rise to the definition of the SPH approximation of a function f as

< f >a=
∑
b∈P

Vbfbwab, (2.61)

where wab = w(rb − ra, h). Note that the sum does not run over all particles as for
most of them wab is zero since the support is often compact.

2.2.2 Choice of kernel function

There are several possible choices for the dimensionless kernel function ω. One of the
simplest is the Gaussian kernel for which

ω(q) = e−q2
. (2.62)
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As this function has infinite support it needs to be truncated in order to avoid having
too many neighbours. Other possibilities include B-Splines of various orders (common
are third to fifth order splines, see e.g. Violeau (2012)). In the following however, the
only kernel considered in the following is the Wendland kernel (Wendland (1995)). It
is defined as

ω(q) =
{

αm
(
1 − q

2
)4 (1 + 2q) if 0 ≤ q ≤ 2,

0 if 2 < q,
(2.63)

with the normalisation constant being given as

α1 = 3
4 , (2.64)

α2 = 7
4π

, (2.65)

α3 = 21
16π

, (2.66)

depending on the dimension m of the problem. The choice of the kernel can have
significant impact on the SPH method. This has been observed by Robinson (2009)
in the context of tensile instability which describes the effect of particles clumping
together. It was shown that using the Wendland kernel this deficiency can be overcome.
More fundamental however is the influence of the Fourier transform on the stability of
the method which has been highlighted by Morris (1996). A von Neumann stability
analysis as presented by Violeau (2012) shows that the Fourier transform of a kernel
should be strictly positive and decreasing, another property of the Wendland kernel.
As noted by Violeau (2012) this analysis depends also on the chosen time integration
scheme as discussed later.

2.2.3 Approximation of first-order derivatives

Returning to the continuous SPH approximation (Eq. (2.46)) the gradient of a scalar
field f can be written as

< ∇f >c
a=
ˆ

Ω
∇f(r)w(r − ra, h)dr. (2.67)

Integration by parts then yields

< ∇f >c
a= −

ˆ
Ω

f(r)∇w(r − ra, h)dr +
ˆ

Ω
∇(f(r)w(r − ra, h))dr, (2.68)

which can be also written as

< ∇f >c
a=
ˆ

Ω∩Ωa

f(r)∇aw(r − ra, h)dr +
ˆ

Ω∩Ωa

∇(f(r)w(r − ra, h))dr, (2.69)
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where Ωa is the support of the kernel function w centred around ra, and Eq. (2.59)
was used. Applying Stokes’ theorem to the above and remembering that Ωa ⊂ Ω = Rn

and thus Ω ∩ Ωa = Ωa, as well as ∂(Ω ∩ Ωa) = ∂Ωa, gives

< ∇f >c
a=
ˆ

Ωa

f(r)∇aw(r − ra, h)dr −
ˆ

∂Ωa

f(r)w(r − ra, h)ndr, (2.70)

with n being the inward normal of ∂Ωa. As the kernel has compact support and as
Ω = Rn the boundary term in the equation above vanishes. Thus, the final result reads

< ∇f >c
a=
ˆ

Ωa

f(r)∇aw(r − ra, h)dr. (2.71)

The above equation has the advantage of shifting the derivative from the unknown f

to the analytically known kernel w. Discretizing yields

< ∇f >a=
∑
b∈P

Vbfb∇awab. (2.72)

Considering a system of only two particles that interact via a force originating from
1
ρ∇p, the force acting from particle b on particle a is given by

F b→a = mb
1

ρaρb
pb∇awab, (2.73)

whereas the force acting from a on b is given by

F a→b = ma
1

ρbρa
pa∇bwab = −ma

1
ρbρa

pa∇awab. (2.74)

Newton’s third law of equal but opposite forces states that F b→a = −F a→b but as
pa 6= pb this law is violated when using the gradient given by Eq. (2.72). Thus, the
following approach is more common in the SPH literature.
Let k ∈ N then

∇f = ∇
(

ρk f

ρk

)
= ρk∇ f

ρk
+ f

ρk
∇ρk, (2.75)

for any function ρ. Approximating the above gives

< ∇f >a=< ρk∇ f

ρk
>a + <

f

ρk
∇ρk >a . (2.76)

This is written as

< ∇f >a≈ ρk
a < ∇ f

ρk
>a +fa

ρk
a

< ∇ρk >a, (2.77)
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which in a strictly mathematical sense is only an approximation, if k 6= 0 due to Eq.
(2.60). The case k = 0 is exact if the particle distribution is such that

∑
b∈P

Vb ∇awab = 0. (2.78)

Assuming that Eq. (2.77) holds the approximation of the gradient finally reads

< ∇f >a≈
∑
b∈P

Vb
ρ2k

a fb + ρ2k
b fa

ρk
b ρk

a︸ ︷︷ ︸
(∗)

∇awab. (2.79)

The expression (∗) in the summand is symmetric with respect to a and b which enforces
Newton’s third law in combination with the antisymmetric kernel gradient as shown in
Eq. (2.59). For future reference the standard additive (std, +) SPH gradient is defined
by

Gradstd,+,k
a (f) =

∑
b∈P

Vb
ρ2k

a fb + ρ2k
b fa

ρk
b ρk

a

∇awab. (2.80)

The above can also be applied to a vector field B which gives rise to the definition of
the standard additive SPH divergence as

Divstd,+,k
a (B) :=

∑
b∈P

Vb
ρ2k

a Bb + ρ2k
b Ba

ρk
b ρk

a

· ∇awab. (2.81)

Instead of using the product rule as in Eq. (2.76) it is also possible to use the quotient
rule

< ∇f >a=<
1
ρk

∇
(
f ρk

)
>a − <

f

ρk
∇ρk >a, (2.82)

which leads to the following set of standard subtractive (std, −) SPH operators

Gradstd,−,k
a (f) := 1

ρ2k
a

∑
b∈P

Vbρ
k
aρk

b (fb − fa) ∇awab, (2.83)

Divstd,−,k
a (B) := 1

ρ2k
a

∑
b∈P

Vbρ
k
aρk

b (Bb − Ba) · ∇awab. (2.84)

Note that the subtractive operators are zeroth-order consistent, i.e. the operator ap-
plied to a constant function yields zero. On the other hand, the gradient does not
satisfy Newton’s third law.
Oger et al. (2007) pointed out that higher order accurate schemes can produce better
results although they disobey certain physical laws, such as the conservation of energy.
It is possible to construct a first-order accurate set of differential operators, an idea
pioneered by Randles and Libersky (1996). The core is a renormalisation procedure
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such that a gradient operator satisfies

∇ ⊗ (r − ra) = I ∀a ∈ P, (2.85)

where I is the identity matrix and r a linear function. As a gradient operator generally
does not satisfy Eq. (2.85), the kernel gradient is multiplied by a matrix L. To obtain
an expression for L the standard additive SPH operator (Eq. (2.80)) is inserted into
the renormalisation equation (2.85) which gives in vector notation

∑
b∈P

Vb
ρk

a

ρk
b

(rb − ra)
(
L

a
∇awab

)T
= I, (2.86)

where the superscript T denotes the transpose of a matrix. This can be rewritten as∑
b∈P

Vb
ρk

a

ρk
b

(rb − ra) (∇awab)T

LT
a

= I. (2.87)

Inverting the leftmost matrix and transposing the whole equation subsequently yields

L
a

=

∑
b∈P

Vb
ρk

a

ρk
b

(∇awab) ⊗ (rb − ra)

−1

. (2.88)

This implies that the matrix L as calculated via Eq. (2.88) is symmetric thanks to
(2.59). Finally a the first-order corrected gradient is given by

G̃rad
std,+,k

a (f) :=
∑
b∈P

Vb

ρ2k
a fbLb

+ ρ2k
b faL

a

ρk
b ρk

a

· ∇awab. (2.89)

The use of both L
a

and L
b

is justified again by Newton’s third law.
Note that this gradient is still not zeroth-order accurate. To obtain a truly first-order
accurate gradient the matrix L needs to be applied to the standard subtractive gradient
Eq. (2.83) which then reads

G̃rad
std,−,k

a (f) := 1
ρ2k

a

∑
b∈P

Vbρ
k
aρk

b (fb − fa) L
a

· ∇awab. (2.90)

The matrix correction can also be applied to the divergence operators in a similar
fashion.

2.2.4 Approximation of second-order derivatives

It was demonstrated above that there are various ways of approximating a first-order
derivative with the SPH method. The same is true for second-order operators. There
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are two approaches to second-order operators that are based on the considerations
presented in the previous section.
Firstly, it is possible to approximate the derivative of ∇f via Eq. (2.72) and after
applying Stokes’ theorem again one would obtain

< ∇ ⊗ ∇f >a=
∑
b∈P

Vbfb∇a ⊗ ∇awab. (2.91)

However, this equation contains second derivatives of the kernel and that makes this
formulation sensitive to particle positions as pointed out by Monaghan (2005). The
reason for this effect is that the second derivative of the kernel changes its sign.
Alternatively, a second-order derivative can be obtained by twice applying a first-order
differential operator. However, this results in a time consuming double sum.
Because these two approaches have significant disadvantages, a different approach is
favoured in the SPH community. In the following the discussion is limited to the
operator ∇ · (f∇ ⊗ B). To approximate the term in the brackets consider the Taylor
approximation of B given by

Bb = Ba − (∇a ⊗ B)T · rab + O(r2
ab), (2.92)

where Φab = Φa − Φb (here Φ = r), a notation that is used on several occasions below.
The equation above yields

(∇a ⊗ B)T · rab

‖rab‖
≈ 1

‖rab‖
Bab, (2.93)

and similarly
(∇b ⊗ B)T · rab

‖rab‖
≈ 1

‖rab‖
Bab. (2.94)

To obtain the desired second-order operator the standard additive divergence is applied
to the above. This results in

< ∇ · (f∇ ⊗ B) >a=
∑
b∈P

Vb
ρ2k

a fb + ρ2k
b fa

ρk
b ρk

a

Bab

‖rab‖
‖∇awab‖. (2.95)

The above second-order operator is due to Morris et al. (1997) for k = 1. Monaghan
(1992) also derived a second-order operator which is given by

< ∇ · (f∇ ⊗ B) >a= 2(n + 2)
∑
b∈P

Vb
ρ2k

a fb + ρ2k
b fa

ρk
b ρk

a

Bab · rab

‖rab‖2 ∇awab, (2.96)

where n is the dimension. Both of these operators are first-order consistent if Eq. (2.78)
holds. These operators can be corrected with a matrix in order to obtain second-order
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accuracy as demonstrated by Schwaiger (2008) and Fatehi and Manzari (2011). The
latter operator is given as

< ∇ · ∇f >a= L̂
a

:
∑
b∈P

2Vb rab ⊗ ∇awab

(
fab

‖rab‖2 − rab

‖rab‖2 · < ∇f >a

)
, (2.97)

where : denotes the Frobenius inner product and fab = fa − fb. The gradient of f is
calculated via a first-order scheme, i.e. Eq. (2.90) with k = 0 and L̂

a
is given by

−I = L̂
a

:

∑
b∈P

2 Vb

‖rab‖2 rab ⊗ rab ⊗ rab ⊗ ∇awab + (2.98)

∑
b∈P

Vb

‖rab‖2 rab ⊗ rab ⊗ ∇awab

 · L
a

·

∑
b∈P

Vb rab ⊗ rab ⊗ ∇awab

 .

The latter equation is a system of linear equations and can be solved by means of a
Gaussian elimination algorithm.
One disadvantage of these modified operators is that they are not able to approximate
∇(f∇ · B); or any arbitrary second derivative (see e.g. Espanol and Revenga (2003)).
Violeau (2009) proved that the following operator provides a suitable approximation
to any second-order derivative

∇ ⊗ (f∇ ⊗ B)a =
∑
b∈P

Vb
fb + fa

2

(
(n + 2)rab ⊗ rab

‖rab‖2 − I

)
⊗ Bab

‖rab‖
‖∇awab‖. (2.99)

All second-order derivatives are needed in turbulent flows when the NS equations (2.6)
have to be solved with µ 6= const. Using the general formula presented above it is
possible to obtain the expression

〈∇ · (f∇ ⊗ B) + ∇f(∇ · B)〉a = (2.100)∑
b∈P

Vb
fb + fa

2

(
(n + 2)Bab · rab

‖rab‖2 ∇awab + ∇awab · rab

‖rab‖2 Bab

)
.

The disadvantage of this scheme is that there is no second-order correction available
yet.

2.3 Wall-bounded SPH

There are various ways of defining boundary conditions in SPH. In the following section
a small overview is given concentrating on the traditional approaches. In Section 2.3.2
a special type of boundary condition is examined in detail.
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2.3.1 Standard wall boundary conditions in SPH

Figure 2.1: Three classic wall boundary conditions.

There are three classic wall boundary conditions in SPH. An illustration for each
one is shown in Figure 2.1.
On the left hand side the ghost particle approach introduced by Libersky et al. (1993) is
displayed. The idea is to mirror each fluid particle (blue) at the boundary (black line) to
create a ghost particle (orange). To enforce boundary conditions with a zero derivative
normal to the wall of a value f , the value of f for a ghost particle is set identical to the
value of its corresponding fluid particle. For Dirichlet boundary conditions the value
of the fluid particle is linearly extrapolated to obtain the value for the ghost particle.
In case of f

∣∣
∂Ω = 0 the value of f at the ghost particle is −f at the fluid particle.

Although this method provides a solid basis for implementing boundary conditions it
is difficult to adapt the formulation to deal with complex boundary shapes. This issue
has been addressed in several papers (e.g. Borve (2011)) but cannot be considered to
be completely solved.
The boundary condition illustrated in the centre of Figure 2.1 corresponds to the repul-
sive force boundary conditions that were introduced by Monaghan (1994). The idea of
these boundary conditions is that each boundary particle exerts a repulsive force on a
specific fluid particle. This force is modelled after the Lennard-Jones potential (see e.g.
Reif (1965)). Additionally, the boundary particles are considered in the standard vis-
cous term in order to impose a viscous force. Although these boundary conditions are
relatively simple and have low computational cost it is not possible to enforce Dirichlet
or Neumann boundary conditions through them explicitly. Besides that, the repulsive
forces also break the property of momentum conservation.
The last boundary condition shown in Figure 2.1 is commonly called dynamic bound-
ary conditions or fictitious particle technique. Dalrymple and Knio (2001) proposed
to model solid wall boundaries simply by placing two (or more as demonstrated by
Violeau and Issa (2007)) rows of particles along the boundaries. As illustrated above
this is usually done in a staggered fashion. The boundary particles have a pressure
that is determined by the continuity equation and generally behave like fluid particles
with the exception that they do not move. Similar to the repulsive force boundary
conditions the dynamic boundary conditions are simple to implement but again it is
not possible to explicitly enforce Dirichlet or Neumann boundary conditions.
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The list of wall boundary conditions presented above is not exhaustive. There are sev-
eral other possibilities for implementing solid boundaries in SPH (e.g. Vacondio et al.
(2011), Fatehi and Manzari (2010)). This continues to be an area of active research.
Compared to solid wall boundary conditions, open boundaries for inflow and outflow
are much more complicated (see e.g. Mahmood et al. (2011)). The most stable for-
mulation is by Lastiwka et al. (2009) which uses Riemann invariants in order to avoid
reflection from acoustic pressure waves. A similar technique was applied to free-surface
flows by Mahmood (2011). Kassiotis et al. (2011) showed that it is also possible to
combine inflow and outflow conditions in order to couple SPH with a Finite Difference
model.

2.3.2 Unified semi-analytical wall boundary conditions

In this section a type of boundary condition is described that originates from the work
of Kulasegaram et al. (2004) and was refined later by De Leffe et al. (2009). The central
idea presented in this section was developed by Ferrand (2010) to compensate for the
kernel void that exists when a particle is close to a boundary, i.e. when the kernel
has incomplete support. This is illustrated in Figure 2.2 where the domain Ω is shown
as well as a particle a which is close to a boundary and has a kernel with support of
radius R. Note that Ω is now bounded, contrary to Section 2.2 where Ω was identified
with Rn. This newly proposed approach is discussed in detail in the following and

Figure 2.2: Kernel support of a particle a.

improvements are suggested in Chapter 3.
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Figure 2.3: Vertex particles and boundary elements along a boundary.

2.3.2.1 Compensating the kernel void by γ

Clearly Eq. (2.50) does not hold if a particle a is close to a boundary as the kernel
support Ωa is not entirely contained in the domain Ω. To compensate for the incomplete
support, i.e. the chequered area in Figure 2.2, a new field γ is introduced which is used
for renormalizing. This variable is defined as

γa =
ˆ

Ω∩Ωa

w(r − ra, h)dr. (2.101)

From this it is clear that γ ≤ 1, with γa = 1 if Ωa ⊆ Ω. This gives rise to the definition
of a new SPH approximation of a function f as

< f >γ
a:= 1

γa

∑
b∈P

Vbfbwab, (2.102)

and in the continuous form

< f >c,γ
a := 1

γa

ˆ
Ωa

f(r)w(r − ra, h)dr. (2.103)

To calculate γ we obtain from Eq. (2.101) that

∇γa =
ˆ

Ω∩Ωa

∇w(r − ra, h)dr =
ˆ

∂Ω∩Ωa

w(r − ra, h) ndr, (2.104)

where n is the inward normal at the boundary ∂Ω. In this new SPH boundary method
a boundary consists of a row of boundary particles or, if the boundary particles are
considered as vertices, boundary elements S (a boundary element s ∈ S has two vertices
v1 ∈ V and v2 ∈ V as well as an inward normal ns). In two dimensions, a boundary
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Set Description
P All particles
V Particles on boundary
F Particles inside the fluid domain
S Boundary-elements

Table 2.1: Overview of elements.

element is a line segment. This is illustrated in Figure 2.3. The different types of
elements are summarized in Table 2.1. The following holds

∇γa =
∑
s∈S

ˆ rv2

rv1

w(r − ra, h)dr ns =:
∑
s∈S

∇γas. (2.105)

This equation means that ∇γa for particle a is computed by summing the contributions
from the boundary elements. Note that

∇γas =
ˆ

Ωa∩Ω
w(r − ra, h)n(r)dr ≈ wasnsSs, (2.106)

where Ss is the size of the boundary element s.
As this part of the calculation is quite critical, due to numerical errors accumulating in
the time-integration described in the next section, it is necessary to calculate the value
of ∇γas analytically. The formula for the Wendland kernel (2.63) is given by Ferrand
et al. (2012) as

∇γas = q2 cos α2
π

P (q2) − q1 cos α1
π

P (q1) + q4
0

π

(105
64 + 35

512q2
0

)
· (2.107)[

sign(q2 cos α2) ln
(

q2 + |q2 cos α2|
|q0|

)
−

sign(q1 cos α1) ln
(

q1 + |q1 cos α1|
|q0|

)]
,

where

P (q) = 7
129q5 − 21

64q4 + 35
32q3 − 35

24q2 + 7
4 + (2.108)

q2
0

( 35
768q3 − 7

16q2 + 105
64 q − 35

12

)
+

q4
0

( 35
512q − 7

8

)
,

and q0 is the normal distance of particle a to the boundary element s, qi = ‖rvi − ra‖
where vi are the two vertices connected to segment s and αi is the inclined angle between
q0 and qi (measured anti-clockwise). All these distances are illustrated in Figure 2.4.
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Figure 2.4: Illustration of distances.

As the vertex particles are taken into account in the modified discrete SPH interpo-
lation given by Eq. (2.102) it is necessary to calculate their volume Vv. The volume
depends on the angle with which the two adjacent line segments are inclined. This is
denoted by θ in Figure 2.3. Then Vv = θ/2π Va and as the density close to a wall is
assumed to be uniform the mass mv of an edge particle is given by mv = θ/2π ma. A
boundary element has no mass and its virtual position is assumed to be located at the
centroid.

2.3.2.2 Governing equation for γ

After calculating the gradient of γ all that remains is to calculate γ itself. As Ferrand
(2010) shows this can be achieved by using a governing equation. Thus, it is necessary
to analyse how the value of γ changes for a fluid particle once it is close to a boundary.
By definition,

dγ

dt
= ∂γ

∂t
+ v · ∇γ. (2.109)

The first term on the right hand side requires further investigation.

∂γa

∂t
= ∂

∂t

ˆ
Ω

w(r − ra, h)dV (2.110)

=
ˆ

Ω

∂w(r − ra, h)
∂t

dV, (2.111)

assuming Ω does not change as δt → 0. Note that ∂w(r − ra, h)
∂t

is equal to zero. This
immediately leads to

dγ

dt
= v · ∇γ, (2.112)
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As the gradient of γ is zero whenever ∂Ω ∩ Ωa is empty for a particle a it can be
concluded that

γa = 1 if ∂Ω ∩ Ωa = ∅ (2.113)
dγa

dt
= va · ∇γa else.

