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For a start: SPH in 3 words m'c'e'ﬂ%é @

NANTES

Smoothed Particle Hydrodynamics

A computational method for solving continuum
mechanics problems...

... with large deformations, multiple objects and
complex interfaces
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What we were doing in 2000

2 moving bodies = wavemaker + floating body + 1 complex interface
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What we were doing 10 years ago
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What we were doing 5 years ago
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What we are doing now
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Smoothed Particle Hydrodynamics

Complex interfaces = large deformations, fragmentation, coalescence...
+

Complex (multiple body) motions = small gaps between objects, contact...

Very difficult for mesh-based methods, especially if we want accurate results

— follow the interfaces/motions = Lagrangian
+

= not possible to use a mesh = meshless

particle method



David LE TOUZE - Keynote lecture - 2017 SPHERIC Beijing International Workshop

LHEEA
P
Meshless? | " CENTRALE @

Projection Tesselation Face construction Truly meshless

Voronoi-FVM
Particle-FEM

Particle-Mesh
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Meshless?

Truly meshless

+ : any configuration can be easily described
- : no description of how the volume of a particle is spread around its location, and on
how it will deform in time
Partly meshless (projection/reconstruction)
+ : easier to define convergent operators / make mathematical analysis of the schemes

- : less general / complex and costly implementation / how to treat interfaces?
especially free-surface?
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Particle: a volumic element (volume V,) of barycenter the scattered
point i

Particle method:

meshless (i.e. no connectivity, NOT no space discretization)
+

Lagrangian (material evolution : d-/dt = ...): particle i evolves at its material speed u,



David LE TOUZE - Keynote lecture - 2017 SPHERIC Beijing International Workshop

For a start: SPH in 3 slides m'c'e'ﬂ%é @

NANTES

Smoothed Particle Hydrodynamics

|

E.g., for Navier-Stokes, in Lagrangian (material) formalism

dx_
dt

3= i

E—— DO
u _ Caradd)
E:g+@+

p=f(p)

u

=> how do we calculate the spatial operators with no mesh?
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=> mollification + discretisation

<u>;= j u(x)o(jx — xi) dx = ]u(x)W(|X —Xxi|) dx = wW([x — xi|) V;

Known at the
neighbour
scattered points
(particle)

Volume associated to
the scattered points

Analytical (particles)

function
(kernel)

+ transfer of the differentiation from the field

to the kernel to get differential operators: /
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Smoothed Particle Hydrodynamics

|

E.g., for Navier-Stokes, in Lagrangian (material) formalism

dx_
dt

=K

a = 00

du d

e g+ @+ grad(divu)

p=f(p)

u

Explicit time integration



David LE TOUZE - Keynote lecture -

For a start: SPH in 3 slides m'c'E'R'.%Eé

2017 SPHERIC Beijing International Workshop

NANTES

Smoothed Particle Hydrodynamics

/

A computational method for solving continuum
mechanics problems...

—> we are doing engineering, not movies or games

— we want accurate stresses (e.g. pressure), forces,
deformations...
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partly true 1. SPH cannot be solved implicitly (as mesh-based) / it has very small time steps
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A fully implicit scheme would mean that time derivatives are expressed using the solution at next

time step (n+1), including the displacements:

= This would lead to a complex implementation in practice, and attempts we made showed that

the resulting scheme is too diffusive
— No one does that in SPH
= 2 ways : fully-explicit OR, at best, semi-implicit

= Fully explicit = WCSPH

dx
at "
d
d_fc) = — pdivu
du gradp

v
= A — '
=8 ) + vAu + 3 grad(divu)

—> Stability criteria: At < Ax/cq

Semi-implicit = ISPH (or MPS)

dx
at "
Cdivu =05
du gradp
=g — A
T g 0 + vAu

At < Ax/[ulmax
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partly true 1. SPH cannot be solved implicitly (as mesh-based) / it has very small time steps

partly true 2. Weak-compressbility is an unphysical trick
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2. Weak-compressbility is an unphysical trick E !Z-EII-I\ITERELAE