If the wall is moving then the velocity va of a particle needs to be determined in the
reference frame of the wall. To avoid any confusion we call this velocity vR

a . It is given
as

vR
a = va − vw − Ωw × (ra − rw), (2.114)

where rw is the centre of rotation of a moving wall, Ωw the angular velocity vector and
vw the velocity of the centre of rotation. As shown above ∇γa can be estimated as a
sum from multible segments to yield

γa = 1 if ∂Ω ∩ Ωa = ∅ (2.115)
dγa

dt
= ∑

s∈S
vRs

a · ∇γas else.

Initializing γ: To initialize γ at the beginning of a simulation each particle close to
a boundary (i.e. ∇γa > 0) is moved to an area where γ = 1. The easiest way to obtain
this is to use the following transformation

ra = r0
a + l

∇γ0
a

‖∇γ0
a‖

, (2.116)

where l = 2R with R being the radius of the kernel. Now the particles are moved back
to their original positions r0

a using Eq. (2.115).

2.3.2.3 Derivation of gradient and divergence

In his work Ferrand (2010) describes two different approaches to obtain an SPH gradient
incorporating γ. Although the first one by Kulasegaram et al. (2004) is not used
eventually it provides important insight into the Lagrangian formulation which is of
use herein. The second gradient is based on an idea by De Leffe et al. (2009) and
provides a correct repulsive force for boundary particles.

The divergence: Eq. (2.102) yields with f = ρ and assuming that ρa = 〈ρ〉γ
a

ρa = 1
γa

∑
b∈P

Vbρbwab, (2.117)
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which can be simplified to
ρa = 1

γa

∑
b∈P

mbwab. (2.118)

Bringing γ to the other side and differentiating with respect to time yields

dγaρa

dt
= d

dt

∑
b∈P

mbwab

 , (2.119)

or subsequently
dρa

dt
= 1

γa

d
dt

∑
b∈P

mbwab

− 1
γa

ρa
dγa

dt
. (2.120)

Observing that the mass is constant and using Eq. (2.113) (for non-moving walls) this
can be furthermore written as

dρa

dt
= 1

γa

∑
b∈P

mb
dwab

dt
− 1

γa
ρa va · ∇γa (2.121)

= 1
γa

∑
b∈P

mb
drab

dt
· dwab

dra

− 1
γa

ρa va · ∇γa. (2.122)

Note that for arbitrary moving walls Eq. (2.115) needs to be applied. However, as the
derivation by Ferrand (2010) is followed, this is neglected.
Finally

dρa

dt
= 1

γa

∑
b∈P

mbvab · ∇awab − 1
γa

ρa va · ∇γa, (2.123)

where vab = va − vb.
The above equation is then a discretised version of the continuity equation (Eq. (2.9)).
Thus we can rewrite the above as

dρa

dt
= −ρaDivγ,K

a (v), (2.124)

with
Divγ,K

a (v) := − 1
γaρa

∑
b∈P

mbvab · ∇awab + 1
γa

va · ∇γa. (2.125)

The superscript K stands for ”Kulasegaram”.

Gradient based on variational principle: To find a formulation for the gradient
the divergence Divγ,K is used and multiplied with a vector field via the scalar product.
Considering the skew-adjoint property that is valid for operators that solve the NS
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equations the following gradient is obtained

Gradγ,K
a (f) := ρa

∑
b∈P

mb

(
fa

γaρ2
a

+ fb

γbρ
2
b

)
∇awab − 1

γa
fa∇γa. (2.126)

Ferrand (2010) proves the skew-adjoint property in his appendix. Note that due to this
property the momentum equation discretised by the above gradient and the continuity
equation as given by Eq. (2.118) fulfil the Calculus of Variations as shown in Section
2.1.3.

Gradient based on interpolation: The above gradient is not accurate as a bound-
ary term is missing and thus De Leffe et al. (2009) proposed an alternate way of deriving
a gradient starting with the continuous SPH approximation Eq. (2.103) and following
the route of Section 2.2.3. Approximating a derivative and using the product rule as
well as the Stoke’s Theorem gives

〈∇f〉c,γ
a = 1

γa

ˆ
Ω

f(r)∇aw(r − ra, h)dr − 1
γa

ˆ
∂Ω

f(r)w(r − ra, h)n dr. (2.127)

As already noted by Monaghan (1988) it is of advantage with respect to the conservation
properties to use ∇f = ρ∇f

ρ + f
ρ ∇ρ (Eq. (2.75) with k = 1) which yields

< ∇f >c,γ
a = 1

γa

ˆ
Ω

ρaρ(r)
(

f(r)
ρ(r)2 + fa

ρ2
a

)
∇w(r − ra, h)dr (2.128)

− 1
γa

ˆ
∂Ω

ρaρ(r)
(

f(r)
ρ(r)2 + fa

ρ2
a

)
w(r − ra, h)n dr.

Discretizing the above equations finally gives

Gradγ,F
a (f) = ρa

γa

∑
b∈P

mb

(
fa

ρ2
a

+ fb

ρ2
b

)
∇wab − ρa

γa

∑
s∈S

(
fa

ρ2
a

+ fs

ρ2
s

)
ρs∇γas. (2.129)

The superscript F stands for ”Ferrand” since he demonstrated the superiority of (2.129)
over (2.126). As described by Ferrand (2010) the gradient operators described in this
and the previous section are equal inside the fluid. However, close to the boundary there
is a fundamental difference which produces wrong results in the case of the Kulasegaram
gradient Gradγ,K . On the other hand the Gradient Gradγ,F gives the correct results,
but it is no longer skew-adjoint to the divergence that results from the continuity
equation Eq. (2.118).
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2.3.2.4 Second order operators

To approximate operators of the form ∇· (f∇⊗B) a correction along the boundaries is
also required. In Section 2.2.4 the second-order derivative was derived from a divergence
with positive sign. The divergence presented in the previous section however, Divγ,K

has a negative sign. In a continuous setting the following holds

< ∇(f∇ ⊗ B) >c,γ
a = < fa∇a ⊗ B · ∇(1) + ∇ · (f∇ ⊗ B) >c,γ

a (2.130)

= 1
γa

ˆ
Ω

(fa∇a ⊗ B(r) + (f∇ ⊗ B)(r)) · ∇w(r − ra, h)dr (2.131)

− 1
γa

ˆ
∂Ω

(fa∇a ⊗ B(r) + (f∇ ⊗ B)(r)) · n w(r − ra, h)dr.

The first term in the equation above can be discretised by using the Taylor expansion.
The boundary integral can be approximated by

− 2
γa

ˆ
∂Ω

(f∇ ⊗ B)(r)) · n w(r − ra, h)dr, (2.132)

in case of f∇ ⊗ B being continuous close to the wall so that

(f∇ ⊗ B)a ≈ (f∇ ⊗ B)(r) ∀r ∈ ∂Ω : w(r − ra, h) > 0. (2.133)

A full discretization using Morris’ second-order term as given by Eq. (2.95) finally
yields the ”Laplacian” operator as

LapF
a (f, B) = < ∇ · (f∇ ⊗ B) >γ

a (2.134)

= ρa

γa

∑
b∈P

mb
fa + fb

ρaρb

Bab

‖rab‖2 rab · ∇awab

− 2
γa

∑
s∈S

fs
∂Bs

∂ns

‖∇γas‖,

where ∂Bs

∂ns

= (∇s ⊗ B) · ns. When multiplied by f the second term is the flux of B

through the wall. If B is a velocity and f the dynamic viscosity then the flux represents
the wall shear stress.
As mentioned before in the turbulent case with varying µ Eq. (2.100) with B = v and
f = µ needs to be used to discretise the viscous term. Following the same procedure
as above a similar boundary term can be calculated for Eq. (2.100). However, due to
∇ ⊗ v · n = 0 it is exactly the same boundary term as in Eq. (2.135).
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2.3.2.5 Prescribing boundary conditions

Dirichlet boundary conditions can be implemented simply by setting the desired value
to all vertices V and boundary-elements S.
Neumann boundary conditions are not as straightforward. Assume that the value of a
function f at the boundary is given by

∂f

∂n
= 0. (2.135)

Again vertices V and boundary-elements S need to be considered. First the density of
the vertex particles can be obtained up to first-order by

fv = 1
αv

∑
b∈F

Vb fb wvb, (2.136)

where
αv :=

∑
b∈F

Vb wqb. (2.137)

The values for the boundary elements could be calculated in a similar fashion. However,
to increase computational efficiency their density can be defined as the arithmetic mean
of its neighbouring vertex particles, i.e.

fs = fv1 + fv2

2 . (2.138)

In the case of second-order operators the Neumann boundary conditions can be pre-
scribed in (2.135), the quantity of fs

∂Bs
∂ns

representing the prescribed flux of B through
the wall at point s.

2.3.3 Application to the Navier Stokes equations

The following section describes the application of the theoretical considerations pre-
sented above to the NS equations. Although only the special case of the unified semi-
analytical boundary conditions is presented, the principles are fairly general.
The Euler equations (inviscid NS equations, Eq. (2.7)) are discretised using the gradi-
ent defined by Eq. (2.129) which gives

dva

dt
= − 1

ρa
Gradγ,F

a (p) + g ∀a ∈ F . (2.139)

On solid walls v = 0 for all vertex particles and boundary elements. No specific
treatment is used for the free-surface.
To close the system of equations a continuity equation is necessary. Instead of using the
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time-dependent formulation based on the divergence (see Eq. (2.124)) the equivalent
time-independent version is often used which was already described in Eq. (2.118).
However, in this case it turns out that a free-surface correction is necessary as detailed
by Ferrand et al. (2012). The issue comes from the fact that γ is equal to unity at the
free-surface despite the fact that the kernel support is not fully populated. In order to
compensate this the following modified equation was proposed by Ferrand et al. (2012)

ρa = 1
βaγa + (1 − βa)αa

∑
b∈P

mb wab ∀a ∈ F , (2.140)

where αa is the Shepard filter given as

αa =
∑
b∈P

mb

ρb
wab, (2.141)

and βa is defined to be

βa = exp
{

−K

[
min

(
αa

γa
, 1
)

− 1
]2
}

, (2.142)

where K = 30000 is an arbitrary high value. The boundary condition for the density ρ

is given by ∂ρ/∂n = 0 and the values can thus be calculated according to Eq. (2.136).
The pressure p can be determined via the Equation of State as given by Eq. (2.11).
The boundary condition on the pressure is given by

∂

∂n

(
p

ρ
− g · r + v2

2

)
= 0. (2.143)

This can be discretised using the same principles as for the density. Note that in
practice the v2 term can be neglected as the velocity close to the boundary is small
compared to the other terms.
Finally, γ is calculated by Eq. (2.115) which closes the set of discretised equations.
To obtain the full viscid NS equations the viscous term needs to be discretized as well.
In the laminar case the corrected second-order term based on the operator (2.135) is
used. Thus the viscous term then reads

<
1
ρ

∇ · (µ∇ ⊗ v) >a = 1
γa

∑
b∈P

mb
µa + µb

ρaρb

vab

‖rab‖2 rab · ∇awab (2.144)

− 2
γaρa

∑
s∈S

µs
∂vs

∂ns

‖∇γas‖.
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The shear stress normal to the wall is given by

µ
∂v

∂n
= ρ‖vτ ‖vτ , (2.145)

where vτ is the friction velocity. In the case of laminar flow this is given by

‖vτ ‖vτ = νv(y)
y

, (2.146)

where y is the distance from the wall and ν = µ/ρ. This equation only holds for y � L,
where L is a characteristic length-scale of the flow geometry. Thus the viscous term is
given by

Lapγ,F
a (µ, v) = 1

γa

∑
b∈P

mb
µa + µb

ρaρb

vab

‖rab‖2 rab · ∇awab (2.147)

−2νava

γa

∑
s∈S

‖∇γas‖
δras

,

where
δras = max(ras · ns; δr), (2.148)

with δr being a small number greater than zero to avoid division by zero. Ferrand
(2010) uses the initial particle spacing as δr. The main term of Eq. (2.147) contains
an ‖rab‖2 which can be zero. This is avoided by adding 10−4h2 to the norm. It is not
clear how these arbitrarily chosen values affect the outcome of the simulations.
When the above viscous term is included in the time-discretised equations the velocity
of the boundary term appears explicitly. This can be used to make this term implicit
as pointed out by Ferrand (2010).
Alternatively the second-order term by Violeau (Eq. (2.100)) can be used to discretise
the viscous term in the case of turbulent flow. Again the boundary term needs to be
added and in the case of turbulence the friction velocity needs to be modified in order
to satisfy the log law. The influence of the choice of the discretization of the Laplacian
for turbulent flows is discussed later.
Finally, the discrete NS equations can be written as

dva

dt
= − 1

ρa
Gradγ,F

a (p) + Lapγ,F
a (µ, v) + g (2.149)

2.4 Time-integration

The last step to a full discretisation of the NS equations is to find a suitable time-
integration scheme. In the following a simple physical system is considered that consists
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of the following coupled partial differential equations (the particle label a is dropped
here for the sake of simplicity)

dv

dt
= F (r), (2.150)

dr

dt
= G(v), (2.151)

where F is given by (2.149) and G = id, with id being the identity function.
The forward Euler scheme is then given by

vn+1 = vn + δtn F (rn), (2.152)

rn+1 = rn + δtn G(vn), (2.153)

where δtn is the size of the n-th time-step and

vn := v(t =
n∑

i=1
δti). (2.154)

This scheme is first-order accurate and explicit. Similarly the following semi-implicit
scheme can be used

vn+1 = vn + δtn F (rn), (2.155)

rn+1 = rn + δtn G(vn+1), (2.156)

which makes use of the fact that vn+1 is already calculated. For a more detailed
discussion on these schemes see Violeau (2012). It can be shown that the semi-implicit
scheme is optimal in a way that it can be derived from the discrete-in-time Hamiltonian
which corresponds to conservation principles. Schemes that fulfil this property are
called symplectic. The semi-implicit scheme presented above is first-order accurate as
well. The second-order accurate symplectic scheme is commonly called Leap-Frog. It
is given by

vn+1/2 = vn−1/2 + δt F (rn), (2.157)

rn+1 = rn + δt G(vn+1/2), (2.158)

Another interesting feature of these schemes is that in the absence of friction forces
they are time-reversible and thus conserve the energy.
Besides these, there are several non-symplectic but higher-order schemes Leimkuhler
and Reich (2004) that are frequently used in SPH simulations. Amongst them are
Runge-Kutta schemes as well as the Beeman algorithm (Capone et al. (2007)).
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This section is now concluded by giving the time-integration algorithm used by Ferrand
(2010) for the NS equations

vn+1
a = vn

a − δt

ρn
a

(
Gradγ,F

a (pn) + Lapγ,F
a (µ, v) + ρn

ag
)

, (2.159)

rn+1
a = rn

a + δt vn+1
a ,

γn+1
a = γn

a + δt

2
∑
s∈S

(∇γn
as + ∇γn+1

as ) · (vRs
a )n+1,

ρn+1
a = 1

γn+1
a

∑
b∈P

mb wn+1
ab .

This clearly originates from the semi-implicit, symplectic, first-order scheme. Note,
that the integration of γ is modified such that it is of second order, as the gradient
of γ is averaged between two successive time-steps. The full NS equations destroy the
time-reversible nature of this system due to the added viscous term.

2.4.1 Time-step restrictions

In order to guarantee numerical stability the time-step δt has to obey certain restric-
tions (see e.g. Violeau (2012)). There are three restrictions that apply to every SPH
simulation. The first is the Courant-Friedrichs-Lewy (CFL) condition (Courant et al.,
1928) which is given by

δtCF L = 0.4 h

c0
, (2.160)

where c0 is the speed of sound.
The viscous forces impose that δt is smaller than

δtvisc = 1
8min

a∈P

(
h2

νa

)
. (2.161)

The last of the three is the maximum time-step due to acceleration which is given by

δtforce = 1
4min

a∈P

√
h

‖Fa‖
, (2.162)

where F is the acceleration due to pressure and gravity. The coefficients in Eqs. (2.160)
to (2.162) are taken from Morris et al. (1997). Violeau and Leroy (2014) investigate
the time step conditions both analytically in the unbounded case and using numerical
experiments in the wall-bounded case. They show that the factor 0.4 in the CFL
condition (Eq. (2.160)) can safely be increased to 0.8 which is used in the following.
Finally, the introduction of the governing equation for γ calls for an additional condition
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given by
δtγ = C

1
max

a∈P,s∈S
(|∇nγas · (vRs

a )n|)
, (2.163)

where the factor of C = 0.005 stems from numerical experience according to Ferrand
(2010).
The time-step δt is thus given by

δt = min(δtCF L, δtvisc, δtforce, δtγ). (2.164)



Chapter 3

Investigation of the boundary con-
ditions in two dimensions

Despite its ability to predict flows with good accuracy, SPH with the semi-analytical
wall boundary conditions presented in Section 2.3.2 still suffers from numerical draw-
backs. This can be observed, for example, when considering the energy budget from an
inviscid flow between two infinite plates. As the energy is not constant the skew-adjoint
principle is violated thus warranting an investigation of this property with respect to
the semi-analytical wall boundary conditions. In addition to a theoretical analysis a
numerical simulation shows stability issues associated with this property. This leads
to the question of whether it is possible to counter the instabilities by some numerical
procedure. If a diffusion term is chosen, as in this work, then its properties and influ-
ence on the fluid flow need to be investigated. The question of how to impose a volume
flux or specific boundary conditions are also closely linked to modelling wall boundary
conditions. In free-surface flows certain difficulties can occur which are not apparent
in confined flows. To solve these, it is necessary to revisit certain investigations by
separating hydrostatic and dynamic pressure differences.
In the following section the wall boundary conditions are introduced in detail and are
then investigated with respect to the skew-adjoint property in Section 3.1. This is done
by considering analytical as well as numerical calculations. The instabilities that are
observed are then treated by using a volume diffusion term that is derived from turbu-
lent Reynolds-averaged considerations and implemented into the continuity equation.
This term is related to an approximate Riemann solver proposed by Ferrari et al. (2009)
and adapted to the preetent wall boundary conditions.
The next two sections deal with improvements regarding the imposition of boundary
values. In Section 3.3 a new formula for imposing a non-constant driving force based
on a volume flux is introduced and compared to a standard formulation. Subsequently,

75
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the method of imposing Neumann wall boundary conditions is generalized to Robin
boundary conditions and arbitrary orders of accuracy. A wave equation with Robin
boundary conditions is solved numerically in order to demonstrate the capability of the
present model.
The last theoretical contribution presented in this chapter deals with minor modifi-
cations to the volume diffusion term as well as the wall boundary conditions to take
external forces, e.g. gravity, into account. These two modifications are validated by
two still water simulations.
Finally, the present methodology is applied to a violent free-surface flow, a schematic
dam-break over a wedge. Quantitative comparison of wall pressure forces is made with
respect to other numerical formulations including a Volume-of-Fluid method and it is
shown that the volume diffusion term avoids using any free-surface correction in the
continuity equation as required in previous work by Ferrand et al. (2012).

3.1 On the skew-adjoint property including boundaries

3.1.1 Theoretical investigation

Now, new developments are presented in order to better understand and improve the
model by Ferrand et al. (2012) presented in Section 2.3.2. The boundary corrected
formulation has already been theoretically investigated by Macià et al. (2012) with
respect to its approximation property in 1-D. The goal of this section is to investigate
another aspect of this formulation which is the energy conservation.
In this section the focus is on the property of skew-adjointness of the two arbitrary
(discrete or continuous) operators Grad and Div. These two operators are skew-adjoint
if, and only if,

< Grad(f), B >= − < f, Div(B) >, (3.1)

where 〈〉 are the respective L2 scalar products and f and B are arbitrary scalar and
vector fields, respectively. Before starting the actual investigation the importance of
this property shall be highlighted. Consider a system of particles representing a fluid
without external influence nor dissipative forces, then its energy is given by

E = Ekin + Eint =
∑
a∈P

ma

(1
2‖va‖2 + eint,a(ρa)

)
, (3.2)

where Ekin and Eint are the total kinetic and internal energy respectively, while eint,a

is the specific internal energy of particle a. The time derivative of the kinetic energy is
given by

dEkin

dt
=
∑
a∈P

mava · dva

dt
= −

∑
a∈P

mava · 1
ρa

Grada(p), (3.3)
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where the Euler momentum equation was used, i.e. Eq. (2.6) without the Lap and g

terms. The time derivative of the internal energy can in turn be written as

dEint

dt
=
∑
a∈P

ma

(
∂eint

∂ρ

)
a

dρa

dt
=
∑
a∈P

mapa

ρ2
a

dρa

dt
, (3.4)

where the last equality follows from thermodynamic principles that relate the internal
energy per unit mass to pressure and density via p = ρ2 deint/dρ. Looking at the time
derivative of the total energy one thus obtains with the help of the continuity equation
(Eq. (2.124)):

dE

dt
= −

∑
a∈P

Vava · Grada(p) −
∑
a∈P

VapaDiva(v). (3.5)

Written in notation with discrete scalar products this yields

dE

dt
= − 〈Grada(p), va〉 − 〈pa, Diva(v)〉 . (3.6)

This shows that the energy is exactly conserved if the two discrete differential operators
Grad and Div are skew-adjoint (Eq. (3.1)), i.e. if the right-hand-side of (3.6) is equal
to zero. This property is natural, since the same occurs with ordinary differential
operators when changing the discrete sums with integrals (see e.g. Violeau (2012))

Skew-adjoint operator definition: 〈∇f, B〉 + 〈f, ∇ · B〉︸ ︷︷ ︸
=:SA

= −
ˆ

∂Ω
f(r) B(r) · n(r)dr.

(3.7)
If f = p and B = v, the pressure and velocity, respectively, which solve the Navier-
Stokes equations, then the right-hand side is equal to zero. This is due to p = 0 at a
free-surface and v · n = 0 at a solid wall. It would thus be advantageous if the SPH
operators adhere to this property.
The investigation into skew-adjoint operators commences by first considering basic con-
tinuous SPH operators without boundary terms, i.e. using integrals instead of discrete
sums and assuming that no boundaries are present. The operators under investigation
are given by

Gradb,c
a (f) =

ˆ
Ω

fb∇awabdrb (3.8)

Divb,c
a (B) =

ˆ
Ω

Bb · ∇awabdrb, (3.9)

where the superscript b stands for “basic” in the sense that it is the SPH operator
which can be derived directly from the interpolation without the addition of any other
terms. The superscript c stands for “continuous” similar to the SPH interpolation. The
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left-hand side of the skew-adjoint operator definition (Eq. (3.7)) is then given by

SA =
ˆ

Ω

ˆ
Ω

(fb ∇awab · Ba + fa Bb · ∇awab) drbdra. (3.10)

Due to integral additivity it is possible to swap the dummy labels a, b in the second
term which yields

SA =
ˆ

Ω

ˆ
Ω

(fb Ba · ∇awab + fb Ba · ∇bwab) drbdra. (3.11)

The kernel isotropy result in the asymmetry of its gradient, i.e. ∇awab = −∇bwab,
shows finally that SA = 0, i.e. that Gradb,c and Divb,c are skew-adjoint. Note that
this property also holds true in the discrete case, where the integrals are replaced by
sums, from the same properties.
Now the following symmetrized operators shall be defined:

Grads,c,k
a (f) =

ˆ
Ω

ρ2k
a fb + ρ2k

b fa

ρk
aρk

b

∇awabdrb, (3.12)

Divs,c,k
a (B) = 1

ρ2k
a

ˆ
Ω

ρk
aρk

b (Bb − Ba) · ∇awabdrb, (3.13)

where the superscript s stands for “standard” and k is a power used to discuss a wide
range of operators using a sole notation. Its effect is discussed in the following. Note,
apart from the lack of boundary terms, the symmetrized gradient (3.12) differs from the
discrete form (2.129) by the presence of density terms. Eq. (2.129) can be recovered by
setting k = 1. The above operators in Equations (3.12) and (3.13) are skew-adjoint if
the newly added terms have opposing signs. The proof, which is omitted, can be found
in the book by Violeau (2012). As in the previous case it holds true in the discrete case
also.
When removing the assumption of no boundaries the calculations are no longer as
straightforward. Following a procedure similar to Section 2.3.2.3, in the vicinity of a
boundary the operators of interest are given in continuous form by

Gradγ,c,k
a (f) = 1

γa

ˆ
Ω

ρ2k
a fb + ρ2k

b fa

ρk
aρk

b

∇awabdrb (3.14)

− 1
γa

ˆ
∂Ω

ρ2k
a fb + ρ2k

b fa

ρk
aρk

b

nbwabdrb,

Divγ,c,k
a (B) = 1

γaρ2k
a

ˆ
Ω

ρk
aρk

b (Bb − Ba) · ∇awabdrb (3.15)

− 1
γaρ2k

a

ˆ
∂Ω

ρk
aρk

b (Bb − Ba) · nbwabdrb,
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where the superscript γ indicates the renormalization. Apart from the additional den-
sity terms in the denominator of the Grad operator, these formulae are the continuous
analog to Eqs. (2.125) and (2.129) for k = 1. In Appendix A using the gradient and di-
vergence given by Eqs. (3.14) and (3.15) the left-hand side of the skew-adjoint operator
definition, Eq. (3.7), can be shown to reduce to

SA →
(h→0)

−
ˆ

∂Ω
faBa · nadra. (3.16)

This is equivalent to Eq. (3.7) showing the skew-adjoint property for SPH continuous
operators with boundary terms in case of the correct imposition of the boundary con-
ditions in the limit h → 0. Note that it is essential for this result that the operators
are renormalized with γ. Furthermore, the process of taking the limit is only required
due to the violation of the Kronecker delta property by the SPH interpolation.
The derivation shown in Appendix A could have been made significantly shorter, if we
were only interested in continuous operators. However, the reason for explicitly going
through this derivation was to show the steps necessary to prove the same in the case of
discrete operators. It would thus be necessary to have a discrete version of the Stokes’
theorem. Additionally, the Kronecker delta property is required, but that is violated
even by the continuous SPH interpolation. The difficulty for a discrete Stokes’ theorem
is due to the fact that ∇γ is calculated analytically along the wall (see Section 2.3.2.1),
whereas the volumetric integral over ∇w is approximated via a discrete sum.
As a consequence, discrete SPH operators with boundary terms as presented here are
not exactly skew-adjoint contrary to continuous SPH operators. Inside the fluid, how-
ever, (γ = 1, no boundary terms) the skew-adjoint property is fulfilled in the discrete
case as it is equivalent to the standard differential operators (Divs,c,k, Grads,c,k) given
by Eqs. (3.12) and (3.13).
Finally, the discretized forms of Eqs. (3.14) and (3.15) are given by

Gradγ,k
a (f) = 1

γa

∑
b∈P

Vb
ρ2k

a fb + ρ2k
b fa

ρk
aρk

b

∇awab − 1
γa

∑
s∈S

ρ2k
a fs + ρ2k

s fa

ρk
aρk

s

∇γas (3.17)

Divγ,k
a (B) = 1

γaρ2k
a

∑
b∈P

Vbρ
k
aρk

b (Bb − Ba) · ∇awab − (3.18)

1
γaρ2k

a

∑
s∈S

ρk
aρk

s(Bs − Ba) · ∇γas.

Note that these operators are a generalization from the ones derived by Ferrand et
al. given by Eqs. (2.125) and (2.129) (where k = 1). In the following k = 0 is used
unless otherwise noted. According to the authors’ experience this choice has, at best,
a marginal influence on the results.
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3.1.2 A numerical experiment

As the above theoretical investigation indicates the SPH discrete operators for the
semi-analytical boundary conditions are not skew-adjoint, and thus do not conserve
total energy. Hence, a periodic flow between two infinite plates (at y = 0 and y = h) is
used to address this issue from a numerical perspective. Equations (2.124) and (2.6) are
solved with the pressure calculated via the equation of state (2.11) and the particles
are moved according to dra/dt = va. The viscosity is set to zero and the following
velocity profile is used as the initial condition

vx = 0, vy = c0
10 sin(4πy),

where c0 is the numerical speed of sound and y ∈ [0, 1]. The quantity of interest is the
energy E which is defined by

E(t) =
t∑

n=1
(< Gradγ(p), v > + < p, Divγ(v) >)n , (3.19)

where the subscript n indicates the current time-step. The value of E is equal to the
time integral of the left hand side of Eq. (3.7) and it is zero if the operators under
investigation are skew-adjoint.
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Figure 3.1: Non-dimensional energy budget over time t+ = tc0/h for ghost particles
and present approach. Black dots correspond to time time instants in Figure 3.2.

In Figure 3.1 the non-dimensionalized value E+ = E/(ρ0c2
0h2) can be seen plotted

over time for the present boundary condition as well as the ghost particle approach
(Libersky et al. (1993)) using Eqs. (3.12) and (3.13) for the differential operators. The
present boundary conditions feature a kernel renormalization factor, whereas the ghost
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particle approach implements solid boundaries by mirroring particles on a wall. Two
important features of this plot shall be highlighted. The first is that the value E is
never zero, indicating that the operators are indeed not analytically skew-adjoint in
cases where boundaries are present. Compared to the ghost particle formulation the
energy introduced to the flow is lower with the present boundary conditions.
It shall be noted that this simulation was also run with the formulation by Kulasegaram
et al. (2004) which resembles the present approach but, in contrast to the present
method, is analytically skew-adjoint. However, as Ferrand et al. (2012) already pointed
out, the operators by Kulasegaram lack a term in the gradient and thus do not repre-
sent the physics accurately. The simulation was also conducted with the formulation
by Monaghan and Kajtar (2009) but the results were completely non-physical.

(a) (b)

Figure 3.2: Values of v+ at different times (Figure 3.2(a): t+ = 0, Figure 3.2(b):
t+ = 9.0)

The second observation is that the flow starts exhibiting non-physical fluctuations af-
ter some time. In Figure 3.2 the flow can be seen at t+ = t c0/h = 0 and t+ = 9.0
(corresponding to the times indicated by black circles in Figure 3.1) where the non-
dimensionalized values of v are plotted at each particle. It was already remarked in the
previous section that the deficiency has to originate from the boundaries, as inside the
fluid the operators are skew-adjoint.
At present it is not possible to recover the skew-adjoint property. Due to the collocated
nature of SPH spurious numerical noise will alter the solution which can potentially
introduce energy into the system. In the following section a diffusion term for numerical
noise will be presented that will ameliorates this issue.

3.2 A volume diffusion term for numerical turbulence

It is well known that collocated methods, such as SPH, are prone to spurious oscillations
in the solution which can lead to undesired behaviour as shown by Basa et al. (2009).
For this reason many SPH methods incorporate some sort of artificial viscosity in order
to dampen these residuals. One of the earliest techniques is the artificial viscosity term
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by Monaghan (1992). In the following section this problem is tackled by assuming that
the numerical noise causes a laminar flow to become turbulent. If the numerical noise
is assumed to be isotropic and time-independent the laminar flow can be recovered by
using an averaging operation such as commonly used in the Reynolds averaged Navier-
Stokes context (see e.g. Pope (2001)). It should be emphasized that the approach in
the following, although stemming from a physical background, is purely numerical.

3.2.1 Basic idea

In the context of turbulent flows the continuity equation in the Reynolds averaged
context is given by

d〈ρ〉
dt

= −〈ρ〉∇ · 〈v〉 − ∇ · (〈ρ′ v′〉), (3.20)

where the primes refer to turbulent fluctuations and the angle brackets the Reynolds
averaging (see Chapter 5.1.2). Moreover, the the Lagrangian derivative is in princi-
ple the ensemble averaged one. In laminar flows, as considered here, the fluctuating
quantities are supposed to be zero. Still Eq. (3.20) can be applied to numerical fluctu-
ations in an attempt to stabilize them. The Reynolds averaging approach is generally
valid only for incompressible flows, however, as the density variations in the present
weakly-compressible approach are relatively small it is applied in the present setting.
The gradient-diffusion hypothesis states that

〈ρ′ v′〉 = −K∇〈ρ〉, (3.21)

where K is the turbulent diffusivity. Inserting this into the averaged continuity equation
yields

d〈ρ〉
dt

= −〈ρ〉∇ · 〈v〉 + ∇ · (K∇〈ρ〉). (3.22)

As no fluctuating quantities remain the angle brackets are dropped in the following.
Expressing Eq. (3.22) in terms of SPH operators the following is obtained

dρa

dt
= −ρaDivγ

a(v) + Lapγ
a(K, ρ), (3.23)

where Lapγ is an SPH discrete operator, here applied to ρ with a diffusion coefficient
K. If the model by Morris et al. (1997) is used for the discretization of the Lapγ

operator as in Eq. (2.135), without boundary terms, then the full discretization reads

dρa

dt
= ρa

∑
b∈P

Vb

(
vab + (Ka + Kb)ρab

rab

r2
ab

)
· ∇awab, (3.24)
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where ρab = ρa − ρb. It is common to write the diffusivity term as K = νT /σT , where
νT is the turbulent viscosity and σT is the turbulent Prandtl number. Continuing the
analogy with physically-based turbulence, one may use the mixing length model to
estimate νT (see e.g. Pope (2001)), leading to

K ∼ 1
σT

L2
m

U

L
, (3.25)

where U and L are characteristic velocity and length scales, respectively, and Lm is the
mixing length. Defining the numerical Mach number as M = U/c0, where again c0 is
the numerical speed of sound, yields

K ∼ M

σT
L2

m

c0
L

. (3.26)

Typically, σT ≈ 1, Lm = L/10 and in weakly compressible SPH M = 1/10 (Monaghan
(2005)), which yields

K ∼ L

∆r

c0 ∆r

103 , (3.27)

where ∆r is the initial particle spacing. Depending on the resolution, K can thus be
given as

K = c0 ∆r

ξ
, (3.28)

where ξ ≈ 103∆r/L typically has the range of values of O(10) − O(100) depending on
the ratio of ∆r/L used to resolve the length scale L.
Ferrari et al. (2009) proposed a diffusion term which is remarkably similar to the one
above (Eqs. (3.24) and (3.28)). It is based on the theory of Riemann solvers which
were first introduced to SPH by Vila (1999). Ferrari et al. (2009) use an approximate
Riemann solver to obtain the following continuity equation

dρa

dt
=
∑
b∈P

Vb

(
ρbvab + ca,b

rab

rab
ρab

)
· ∇awab, (3.29)

where
ca,b = max(ca, cb), (3.30)

and

ca = c0

√(
ρa

ρ0

)ζ−1
, (3.31)

with ρ0 being the reference density and ζ the exponent of the equation of state (2.11).
Comparing Eqs. (3.24) and (3.29) it can be deduced that our model is equivalent to
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that of Ferrari et al. (2009) if

rabca,b = Ka + Kb. (3.32)

Now a closer examination of ca, given by (3.31), Eq. (2.11) shows that

ca = c0

(
ρa

ρ0

) ζ−1
2

=
√

∂p

∂ρ

∣∣∣∣
a

, (3.33)

so ca is the speed of sound of particle a. Thus K has the dimension m2/s as expected
for the turbulent diffusivity term.
Comparing Eqs. (3.32) and (3.28) shows that the correction as proposed by Ferrari
et al. (2009) applies a significantly higher viscosity term than considering the simple
mixing length model. This fact can be of importance when it comes to the use of this
correction in the context of turbulent flows, where SPH is used increasingly (e.g. Ting
et al. (2006)). The turbulent viscosity introduced due to the volume diffusion term by
Ferrari et al. (2009) can dissipate more than just the numerical noise and thus have an
influence on the energy spectrum of the flow.
Finally, note that in the Reynolds averaged context the Navier-Stokes equations would
also need to be averaged. This was neglected in the above as the aim was to find a
different interpretation for the volume diffusion term by Ferrari et al. (2009) which only
acts on the continuity equation.

3.2.2 Semi-analytical wall boundary framework

After this interpretation the question arises of how this additional numerical diffusion
term can be included in the wall boundary formulation as described above. To do so,
the flux of the quantity K∇ρ has to be investigated in the normal direction of the wall.
As the boundary condition on the density implies ∂ρ/∂n = 0 for flows without external
forces, this flux is zero as well. Thus, using the Laplacian of Ferrand et al. (2012, 2010)
and the divergence given by Eq. (3.18) the continuity equation with volume diffusion
term reads

dρa

dt
= ρa

γa

∑
b∈P

Vb

(
vab + ca,b

ξρa
ρab

rab

rab

)
· ∇awab − ρa

γa

∑
s∈S

vas · ∇γas. (3.34)

As can be seen from the above, the volumetric term also contains vertex particles. In
turn however, their density is determined from the boundary condition. As this volume
diffusion term can be seen as transferring volume from one particle to the next it is
important that this term is anti-symmetric, i.e. the volume taken from a particle a due
to the influence of particle b needs to be added to particle b as a result of the influence
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of particle a. This principle is thus violated if vertex particles are taken into account in
the volumetric sum. In two-dimensional simulations this change has negligible impact
on the flow.

3.3 Imposing a volume flux in periodic viscous flows

Related to the issue of solid boundaries are open boundary conditions. In the follow-
ing the focus lies on periodic boundaries which itself do not pose an issue with SPH.
However, in order to drive such a periodic flow with a fixed volume flux and thus vari-
able force only one formula exists, which shows relatively large errors as shown in the
following.
Imposing movement in the standard Poiseuille flow is normally achieved with a fixed
driving force. This is however only possible if the value of the latter was known a
priori, since the expected velocity profile is known. It is more common to drive a flow
with a certain volume flux Q. In the following it is described how to impose a variable
driving force based on the expected volume flux.
The volume flux Q is defined as

Q =
ˆ

A
v · dA =

ˆ
A

v · ndA, (3.35)

where A is the cross-section area of the flow, n its normal and v the velocity. To obtain
this value in the SPH framework an average over all particles in a slice of the domain
is taken, i.e.

QSP H = 1
∆rA

∑
b∈PA

Vbvb · nA, (3.36)

where ∆rA is the width of the slice and the set PA contains the particles in the slice.
Herein, ∆rA is twice the particle spacing ∆r. This can also be written as

QSP H = Aṽ, (3.37)

where ṽ is the cross-averaged velocity.
In Violeau (2012) this average velocity is used to calculate the force via

F ext,n = v − 2ṽn−1 + ṽn−2

2∆t
, (3.38)

where n is the n-th time-step, F is the force in direction of the normal and v =
Q/A the desired velocity. This formula originates from the finite volume community
(Rollet-Miet (1998)). As can be seen in Figure 3.3 this value does not converge to
the analytical (expected) one. The reason for this deficiency comes from the fact that
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internal forces are not considered in the above formulation and so the external force is
always underestimated. The equilibrium that should be reached is defined by

F ext + F int = 0, (3.39)

where F ext and F int are the external and internal force respectively (the latter includes
pressure and viscous forces). If the system is not in equilibrium the following holds

F ext,n + F int,n = ṽn − ṽn−1

∆tn
. (3.40)

Ideally the velocity reached at time n is equal to the desired velocity v = Q/A. So
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Figure 3.3: Comparison of the error in the bulk velocity of the Poiseuille flow.

rewriting the above yields

F ext,n = v − ṽn−1

∆tn
− F int,n. (3.41)

Clearly F int,n is not available but it can be assumed to vary only a little between two
consecutive time-steps, i.e. F int,n ≈ F int,n−1. The latter value can then be calculated
using Eq. (3.40) to give

F ext,n ≈ v − ṽn−1

∆tn
− ṽn−1 − ṽn−2

∆tn−1 + F ext,n−1. (3.42)
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Finally rearranging the above yields the following new formula for calculating the ex-
ternal force:

F ext,n = v − 2ṽn−1 + ṽn−2

∆t
+ F ext,n−1, (3.43)

where it is assumed that the time-step ∆t is constant. The first term on the right-hand
side of Eq. (3.43) is twice that of Eq. (3.38). Thus (3.38) amounts to considering that
F ext is independent of time, which is a crude approximation.
In Figure 3.3 the two different means of imposing a driving force based on a volume flux
are compared in the Poiseuille flow case. To do so the relative error in the bulk velocity
is plotted over time. In Figure 3.3 it can be seen that with this new formulation the
external force converges much more closely to the theoretical value. In the case of the
Poiseuille flow it is not necessary to impose a volume flux but instead the analytical force
can be used. However, in cases where the analytical value of the internal (viscous) force
is not known a priori the above formulation provides the means to impose a volume
flux which converges to the desired value.
As it can be seen from Figure 3.3 the present approach reduced the error by about five
orders of magnitude. The error obtained with the original formulation is close to 1%
which is not negligible.

3.4 Generalization of wall boundary conditions

After this analysis of the unified semi-analytical wall boundary conditions and the
reinterpretation of the volume diffusion term the focus in the following two sections
shifts towards novel developments which expand the boundary model.