Low Mach physical situation = acoustics is superimposed to the incompressible part of the flow, and
fully separated in frequencies

energy
mean flow

acoustics

frequency

=> Incompressible assumption: all waves have infinite speed

energy

mean flow

cousti

CS—)OO

fre{quenc>\
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=> Weakly-compressible assumption: we can change the sound speed since we are not interested in
the acoustic part of the flow (at low Mach)

energy
mean flow

acoustics

N es b /N

frequency

=> N.B. : Weakly-compressible assumption + filtering

energy

mean flow

acoustics

) v Cg »L { \

frequency
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— Weakly-compressible assumption, summarizing:

* Itis not a bigger assumption than supposing the flow incompressible

* Without fiterting it implies that physical pressure oscillations should be present in the solution
(at unphysical frequencies)

* With perfect filtering, it is equivalent to the incompressible assumption

* It permits to lower the sound speed provided Ma stays lower than 0.1 at least,
i.e. ¢cg > 10|u|pax

Ax
(10[ulmax)

It thus permits to loosen the acoustic CFL stability condition: At <

* This induces only a factor 10 with ISPH, At < Ax/|u|pax
(N.B. : ISPH requires imposing conditions at the free surface + solving a system at each time step)
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=> we checked that weakly-compressible solution matches theoretical incompressible one once

acoustic oscillations are damped, even at impact
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- tU/L=0.007 Ma= U/c= 0.01

P/pcU

1
0.8
- 06

0.4

0.2

0
-0.2
0.4
-0.6
0.8
-1

05 -

_0_5 b

-1 05 0 05 1y 15

y/L

/L= 0.167

0.9

0.8

0.7

0.6

0.5

EulEmo L/Ax=400

Riemann-SPH (Ma = 0.01)

N (Em +E¢) [Emo
—

0.2 — 0.4 | ttJ/L‘

Le Touzé D. et al., A critical investigation of smoothed particle hydrodynamics applied to problems with
free-surfaces, Int. J. Numer. Meth. Fluids 73, 2013

Marrone S. et al., Prediction of energy losses in water impacts using incompressible and weakly compressible

models, J. Fluid Struct. 54, 2015
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1. SPH cannot be solved implicitly (as mesh-based) / it has very small time steps
2. Weak-compressbility is an unphysical trick

3. SPH conserves everything
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Let’s restrict to Euler equations for now (perfect fluid)

dx_
prae
dp
-~ pdvD
du rad
E = g
p
p=f(p)

u

for Momentum conservation (action/reaction)
\
<Vp>= Z(p DW(x — %DV,
j

Mass is conserved (particle method)
< diva >; = E(u w). W(jx; — x]) Vi
1'/7

: T Total volume is n nserved!
for Energy conservation (Hamiltonian) otal volume is not conserved

Colagrossi A. et al., Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics
model, Phys. Rev. E 79, 2009
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Smoothed Particle Hydrodynamics

Mollification _ Continuum mechanics
Meshless Lagrangian

method

Vision 1 (original) = Hamiltonian

mechanics of a discrete system

A fluid dynamics problem numerically seen as a system of particles using
a mollification.

AND

A meshless numerical method for discretizing Lagrangian PDEs.

Vision 2 (standard) = numerical methods

for PDEs describing continuous media
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partly true 1. SPH cannot be solved implicitly (as mesh-based) / it has very small time steps

partly true 2. Weak-compressbility is an unphysical trick

3. SPH conserves everything

Nt 4. SPHis unstable / SPH pressures are noisy
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Let’s restrict to Euler equations for now (perfect fluid)

dx
dt
d
d_fc) = — pdivu
du gradp

a8 p
p=£f(p)

u

<Vp>i= ) (b +PIW(x —xiD) Y
J

< divu >i = z(u] — u])W(|X] — Xil) V]
j

Scheme which is centered in space + fully explicit => need for stabilization
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centered + explicit => need for stabilization

Method 1 (stable but not enough!)
last equations + artificial viscosity added through the pressure term (original Monaghan SPH scheme)

— —
pz%zpz gz—Z(Pz+P)Vz ijWj (
JEN




David LE TOUZE - Keynote lecture -

2017 SPHERIC Beijing International Workshop

4. Stability? Pressure field quality? I Gmate @

NANTES

Method 1 (artificial viscosity): Pressure field quality

Standard SPH

05 F

Remember: we want pressure/force accuracy: we work for engineers, not gaming or movie people!

N 2
005 F FT [p AP A-analytical ]/ pAOIe2
Where do the errors go? => acoustics " Analytical solution Acoustic R/h
0.04 ¢ membrane — 120
0.03 ] e resonance | _____ 60
Br L N 30
0.02 il - -— - e 15
001 f o Semdael
I — e e e AN i St b |
0 1 2
10 10 100 f/A,

Le Touzé D. et al., A critical investigation of smoothed particle hydrodynamics applied to problems with
free-surfaces, Int. J. Numer. Meth. Fluids 73, 2013
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Method 2
use of a density diffusive term (proportional to a Rusanov flux) in the continuity equation, e.g., 6-

SPH, in addition to the artificial viscosity

dp; — —. =
& =—pi Z(Uj —v;). Vi Wijw;
JjEQ

Method 3

use of Riemann solvers (Vila, 1999) between each pair of particles (standard in FVM for
hyperbolic systems)

d;
i . =V,

dw. — —

dzl o :]epz(g)w’wf (vof v"l) d Ul given by the Riemann problem solution
L 'F 4@y, +F —¢ ®v, ‘VW S,
dto"']d;))wia)j( i TGOV, T j_¢J ) My =0,

Method 4
use an incompressible semi-implicit solution

Oger G. et al., SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and
consistent ALE formalisms, J. Comput. Phys. 313, 2016

Antuono et al., Free-surface flows solved by means of SPH schemes with numerical diffusive terms, Comput. Phys.
Commun. 181, 2010
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Methods 2 to 4 : Pressure field quality

Standard SPH Use of Riemann
solvers

or density diffusive
term,

or incompressible
variant

Enhanced SPH

05
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SPH fact checking m CETRALE %

partly true 1. SPH cannot be solved implicitly (as mesh-based) / it has very small time steps

partly true 2. Weak-compressbility is an unphysical trick
3. SPH conserves everything
no more true 4. SPH is unstable / SPH pressures are noisy

5. SPH is not convergent

not true 6. SPH is not accurate
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5. Convergence? 6. Accuracy?

A double convergence criteria

<u>= j ux)W(|x — x|) dx = z uW(x; — xi|) dV;

| |

h->0 Ax/h->0

convergence order (Mas Gallic & Raviart):

2\ 2
h? 4+ h" (f§i¥>
h

=> inconsistent if Ax/h = cst !!!
though common practice!

First-order operators (grad, div) used in standard SPH
diverge at order 1 (pressure gradient) or are not
convergent (velocity divergence)!!!

2017 SPHERIC Beijing International Workshop

|'ILHEEA
CENTRALE
NANTES

Xe
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5. Convergence? 6. Accuracy? I s
And in practice, with Ax/h = cst? Validation on dam breaking test cases

Obstacle Walls
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Marrone S. et al., 6-SPH model for simulating violent impact, Comput. Meth. Appl. Mech. Engng. 200, 2011
Marrone S. et al., Fast free-surface detection and level-set function definition in SPH solvers, J. Comput. Phys. 229, 2010
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Validation on dam breaking test cases

t=1.8s
Ax=0.0015m

=
=
3
P

00000 ====N
NBRO®RE NBRO®

* Good prediction of pressures as well:

14000:— —4A—— experiment - —4A—— experiment
i — Ax=0.01 6000 |- — Ax=0.01
12000 | ———— AX=0.005 B ——— AX=0.005
I — AX=0.0015 | — AX=0.0015
© 4000
o i
™
by |
2000 =
ke 1
. % 05 1 15
t(s) t(s)

Heuristic convergence order is usually ~1

Marrone S. et al., 6-SPH model for simulating violent impact, Comput. Meth. Appl. Mech. Engng. 200, 2011
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Validation on slamming impact on a real application