3.4.1 Theory

As mentioned in Section 2.3.2.5, to satisfy von Neumann boundary conditions Fer-
rand et al. (2012) showed a first-order approximation approach (see Eqs. (2.136) and
(2.137)). In the following this approach shall be generalized to arbitrary orders of accu-
racy and to Robin boundary conditions, which include Neumann boundary conditions
as particular case. Ryan et al. (2010) implemented Robin boundary conditions for SPH
with the use of an additional source term in the governing equation. In this section
a different approach is shown that enables Robin boundary conditions to be imposed
directly.
Such an arbitrary Robin boundary condition for a scalar field f is given by(

µ1f + µ2
∂f

∂n

) ∣∣∣∣
∂Ω

= µ3, (3.44)
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for an arbitrary scalar field f with given µ1, µ2 6= 0, µ3. To impose Neumann boundary
conditions (µ1, µ2) take the values (0, 1). The above can be rewritten as

∂f

∂n
= µ3 − µ1f

µ2
. (3.45)

The key idea is to use a weighted linear least squares approximation of the desired field

Figure 3.4: Illustration of the arbitrary order Robin boundary conditions for SPH.
Blue particles denote fluid particles and particle v in orange is a vertex particle under
consideration.

in the direction of the normal nv of a vertex particle v, which is defined as the average
over the two adjacent segment normals. This implies that the problem is considered
locally as one dimensional projected onto the normal nv of the vertex particle v. The
procedure presented in detail in the following is illustrated in Figure 3.4.
Let m be the desired order of approximation and define a polynomial λ as

λ(x) =
m∑

i=2
βix

i + µ3 − µ1β1
µ2

x + β1, (3.46)

x being the normal distance to the wall.
We set β1 = f

∣∣
∂Ω, i.e. β1 is the value of f prescribed at the wall. The polynomial can

also be written as
λ(x) =

m∑
i=2

βix
i + µ3

µ2
x + β1

(
1 − µ1

µ2
x

)
. (3.47)

This represents an approximation of f in the direction of the normal nv with fv = λ(0).
For a fluid particle a ∈ F and xa = rav · nv the value of λa is thus given as λ(rav · nv)
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when no external forces are present. Let X ∈ M(|F|, m) be a matrix defined as

X
aj

=

 1 − µ1
µ2

(rav · nv) if j = 1,
(rav · nv)j if j > 1,

(3.48)

where j is the second index of the matrix X, |F| is the number of fluid particles and
defining y ∈ R|F| as

ya = fa − µ3
µ2

(rav · nv). (3.49)

The goal is to minimize fa − λa. Hence, we are looking for a solution of the over
constrained system of linear equations

X · β = y, (3.50)

where β is the vector of components βi and the dot represents a single contraction,
in this case the matrix multiplication. A common approach to this type of over-
constrained problem is to use the least squares method which can be solved via

XT · X · β = XT · y. (3.51)

In order to put more weight on particles closer to the vertex particle, the SPH kernel
is used to construct a weighted least squares interpolation. To include this into the
above let δab be the Kronecker delta and Λ ∈ M(|F|), a square matrix, be defined with
elements given by

Λ
ab

= δabVawba, (3.52)

(there is no summation over indices here). Then the weighted least squares interpolation
can be found by solving

XT · Λ · X · β = XT · Λ · y. (3.53)

Due to the fact that the problem is one dimensional the matrix on the left-hand side is
of size m × m and can be inverted easily. Of interest is λ(0) which is β1. Thus finally

fv = λ(0) = β1 = ((XT · Λ · X)−1 · XT · Λ · y)1, (3.54)

where the subscript 1 on the right hand side refers to the first component of the vector
in brackets.
If m = 1 the above reduces to the equation shown in Eq. (2.136) thus showing that
this indeed is a generalization to arbitrary order. Note, the matrix that needs to be
inverted (XT · Λ · X) is contained in M(m) and thus to obtain second-order boundary
conditions the inversion of a 2 × 2 matrix is required in two dimensions.
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Finally, two things should be noted. Firstly, the matrix is non-degenerate if at least
m fluid particles are in the neighbourhood of v and that they have different values of
(rav · nv). Secondly, the formulation as presented above is independent of the method
used to describe the walls, so it could also be used e.g. for the SPH ghost particle
approach by Colagrossi and Landrini (2003).
In comparison to the present method where the boundary condition is directly imposed,
Ryan et al. (2010) add an extra term to the governing equations. The present work
is an extension of Ferrand et al. (2012) such that it is now possible to specify Robin
boundary conditions and not only Neumann ones. Moreover, these can be imposed in
an arbitrary order.

3.4.2 The wave equation as an example
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(c) t = 0.7
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Figure 3.5: Wave equation (3.55) with Robin boundary conditions Eq. (3.56) at four
different time-steps. Analytical solution given by Eq. (3.58). For the SPH solution, the
matrix size in Eq. (3.54) is given by first (m = 1) or second (m = 2) order according
to Eq. (3.46)
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In this section it is shown that the above formulation works whereby Robin bound-
ary conditions can be enforced. For this purpose, a wave equation is considered in one
dimension:

∂2u

∂t2 = ∂2u

∂x2 , (3.55)

with boundary conditions

∂u

∂n
({0, 1}, t) = u({0, 1}, t), (3.56)

and initial conditions

u(x, 0) = 0 and ∂u

∂t
(x, 0) = sin(2πx). (3.57)

The domain [0, 1] is discretized with an initial particle distance ∆r = 0.01 and the
particles are fixed. The second-order spatial differential operator is again discretized
by using the Laplacian as given in Eq. (2.135). The temporal derivative is discretized
by a second-order finite difference scheme. The analytical solution given by Haberman
(2004) of this problem as a function of the dimensionless variables x and t is given by

uana(x, t) =
∞∑

i=1
αi sin(κit) [sin(κix) + κi cos(κix)] , (3.58)

where κi is given as the i-th root of

tan(κi) = 2κi

κ2
i − 1 , (3.59)

and the αi are uniquely determined by the initial condition.
First, a qualitative view on the solution is given in Figure 3.5 at times
t = {0.1, 0.22, 0.7, 0.82}. It can be seen that the main features of the field u are
reproduced by the SPH solution and that, due to the new boundary condition formu-
lation, the Robin boundary conditions are correctly imposed as we observed a distinct
difference in the solution when using Neumann boundary conditions, i.e. µ1 = 0. In
order to illustrate this the analytical solution for the Neumann boundary case was su-
perimposed in Figure 3.5. The snapshots in Figure 3.5(a) and 3.5(d) are plotted at
instants where the error on the boundary is maximal. Compared to these snapshots,
the error between the SPH solution and the analytical solution is smaller throughout
the domain at intermediate times (Figure 3.5(b) and 3.5(c)).
There is a notable difference in the SPH solution depending on whether the boundary
conditions are of first or second order, i.e. whether m = 1 or m = 2 in Eq. (3.46).
To quantify this more precisely consider Figure 3.6 where the error at the boundary
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Figure 3.6: Wave equation with Robin boundary conditions: Relative error of the SPH
solution over time at the boundary.

is plotted over time. It can be observed that the error is sensitive to the order of the
boundary condition and that it can be reduced by up to 30% by choosing a second-order
approximation. The vertical bars in Figure 3.6 show the instants that were shown in
Figure 3.5.

3.5 Still water with a free-surface

In the following, two of the above presented improvements are reviewed in the context
of still water free-surface evolution. The first section below focuses on the volume
diffusion term and the second on the arbitrary order boundary conditions.

3.5.1 Modification of the volume diffusion term

Using the volume diffusion term presented in Section 3.2 in a simulation of still water
shows that the term as shown above does not have a zero contribution towards the
density equation. This is caused by the fact that the boundary terms in Eq. (3.34) do
not vanish when gravity is present. However, there are no segments on the free-surface
and the problem can thus not be resolved by adding a boundary term.
In order to compensate for this deficiency the correction can be modified so that it
reads

dρa

dt
= ρa

γa

∑
b∈P

Vb

(
vab + cab

ρa
%ab

rab

rab

)
· ∇awab − ρa

γa

∑
s∈S

vas · ∇γas, (3.60)
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Figure 3.7: Position of free-surface in infinite open channel at rest.

in place of Eq. (3.34) where the density difference ρab was replaced by the modified
density difference %ab which is given by

%ab = ρa − ρb − gρ0
c2

0
(yb − ya). (3.61)

where g is the gravitational constant and y the vertical elevation. This is a linear
approximation of the difference between the non-hydrostatic densities of two particles.
The external force in the formula above is gravity, but adaptation to other forces is
straightforward.
In Section 3.1 it was remarked that the volume diffusion term should be anti-symmetric
with respect to particles a and b in order to avoid that the global volume is changed.
Clearly Eq. (3.61) obeys this principle. A similar correction was simultaneously pro-
posed by Antuono et al. (2012).
To illustrate the difference between using the traditional ρab = ρa − ρb and %ab con-
sider Figure 3.7, which shows the non-dimensionalized position of the free-surface of
an open channel-flow at rest where the initial density is set to ρ0. In the plot the time
was renormalized by hswl/c0, where hswl = 1 is the still water-level and c0 = 10 the
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numerical speed of sound. It can be seen that without the above modification the free-
surface detaches due to a transfer of volume from the denser lower part to the upper
part of the fluid. The modification proposed above clearly avoids this issue keeping the
free-surface elevation almost constant as expected. The decrease is due to the initial
condition and the weak compressibility of the fluid.

3.5.2 Modification of the boundary interpolation

In this section the generalized boundary conditions presented in Section 3.4 are investi-
gated in the presence of gravity. This means that the function f is equal to the pressure
for which the classical Neumann boundary condition (∂p/∂n = ρg · n) are applied.

Figure 3.8: Still water in a closed tank (left: without correction (3.62), right: with
correction (3.63)).

The approach presented in Section 3.4 produces unsatisfactory results at the intersec-
tion of free-surface and a wall as tangential variations are not neglected. The constraint
above (Eq. (3.49)) reads

λa ≈ ya = pa. (3.62)

In order to neglect tangential variations for external forces such as gravity, the proper
constraint is given by

λa ≈ ya = pa − ρa [rav − (rav · nv)nv] · g. (3.63)

In Figure 3.8 the difference between Eqs. (3.62) and (3.63) is shown. The resolution
is chosen to be relatively low in order to highlight the impact of the proposed correc-
tion. The picture on the left hand side shows particle movement which is an order
of magnitude larger than the one on the right hand side which demonstrates the cor-
rected approximation. Similar to the velocity field, the pressure prediction is improved
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as well by lowering the magnitude of pressure waves originating from this corner. To
explain the formula presented above consider the setup in Figure 3.8 with a perfect
hydrostatic pressure distribution. Now we look at a vertex particle on a vertical wall
which is located next to the free-surface. When constructing the polynomial λ (Eq.
(3.46)) as given in Section 3.4 the fluid particles considered for the approximation all
have a pressure greater than or equal to zero. This causes the pressure of the vertex
particle to be greater than zero, although its theoretical value is zero. This in turn
causes a repulsive force that can be seen on the left hand side of Figure 3.8. If, on the
other hand, the hydrostatic part is subtracted from the fluid particles as in Eq. (3.63)
then all fluid particles used for the approximation of λ have zero pressure and thus the
vertex particle has the correct pressure.

3.6 Dam-break with wedge
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Figure 3.9: Schematic dam-break on a wedge: Comparison of forces on left wedge wall.

After having analyzed and extended the present wall boundary conditions a final sim-
ulation shall be performed. This uses most of the theoretical results presented above
in a more complex free-surface flow.
A schematic dam-break over a wedge is simulated in 2-D with the same geometry as
used by Ferrand et al. (2012). The initial water column is 1 m high and 0.5 m long and
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(a) VOF, t=0.5 s (b) SPH, t=0.5 s

(c) VOF, t=0.75 s (d) SPH, t=0.75 s

(e) VOF, t=1.1 s (f) SPH, t=1.1 s

(g) VOF, t=2.5 s (h) SPH, t=2.5 s

Figure 3.10: Comparison between VOF and SPH.
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(a)

(b)

Figure 3.11: Steady flow on a wedge: Without (Figure 3.11(a)) and with (Fig-
ure 3.11(b)) the volume diffusion term (3.64) to avoid particle repulsion.

the dynamic viscosity is set to ν = 0.01m2/s resulting in a Reynolds number of approx-
imately 140 based on the maximum velocity. The box has a length of 2.2 m where the
wedge begins after 0.85 m with a side-length of 0.25 m. The force is calculated as the
integral of the pressure along the left wedge wall. A Volume-of-Fluid (VOF) simulation
is taken as reference solution (OpenFoam, Weller et al. (2012)). It should be noted that
the latter is a multiphase simulation and thus some discrepancies are to be expected
when compared to the SPH single-phase simulation as illustrated in Figure 3.10. As
shown, the traditional boundary conditions using fictitious particles (Dalrymple and
Knio (2001)) or the Lennard-Jones potential (Monaghan (1994)) fail in predicting the
force. The ficticious particle approach is well known to repulse particles too much as
already noted by, e.g. Hughes and Graham (2010), whereas the Lennard-Jones bound-
ary conditions apply a force that is based on a physical principle that normally holds
only at a molecular level. Due to these issues the limitations of these two approaches
can be explained. Comparing the approach by Ferrand et al. (2012) with the present
one, it can be seen that the volume diffusion term successfully reduces the numerical
noise, while still showing closer agreement with VOF in Figure 3.9.
Finally, Figure 3.11(a) shows the steady state solution of the dam break with the
time-independent continuity equation (Eq. (2.118)) without the heuristic free-surface
correction. Particles that were initially on the free surface have retained their larger
volumes producing the strange bubbles and unphysical pressures. Following the devel-
opments in Section 3.2.1 the integrated-in-time volume diffusion term was added, so
that the continuity equation now reads

γn
a ρn

a = γn−1
a ρn−1

a +
∑
b∈P

mb(wn
ab − wn−1

ab ) + ∆t
∑
b∈F

mbcab
rab

rab

%ab

ρb
∇awab, (3.64)
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where the superscripts refer to the time iteration. Note that again the gravitationally
corrected volume diffusion term (Eq. (3.61)) is used through %ab. The continuity
equation above is equivalent to using Divγ,k (Eq. (3.18)) with k = 1 so for consistency
Gradγ,1 (Eq. (3.17)) has to be used for the discretization of the pressure gradient.
From Figure 3.11(b) it can thus be concluded that the heuristic free-surface correction
is no longer required (contrary to Ferrand et al. (2012)) as the volume diffusion term
successfully redistributes the higher volume of particles initially on the free surface once
they become entrained in the fluid body.

3.7 Preliminary conclusion

This chapter has investigated SPH boundary conditions for wall-bounded, potentially
turbulent, flows within a semi-analytical framework. Three distinct but equally impor-
tant areas have been investigated.
The semi-analytical wall boundary conditions for SPH introduced by Ferrand et al.
(2012) have been further developed where the skew-adjoint property of discrete oper-
ators was examined both theoretically and numerically. It was shown that the skew-
adjoint property does not hold in the discrete case leading to errors in the conservation
of energy and demonstrated for two-dimensional channel flows. As shown by Morin-
ishi et al. (1998) for non-uniform grids, exact conservation is not required if errors are
small and remain bounded. A detailed error analysis of the conservation of different
boundary conditions would be of interest for further research.
Another general issue with SPH is instability within the method that manifests itself
as numerical noise. As shown in this chapter the noise can be explained by analogy
with a Reynolds-averaged continuity equation which is shown to be equivalent to the
density diffusion introduced by Ferrari et al. (2009) which used an approximate Rie-
mann solver. This interpretation justifies the addition of a constant that depends on
the relative resolution. As the volume diffusion term introduces artificial viscosity this
constant prevents excessive damping which would be problematic for Direct Numerical
Simulation or Large Eddy Simulation.
With the aim of simulating turbulent flows in periodic geometries, a novel formulation
was presented to prescribe a variable driving force with an imposed volume flux which
improves the predicted flow rate by 5 orders of magnitude. Additionally, the Neumann
boundary conditions by Ferrand et al. (2012) were generalized to arbitrary orders of
interpolation and Robin-type boundary conditions. The formulation was shown to
impose Robin boundary conditions correctly thereby extending their potential appli-
cation. Finally, two modifications to the boundary conditions as well as the volume
diffusion term were presented in order to deal with free-surface flows correctly, reducing
unphysical velocities at the surface by at least an order of magnitude for still water.
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The new numerical scheme was demonstrated for a dam-break flow over a wedge show-
ing the capabilities of the present improved model compared to a well-known VOF
code. This simulation was also used to highlight the fact that the volume diffusion
term can correct the free surface when using the time-independent continuity equation,
as proposed by Ferrand et al. (2012)



Chapter 4

Extension to three dimensions

In order to extend the formulation based on Section 2.3.2 to 3-D two major issues need
to be resolved. At first the mass of the vertex particles also need to be calculated.
This depends on the spatial resolution as well as local geometric properties. Secondly,
the calculation of the gradient of γ needs to be investigated. In 2-D it was possible to
obtain an analytical formula for this vector and in the following an analytical formula
for the three-dimensional case is presented.

4.1 Calculating the mass in 3-D

Figure 4.1: Partition of the boundary extended in wall-normal direction.

The goal of this section is to demonstrate how the mass of vertex particles is computed
in a pre-processing step. In order to do so the volume of a vertex particle needs to be
computed. The main idea in the following is that a partition of the boundary shall be
created. The volume is then created by expanding this partition in wall-normal direc-
tion by ∆r/2. Thus, each vertex particle obtains a volume that when combined yields
a partition of the boundary with a certain thickness as illustrated in a two-dimensional
example in Figure 4.1.

100
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Figure 4.2: Initial view of coplanar faces surrounding a vertex.

In order to demonstrate how the calculation of the vertex particle mass works, Fig-
ures 4.2 to 4.7 are presented. The algorithm loops through all vertex particles and
only requires the connected vertices and faces for one specific vertex particle. The in-
tegration of

´
v ρdV is achieved by means of a Cartesian grid centred around the vertex

particle. Its typical edge length is 2∆r and the grid size is ∆r/N with N ≈ 100.
Initially all the grid points are initialized with value 0, indicating that they are not
being used for integration. In the following, points are either added or deleted which
corresponds to setting the value to 1 or 0 respectively. The calculation is described in
four steps.

Step 1: For each (associated) face two cubes with side length ∆r are added. They
are orientated according to one edge of the face and the normal of the face. The origin
coincides with the vertex particle for which the volume is calculated. This is illustrated
in Figure 4.3.

Step 2: In the next step the points outside the geometry are removed. In order to
do so the average normal of all faces is calculated, in this case it is equal to (0, 0, −1).
Then, as shown in Figure 4.4, an infinite tetrahedron is created which is spanned by
this average normal and the two edges associated to one face.

Step 3: Now the edges are one by one used to calculate the Voronoi tesselation which
means that planes are placed at the midpoint between two vertices. All the points
outside the created convex hull are removed as shown in Figure 4.5.

Step 4: The final step consists in removing all points which are outside the local
group of faces that is associated to each vertex. In order to do this the plane spanned
by the edge opposite of the vertex and the edge normal is calculated. All points outside
are once again discarded as can be seen in Figure 4.6. The edge normal is the average
of the normals of the two adjacent faces.
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Figure 4.3: Creating two cubes according to the highlighted face.

Figure 4.4: Use of tetrahedron (orange) to delete parts outside of geometry.
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Figure 4.5: Voronoi tesselation.

Figure 4.6: Cutting off at face boundaries.
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Figure 4.7: Final vertex particle volume.

The final volume is shown in Figure 4.7, its value is determined by numerical integra-
tion of the above mentioned Cartesian grid. To summarize the above, the algorithm
provides a seamless cover of the boundaries with height of ∆r/2. This cover is split
into non-intersecting portions which represent the volumes of the vertex particles.
The approach shown above is rather complicated, considering it is used within a mesh-
less method. As it is applied only in the pre-processing stage the influence on the
computational time is not substantial.

4.2 Analytical computation of ∇γ in 3-D

In the following the algorithm for the analytical computation of ∇γas in 3-D is de-
scribed. The general principle is discussed first before describing the details of the
domain decomposition algorithm and the formulae for the special cases. This section
is concluded by showing the possibility to optimise the calculation on a plane wall.
Clearly the boundary of a three-dimensional geometry is a two-dimensional manifold.
In order to discretize the boundary it is required to generalize the 1-D line segments
to a 2-D equivalent. The most basic bounded 2-D element is a triangle. It can be
described by 3 vertices which are always coplanar. Thus in the following it is assumed
that a boundary segment is given by a triangle and its virtual position, required for
the imposition of boundary conditions, is set to be the triangle’s barycentre.
Thus, ∇γas, given by Eq. (2.105), is the integral of the Wendland kernel over a tri-
angle. More precisely it is the integration of a radial polynomial over the intersection
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Figure 4.8: Illustration of the general problem.

of a triangle with a sphere as illustrated in Figure 4.8. Clearly this intersection is not
necessarily a triangle, further complicating the integration. Due to the inherent singu-
larity of the function r 7→ w(‖r‖) at the origin (only twice continuously differentiable)
it is not advisable to use a numerical algorithm. Several numerical approaches were
attempted and the only one providing promising results was an adaptive integration
which was not viable due to its computational cost. Due to this it was decided to
develop an analytical formula, as done in for 2-D by Ferrand et al. (2012).
The integration of an arbitrary triangle / sphere intersection is too complicated and
thus it was decided to decompose the surface integration domain, denoted by s in
Equation (2.105), into building blocks for which it would be easier to find an analytical
solution. This domain decomposition is discussed in detail in the next section. The
formulae for the building blocks are shown in Section 4.2.2.
In contrast to the approach by Amicarelli et al. (2012), which uses square segments,
the triangular decomposition allows more flexibility. Additionally, traditional mesh-
ing software can be used in order to create the surface mesh for arbitrary complex
geometries.