CENTRALE
NANTES

Experiment (ECN wave tank) SPH simulation
600 |-
i Cxpérience Vertical force
4000 b Expérience 500 [~
SPH

3 million particles
Pressure on the

keel

2000

P6 (Pa)

6m/s impact (real scale)

250m ship (real scale)

L 1 ! ! ! ! ! ! ! ! ! ! ! ! L
0.25 0.3 0.35 0.1
t(s)

Maruzewski et al., SPH high-performance computing simulations of rigid solids impacting the free-surface of water, J.
Hydrau. Res. 48, 2010
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So what can be the explanation?

du Ju
e Lagrangian! = no discretisation of the convection term FTairT + (gradu)u

=> exact convection

=> provides accuracy for flows dominated by convection (fast dynamics flows), e.g. 3D dambreak w/
80k particles

=> convergence/accuracy is a mixed between exact (convection) and poor (pressure gradient,
velocity divergence)

*  Step-like convergence (Quinlan, Ellero... et al.) + already large stencil (250 neighbors in 3D!)

error

= Heuristic convergence
often of order 1 with
« tolerable » saturation
(problem dependent!)

1/ Ax = + « saved » by
Y Y conservation and exact

Ax/h=Cst Ax/h=Cst/2 convection

* Discretization preserving conservation of mass, momenta and total energy
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1.

partly true

partly true

no more true

not true

not yet!

false

2.
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SPH cannot be solved implicitly (as mesh-based) / it has very small time steps
Weak-compressbility is an unphysical trick

SPH conserves everything

SPH is unstable / SPH pressures are noisy

SPH is not convergent

SPH is not accurate
SPH cannot be high order

SPH should be purely Lagrangian
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7. Higher order? 8. Purely Lagrangian? E'C-E'I'\.%Eé

Operators can be easily corrected locally to increase their order of convergence (MLS...)
principle: imposing that the operator becomes exact for constant, linear, quadratic... fields

-1

=

1

VWi — §(B + B;) - VW

=> Efficiency on an academic example not meant to be solved by SPH: the propagation of a linear
gravity wave (first-order convergent opeartors used)

——— spectral

spectral
0015 = SPH 0015 | Sneac SPH
N b NN
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Consequences:
=> Convergence is theoretically recstored (see, e.g., Vila)

=> Computational cost is increased quite a lot (need to solve small matrices for each particle at
each time step)

=> Typical corrections only restore order 1 (which was already heuristically obtained with
reasonable saturation level) : order 2 is costly
=> more for accuracy than for convergence itself

=> Correction impacts other aspects, especially boundary conditions => not so easy

=> Calculations are often not improved/less stable!
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More accuracy = TOO Lagrangian

= harmful effects on spatial interpolation,
accuracy and stability

= leads to numerical artefacts (especially on ~
i S AT
pressure fields) At

8 g

) »I
L F ot 1
. o _:é :{ e

TN

— increases the numerical diffusion in the end

So, the better the worse! : the more accurate,
the more Lagrangian and the more Lagrangian,
the less accurate!

nh g ek .
PR AT SN S8 A BT 207

Together with difficulties at the boundaries, this PRI
explains why we do not see many high-order

simulations...

* So why standard SPH particle distributions are so regular? => thanks to errors!
— Hidden projection
— Literature shows that errors on the pressure gradient induces a force tending to « fill voids »

C ° Hidden projection
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Solution found in recent years when the schemes became more accurate
= People often use arbitrary shifting (XSPH, shifting...) to homogeneize particle distribution in time

problem: it is not conservative and a lot comes from conservation!

— We proposed a fully-conservative alternative through an ALE formulation (adapted from Vila, 1999 =>
Oger et al., J. Comput. Phys. 313, 2016) used in a quasi-Lagrangian way (with same kind of

displacements as shifting) => « consistent shifting »

da;
L =7 14
dt (14)

dwi 7
J
d (wipi) i} } -
a7 ; (pilT: ‘+ p;(Tj ‘) VIV wj. (16)

Oger G. et al., SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and

consistent ALE formalisms, J. Comput. Phys. 313, 2016
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Examples of results with ALE formulation and Riemann solvers Lagrangian | ALE
y/H ALE
ym t(g’H)y’=6'42 P/(ng) 0 015 0.3 045 06 0.75 09 105 1.2 0.4 |
o [
05}
ol
yH

y/H Fully Lagrangian
NEEE 4

1.5+ |Fully Lagrangian

05
0 -
0 1 T m 3 4 5
With this ALE formulation we have all " ALE g M e s
the ingredients to build a higher-order P6Y) ‘ PG
model (work in progress) ! o5 5%
0.1 040
0.0 0.50
0 030
Oger G. et al., SPH accuracy improvement 04 070

0.00

through the combination of a quasi-Lagrangian
shifting transport velocity and consistent ALE
formalisms, J. Comput. Phys. 313, 2016

. XL
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SPH fact checking m CETRALE %

partly true 1. SPH cannot be solved implicitly (as mesh-based) / it has very small time steps

partly true 2. Weak-compressbility is an unphysical trick

3. SPH conserves everything
el o hii8 4. SPHis unstable / SPH pressures are noisy

5. SPH s not convergent

not true 6. SPH is not accurate

not yet! 7. SPH cannot be high order

false 8. SPH should be purely Lagrangian

mainly false 9. Free-surface conditions are not modelled whereas they should
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=> mollification + discretisation
Incomplete support

<u>;= j u(x)8(|x — x;|) dx = ]u(x)W(|X — x;|) dx =

Known at the
neighbour
scattered points
(particle)

Volume associatedto | ° A Vi
the scattered points . T
Analytical (particles) ) AP S B
function e N~ .

(kernel)
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=> boundary terms need to be accounted for in integration by parts

+

the support is no more filled by neighbours close to the boundary => potential inaccuracies
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9. Free-surface boundary conditions ﬁl/imgém

Kinematic FSBC is straightforward since we have a Lagrangian formalism
=> ok at convergence even though no particle strictly lies on the free surface due to their volume

We have proved that dynamic FSBC is verified in an integral sense provided appropriate operators are
used for the pressure gradient, velocity divergence and velocity Laplacian (Colagrossi et al., Phys. Rev. E
2009 et 2011)

=> same reasoning as before but with boundary terms

for Momentum conservation (action/reaction)

<Vp > = Z(p DW(x; — %)) Vi
j

< diva >; = Z(u ). W(lx; — xi[) Vi

/’

for Energy conservation (Hamiltonian)

Colagrossi A. et al., Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model,

Phys. Rev. E 79, 2009
Colagrossi A. et al., Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-

hydrodynamics formulations in simulating free-surface flows, Phys. Rev. E 84, 2011
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SPH fact checking m CETRALE %

partly true 1. SPH cannot be solved implicitly (as mesh-based) / it has very small time steps

partly true 2. Weak-compressbility is an unphysical trick

3. SPH conserves everything
el o hii8 4. SPHis unstable / SPH pressures are noisy

5. SPH s not convergent

not true 6. SPH is not accurate

not yet! 7. SPH cannot be high order

false 8. SPH should be purely Lagrangian

mainly false 9. Free-surface conditions are not modelled whereas they should

10. There is no good scheme to model wall boundary conditions
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10. Good wall boundary conditions?

Formerly we used the ghost method, best compromise between generality and accuracy

=> 3D generic technique from any surface (e.g. IGES format)
III ‘Fﬁz |
< !y 55 \g | |
\\ l /"klil_—____"‘————____ ‘J':
k) VT =1 F
.\ //_./_, | 1________{{},#’"’ I|
\\__ /f::,ff""'"' ul
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\'\_ "':j. — (A3 T |'I
ey s |
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\ Uy, /
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\ | |
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Exact only for a flat panel, difficulties with geometrical singularities, especially sharp edges
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We proved that the no-slip ghost condition should not be applied to the velocity divergence to
preserve the hyperbolicity of the system inviscid part (De Leffe et al., 6" SPHERIC workshop, 2011)

v, pv, - —
d_E:_ Z Z mm, P, > +pl S +1Hl.j (vl. +vj) VI,
dt ieP(Q) jeP(Q)UP(0Q) oy Pi 2
= AE +AE"