4.2.1 The domain decomposition algorithm

Before the algorithm for the decomposition is given, consider the 8 possible configu-
rations that can result from a triangle / sphere intersection as shown in Figure 4.9.
As mentioned above, the integration domain sas = ∂s ∩ Ωa consists of an intersection
between a triangle and a circle. In the following, one segment s is investigated with
its three associated vertices {v1, v2, v3}. The number nv determines how many vertices
are inside the integration domain and ne is the number of edges intersecting with sas,
the boundary of the integration domain.
A systematic description of the eight possible cases via a decision tree is given below.

• All vertices inside the domain (nv = 3 ⇒ ne = 0) ⇒ Case 1
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(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

(e) Case 5
(f) Case 6

(g) Case 7
(h) Case 8

Figure 4.9: The 8 different cases.

• One vertex outside the domain (nv = 2 ⇒ ne = 2) ⇒ Case 2

• Two vertices outside the domain (nv = 1)

– Two edges intersecting (ne = 2) ⇒ Case 3

– All edges intersecting (ne = 3) ⇒ Case 4

• All vertices outside the domain (nv = 0)

– No edges intersecting (ne = 0) ⇒ Case 5

– One edge intersecting (ne = 1) ⇒ Case 6

– Two edges intersecting (ne = 2) ⇒ Case 7

– All edges intersecting (ne = 3) ⇒ Case 8

After identifying the different cases the next step is to decompose the specific domain
into the three basic building blocks shown in Figure 4.10. From left to right there is
the circular sector, the circular segment and the full circle. In Figure 4.11 the different
decomposition algorithms are shown.
In the following Case 1 is explained as an example. The detailed procedure for this
can be seen in Figure 4.12. The integration domain is a triangle, completely inside the
support. In order to compute the integral, three circular sectors need to be computed.
Circular Segment 1 contains the triangle and its center is vertex v1. In the next step
Circular Segment 2 is subtracted in order to remove the part of Circular Segment 1
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•

(a) Circular sector

•

(b) Circular segment

•

(c) Full Circle

Figure 4.10: The 3 building blocks.

= - +
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=
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= - -

= - - -

Figure 4.11: Illustration of the domain decompositioning algorithm.
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Figure 4.12: Algorithm for Case 1 in detail.

that does not contain the triangle. However, there is Circular Segment 3 that does not
overlap with Circular Segment 1 and thus needs to be added in the final step so that
the integral really only covers the triangle domain.

4.2.2 Analytical formulae for the basic domains

After decomposing the domain in the previous section, the analytical formulae for the
integral (Eq. (2.105)) over the three basic domains are given for the Wendland kernel
(Eq. (2.63)). Let us first introduce the non-dimensionalised integral I:

I =
ˆ

s
wabdrb. (4.1)

Equation (2.105) then reads:
∇γas = Ins. (4.2)

The formulae in the following are specific to the Wendland function given in Eq. (2.63)
as it is the one most used in the SPH community. However, the approach can be applied
to any radial polynomial by modifying the formulae presented below.

4.2.2.1 Circular sector

The case of a circular sector needs to be simplified to two special circular sectors as
illustrated in Figure 4.13(a). One special circular segment can be identified by the
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distance d of the particle to the plane, the distance to the projected center r and the
angle θ as shown in Figure 4.13(b). The formula for such a special circular segment is
then formally given by

Isector (d, r, θ) =
ˆ 2

q=
√

d2+r2

α3
h3 ω (q)

(
θ − arcsin

(
r sin θ√
q2 − d2

))
qdq. (4.3)

With the help of a standard symbolic mathematics software (Maple) it becomes

Isector (d, r, θ) = α3
2
7
(
θ − arcsin

(
r sin θ√

4−d2

))
+ α3

[
Ψd,r,θ (q) + Ψ−d,r,θ (q) − r sin θ Pd,r,θ (q)

√
q2 − d2 − r2 sin2(θ)

−r sin θ Qd,r,θ ln
(

q +
√

q2 − d2 − r2 sin2(θ)
)]q=2

q=
√

r2+d2
,

(4.4)
where

Ψd,r,θ (q) = 1
14 arctan

 r2 sin2 θ + (d + q)d
r sin θ

√
q2 − d2 − r2 sin2(θ)

(2 − (2 + 5d + 4d2)
(

1 − d

2

)5)
,

(4.5)
and

Pd,r,θ(X) = 1
2688

[
−924d4 − 1120r2 sin2 θ − 2800d2 − 728r2 sin2 θd2 (4.6)

−224r4 sin4 θ + 1344

+(48d2r2 sin2 θ + 504r2 sin2 θ + 15r4 sin4 θ + 57d4 + 1176d2)X

+(−252d2 − 112r2 sin2 θ − 560)X2

+(22d2 + 10r2 sin2 θ + 336)X3 − 84X4 + 8X5
]

,

and

Qd,r,θ = 1
2688[2520d4 + 105d6 + (105d4 + 1680d2)r2 sin2 θ (4.7)

+(504 + 63d2)r4 sin4 θ + 15r6 sin6 θ].

The above formula is valid for 0 < θ < π/2, 0 ≤ r ≤ 2 and 0 ≤ d ≤ 2.

4.2.2.2 Circular segment

Let r denote the minimum distance from the circular segment (Figure 4.10(b)) to ra

projected to the plane πs which contains the triangle s as shown in Figure 4.8. Assume
furthermore that the circular segment does not cover this projected point, then the
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formula for the integral is given by

Isegment (d, r) = 2Isector

(
d, r,

π

2

)
. (4.8)

Note that many algebraic simplifications and optimizations can be done in Isector (d, r, θ)
when θ = π

2 (not presented herein).

•

(a) Decomposition of the circular
sector

(b) Variables of a special circular
sector

Figure 4.13: The circular sector in detail.

4.2.2.3 Full circle

The integral for the case of a full circle (Figure 4.10(c)) depends only on the distance
to the plane d and can be calculated as

Ifull (d) = 2Isegment (d, 0) = α3
2
7π(2 + 5d + 4d2)

(
1 − d

2

)5
, (4.9)

4.2.3 Optimisation on plane walls

On plane walls the values of γa and ∇γa can be easily computed in terms of the
dimensionless distance d normal to the wall, normalized by the smoothing length h.
They are given as

γa(d) = 1 − 1
512 (2 − d)6

(
4 + 6d + 3d2

)
, (4.10)

and
∇γa(d) = Ifull (d) n. (4.11)

This avoids the time-integration of γ, given in Eq. (2.115), for particles only influenced
by a plane wall. This reduces the possible time-stepping error and in case a higher
order time-stepping scheme is used, lowers the computation time, as ∇γas must be
computed only once.
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4.3 Simulations

In the following section the algorithm provided above is used to perform three different
simulations. The first one is used to compare the proposed algorithm to the analytical
value when approaching a plane wall. The second simulation shows a box with a
complex floor that is filled with water in order to investigate the spurious velocities.
Finally, a dynamic flow is simulated based on the geometry of the second SPHERIC
test case.

4.3.1 Particle approaching a plane wall

Figure 4.14: Discretizations of the plane walls.

The first simulation consists of three particles approaching six different plane walls.
The discretization of these walls is illustrated in Figure 4.14 and as it can be seen there
are three planes with a regular discretization and three with a non-regular mesh. For
each of those two sets there is one plane where the triangle size is of the order of ∆r

(particle size), one with double and one with quadruple resolution. Furthermore for
each of those six walls there are three particles, initially at y = 4∆r (h/∆r = 2) which
approach the wall with constant speed c0/10, where c0 is the numerical speed of sound
in weakly compressible SPH. The difference between these three particles is that one
is located above a vertex, one is above an edge and one is located above the interior of
a triangle.
The analytical formula for ∇γ on a plane wall for the Wendland kernel (Eq. (2.63)) is
given by Eq. (4.11). Note that the optimization presented in Section 4.2.3 is not used
in this simulation. In Figure 4.15 the relative error for the different walls and particle
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Figure 4.15: Error of ∇γ for different walls.

positions can be seen. Clearly, the error is as large as machine precision for the used
double precision variables and no configuration showed any larger errors, indicating
that the formulation adapts perfectly to any given discretization.

4.3.2 Still water

Figure 4.16: Geometry of the still water test case.

After demonstrating the algorithm for a single particle, it must then be tested for com-
plex geometries with a fluid body consisting of a large number of particles in a highly
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Figure 4.17: Residual velocity.

complex geometry. In the following the box shown in Figure 4.16 is used in order to
quantify the decay of velocity in a flow at rest under the influence of gravity. Note that
for illustration purposes two side walls were removed to allow viewing the inside of the
box. The box is partially filled with water so that there is one submerged half-sphere,
one submerged cone and one cone which pierces the surface. The size of the box is
6.5m × 3m × 4m, the first cone is centered at (1, 0, 3) with height 1.5m, whereas the
second cone is centered at (5, 0, 2.5) with height 3m and both have a radius of 1m.
Finally, the half-sphere is centered at (3, 0, 1.5) with radius 1m. Initially all the par-
ticles have uniform density (thus uniform pressure) and thus an initial acceleration is
expected which should die down quickly. The optimisation presented in Section 4.2.3
is used in all following computations.
The viscosity is set to ν = 0.1m s−2 and the numerical speed of sound is c0 = 45m s−1,
which is based on the initial waterdepth of h0 = 2m. The Neumann boundary condi-
tions are implemented using the technique described in Section 3.4. In Figure 4.17 the
velocity magnitude is presented in both L2 and L∞ norms. The normalized L2 norm
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Figure 4.18: L2 norm using the boundary conditions by Monaghan and Kajtar (2009).

is given as
|v|2
c0

=

√√√√ 1
|F|

∑
a∈F

(‖va‖2
c0

)2
, (4.12)

and the normalized L∞ norm is given as

|v|∞
c0

= 1
c0

max
a∈F

(‖va‖). (4.13)

In order to see whether the formulation provides convergence three different resolutions
are compared. After the expected initial damping, the velocity remains more or less
constant and convergence can be observed. To compare the present approach to other
SPH boundary conditions the same simulations were performed using the boundary
conditions by Monaghan and Kajtar (2009). The advantage is that it is possible to
reuse the same triangular boundary discretization which allows a direct comparison
without the influence of a change in discretization. The L2 norm errors are shown
in Figure 4.18 and are shown to be more oscillatory compared to the ones shown in
Figure 4.17(a). Additionally, the error between the two finer resolutions is of the same
order showing that at the finest resolution the error is larger when using the boundary
conditions by Monaghan and Kajtar (2009). The final pressure distribution for the
present boundary conditions can be seen in Figure 4.19.
In Figure 4.20 the present algorithm was compared to a simulation which was conducted
using the approximation of Eq. (2.106)

∇γas = Ssnswas, (4.14)

where Ss is the surface area of boundary segment s. In the lower left corner of Fig-
ure 4.20(a) a particle can be seen penetrating a wall with a value of γa significantly
lower than the expected value of γa ≈ 0.25. At later stages of the simulations further
particles penetrate the wall. It shall be noted that due to the modification presented in
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(a) Approximate ∇γas, Eq. (4.14) (b) Analytical ∇γas, Section 4.2

Figure 4.20: Comparison between the approximative and the analytical approach.

Section 4.2.3 the particles along plane walls do not penetrate due to their correct value
of γa. It can be observed in Figure 4.20(b) that no particles penetrate the walls when
the algorithm of Section 4.2 is used. This is due to the value of ∇γa being computed
analytically such that the only error in γa originates from the time integration which
is negligible.

4.3.3 Dam-break with obstacle

The final simulation shows a violent free-surface flow in form of a dam break with an
obstacle. The geometry used is the same as given in the second SPHERIC validation
test (https://wiki.manchester.ac.uk/spheric/index.php/Test2). Compared to
the proposed viscosity of ν = 10−6m s−2 a value of ν = 10−2m s−2 is used to ensure
the flow to be laminar since no turbulence models have been implemented in our code

https://wiki.manchester.ac.uk/spheric/index.php/Test2
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Figure 4.21: Location of probes according to Kleefsman et al. (2005).

and thus the results would not be accurate enough with a smaller viscosity. The pres-
sure probes and water depth probes are located at exactly the same position as in the
SPHERIC validation test shown in Figure 4.21. In order to compare with a differ-
ent approach the same simulation was conducted using a Volume-of-Fluid (VOF) code
(OpenFoam, Weller et al. (2012)). It is expected that this reference solution does not
match the solution computed with the SPH method presented above as the former is
computed using a multiphase approach. However, before the impact of the fluid onto
the obstacle we expect similar results as the air phase has negligible impact on this
stage of the flow.
The simulation was run for three different resolutions, the first corresponding to the one
of the validation test which is ∆r0 = 0.55/30m and the other two being ∆r = ∆r0/

√
2

and ∆r = ∆r0/2. The numerical speed of sound is set to c0 = 40m s−1 and the modi-
fied volume diffusion term presented in Section 3.3 is used.
In Figure 4.23 the result of two different probes measuring the water levels can be
observed and Figure 4.22 shows the flow at different stages during the simulation. The
effect of particles only sliding slowly down the wall is due to the no-slip boundary con-
ditions. The probe on the left-hand side is located inside the initial cube of water and
the decay agrees with the VOF reference solution as expected. It can be seen that there
is more fluid being held back by the obstacle as indicated by the difference in levels
in Probe H2. This also implies that the wave reflected by the obstacle is only visible
in the VOF solution as seen in the plot of Probe H4 after 3.5s. The cause for this
difference is most likely to be air entrapped downstream of the obstacle, which causes
the water to flow slower over the obstacle thus creating a higher wave upstream.
In Figure 4.24 the result of two pressure probes can be observed. The first probe is
located at the front face of the obstacle, whereas the second one is located on top of
it. Probe P2 indicates that the pressure peak is not appropriately resolved indicating
that either space or time discretization is not fine enough. In comparison with the
VOF simulation it is expected that the peak is appearing earlier and higher due to the
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(a) t = 0.513s (b) t = 0.66s

(c) t = 1.76s (d) t = 4.4s

Figure 4.22: Snapshots of the simulation coloured according to velocity magnitude.

absence of air. After the impact event the pressure is slightly lower when compared
to the reference simulation which is once again explained by the difference in height of
the wave reflected by the obstacle. This can also be observed in the right hand side of
Figure 4.24 where the pressure at Probe P5 is shown. Due to the lower water level the
pressure is reduced but both reflection events are captured.
In order to investigate whether the differences in the simulations are due to the mono-
phase character of SPH or the boundary treatment three additional SPH simulations
were preformed. The first simulation used exactly the same boundary discretization
with the boundary conditions formulation formulated by Monaghan and Kajtar (2009)
(M&K BCs) which is based on a repulsive force. The other two simulations were
performed using the DualSPHysics package (Crespo et al. (2011)) which utilizes the
boundary conditions by Dalrymple and Knio (2001) where the two simulations differ
only in the resolution. The first, denoted in the figures by DualSPHysics, uses the stan-
dard ∆r0, whereas the latter, DualSPHysics ∆r0/2, uses the double resolution ∆r0/2.

As shown in Figure 4.25 these three simulations are compared to the VOF and coarse
SPH simulation which uses the unified semi-analytical boundary conditions using the
same probes as in Figure 4.23. It can be observed that M&K BCs show significant



CHAPTER 4. EXTENSION TO THREE DIMENSIONS 118

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0  1  2  3  4  5

h 
[m

]

t [s]

VOF
∆r = ∆r0/2

∆r = ∆r0/sqrt(2)
∆r = ∆r0

(a) Probe H4

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  1  2  3  4  5

h 
[m

]

t [s]

(b) Probe H2

Figure 4.23: Water levels.

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0  1  2  3  4  5

pr
es

su
re

 [P
a]

t [s]

VOF
∆r = ∆r0/2

∆r = ∆r0/sqrt(2)
∆r = ∆r0

(a) Probe P2

-500

 0

 500

 1000

 1500

 2000

 2500

 0  1  2  3  4  5

pr
es

su
re

 [P
a]

t [s]

(b) Probe P5

Figure 4.24: Pressure gauges.

deviations from both the VOF and the other SPH solutions. The DualSPHysics simu-
lations on the other hand show a significant difference due to the different resolutions.
This was not observed in the simulations shown in Figure 4.23. Probe H2 indicates,
particularly during t ∈ [1, 2], that there is a common deviation from all the SPH simu-
lations to the VOF solution.
Figure 4.26 shows the results from the same pressure probes as in Figure 4.24. The
M&K BCs exhibit a highly oscillatory behaviour, whereas the DualSPHysics results
show a strong dependence based on the resolution. The latter was also shown by Cre-
spo et al. (2011) where the same simulation was preformed using a lower viscosity.
As the goal of this chapter is to demonstrate the extension of the semi-analytical wall
boundary condition to 3-D it shall be mentioned that there were no particles pene-
trating the walls thanks to the accurate imposition of the boundary terms. If again
the approximation shown in Eq. (4.14) is used, the simulation behaves similar to the
one presented in the previous section, there are some particles which penetrate the
wall. Finally, the computation with the approximative value of ∇γas requires 0.84s per
iteration, whereas the simulation with the analytical value requires 0.97s per iteration.
This means that the simulation is about 15% slower, an acceptable value considering
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Figure 4.25: Comparison of water levels using different boundary conditions.
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Figure 4.26: Pressure gauges using different boundary conditions.

the improved behaviour of the simulation.

4.4 Preliminary conclusion

The goal of this chapter was to extend the unified semi-analytical boundary conditions
of Ferrand et al. (2012) to 3-D. In Section 4.1 a method to compute the vertex particle
mass in a consistent manner was given, based on geometric principles which is done
in a pre-processing step. Moreover, it was necessary to compute the integral of the
kernel on a triangle which can possibly be intersected with a sphere. In Section 4.2
an algorithm was presented that achieves the analytical computation of this integral
which is based on a domain decomposition as well as analytical formulae for specific
integration domains. The domain decomposition is based on the identification of the
eight different possible integration domains and their representation based on three
geometrical shapes. Using symbolic mathematics software the kernel was integrated
on these three shapes, a circular sector, a circular segment and the full circle, thus
providing an algorithm to compute all possible shapes analytically.
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The formulation has been tested in three different simulations. The first being the com-
putation of ∇γ with individual particles approaching a plane wall which was discretized
using different approaches and resolutions. It was shown that the error is as small as
machine precision when compared to the analytical solution. The second simulation
concerned the simulation of still water in a box featuring a highly complex geome-
try with two cones and a sphere emerging from the floor. Finally, a laminar version
of the second SPHERIC validation test was analysed and compared to a Volume-of-
Fluid reference solution. The results were in good agreement despite some expected
discrepancies due to the multiphase nature of the VOF simulation. The last two simu-
lations were also conducted using an approximate value of ∇γas which always resulted
in particles penetrating the walls, demonstrating the requirement for a more accurate
calculation of this value as presented in this work. Additionally, it was shown that the
computation time is only 15% higher when using the analytical algorithm.



Chapter 5

The turbulent channel flow

As a prelude to the numerical investigations presented in Chapter 6, the main aim of
this chapter is to give a brief survey of closed turbulent channel flow. In Chapter 6 sim-
ulations of the channel flow will be shown using both quasi DNS and LES approaches.
The survey includes the physical aspects presented in Section 5.1 with an emphasis on
the turbulent scales as well as low order statistics. This is followed by the mathemat-
ical description of different turbulent structure resolving simulation approaches used
for turbulent wall-bounded flows, namely direct numerical simulation (DNS) and large
eddy simulation (LES).

5.1 Physics of turbulent flow in a channel

5.1.1 Geometrical properties

The geometry of a channel flow is illustrated in Figure 5.1. We assume that the mean
flow is oriented in the x direction between two walls separated by a distance λy = 2δ,
where δ is the channel half-width. Herein, the channel is periodic in both x and z direc-
tions. Hence, the main variation in the mean flow is due to the presence of the walls. In
experiments a flow-development region can be observed as x periodicity is impossible
to achieve. However, further downstream after a development length of the order of
a hundred duct widths, the flow becomes statistically stationary and one-dimensional.
Additionally, the mean flow is symmetric with respect to the mid-plane y = δ.
There are two Reynolds numbers which can be defined on the basis of geometrical
properties and velocities. The first is based on the bulk velocity ṽ

Re = 2δṽ

ν
. (5.1)

121
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Figure 5.1: Geometry of the channel flow

The other is based on the centerline velocity v0 = v(y)
∣∣
y=0 and is defined as

Re0 = δv0
ν

. (5.2)

Note particularly that the two Reynolds numbers use two different length scales, δ and
2δ.
In the present section all derivations are made assuming the flow to be incompress-
ible, i.e. ∇ · v = 0. This significantly simplifies the theoretical analysis to follow.
The numerical methods and simulations are still presented in a weakly compressible
framework.