Strouhal | C4
SPH 2.0 1.47
Experiment | 1.9 1.3

De Leffe M. et al., A modified no-slip condition in weakly-compressible SPH, Proc. 6th Int. SPHERIC Workshop, 2011




CENTRALE
NANTES

10. Good wall boundary conditions? m LHEEA %

We proposed the Normal Flux Method (submitted to JCP)

(dxi,. .

dt . — Yoi

do. 1 — — 1 — o\
i B Z a)ia)j(voj_VOi)'viW;j-i_i Z a)isf(vof_v‘)")nf%

dt o 7, iira) Vi jeP(o)

da)i% 1 .5 1 FaF\nW. =mS.
ity oo FrE)W 3 o (F ), =08

boundary flux obtained from

compensates missing compressible flow characteristics

Wall
Ej;)(o)];;he kernel 2// 4 Fluid domain

)

N
P

A\«\\\\\\\\\\Q

B Belongs to the family of boundary integration
techniques (like, e.g., USAW)

B  Fully general technique

B No leakage of particles

B Permits very complex geometrical configurations meshed with millions of elements

Chiron L. et al., Accurate and efficient solid boundary conditions in SPH : the Normal Flux Method (NFM), submitted to J.
Comput. Phys.
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1.

partly true

partly true

no more true

not true

not yet!

false

mainly false

2.

8.

9.
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SPH cannot be solved implicitly (as mesh-based) / it has very small time steps

Weak-compressbility is an unphysical trick

SPH conserves everything
SPH is unstable / SPH pressures are noisy

SPH is not convergent

SPH is not accurate
SPH cannot be high order
SPH should be purely Lagrangian

Free-surface conditions are not modelled whereas they should

10. There is no good scheme to model wall boundary conditions

11. Single-phase assumption used in free-surface SPH is physically a non-sense
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Lots of SPH users do not pay attention to the fact that single-phase simulation is a priori limited to
non-breaking free-surface flows

=> Study of a complex dambreak flow with 1 and 2 phases simulated

YH Re-5000 N

320000  t(g/H)"*=0.039 @Oz L0
C HiAx=400 Nz 22

60000 Centrale

air Nantes

water™

3

2.5

| I I

1.5

| I I

0.5

Marrone S. et al., Analysis of free-surface flows through energy considerations: Single-phase versus two-phase modeling,
Phys. Rev. E 93, 2016
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180 - e GerD  (CrodDm—
yH t(g/H) '=6.80 yH @ u 00 020304030607 0809 )

Marrone S. et al., Analysis of free-surface flows through energy considerations: Single-phase versus two-phase modeling,
Phys. Rev. E 93, 2016
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_Vﬂ'l [ l(g/“)“=6.80 );l: [ - 0 01 0203040%0607 ul.‘ 0s

( M water MO“ncr)/AE
OF——————————————csmaaaca e e e e ...
0.2
------- SPH single-phase model
SPH air-water model

-04
’0.6 n | 1 1 L 1

0 2 4 6 8 wgmy 10

Marrone S. et al., Analysis of free-surface flows through energy considerations: Single-phase versus two-phase modeling,
Phys. Rev. E 93, 2016
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1.

partly true

partly true

no more true

not true

not yet!

false

mainly false

still true

2.

8.

9.
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SPH cannot be solved implicitly (as mesh-based) / it has very small time steps

Weak-compressbility is an unphysical trick

SPH conserves everything
SPH is unstable / SPH pressures are noisy

SPH is not convergent

SPH is not accurate
SPH cannot be high order
SPH should be purely Lagrangian

Free-surface conditions are not modelled whereas they should

10. There is no good scheme to model wall boundary conditions

11. Single-phase assumption used in free-surface SPH is physically a non-sense

12. SPH is costly / any future tracks?
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12. SPH is costly?

Unfortunately : yes!

LHEEA
CENTRALE
NANTES

* \Very large stencils (typically 50 neighbours in 2D and 250 in 3D) => maybe less when we will have a
robust second-order scheme?

*  Small time steps => maybe a fully-implicit variant some day?

— Compete well only where mesh-based methods have difficulties and for fast dynamic flows

= Need for large hardware/efficient strategy, e.g. MPI/OpenMP or GPGPU

speedup

35000

30000

25000

20000

15000

10000

5000

m 10° calculation
points

pb with 1e8 particles —+—
pb with 1e9 particles

linear scalability 7=
| | | | yI

5000 10000 15000 20000 25000 30900 35b00

number of processors

Linear scalability of SPH-Flow 25?6030
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Adaptive particle refinement (APR)

* Inspired from mesh-based AMR, but adapted to a Lagrangian formalism => use of « guard
particles », prolongations, restrictions. as in AMR

* Has proved to be accurate, o o v XXXeo00 00 o o foXxx000000
efficient and robust 03; eoee XXX €0 60 60
° x  + § ::: = e o o§§o§9.x..
X XX o000 XXX 000000
o o X X XXXo0o0000 o o el %
Rayon unique R, Rayon unique Ry = 0.5R,, e : particule SPH
v : particule Garde
3.002 t =0.52 ms 3.002 t=0.72 ms
5 : ~
*3.001 | *3.001 [

2.999 - 2.999 -

2.998 - 2.998
:: FRRRER] EE5E5Y i L 1 . L 1 | EREERY 1 SRR ) i ! L f i 1 ol rREn | L " L ok FHCN SSSa0
0.264 0.262 0.26 0.258 0,242 0.24 0.238 0.236
X X
P (bars) : o 7142128354249566370

Barcarolo et al., Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method,

J. Comput. Phys. 273, 2014
Chiron et al., Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and

robustness considerations, to appear in J. Comput. Phys. , 2017




David LE TOUZE - Keynote lecture - 2017 SPHE

12. Future tracks
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Barcarolo et al., Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method,

J. Comput. Phys. 273, 2014

Chiron et al., Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and

robustness considerations, to appear in J. Comput. Phys. , 2017
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Coupling to Finite Volumes

SPH DOMAIN

*  Coupling with a finite volume level-set solver

* Principle : use of forcing and blending zones

e Efficient even when the change of solver
intersects the free surface

|
| PURE SPH FORCING | |
|
|

e Validated on numerous 2D test cases

FV DOMAIN

Pi(pgtt) INTINNNNT | (T t(g/H)" = 4.04 Pi(pgtt) TN (o t(g/H)" = 8.08

0 0.102030405060.70809 1 0 0.102030405060.70809 1

3 35 "% 05 i 13 X 3 35
x/H

Pllogryy INININNNT (TN (WH) =122 pyog) I (O ()" = 13.029

0 0.102030405060.70809 1 0 0.102030405060.70809 1

Marrone S. et al., Coupling of Smoothed Particle Hydrodynamics with Finite Volume method for free-surface flows, J.
Comput. Phys. 310, 2016
Marrone S. et al., Coupled SPH-FV method with net vorticity and mass transfer, submitted to J. Comput. Phys.
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Coupling to Finite Volumes
Free-surface (Froude) driven test-case (difficult for the FV level-set solver)

Y/a
u b
Ya  tUa=0 SPH P/(apg) n|
30 F - o 2
r o ‘U ! . 20 -
L 14
25 b = N sl .
I g 10 . Prosperetti & Oguz 1997
20 o ‘ 16 - « SPH (Trivellato et al. 2006)
i . \ tU/a=4 - Coupled SPH-FVM
1 -
C 0 15 10 K 0 5 10 15
. X/a
0 :_ Y/a
St
ok
| | | 1 | | | | | |