5.1.2 Reynolds averaged Navier-Stokes

As the flow under consideration is statistically stationary the Navier-Stokes equations
can be rewritten to yield information about the mean flow quantities. In order to define
mean quantities it is necessary to define the one-point, one-time joint cummulative
distribution function as

F (V , r, t) = P{v(r, t) < V }, (5.3)

where P is a probability measure. The joint probability density function is given as

f(V , r, t) = ∂3F (V , r, t)
∂V1∂V2∂V3

. (5.4)
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The mean can then be defined as

〈v〉 =
∞ˆ ˆ ˆ

−∞

V f(V , r, t)dV1dV2dV3. (5.5)

This allows the fluctuating velocities

v′ := v − 〈v〉 (5.6)

which at the same time yields a decomposition of the velocity. From the fact that

〈v′〉 = 0, (5.7)

it can be deduced that
∇ · 〈v〉 = 0. (5.8)

Moreover, the Navier-Stokes equations can be rewritten to become the Reynolds equa-
tions given as

d〈v〉
dt

= −1
ρ

∇〈p〉 + f
ext

+ ν∇ · (∇ ⊗ 〈v〉) − ∇ · 〈v′ ⊗ v′〉, (5.9)

which is a governing equation for the time-averaged velocity where f
ext

denotes an
external driving force. Comparing the momentum equation for the instantaneous ve-
locity (2.6) to the Reynolds equation it can be observed that the only difference is the
last term in Eq. (5.9). The tensor 〈v′ ⊗ v′〉 is the Reynolds stress tensor which plays a
crucial role in describing the behavior of turbulent flows. Without a definition for this
term Eq. (5.9) is not closed and unless the Reynolds stress tensor is known or modelled
the equations cannot be solved.

5.1.3 The balance of forces

From the initial considerations in Section 5.1.1 it can be seen that 〈vz〉 = 0 and that
〈vx〉 is independent of x, i.e. ∂〈vx〉/∂x = 0. From this and Eq. (5.8) it can thus be
deduced that ∂〈vy〉/∂y = 0 and since 〈vy〉 = 0 at y = 0, 2δ it can be seen that 〈vy〉 = 0.
Under steady conditions the Reynolds equation (5.9) in the mean-flow direction reduces
to

0 = f
ext

+ ν
∂2〈vx〉

∂y2 −
∂〈v′

xv′
y〉

∂y
, (5.10)

where the fact that ∂〈p〉/∂x = 0 has been used. The total shear stress

τ := ρν
∂〈vx〉

∂y
− ρ〈v′

xv′
y〉, (5.11)
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resulting in
− dτ

dy
= ρfext. (5.12)

This formula shows the two forces which are balanced in the statistically stationary
state. On the left side is the shear stress in wall-normal direction which is balanced
by the external driving force on the right hand side. This also indicates that the shear
stress is a linear function and as it is antisymmetric with respect to y the wall shear
stress can be defined as τw := τ(y)

∣∣
y=0 = −τ(y)

∣∣
y=2δ

, such that

τ(y) = τw

(
1 − y

δ

)
. (5.13)

Eq. (5.12) can thus be rewritten to read

τw

δ
= ρfext. (5.14)

As the wall shear stress depends on the velocity the question arises if there is a rela-
tionship between the two. Indeed a skin-friction coefficient can be defined based on
either the centerline velocity or the bulk-velocity

cf = 2τw

ρv2
0

, (5.15)

Cf = 2τw

ρṽ2 . (5.16)

Eq. (5.14) allows the imposition of a wall shear stress by using a constant (in time)
driving force. On the other hand, using a variable driving force such as the one pre-
sented in Section 3.3 allows the control of either v0 or ṽ. Under any circumstance
the skin-friction coefficient is a result of the simulation or experiment and is thus an
important quantity for comparison.

5.1.4 Turbulent scales

In Section 5.1.1 certain scales of the flow have already been defined. However, as
indicated by the last paragraph in the previous section the wall shear stress is a quantity
that can determine the flow as well. Thus, the question arises if a characteristic velocity
can be defined based on τw and indeed the friction velocity does just that, being given
by

vτ :=
√

τw

ρ
. (5.17)

The name friction velocity stems from the fact that the turbulence at the wall is neg-
ligible as discussed in greater detail in the next section. Thus, viscous forces dominate
the near-wall behavior and so the flow close to the wall is essentially laminar. If the
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viscous length scale is defined as
δν = ν

vτ
, (5.18)

then the local viscous Reynolds number close to the wall can be considered in an
identical manner. Hence, it is possible to define a friction Reynolds number as

Reτ = vτ δ

ν
. (5.19)

The question that naturally arises is how the different Reynolds numbers relate to each
other. Following from the previous section, using Eq. (5.15), it can be seen that

cf = 2
(

Reτ

Re0

)2
. (5.20)

Finally, one important consequence from the definition of the viscous length scale is
that it can be used to normalise the flow length scales. Such a normalized quantity is
denoted by the superscript +, e.g.

y+ = y

δν
. (5.21)

From this and Eq. (5.19) y+ is alternatively given as y+ = Reτ
y
δ .

5.1.5 Mean velocity profiles

At this point it is instructive to examine the different contributions to the total shear
stress for a turbulent flow.
Figure 5.2 shows the contributions to the total stress for a flow characterised by Reτ =
395 (Moser et al. (1999)). Close to the wall it can be observed that the viscous stress
dominates compared to the interior where the Reynolds stress is the main contribution.
This demonstrates the fact that the mean velocity can be decomposed into two different
regimes. Following the discussion from the previous chapters the length scales for these
two regimes are readily available. On the one hand there is the viscous scale y/δν and
on the other hand y/δ. The ansaty given in Pope (2001) concerns the wall-normal
derivative of 〈vx〉 which is given as

d〈vx〉
dy

= vτ

y
Φ
(

y

δν
,
y

δ

)
, (5.22)

with a non-dimensional function Φ.
As the Reynolds stress converges to zero near the wall Eq. (5.22) can be rewritten to
read

d〈vx〉
dy

= vτ

y
Φw

(
y

δν

)
, (5.23)
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Figure 5.2: Comparison of contributions of viscous and Reynolds stress to the total
stress. Data by Moser et al. (1999) for a channel flow with Reτ = 395.

for y/δ � 1. Using a normalized velocity v+ given as

v+ = 〈vx〉
vτ

, (5.24)

the above equation yields
dv+

dy
= 1

y
Φw(y+). (5.25)

Integrating with respect to y yields

v+ = fw(y+), (5.26)

where

fw(y+) =
ˆ y+

0

1
y

Φw(y)dy. (5.27)

It is well established that this function fw is universal for different types of wall-bounded
flows (Pope, 2001, Chapter 7.1.4).
In the following, two regimes of small and large y+ are investigated separately and
formulae for fw are shown. Finally, the velocity near the center is discussed.
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5.1.5.1 Near wall profile

For small y+ there are two conditions which yield a functional form of fw. The no-slip
boundary condition implies that fw(0) = 0. Close to the wall the shear stress is
completely defined by the viscous shear, i.e.

τw = ρν
d〈vx〉

dy
(y)
∣∣∣∣
y=0

. (5.28)

Together with the definition of v+ given in Eq. (5.24) this yields

dfw

dy
(0) = 1, (5.29)

and thus
v+ = y+. (5.30)

This relationship holds true for y+ < 5 which is the viscous sublayer (Pope (2001)).
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Figure 5.3: Profile of mean-velocity close to the wall including both the linear and the
log law. Data by Moser et al. (1999) for a channel flow with Reτ = 395.

In Figure 5.3 the linear law can be seen compared to the results of a direct numerical
simulation by Moser et al. (1999) at Reτ = 395.
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5.1.5.2 The log law

For larger y+ the effect of viscosity vanishes as shown in Figure 5.2 and so Φw is
constant. It is common that this is written as

Φw = 1
κ

, (5.31)

with κ being the von Karman constant. Thus, v+ is given by

v+ = 1
κ

ln y+ + B, (5.32)

where again B is a constant. The values of these two constants are generally given as

κ = 0.41 and B = 5.2. (5.33)

Figure 5.3 shows the log law which agrees well with the data by Moser et al. (1999) for
y+ � 1.

5.1.5.3 Velocity near the center

The approximation in Eq. (5.23) breaks down in the center of the channel as y/δ is of
the order of unity. This is usually referred to as the velocity defect law. In this region
it is no longer possible to derive a flow-independent law for this flow regime. As this
is effect is negligible for channel flows with the Reynolds numbers considered in this
thesis this law shall not be discussed any further. The interested reader is referred to
Pope (2001).

5.2 Numerical approaches for simulating turbulent wall-
bounded flows

With the advent of computers and the exponential growth in computing capabilities the
numerical simulation of fluid flows has become an important tool in both research and
industrial application. There are three main approaches to such a numerical simulation,
two of which are dealt with in detail in the following. The third is based on the Reynolds
averaged Navier-Stokes equations as presented in Section 5.1.2. The downside of this
approach is that it uses statistical averaging, often simplified as Eulerian time-averaging
which might not be desirable, for example, when considering time dependent mean flows
(e.g. large-scale vortex shedding, ramp flow rate, free surface waves)
In the following the requirements for a direct numerical simulation (DNS) is discussed
with a particular focus on the application to SPH. This chapter is then concluded
by looking at large eddy simulation (LES), a technique in which the large eddies are
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resolved and the smaller ones are modelled. Besides showing the standard Smagorinsky
and Yoshizawa models, wall functions for non-wall resolved simulations are investigated
as well.

5.2.1 Direct numerical simulation

From a conceptional point of view direct numerical simulation is the simplest of all
approaches as it only requires the simulation of the Navier-Stokes equations. This
however implies that all turbulent motion needs to be resolved, leading to extremely
high computational demands.
The first direct numerical simulations were performed to investigate the decay of
isotropic turbulence using grid-based approaches. This case which is periodic in all
directions allows the use of (pseudo-)spectral discretization schemes. The smallest
scale present in turbulent flows is the Kolmogorov scale given by

η :=
(

ν3

ε

)1/4

, (5.34)

where
ε := 2ν〈s : s〉, (5.35)

represents the dissipation of turbulent kinetic energy and s is the rate of strain tensor
based on the fluctuating velocities v′. An additional time-step constraint due to the
CFL condition implies finally that the number of cells times the number of time-steps
grows with the cube of the Reynolds number.
To obtain a DNS of wall-bounded flows certain modifications need to be made. In the
case of the channel flow this implies that in the y direction spectral methods can no
longer be employed and instead Chebyshev polynomials are used which also provide a
orthogonal basis for the function space under consideration. Of particular importance
is the near wall behavior and so it is common that schemes are used which allow a
variable resolution in the y direction. As discussed in Section 5.1.4 the typical length
scale close to the wall is δν and Pope (2001) recommends a grid spacing smaller than
δν/20 in order to correctly resolve the dissipative processes.
When using a second-order finite difference scheme for the space discretization then
the number of grid points needs to be quadrupled as shown by Ghosal (1996).

5.2.1.1 Quasi DNS

The significant computational demands of a DNS often cannot be met when considering
industrial cases where Reynolds numbers tend to be large. A possible circumvention
can be achieved by using an underresolved grid while still only solving the Navier-Stokes
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equations without any additional model. This enables low order statistics to be obtained
such as mean velocity and Reynolds stresses. However, this quasi DNS approach fails
to yield correct higher order statistics such as dissipation. An example of such a quasi
DNS can be found in the paper by Afgan et al. (2013).

5.2.2 Large eddy simulation

To lower the computational demand the most common approach is to use some type
of modelling. In the introduction of this section the RANS approach was briefly men-
tioned. Contrary to the time averaging used in RANS methods the large eddy sim-
ulation approach uses spatial filtering. Moreover, similar to the unsteady RANS the
averaging is of a local nature. The general approach is to define a filtered velocity as
given by

sv(x, t) =
ˆ

Ω
G(r, x)v(x − r, t)dr, (5.36)

where G is the filter which is required to satisfy
ˆ

Ω
G(r, x) = 1. (5.37)

Most LES filters are defined without explicit dependence on x and for computational
efficiency they are assumed to be local, i.e. G(r) = 0 ∀‖r‖ > ∆G. Looking at Eqs.
(2.46) and (2.50) a striking similarity can be observed. Indeed, the SPH method already
contains an LES filter as noted by Issa (2004). However, until now the SPH operators
were applied directly to the Navier-Stokes equations by assuming the Kronecker delta
property fa =< f >a. Thus, the effect of averaging was not included, something that
is investigated in the context of LES.
Filtering the Navier-Stokes equations yields

∂v

∂t
+ ∇ · Ęv ⊗ v = ν∇ · (∇ ⊗ sv) − 1

ρ
∇sp. (5.38)

The residual-stress tensor
τ

R
:= Ęv ⊗ v − sv ⊗ sv, (5.39)

which is similar to the Reynolds stress tensor 〈v′ ⊗ v′〉 shown in Section 5.1.2. From
this it is possible to define the residual kinetic energy as

kr := tr(τ
R

)/2, (5.40)

where tr is the trace operator. The anisotropic residual-stress tensor is given by

τ
r

= τ
R

− 2
3krI. (5.41)
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The filtered Navier-Stokes equations finally read

∂v

∂t
= ν∇ · (∇ ⊗ sv) − ∇ · τ

r
− 1

ρ
∇
(

sp + 2
3ρkr

)
. (5.42)

There are two terms in this equation which require closing. The first is the anisotropic
residual-stress tensor and the second the residual kinetic energy. Models for the two
are presented in the following section.
First however, the continuity equation is investigated. If the equation is filtered similar
to the Navier-Stokes equations, then an additional stress term appears. In order to
avoid this Favre averaging can be used (Favre (1969)). The idea is to filter all quantities
(ρ, p, v) with the LES filter but additionally changing the filtered velocity to

ṽ = Ďρv

sρ
. (5.43)

Favre averaging avoids the appearance of an additional term in the continuity equation
which reads

dsρ

dt
= −sρ∇ · ṽ. (5.44)

However, there is an additional term appearing in the momentum equation, which
needs closure. This term is neglected in the following due to the weakly compressible
nature of the present SPH approach. This is due to the fact that the right and left
hand sides of Eq. (5.43) are nearly identical in the weakly compressible setting.

5.2.2.1 The Smagorinsky and Yoshizawa models

In order to close the anisotropic residual-stress tensor τ
r

the basic Smagorinsky (1963)
model is used. It is the equivalent of the mixing-length model in the RANS setting. The
first step is to apply the linear eddy-viscosity model which states that the anisotropic
residual-stress tensor is aligned with the filtered rate of strain tensor

τ
r

= −2νr
sS, (5.45)

where νr is the turbulent eddy viscosity which models the dissipation of the eddies with
sizes smaller than the filter width ∆G and sS is the filtered rate-of-strain tensor. After
reducing the unknown tensor to an unknown scalar a model for the latter needs to be
found. This comes in the form of the mixing-length model which states that

νr = l2S sS, (5.46)
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where sS = (2 sS : sS)1/2 is the rate of strain and lS is the Smagorinsky length scale which
is given by

lS = CS∆G, (5.47)

where CS is the Smagorinsky coefficient. The value of this coefficient depends on the
particular choice of the filter, a common value is CS = 0.17 which is based on an
analysis by Lilly (1967) for the sharp spectral filter (truncation in Fourier space). In
Appendix B this analysis is extended to the Wendland kernel showing that CS = 0.158.
Moreover, the value is flow-dependent and for the particular application of the turbulent
channel flow Moin and Kim (1982) used a value of CS = 0.065. All simulations with
the Smagorinsky model presented below use this value.
In the context of SPH two further issues arise. The first one contains the computation
of sS. The simplest approach is simply to calculate the derivatives involved and perform
the convolution. This requires a certain amount of memory and computation time as
nine gradients need to be calculated. Alternatively, a model derived by Violeau and Issa
(2007) can be used that was extended by Ferrand (2010) to the present wall-boundary
conditions. This model is given by

(νr
sS2)a = − 1

2ρaγa

∑
b∈P

Vb(ρaνr,a + ρbνr,b)
sv2

ab

r2
ab

rab · ∇wab − 2
γa

∑
s∈S

v2
τ,s‖∇γas‖. (5.48)

The second issue concerns the choice of ∆G. According to LES theory the appropriate
choice for the Wendland kernel is ∆G = 2h.
After closing the anisotropic residual-stress tensor the remaining unknown is the resid-
ual kinetic energy kr. Again, a rather simple model by Yoshizawa (1986) is used which
was already successfully applied to a three-dimensional SPH-LES by Dalrymple and
Rogers (2006). The residual kinetic energy is given by

kr = 2CY (∆G
sS)2, (5.49)

where CY is the Yoshizawa constant with a value of 0.044. Note that this model is only
required in the weakly compressible setting. In the case of an incompressible simulation
this residual kinetic energy can be used to define a modified pressure P = p + kr and
so an explicit model is no longer required.
The LES approach can be considered in two limits with the filter width ∆G tending to
zero and infinity respectively. In the first case it is expected that the DNS method is
recovered. However, according to Pope (2001) the limiting behavior is dependent on
the filter type and no clear conclusion can be drawn in the case of the Smagorinsky
model. The more important case on the other hand is the coarse discretisation limit as
this might occur if the resolution is not chosen appropriately. In this case the filtered
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velocity sv tends towards the time-averaged velocity 〈v〉. Or, in the words of Speziale
(1998) “the Smagorinsky model goes to a badly calibrated mixing length model in the
coarse mesh limit”.

5.2.2.2 Wall modelling

The last question that is treated in this section concerns eddies close to a wall. Their
size is limited by the distance to the wall and as such the Smagorinsky length scale
should decrease. As discussed in Section 5.1.5, near a wall the viscous stresses become
increasingly important as an inverse function of distance to the wall. Thus, both
the eddy viscosity as well as the residual kinetic energy should converge to zero. In
mesh-based methods wall modelling is usually avoided by changing the resolution close
to the wall and so effectively changing ∆G. As the present SPH method is not capable
of such variable resolution a different approach needs to be found that modifies the
Smagorinsky length scale as a function of the distance to the wall. Moin and Kim
(1982) propose a van Dries damping function which scales the Smagorinsky length
scale according to

lS = CS∆G(1 − exp(y+/A+)), (5.50)

with A+ = 25. Additionally, in the viscous term given by Eq. (2.144) the friction
velocity can no longer be defined according to the laminar model shown in Eq. (2.146).
Alternatively it is possible to use the log law shown in Section 5.1.5 as already applied
by Ferrand et al. (2012) which reads

‖v‖
vτ

= 1
κ

ln
(
y+
)

+ B, (5.51)

where
y+ = yvτ

ν
. (5.52)

This provides an implicit formula for vτ . To be slightly more flexible, i.e. being able to
handle particles approaching the wall, Reichard’s law can be used which combines both
the log law and the linear law as shown in Sections 5.1.5.1 and 5.1.5.2. The implicit
formula for vτ is given by

‖v‖
vτ

= ln(1 + κy+)
κ

+ 7.8
(

1 − exp(−y+/11) − y+

11 exp(−y+/3)
)

+ 1. (5.53)

5.2.3 Statistics

In order to qualitatively investigate turbulent flows, both Eulerian as well as Lagrangian
statistics can be used. The former type is more readily available in literature due to
the fact that they are easily obtainable from mesh-based codes. Conversely, to obtain



CHAPTER 5. THE TURBULENT CHANNEL FLOW 134

Lagrangian statistics mesh-based methods need to use some type of interpolation. As
this thesis is based on the Lagrangian SPH method the issue is the opposite one. In
order to obtain Eulerian statistics an interpolation is required, whereas Lagrangian
statistics can be obtained directly by following the particles. Herein, possible interpo-
lation techniques are shown and the different statistics shown in the following chapter
are introduced.

5.2.3.1 Eulerian statistics

Two different types of interpolation from Lagrangian particles to a fixed grid are pre-
sented in the following. The first is based on a binning technique, i.e. the value of a
function f at a grid point i at position ri is given by

fi = 1
|Pi‖

∑
a∈Pi

fa, (5.54)

where Pi is the set of all particles around grid point i, i.e.

Pi = {a ∈ P : ‖ra − ri‖1 < ∆E}, (5.55)

∆E is the grid-size of the Eulerian grid and ‖.‖1 the one norm. Alternatively to this
binning technique, a simple SPH approximation can be used such that

fi = 1∑
a∈P

Vawai

∑
a∈P

Vafawai. (5.56)

These two techniques are used to investigate several time and space-averaged quantities.
Of particular interest are certain RANS quantities such as the average velocity 〈v〉 and
the components of the Reynolds stress tensor v′ ⊗ v′, particularly v′

x
2, v′

y
2 and v′

xv′
y.