S W RES
x/a

tU/a=16

1 1 1 (I 1 1 1
-15 -10 -5 0 5 10 15

Marrone S. et al., Coupling of Smoothed Particle Hydrodynamics with Finite Volume method for free-surface flows, J.
Comput. Phys. 310, 2016
Marrone S. et al., Coupled SPH-FV method with net vorticity and mass transfer, submitted to J. Comput. Phys.
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Coupling to Finite Volumes
Vorticity-driven (Reynolds) test-case (difficult for the SPH solver)
y/H Domain A
i =2, TR T
1r SPH P/(pgH) y/f? (=230 ot 10-8 6420 2 4 6 810
I 1 12
08 o3
» 08 !
0.6 - 0.5
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i 03 0.8
04| 0.2 i
I H 0.1 i
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02 e i
ok 04
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| 25
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04 |- 1
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| -3.5
| -4
o 45
| -5
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Marrone S. et al., Coupling of Smoothed Particle Hydrodynamics with Finite Volume method for free-surface flows, J.
Comput. Phys. 310, 2016
Marrone S. et al., Coupled SPH-FV method with net vorticity and mass transfer, submitted to J. Comput. Phys.
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SPH fact checking m CETRALE @

partly true 1. SPH cannot be solved implicitly (as mesh-based) / it has very small time steps

partly true 2. Weak-compressbility is an unphysical trick

3. SPH conserves everything
ol e Rl 4. SPHis unstable / SPH pressures are noisy

5. SPH s not convergent

not true 6. SPHis not accurate
not yet! 7. SPH cannot be high order
false 8. SPH should be purely Lagrangian
mainly false 9. Free-surface conditions are not modelled whereas they should

10. There is no good scheme to model wall boundary conditions

11. Single-phase assumption used in free-surface SPH is physically a non-sense

still true 12. SPH is costly / any future tracks?

no more true 13. SPH is a research object which has no industrial potential



David LE TOUZE - Keynote lecture - 2017 SPHERIC Beijing International Workshop

: . .. LHEEA
13. Industrial applications? M cumae

NANTES

What is true
* SPHis costly and not accurate for all problems

=> it has a restricted field of applications (for now and probably for a long time)

* The fields of applications are:
— Fast dynamics problems: small time steps + exact convection + complex interfaces

— Complex physics: multi-body in the flow with contact, problems with different species/physical
phenomena (explicit solving)

— Multi-solver problems: easy coupling with other solvers: SPH-FEM / SPH-DEM / ...

* Another asset: CAO to CFD (like LBM)

A rather extensive review: Shadloo et al.,, Computers & Fluids 136, 2016

Shadloo M.S., Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations,
current state, and challenges, Computers & Fluids 136, 2016
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Fast fluid-structure coupled impact analytique

3E+07

LI I L L L N L L B BB |

Fast aluminium beam impact

LNG membrane impact
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Complex bubbly flows (separation, atomisation) cemr o3 o R
oofF 0.2 eve_
\ Level- SPH
i | vonr E— - E g . SetQSPH
. S i B T 0
. ‘ ) . 4 - ) ¥ t(=@R)" =1.90 ¥ t(2R)*=2.53
10 lllll [ o4 i;S .4{
oe \,R o o \/R o 3 OI’ 0.‘ 0‘4 0.‘ 0.6 OI_' OIS 073 0. % - % X l: %
¥ t(@R)" =285 ¥
. . . 07 '¥\ oi?
Water-oil separation (w/o or w/ surface tension) ga t
t=0.2s t=0.4s t=0.6s t=0.8s

Bo,,=0.125

Grenier et al., Viscous bubbly flows simulation with an interface SPH model, Ocean Engng. 69, 2013
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Lifeboat launching Aircraft ditching

42 1 A8 06 04 .02

| " LHEEA @
CENTRALE
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Liquid Natural Gas (LNG) sloshing
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[ | FPSO in severe sea state

coupling strategy:

B  Fregate facing a dimensioning wave
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tt= 0.20E-03s

B (] e

Vmodulus: 0 4 8 12 16 20 24 28 32 36

Pelton turbine
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* A method growing for flows with complex/multiple interfaces/bodies

* The method extends also towards more and more multiphysics fields: ease to add PDEs in the
system to solve and to have separated materials

*  Numerical experience and understanding of the method fundamentals and numerical
mechanisms is growing but a difficulty remains in terms of numerical analysis/applied maths
on the method, slowing down progress towards higher-order, etc.

* Astill costly method \)
E CENTRALE NE):TFLOW
NANTES
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