Furthermore, the two-point spatial autocorrelation function is used as a qualitative
measure. The two-point correlation is given as

Rij(l) := 〈vi(r)vi(r + lej〉, (5.57)

and the two-point autocorrelation as

ρij(l) := Rij(l)/〈vi(r)2〉. (5.58)

As the channel flow is not homogeneous in the y direction these functions also depend
on y. The significance of the correlation functions are twofold. On the one hand side
they determine the correlation between two different points in the flow and on the other
hand the Fourier transform of the two-point correlation gives the energy spectrum which
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is defined as
Eij(κ) = 2

π

ˆ ∞

0
Rij(l) cos(κl)dl. (5.59)

It shall be noted that due to Rij being even and real functions the same holds true for
Eij .

5.2.3.2 Lagrangian statistics

Lagrangian statistics are of interest since since they are difficult to obtain from ex-
perimental methods, yet very important for dispersed two phase flow modeling (e.g.
bubbles, pulverised coal, suspended sediments). Lagrangian statistics from LES or
DNS can be used to investigate model constants for certain statistical methods. The
statistics used in the following are similar to the ones presented in the paper by Choi
et al. (2004) which uses an Eulerian DNS to obtain Lagrangian statistics via several
interpolation methods.
As in the Eulerian framework correlation functions are of central importance as well as
Lagrangian structure functions. They are obtained by following particles which initially
are at a certain distance to the wall. The velocity autocorrelation function is defined
as

ρL
ii(t) := 〈vi(t0)vi(t + t0)〉√

v2
i (t0)

√
v2

i (t + t0)
. (5.60)

Note that in this section the average 〈.〉 denotes an ensemble-average. This also allows
the definition of a correlation time scale TLi given as

TL,i :=
ˆ 4TE,i

0
ρL

ii(t)dt, (5.61)

where TE,i is an estimated time scale defined such that ρL
ii(TE,i/2) = 1/

√
e. Similar to

the velocity autocorrelation function the acceleration autocorrelation can be defined as

ρa
ii(t) := 〈ai(t0)ai(t + t0)〉√

a2
i (t0)

√
a2

i (t + t0)
, (5.62)

where a is the acceleration of a particle.
In terms of structure functions the ones based on the velocity are given by

Dii(t) = 〈(vi(t + t0) − vi(t0))2〉, (5.63)

Sii(t) = 〈(vi(t + t0) − vi(t0))3〉, (5.64)

Kii(t) = 〈(vi(t + t0) − vi(t0))4〉, (5.65)



CHAPTER 5. THE TURBULENT CHANNEL FLOW 136

which are the deviation, skewness and kurtosis, respectively. The deviation is of im-
portance as there are two Kolmogorov hypotheses which link Dii to Eulerian quantities
via certain constants. Numerical and experimental evidence however indicates that
these constants are in fact flow-dependent. As the Kolmogorov theory is only appli-
cable to homogeneous flows it is of interest to study the behavior of this model in
non-homogeneous flows such as the turbulent channel flow. The kurtosis Kii would
vanish if the turbulence would follow a Gaussian distribution. It is well known, e.g.
Frisch (1996), that this is not the case and thus Kii provides a measure from the devi-
ation of the Gaussian.
Furthermore, the second-order position structure function given as

σ2
i (t) = 〈(ri(t + t0) − ri(t0))2〉, (5.66)

is a measure of flow dispersion.
The final type of Lagrangian statistics is based on probability density functions (PDF),
in particular P (y; x). To obtain this function particles initially located at x = x0 are
tracked. When they pass certain xi a histogram of their y value is constructed. Note
that P is also a function of the initial y value of the particles. Averaging over the z

direction is assumed. To investigate more qualitatively these PDFs the first and second
moments can be computed as

µy =
ˆ

yP (y; x)dy, (5.67)

σy =
ˆ

(y − µy)2P (y; x)dy. (5.68)

After presenting both the theoretical properties of the closed turbulent channel flow as
well as numerical methods suitable to simulate such a flow both a quasi DNS and a
LES using SPH are presented in the following chapter.



Chapter 6

SPH Simulation of the turbulent
channel flow

SPH has been used to simulate turbulent wall-bounded flows for years. However,
only a limited number of researchers investigated basic turbulent flows in detail and
whether it is possible or not to reproduce their statistical behaviour in SPH. Robin-
son et al. (2008) investigated turbulent flows in 2-D, which are significantly different
from three-dimensional turbulent flows (Pope, 2001). Three-dimensional turbulent flow
simulations are scarce due to their significant computational demand. Hu and Adams
(2012) recently investigated decaying and forced isotropic turbulence in 3-D. However,
most engineering applications demand the simulation of turbulent wall-bounded flows.
Issa (2004) performed a three-dimensional large eddy simulation (LES) of an open
channel flow with Reynolds number Re = 538000. However, the turbulent intensities
did not correspond closely to the experimental values. This issue is discussed in de-
tail in Section 6.2.3. The movement of passive particles in turbulent flows is an issue
that arises in certain engineering applications. This is particularly difficult to simulate
with Eulerian methods as interpolation routines are required which can significantly
influence the result (Choi et al., 2004). A Lagrangian method such as SPH would be
ideally suited for the simulation of such flows but to the best of the author’s knowledge
only Hu and Adams (2012) have investigated Lagrangian statistics of turbulent flows
using SPH. As their simulations examined unbounded flows and the investigation of
Lagrangian statistics in wall-bounded flows remains an outstanding issue.
In the present chapter the goal is to explore the capabilities of SPH to simulate three-
dimensional turbulent wall-bounded flows and reproduce the associated statistics both
in Eulerian and Lagrangian frameworks. In order to simulate such flows it is essential
that the boundary conditions are properly imposed which was thoroughly investigated
in the previous chapters. The main simulations of this chapter show two turbulent
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channel flows. The first is a quasi direct numerical simulation on a minimal geometry
with a moderate Reynolds number, approximately <τ = 210. The second simulation
is a large eddy simulation of a flow with Reτ = 1000. Both flows are analysed with
respect to their Eulerian and Lagrangian statistics.

6.1 Quasi direct numerical simulation

6.1.1 Setup

The minimal flow unit is a test case first proposed by Jiménez and Moin (1991) and
subsequently used in many other investigations. As the name already suggests it is the
smallest computational box to study the flow between two infinite walls that allows tur-
bulence to be self-sustained, i.e. exactly one typical turbulent kinetic energy producing
turbulent structure, an unsteady streamwise meandering vortex and a low speed streak,
is contained in this setup which captures all the flow physics of the viscous sublayer,
buffer layer and beginning of the log-law. This makes this minimal channel ideal for
our purpose as it reduces computation effort significantly compared to standard size
channel flow simulations which would be approximately six times as large, but at the
expense of longer time integration to obtain converged statistics.
In the reference paper Jiménez and Moin (1991) simulate three different Reynolds num-
bers using a spectral Navier-Stokes scheme based on staggered grids. Herein, only the
highest Reynolds number of Re = 5000 is reported in order to avoid problems with
intermittent relaminarization as observed by both Jiménez and Moin (1991) and in
our preliminary attemps (not reported herein). The grid discretization used for their
computational box was 32 × 129 × 16 in the x, y, z directions. Here, one important
disadvantage of SPH is that the discretization is isotropic whereas Jiménez and Moin
(1991) used non-homogeneous regular grids in the wall parallel directions with a cell
aspect ratio of about 10 in each direction, resulting in savings of a factor 100 as com-
pared to cubic cells. Thus, the particle count depends on the smallest resolution, in
this case the y-resolution, which significantly increases the particle count compared to
the node count in the original paper. An additional downside of this case is that, due
to the single turbulent structure, convergence takes much longer. Again, SPH with its
restrictive time-step thus demands large computation times.
Hence, the question arises whether such an SPH quasi DNS would actually provide
any valuable insights. Indeed, there are several points that can be investigated which
provide a deeper understanding of SPH and form a basis for future research of turbu-
lent flows. Initially, the interest is to determine whether turbulent Eulerian statistics
can be reproduced using SPH. This depends specifically on the dissipation properties
of the numerical scheme which have never been investigated in wall-bounded turbulent
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Table 6.1: Comparison of the two different minimal channel configurations.

Property MCF1 MCF2
λx 3.14 2.5
λy 2.0 2.0
λz 1.0 0.6
∆r 0.015625 0.003333
|P| 1.710.912 10.155.014

flows. Additionally, using a quasi DNS means that no model is used, in opposition to
LES where it is possible to compensate numerical dissipation by selecting lower than
theoretical values for the Smagorinsky eddy viscosity model constant. Moreover it is
possible to obtain Lagrangian statistics straight from a Lagrangian method without
needing to use any interpolation techniques as used e.g. by Choi et al. (2004).
In the following two different cases of the minimal channel are simulated, MCF1 and
MCF2. They differ in terms of box size, momentum driving force methods and initial-
ization. A comparison of their geometrical details can be seen in Table 6.1. MCF1 is,
equivalent to the flow in Jiménez and Moin (1991), driven by a constant volume flux
which imposes Re = 5000, i.e. constant mean flow rate. Initially the simulation starts
from a parabolic velocity profile with a centerline velocity v0 = 1 with an overlay of
sin functions and random perturbations. The procedure used by Jiménez and Moin
(1991) is reproduced whereby a low viscosity is used at the beginning (equivalent to
Re = 10000) and then it is reduced to the target viscosity as soon as the turbulent
structures are sufficiently developed. Contrary to that, MCF2 is driven by a constant
force which imposes Reτ = 210, i.e. the pressure gradient and consequently the mean
friction on the walls is now kept constant whereas the mean flow rate may vary during
the simulation depending on how well turbulence is developed. The flow is initialized
using a snapshot velocity field from a DNS obtained with a spectral code. The most
significant difference between the two flows is the different resolution. MCF1 uses the
same resolution as the spectral method of the original paper. However, as SPH does not
feature the same order of accuracy and it is not a staggered method it can be expected
that the flow is not adequately resolved. The resolution of MCF2 is five times higher
than the one of MCF1, which allowed a reasonable resolution while being within the
limits of the computational ressources that were available.
At variance with the DNS of Jiménez and Moin (1991) which is based on a well estab-
lished non dissipative spectral method and time integration, the present SPH method is
prone to some numerical dissipation, in particular due to the volume diffusion term as
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given in Eq. (3.34) which is required, otherwise the turbulent structures are perturbed
by pressure fluctuations which, as a result, cause the flow to laminarize. Choosing the
constant ξ = 1 as in the paper by Ferrari et al. (2009) increases the diffusivity of the
SPH scheme, again resulting in the decay of the turbulent fluctuations. Only by choos-
ing ξ = 1000 ∆r/L = 1000 ∆r/2δ according to mixing-length theory, as described in
Section 3.2, ensures that the flow remains turbulent. This supports the interpretation
presented in Section 3.2 that the volume diffusion term is responsible for smoothing out
numerical “turbulence”. Additionally, choosing the Laplacian based on the discretiza-
tion by Violeau as given in Eq. (2.100) reduces the diffusivity of the SPH method. This
is due to the fact that the ∇ · v term in the stress tensor is not neglected.
Finally, before showing the results, a few details on the computation shall be remarked.
Both simulations were run using double precision on IBM BlueGene/Q machines using
2048 MPI-taks, each of which used 16 OpenMP-threads. The simulation was run for
approximately 2 million time-steps which corresponds to t+ = 400. This long time
frame was needed in order to reach converged statistics, which, as already noted by
Jiménez and Moin (1991), is needed due to the reduced size of the channel. The flow
is over-resolved in the streamwise direction, but this unavoidable because of the nature
of the SPH method. A snapshot of the flow can be seen in Figure 6.1.

Figure 6.1: Snapshot of the instantaneous velocity of MCF1.
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6.1.2 Eulerian statistics
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Figure 6.2: Minimal channel: average velocity (y+ in log scale).

The first objective is the comparison of the results with the paper by Jiménez and
Moin (1991) and the experimental results by Wei and Willmarth (1989). The re-
spective datasets in the following plots are denoted with Jimenez or J&M and Wei,
respectively. Since all these statistics are based on Eulerian quantities the results from
the Lagrangian simulation need to be interpolated onto a grid. There are two different
ways of achieving this: either use the SPH interpolation to obtain the value at a grid
point or alternatively use a bin sampling technique. In this chapter we choose the latter
on a grid with size ∆r, the average particle distance. One disadvantage of such a small
grid is that there might be none or only one particle inside the bin. To avoid not having
values at a certain grid point a simple second order interpolation is used using adjacent
grid points. Having only very few particles inside a bin can potentially cause a rather
oscillatory output as is shown later. Larger bins would provide smoother statistical
results but our objective here is precisely to highlight any defects of the computational
method.
In Figure 6.2 the mean longitudinal velocity on the lower half of the channel, normal-

ized by the friction velocity can be seen plotted against the solution by Jiménez and
the classical log law (Pope (2001)). MCF2 shows a good agreement with the result
by Jiménez. MCF1 on the other hand clearly overestimates the viscous wall region
and produces a relatively small log-law region. At this point the value of the friction
velocity vτ for MCF1 needs to be mentioned. It is straightforward to compute it from
the external force applied to the flow and the resulting value is vτ /v0 = 0.38 which
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corresponds to a friction Reynolds number Reτ = 190. Jiménez and Moin report a
value of Reτ ≈ 210 indicating that the friction velocity is underpredicted in the low
resolution simulation MCF1.
The results of MCF1 and MCF2 are expressed in dimensionless form using vτ =
190ν/(λy/2) and vτ = 210ν/(λy/2) respectively. In Figure 6.3 and 6.4 the turbulent
intensities

√
v′2

x and
√

v′2
y can be seen plotted as function of y. The fluctuations in the

streamwise velocity component are in generally good agreement with the benchmark
results. Again an issue with the scaling of MCF1 can be observed. The wall normal
velocity fluctuations are however rather different in that in the interior of the channel
v′2

y is overpredicted. A possible explanation for this result are spurious pressure waves
which oscillate between the two walls as we have observed even in laminar flow after
the breakup of the regular particle distribution. Finally, one should note the kink close
to the wall in the MCF1 result at y/(λy/2) = 0.05, 0.95. It is possible that this is a
numerical “wobble” as the fluid particle alternately passes directly past or in between
2 wall particles and is due to the non affine nature of the kernel function and discreti-
sation, i.e. as a fluid particle moves at constant speed and exactly parallel to the wall
it does not experience the same repulsive pressure force and shear stress from the wall
particles when it is in an inline position or a staggered position, even if all the wall
particles have the same pressure.
In order to investigate the wall behaviour more closely consider Figure 6.5 and 6.6
where the turbulent intensities are plotted over y+ = y vτ /ν in log scale. Again for the
streamwise fluctuations good agreement can be observed with a slight overprediction
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close to the wall. This is even more apparent in the wall normal fluctuations which
are too high in both SPH simulations even though the effect is significantly smaller in
the high resolution simulation. One important question for further research will be to
determine whether this is due to the boundary conditions.
In Figure 6.7 the two-point autocorrelation ρij(l) =< vi(xj)vi(xj + l ej) > / < vi(xj)2 >,
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Figure 6.7: Minimal channel: autocorrelation along the x-axis.

where the angular brackets denote ensemble averaging, is plotted in streamwise direc-
tion and in Figure 6.8 it is plotted in spanwise direction. Both of the plots show only
half of the channel. In the streamwise direction a rather good agreement with the
reference results of Jiménez and Moin (1991) can be observed for the vx and vz com-
ponents. It should be noted that these correlations are at wall distance y+ = 7.5 and
so are in the region where the deviation in the < v′2

y > plot was beginning. Thus, it is
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of no surprise that the autocorrelation of the wall normal fluctuation is not very well
reproduced. The spike at the origin indicates that there is a high level of fluctuations
between two adjacent grid points, i.e. the velocity values between two neighbouring
points are too weakly correlated, but the general trend at larger separations is correct.
In the spanwise direction we observe the same discrepancy in the wall normal correla-
tion. Additionally, the streamwise correlation is overpredicting the negative correlation
at half of the channel extent.

6.1.3 Lagrangian statistics

Lagrangian statistics can naturally be obtained from SPH and for illustration purpose
only some are presented here. As the Lagrangian statistics were unfortunately started
late in the simulation only a limited set of data is available, which does not yet provide
converged results.
Traditionally, Eulerian codes are used to obtain Lagrangian statistics via interpolation.
Clearly, the choice of interpolation scheme influences the result as shown by Choi et al.
(2004) and so using a native Lagrangian method provides an interesting comparison.
The plots shown in Figure 6.9, 6.10 and 6.11 were obtained from the MCF2 simulation
and are compared to the results by Choi et al. (2004). Particles initially at three
different y+ levels (30, 100 and 210) were tracked downstream and a probability density
function (PDF) of their y values was computed at x/(λy/2) = 0.5, 1 and 2. When the
last traced particle reached x = 2, the next iteration for the statistics was started five
times later than the duration of the present iteration to avoid statistical dependencies
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of the iterations. Due to the late start of statistics gathering the data presented here
only contains 16 iterations which is clearly not enough to reach convergence, especially
given the presence of only few large scale structures.
The only observation that can be made at this point is that the expected spreading is
present and that the there is a visible skew towards the center of the channel in the
PDF of the plots in Figure 6.9 and 6.10.

6.1.4 Preliminary conclusion

In this section two quasi DNS simulations of a turbulent channel flow with minimum
domain size based on the paper by Jiménez and Moin (1991) were shown. The two
simulations differ mainly by their resolution where the first could be argued to be un-
derresolved even for a quasi DNS. This is also confirmed by the results based on the
Eulerian statistics. Even though the data generally agrees well with the references it
can be observed that the wall normal v′2

y values are too large. In the middle of the
channel this is very likely due to spurious oscillations which exist between the two solid
walls. On the other hand it should be noted that the SPH cubic discretization is actu-
ally finer in the center of the channel compared to the reference simulation.
Another issue is the excessive level of near-wall fluctuations which can be assumed to
derive from the boundary condition and this requires further investigation. Finally the
autocorrelations indicated large fluctuations between adjacent grid points. This could
be due to the chosen binning method for the interpolation to the grid or more likely
due to the SPH method itself which would call for a higher coefficient in the volume
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Figure 6.9: Minimal channel: Probability density function at y+ = 30.
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diffusion term.
Some preliminary Lagrangian statistics were presented to highlight the potential of
SPH in this area. Finally, it can be concluded that it is indeed possible to simulate
smooth-wall-bounded turbulent flows with SPH. This was proven by the quasi DNS
channel flow test case which was really a finer investigation of SPH as pure Navier-
Stokes solver highlighting certain numerical issues which could be studied without the
influence of any turbulence model. The high computational time could be lowered by
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having non-isotropic particles or by moving from quasi DNS to large eddy simulation.
The latter is the approach chosen in the following section.

6.2 Large eddy simulation

The goal of this section was to run a LES of a turbulent channel flow at Reτ = 1000. In
the first part the geometry is described as well as the results from the Eulerian statistics.
As it is not possible to achieve the correct behaviour an attempt at explaining the results
is shown in the second part based on the Taylor-Green vortex analytical benchmark.

6.2.1 The simulation

The simulation consists of a closed turbulent channel flow of size 2πδ × 2δ × πδ, with δ

being the channel half-width. As this channel is larger than the one used for the quasi
DNS there is more than one turbulent structure present near the wall and the velocity
between two points which are one channel half-length apart is uncorrelated. The fric-
tion Reynolds number is imposed constant at 1000 using a constant driving force. As
the Reynolds number is five times larger than in the previous section the viscous length
scale is smaller and in general the turbulent structures will exhibit a wider range of
scales. All velocities and distances in the following are renormalized using the friction
velocity vτ and the channel half-width δ, respectively. The results are compared to a
DNS performed by Hoyas and Jiménez (2006).
The viscous term used in the simulation is given by Eq. (2.100) and the volume diffu-
sion term is used in combination with the coefficient chosen according to the discussion
in Section 3.2. The former reduces the diffusivity in comparison with the term by
Morris et al. (1997) given in Eq. (2.95) and the latter is required to remove spurious
oscillations as in the quasi DNS simulation.
The resolution is chosen such that there are 100 particles in the spanwise direction,
i.e. ∆r = 0.02δ. The ratio h/∆r = 1.3 ensures sufficient accuracy in the numerical
integration and implies that the kernel support is inside a sphere of radius 5.2∆r. The
simulation was run initially for 10 eddy turnover times (vτ /δ) after which time averag-
ing was performed for another 10 eddy turnover times.
Compared to mesh-based methods which are used to simulate turbulent flows SPH
suffers two important deficiencies. Firstly, the particles are isotropic which implies
that the resolution is the same in every direction. Secondly, particle refinement is still
an open issue as previously discussed in Section 1.3.2.6. In the case of a channel flow
this implies that the flow in the vicinity of the wall cannot be resolved as it would
require a fine resolution in the centre of the channel, essentially leading to a quasi DNS
simulation as shown previously. Instead wall functions need to be used in order to
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impose the correct shear stress near the wall.
In Figure 6.12 it can be seen that the velocity at the wall is well predicted but that
inside the channel there is a significant overprediction of the mean streamwise velocity
component. As initialization, a snapshot from a mesh-based simulation with hypervis-
cosity is used, and it seems that there is an issue with the balance of forces. In order
to test this hypothesis consider Figure 6.13 where the standard deviation

√
〈v′2

x 〉 of the
fluctuating steamwise velocity is plotted. While the values near the wall are close to
the DNS results by Hoyas and Jiménez (2006), in the center of the flow no decrease
is visible. Note that due to the unresolved nature of the present LES the peak at
y/δ < 0.1 is not captured.
In the interior of the channel nearly isotropic turbulence is expected and thus

√
〈v′2

y 〉
would need to be nearly equal to its streamwise counterpart. However, compared to
that the Reynolds stresses associated with the spanwise and cross-stream velocities are
significantly reduced as shown in Figure 6.14. This indicates that the streamwise veloc-
ity fluctuations are not correctly converted to spanwise and cross-stream fluctuations.
In Figure 6.15 the different components of the fluctuating velocities v′ can be seen after
tvτ /δ = 14 of a slice in the xz-plane. The superimposed arrows correspond to the
fluctuating velocity vectors.
The mechanism responsible for this transfer of momentum in the center of the channel
can be investigated by looking at the Reynolds stress transport equations. They are
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given by
D〈v′

iv
′
j〉

Dt
= − ∂

∂xk
〈v′

iv
′
jv′

k〉 + ν∇2〈v′
iv

′
j〉 + Pij + Πij − εij , (6.1)

where the production tensor

Pij = −〈v′
iv

′
k〉∂〈vj〉

∂xk
− 〈v′

jv′
k〉∂〈vi〉

∂xk
, (6.2)
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(a) Magnitude of velocity fluctuations (b) Streamwise fluctuations

(c) Spanwise fluctuations (d) Cross-stream fluctuations

Figure 6.15: Snapshots of velocity magnitude and components from the LES after
tvτ /δ = 14.

the velocity-pressure-gradient tensor

Πij = −1
ρ

〈v′
i

∂p′

∂xj
+ v′

j

∂p′

∂xi
〉, (6.3)

and the dissipation tensor

εij = 2ν〈 ∂v′
i

∂xk

∂v′
j

∂xk
〉. (6.4)

It was shown by Hoyas and Jiménez (2008) that away from the wall the velocity-
pressure-gradient tensor is dominating the gain in the spanwise and cross-stream fluc-
tuations as well as the loss of streamwise fluctuations. The effect of this term is illus-
trated in Figure 6.16. Two eddies with different streamwise velocities (black arrows)
approach each other (Figure 6.16(a)) which causes an increase in pressure in the areas
where the two eddies meet as indicated by the red particles in Figure 6.16(b). This
results in a pressure gradient which finally alters the momentum of the particles reduc-
ing the streamwise velocity on one hand while increasing the spanwise velocity on the
other (Figure 6.16(c)).
It can thus be concluded that should the pressure gradient not be calculated accurately
enough that a reduced momentum transfer takes place. In order to investigate this
issue in greater detail a simpler test case is needed simulating only the basic compo-
nents of turbulent flows which are eddies. The Taylor-Green vortex provides exactly
that and allows a comparison to the analytical solution and is thus considered in the
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(a) Two eddies at different velocities (b) Pressure increase creates pressure gradient
(green vector)

(c) Pressure gradient causes velocity redistribu-
tion

Figure 6.16: Velocity redistribution due to pressure gradient.

following section.

6.2.2 Taylor-Green vortices

The Taylor-Green vortex is widely used by the SPH community to study the stability
of their respective approach (e.g. Xu et al. (2009)). Its stagnation points are a partic-
ular issue in Lagrangian methods as the integration nodes tend to cluster or coarsen
(Xu et al., 2009). From the point of view of turbulence this issue is not of primary
importance, instead the focus is on the capability of solving small vortices. In this case
small vortices refers to vortices resolved by only very few points.
In Figure 6.17 the analytical solutions of the Taylor-Green vortex can be seen on the
domain [0, 1]2. Figure 6.17(a) shows the colour map of the velocity magnitude with su-
perimposed arrows showing the velocity vectors, where the analytical solution is given
by

vx = sin(2πx) cos(2πy), (6.5)

vy = − cos(2πx) sin(2πy). (6.6)
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(a) Velocity (b) Pressure

(c) Velocity-pressure-gradient −2vxdp/dx

Figure 6.17: Analytical solutions of the Taylor-Green vortex.

The pressure
p = ρ

4(cos(4πx) + cos(4πy)), (6.7)

is shown in Figure 6.17(b) where the areas of high pressure are shown in red. These
areas also coincide with the stagnation points of the solution. Finally, Figure 6.17(c)
shows the xx component of the velocity-pressure-gradient tensor Π which is given by

− 2vxdp/dx = 2πρ(sin(2πx) sin(4πx) cos(2πy)). (6.8)

The areas in red and blue indicate acceleration and deceleration of the velocity in
x-direction, respectively. As mentioned above, this is the main mechanism of rotating
the velocity vectors, i.e. shifting fluctuations from one direction to another.
In the following the pressure gradient is calculated using the SPH method and then
the error in Πxx is compared for different resolutions. In Figure 6.18 both the L2 and
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the L∞ error can be seen plotted against the number of particles used in each spatial
direction to resolve a single vortex, i.e. 1/2/∆r. As in all previous simulations the
ratio between the smoothing length and the particle distance is given by h/∆r = 1.3.
If an error of 10% is accepted that implies that the smallest resolved vortices should
have a size of at least 18 or 21 particles for acceptable levels of the L2 and L∞ error,
respectively. This corresponds to approximately 4 kernel diameters per vortex.
The implications of these findings on LES with SPH are discussed in the following.

6.2.3 Concluding remarks

In Section 6.2.1 the results of an attempt at performing a LES with SPH was presented.
Analyzing the average velocities it could be shown that the agreement with the DNS by
Hoyas and Jiménez (2006) is poor. In order to investigate the cause of this failure the
Reynolds stresses were analyzed indicating that the momentum transfer from stream-
wise to spanwise and cross-stream directions was not working properly. Based on a
combination of a heuristic analysis as well as the Reynolds stress transport equations
the most important term for this transfer was identified.
This term was then in turn investigated using the Taylor-Green vortices, showing that
vortices should be resolved by around 20 particles in each direction in order to have an
error less than 10 percent.
Relating this to the LES that would mean that all vortices with diameter less than
y+ = 400 are not resolved properly. In a moderate Reynolds number flow (Reτ = 1000)
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Figure 6.18: Relative error in Πxx for the Taylor-Green vortex.
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this clearly implies that the flow is nowhere near resolved enough to capture the rele-
vant physics.
The question arises on how this issue can be solved. The most obvious answer is in-
creasing the resolution. The quasi DNS shown in Section 6.1 shows that an increased
resolution predicts the momentum transfer significantly better leading to physically
sound simulations. However, seeing as the SPH method itself is already computation-
ally expensive due to the number of neighbours per particle an increased resolution
compared to Finite Volume methods, for example, would call for an even higher com-
putational cost.
There is however an important difference between certain FV methods and the present
SPH method. It consists in the staggered nature that allows for the physics to be better
represented as shown by Harlow and Welch (1965) or Rollet-Miet et al. (1999). This
allows for coarse LES that combined with wall functions provide reasonable results as
demonstrated by De Villiers (2006) who uses as little as 500 cells to simulate a turbu-
lent channel flow at Reτ = 395. It is possible that such a staggered approach would
also yield improvements for SPH but as already discussed in Section 1.3.2.5 no suitable
method has yet been presented that works in several space dimensions and including
boundary conditions.
It was noted that an LES had already been performed by Issa (2004) for an open tur-
bulent channel flow at Re = 538000 with apparently reasonable results in the average
velocity profile and boundary conditions that are now known to have significant issues.
However, looking at the Reynolds stresses an overprediction of v′

x could also be seen.
This, together with the comparably short averaging time of less than two eddy turnover
times would hint at a solution which is not yet converged.
Finally, SPH has been applied to turbulent flows before as discussed in Section 1.5. But
these turbulent flows were all isotropic in nature, hence, the redistribution of energy
between Reynolds stress components by pressure fluctuations issue presented above has
not been observed before. In isotropic turbulence the velocity-pressure-gradient is nil
in the Reynolds stress transport equations.



Chapter 7

Conclusions

7.1 General conclusions

The thesis has presented an investigation into turbulent wall-bounded flow simulations
using the Smoothed Particle Hydrodynamics method. The first part of the thesis ex-
amined the SPH method itself and the second focused on the simulation of a turbulent
channel flow. The unified semi-analytical wall boundary conditions by Ferrand et al.
(2012) are a novel method to impose solid wall boundaries in SPH and were, at the be-
ginning of this work, only available in two dimensions. This novelty demanded a closer
inspection of the properties of this approach. Furthermore, these boundary conditions
allow complex geometries and provide means to consistently impose boundary condi-
tions for the pressure and the wall shear stresses which is an important prerequisite
for the simulation of turbulent flows. As three-dimensional turbulent flows behave sig-
nificantly different to two-dimensional flows, it was necessary to extend this boundary
condition framework to 3-D.
The results of the first part of this thesis laid the necessary foundation to perform the
simulation of a closed turbulent channel flow using two different numerical approaches.
Even though SPH is not the preferred numerical method to perform simulations of
confined turbulent flows this type of flow was chosen because ample reference data is
available. One of the goals of this work is to provide a basis for future simulations
of turbulent flows where SPH would be more suitable, such as the simulation of a
hydraulic jump. To date, most papers on SPH turbulent simulations considered only
isotropic turbulence. Thus, the focus of this work is on the anisotropic channel flow. At
first, a quasi DNS was carried out which has the advantage that no turbulence models
needed to be used. Finally, a LES was attempted using basic LES models and signifi-
cant deviations from the expected results could be observed. This was analyzed using
both analytical and numerical means, highlighting a significant deficiency of SPH.

156
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In the following the results of this work will be analysed in detail and the thesis is
concluded by giving some recommendations for future research.

7.2 Detailed conclusions

7.2.1 Investigation into wall-boundary conditions for SPH

At the beginning of this thesis a literature review was given in Chapters 1 and 2. Spe-
cial emphasis was put on developing a SPH method devised by Ferrand et al. (2012).
This SPH method was analyzed in detail in Chapter 3 showing that the skew-adjoint
property in the presence of walls only holds in the limit of h → 0. SPH due to its
collocated nature is prone to numerical oscillations a volume diffusion term was intro-
duced via the RANS framework. This term was shown to be similar to a correction
proposed by Ferrari et al. (2009) with the important difference of a constant that can
be determined as a function of the resolution. As part of the investigation into wall
boundary conditions a novel formulation for a variable driving force was found which
successfully prescribes a constant volume flux. Simulating a Poiseuille flow it could be
shown that the novel formulation exhibits an error five orders of magnitude smaller
than the original one. Furthermore, it was possible to extend the first-order Neumann
boundary conditions by Ferrand et al. (2012) to arbitrary-order Robin type conditions.
Discretising the wave equation with Robin boundary conditions it could be shown that
the boundary conditions were correctly imposed and that increasing the order of the
approximation reduces the error in the solution. Both the volume diffusion term and
the boundary conditions required external forces to be taken into account which was
shown to significantly improve the results by reducing errors at the free-surface. Fi-
nally, the formulation was tested using a dam break case and the results were compared
to other SPH boundary conditions, showing that the present approach yields superior
results.

7.2.2 Extension to three dimensions

The aim of Chapter 4 was to extend the wall boundary condition to 3-D. Two issues
had to be solved, the first one dealing with the vertex mass computation and the
second with the computation of the normalization factor γ. The first issue was solved
with a geometrical approach that was implemented in a pre-processing code running
on graphic processing units. To determine the normalization factor γ the values of ∇γ

need to be computed which requires solving an integral over a particular 2-D domain.
Using a domain decomposition algorithm it was possible to divide these 2-D domains
into three simple shapes. As the integrand is the kernel it was possible to derive an
analytical formula for this integral on these 2-D shapes. The formulation presented in
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this chapter was tested using several three-dimensional flows with simple to complex
geometries. It could be shown that the formulation is accurate and provides a significant
improvement over the use of an approximated computation of ∇γ. A three-dimensional
dam-break was simulated and the results were compared with a Volume-of-Fluid (VOF)
simulation and several other SPH boundary conditions. The present method yielded
superior results compared to the latter and good agreement to the VOF results was
obtained, despite some expected discrepancies due to the multiphase nature of the VOF
simulation.

7.2.3 Simulations of the turbulent channel flow

The second part of this thesis investigated the application of the SPH method to 3-D
turbulent closed channel flows. Their physical properties as well as the numerical
methods used to simulate these flows were presented in Chapter 5. In Chapter 6
two different simulations were shown. The first one was a quasi DNS and as such
no turbulence models were implemented. This allowed for an evaluation of SPH as a
pure Navier-Stokes solver. Two different resolutions were tested and in particular the
high resolution simulation showed fairly good agreement with the reference solution by
Jiménez and Moin (1991). Only near the wall could some deviations be seen which were
most likely originating from the boundary conditions. In the second part of this chapter
a Large Eddy Simulation of a turbulent channel flow at Reτ = 1000 was attempted. The
Eulerian statistics showed a clear deviation from the DNS results by Hoyas and Jiménez
(2006). An investigation showed that the spanwise and cross-stream Reynolds stresses
were significantly underpredicted. Analysing the budget of these terms it was possible
to identify the velocity-pressure-gradient tensor to be the root cause of this issue. Using
a Taylor-Green vortex this term was investigated at various resolutions finally showing
that a significantly higher resolution would be needed to correctly capture the transfer
of momentum in anisotropic turbulence.

7.3 Recommendations for future work

Finally, some remarks regarding future work shall be made. With the development of
the unified semi-analytical wall boundary conditions it is finally possible to consistently
impose solid walls in SPH even in highly complex geometries. However, in the context
of turbulent flows, some deficiencies have been highlighted.

• In particular the quasi DNS showed some deviation in spanwise direction which
warrant further investigation. These deviations could potentially be overcome by
the use of Robin-type boundary conditions which allow the implementation of
more flexible relaxation schemes near the boundaries.
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• The present SPH formulation is currently being extended to open boundaries and
to incompressible SPH. A repetition of the turbulent simulations presented in this
work with an incompressible code would be of interest.

• Studying the effect of different kernels and smoothing lengths in the context of
anisotropic turbulent flows would be another avenue for future research.

• One further issue related to boundary conditions is variable resolution. Particu-
larly in turbulent flows where the highest resolution is required close to the wall
a capability for variable resolution is highly desirable.

• The negative result at the end of this thesis showed that further research is
warranted in the area of turbulence, particularly in anisotropic flows. It might be
possible to overcome some difficulties by a staggered SPH method but it is unclear
whether this will have the same effect as in Finite Volume methods. However,
as the momentum transfer issue is not of such importance in (unsteady) RANS
simulations this alternative approach is highly interesting in combination with
the SPH method.
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Appendix A

Derivation of skew-adjointness

In the following the left hand side of Eq. (3.7) will be analyzed when replacing the nabla
operator with the gradient and divergence given by Eqs. (3.14) and (3.15). Initially
the part containing the volume integrals of SA Eq. (3.7) will be investigated.

SAv =
ˆ

Ω

ˆ
Ω

1
γa

[
ρ2k

a fb + ρ2k
b fa

ρk
aρk

b

Ba + fa
ρk

aρk
b

ρ2k
a

(Bb − Ba)
]

· ∇awabdrbdra (A.1)

=
ˆ

Ω

ˆ
Ω

1
γa

[
ρk

a

ρk
b

fbBa + ρk
b

ρk
a

faBb

]
· ∇awabdrbdra

Furthermore, due to the additivity of the integral we can split it up

SAv =
ˆ

Ω

ˆ
Ω

1
γa

ρk
a

ρk
b

fbBa · ∇awabdrbdra +
ˆ

Ω

ˆ
Ω

1
γa

ρk
b

ρk
a

faBb · ∇awabdrbdra (A.2)

= −
ˆ

Ω

ˆ
Ω

1
γa

ρk
a

ρk
b

fbBa · ∇bwabdrbdra −
ˆ

Ω

ˆ
Ω

1
γa

ρk
b

ρk
a

faBb · ∇bwabdrbdra.

In the last line the kernel gradient asymmetry ∇awab = −∇bwab was used in both
terms. The boundary part of Eq. (3.7) can be reformulated to

SAb =
ˆ

Ω

ˆ
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1
γa

[
−ρ2k

a fb + ρ2k
b fa

ρk
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Combining the volumic SAv and the boundary term SAb yields

SA = SAv + SAb (A.4)

= −
ˆ

Ω

ˆ
Ω

1
γa

ρk
a

ρk
b

fbBa · ∇bwabdrbdra −
ˆ

Ω

ˆ
∂Ω

1
γa

ρk
a

ρk
b

fbBa · nbwabdrbdra

−
ˆ

Ω

ˆ
Ω

1
γa

ρk
b

ρk
a

faBb · ∇bwabdrbdra −
ˆ

Ω

ˆ
∂Ω

1
γa

ρk
b

ρk
a

faBb · nbwabdrbdra

= −
ˆ

Ω

1
γa

ρk
aBa ·

[ˆ
Ω

fb

ρk
b

∇bwabdrb −
ˆ

∂Ω

fb

ρk
b

nbwabdrb

]
dra

−
ˆ

Ω

1
γa

fa

ρk
a

[ˆ
Ω

ρk
b Bb · ∇bwabdrb −

ˆ
∂Ω

ρk
b Bb · nbwabdrb

]
dra

= −
ˆ

Ω
ρk

aBa ·
[

1
γa

ˆ
Ω

∇b

(
fb

ρk
b

)
wabdrb

]
dra −

ˆ
Ω

fa

ρk
a

[ 1
γa

ˆ
Ω

∇b ·
(
ρk

b Bb

)
wabdrb

]
dra,

where in the last step a reverse integration by parts was used. The terms in square
brackets represent SPH approximations which in the limit of h → 0 converge to

SA → −
ˆ

Ω
ρk
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(
fa
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)
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where in the second last line again a reverse integration by parts was used and the final
line follows from Stokes’ theorem.



Appendix B

Derivation of the Smagorinsky con-
stant for the Wendland kernel

In the following the Smagorinsky constant for the Wendland kernel in isotropic turbu-
lence will be computed following the analysis by Lilly (1967). It is assumed that the
filter width is in the inertial subrange and that an inertial subrange exists such that
the energy-spectrum function is given approximately by

E(κ) ≈ Cε2/3κ−5/3, (B.1)

with C = 1.5 being the Kolmogorov constant. The mean rate of strain is related to the
Energy via

〈 sS2〉 = 2
ˆ ∞

0
κ2

sE(κ)dκ, (B.2)

and as shown in Pope (2001) the filtered energy can be related to the unfiltered energy
by

sE(κ) = Ĝ(κ)2E(κ), (B.3)

where Ĝ is the Fourier transform of the filter. In the following G is assumed to be the
Wendland kernel W given in Section 2.2.2. It is given by

Ĝ(κ) = 45
4h6κ6

(
−2 + 2h2κ2 + 2 cos(2hκ) + hκ sin(2hκ)

)
. (B.4)

Using Eqs. (B.2) and (B.3) yields

〈 sS2〉 = 2
ˆ ∞

0
κ2Ĝ(κ)2E(κ)dκ, (B.5)
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and inserting the spectrum of Eq. (B.1) gives the approximation

〈 sS2〉 ≈ af Cε2/3∆−4/3
G (B.6)

with
af := 2

ˆ ∞

0
(κ∆G)1/3Ĝ(κ)2∆Gdκ. (B.7)

The value of af for the Wendland kernel is af = 7.759. The inertial subrange is
characterized by the fact that the rate of transfer of energy to the residual motions is
balanced by the dissipation. The former is given through the Smagorinsky model as

Pr = νr
sS2, (B.8)

the later can be computed inversely from Eq. (B.6). Due to the balance the two are
equal and yield

CS = 1
(Caf )3/4

(
〈 sS3〉

〈 sS2〉3/2

)−1/2

. (B.9)

Using the approximation that 〈 sS3〉 ≈ 〈 sS2〉3/2 results in a value of

CS ≈ 0.158. (B.10)
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